
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE)

e-ISSN: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. II (May – June 2017), PP 34-46

www.iosrjournals.org

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 34 | Page

Extending the Service Lifetime of a Battery-Powered System

Supporting Multiple Active Modes

Maryam Triki
(1)

, Ahmed Chiheb Ammari
(2)

1
Faculty of Computing & Information Technology, Department of Computer Science, King Abdulaziz

University, Jeddah 21589, Saudi Arabia
2
Renewable Energy Research Group, Department of Electrical and Computer Engineering, Faculty of

Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract: Dynamic power management (DPM) is a well known power optimization technique that aims at

reducing the power consumption of a system while maintaining an acceptable performance degradation level.

This paper presents a Reinforcement Learning-based dynamic power management framework for extending the

battery service lifetime of a system with multiple active modes. In the proposed framework, a Power Manager

adapts the system operating mode to the actual battery state of charge based on the observation of the battery

output voltage. Moreover, it uses the reinforcement learning technique to accurately define the optimal battery

voltage threshold value and use it to control the system active mode. Additionally, the power management policy

is automatically adapted to the optimal timeout value. The proposed algorithms are experimented on both single

and dual-battery powered systems and the obtained results confirm their excellent performance for defining the

optimal power management policy particularly for high latency constrained systems. Experimental results show

an improvement in battery State of Charge (SoC) savings up to 42.83% and 55.38 % respectively for single

battery and dual battery systems in comparison with classic pre-specified timeout policies using a given preset

battery threshold voltage

Keywords: Battery-powered system design, Energy savings, Reinforcement Learning; Dynamic Power

Management; Extending battery lifetime.

I. Introduction
Batteries are widely used as the only source of power in many applications. Thus, extending the battery

service lifetime of battery-powered systems become a major concern [1], [2], [3]. Dynamic Power Management

(DPM) techniques refer to a selective shut-off or slow-down of system components that are idle. Although, such

techniques effectively reduce the system power consumption, they are not able to obtain the optimal policy for

extending the battery lifetime. This is because the battery characteristics are not properly modeled and exploited

in these techniques [4]. Due to the battery characteristics, a minimum power consumption policy does not

necessarily result in the longest battery lifetime. Therefore, an effective power management technique must

consider the system workload and the battery characteristics to extend the battery lifetime [5], [6]. In this

context, authors in [7] proposed three policies: an open-loop policy, a closed-loop policy and their combination.

The open-loop policies attempt to reduce the average power consumption independently from the battery state

of charge while managing the system power. The closed-loop policy is based on the idea of switching from a

high quality factor to a low quality factor of the system state when the output voltage of the battery drops below

some voltage threshold. Compared to the open-loop ones, the closed-loop policies are based on the observation

of both battery’s output voltage and system workload. As a consequence, they help maximize the time of battery

operation more effectively by adapting a component’s shutdown scheme to the actual battery state of charge.

This can be performed by lowering the quality of service when the battery’s output voltage falls below a voltage

threshold. If the battery is fully charged, the system is kept in a high performance state providing high quality

services. The rationale for this policy is to provide graceful degradation of system performance as the battery

discharges. In this case, it is clear that the choice of the voltage threshold is critical for trading off the service

quality with battery lifetime. For the work presented in [7], the threshold is obtained in a heuristic manner.

Rong et al. in [8] attempt to maximize the battery service lifetime by using a stochastic approach. It can

take into account both power and performance and able to derive provably optimal DPM policies, by modeling

the request arrival times and device service time as stationary stochastic processes such as Markov Decision

Processes (MDP) [9]. Its essential shortcoming is the need of exact knowledge of the MDP state transition

probability function. However, the workload of a complex system is usually changing with time and hard to be

predicted accurately [10]. The workload variation has a significant impact on the system performance and power

consumption. Thus, a robust power management technique must consider the uncertainty and variability that

emanate from the environment, hardware and application characteristics [11] and must be able to interact with

the environment to obtain information that can be processed to produce optimal policies.

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 35 | Page

In this context, several previous works have used machine learning for adaptive DPM policy

optimization [12]-[16]. Machine learning-based methods such as Reinforcement Learning (RL) can

simultaneously consider power and performance, and perform well under various workload conditions when the

system model is not known a priori. Tan et al. in [17] propose to use an enhanced Q-learning algorithm for

system-level DPM. Wang et al. in [18] extend this work to allow a power manager working in a continuous-time

and event-driven manner with faster convergence rate, by exploiting the a learning framework for Semi-MDP

[19].

This paper presents a reinforcement learning approach for extending battery service lifetime in a

portable electronic system with multiple active modes. More precisely, a DPM framework is implemented to

perform power management by learning online the optimal battery threshold voltage for a closed-loop policy.

This work extends the basic DPM framework presented in [20] to a dual battery powered system and is

enhanced to automatically adjust the power management policy by learning the optimal timeout value. This

framework has the following main characteristics: i) it can dynamically perform power management in a

continuous-time and event-driven manner according to both system workload and battery state of charge; and ii)

it has fast convergence rate and less reliance on the Markovian property. Using the learning approach in [18], a

power manager simultaneously learns the optimal policy for non-stationary workloads and uses that policy to

control instead of only evaluating one predefined policy. Experiments on measured data traces show the power

of learning the optimal DPM policy and demonstrate the superior performance of the proposed framework in

comparison with prior works [7], [8].

The remainder of this paper is organized as follows. We provide an overview of reinforcement learning

background in Section 2. The proposed dynamic power management framework architecture is presented in

Section 3, and its implementation details are given in Section 4. The experimental results are analysed in

Section 5. We conclude this paper in Section 6.

II. Theoretical Background
Reinforcement learning is a branch of machine learning based on learning through experience

accumulation [21] and is widely applied for large optimal decision making problems.

1. Formalism of the agent-environment interaction

A general reinforcement learning (RL) model as illustrated in Figure 1 consists of an agent, a finite

state space , a set of available actions , and a reward function . The core of an RL

technique is the interaction between the agent and its environment. The agent is the learner and decision maker.

The environment is defined as any sensory information the agent receives. Actions refer to the decisions the

agent is intended to make [22]. State represents the situation the agent can find itself in. More precisely, the state

is the available information about the agent’s environment that helps the agent in decision making.

Fig.1. Agent-environment interaction model.

At each step of interaction with the environment, the agent receives a representation of the

environment's state and selects an action where denotes the set of possible actions

available at state . As a consequence of the taken action, the agent moves from its current state to a new

state and receives from the environment a reward (a real or natural number) or a punishment (a

negative reward) which indicates the value of the state transition. The cumulative rewards affect the agent

behavior and guide the action policy. The agent’s goal is to optimize its behavior based on the cumulative

received rewards.

We define a policy as the set of all possible state-action pairs in the RL

framework. It can be interpreted as mapping from states to probabilities of selecting possible actions:
 .

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 36 | Page

The RL agent continuously adjusts its policy so as to maximize the total amount of reward received over the

long run. It is worth to state that the RL agent-environment interaction model is abstract, generic and flexible. In

fact, the time can be continuous and not defined in fixed intervals. The actions can be different and vary as well.

The states can be completely intrinsic and can have different forms (signal readings, symbolic description, etc).

2. Reinforcement learning in discrete-time

The reinforcement learning problem is to determine the optimal policy that maximizes the value

functions for all state-action pairs. Generally, the agent has no predefined policy or knowledge about state

transition characteristics. Therefore the agent has to simultaneously learn the optimal policy and use that policy

to control. We define the return as the discounted integral of reward rate, whenever a selection of action is

made by the agent. Furthermore, we define the value of a state-action pair under a policy , denoted by

 , as the expected return when starting from state , choosing action (according to policy), and

following thereafter.

The agent keeps a value function , for each state-action pair initially chosen by the

designer and then updated each time an action is taken and a reward is received. The Q value function represents

the expected long-term reward when starting from state , choosing action (according to policy), and

following thereafter. At decision epoch tk, the action with the highest Q value is chosen. At decision epoch

tk+1, the Q value is updated.

The update rule for discrete time RL is based on the following equation:

 (1)

where denotes the learning rate; is the reward received at time and is the discount

factor. The agent chooses the action with the maximum estimated value for various actions next

time the state is visited, and then adjusts its policy so as to maximize the total amount of reward received over

the long run.

3. Reinforcement learning in continuous-time

The continuous-time RL technique is implemented based on the Temporal Difference learning method

[22] for a Semi Markov Decision Process (SMDP) called TD(λ) for short. Since the SMDP is a continuous time

dynamic system composed of a countable state set S, and a finite action set A, there exists a countable set of

decision epochs More precisely, at decision epoch tk, the system has just transitioned to

state sk in response to a certain event. The agent selects an action ak according to some policy. At time tk+1, the

agent finds itself in a new state , and, in the time period , it receives a scalar reward with rate .

The temporal difference learning (TD) for SMDP generates an estimate for each state-action

pair at epoch , which is the estimate of the actual value following policy . Suppose that

state is visited at epoch . Then at that epoch the agent chooses an action either with the maximum estimated

value for various actions , or by using other semi-greedy policies [22]. The TD learning rule

updates the estimate at the next epoch , based on the chosen action and the next state .

We choose to use the algorithm presented in [9] due to a joint consideration of effectiveness, robustness and

convergence rate. More specifically, the value update rule for a state-action pair at epoch in the TD(λ)

algorithm for SMDP [22] is given as follows:

(2)

In the above expression, is the time the system remains in state ;

 is the

sample discounted reward received in time units; is the estimated value of the state-action pair

 in which is the actually occurring next state. Moreover, in Eq.(2), denotes the

eligibility of each state-action pair in order to facilitate the implementation of the TD() algorithm. Such

eligibility reflects the degree to which the state-action pair has been chosen in the recent past and it is

updated as follows:

 (3)

where denotes the delta kronecker function.

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 37 | Page

III. Indentations And Equations
We target a battery powered system under non-stationary workload. The basic system as shown in

Figure 2 consists of a service requestor (SR) generating the requests, a service queue (SQ) to store the requests

waiting for processing, and a device providing services to the workload called service provider (SP). Like real

systems, the service request’s exact generating time instances are not known a priori.

Fig.2. The global system architecture.

3.1. Service Provider Model

In this work, we consider a service provider as shown in Figure 3. It has five main states explained as follows:

— Active state: the SP is fully functional and some requests are being processed. The active state includes two

different power modes :

 High Performance state (HP) when the system consumes more power but provides high quality services;

 Low Performance state (LP) when the system provides low quality services and consumes less power.

We use the service provider response time as the service quality metric [23]. In HP state, the SP power

consumption is higher but services the service requests more rapidly than in LP state. In contrast, the SP has

longer execution time and less energy consumption in LP state compared to its HP state.

— Idle state: the system is still operational, but there are no service requests to deal with [24]. The transition

between the active and idle states is autonomous, i.e., as soon as the system completes servicing all of the

waiting requests, it enters the idle state. Similarly, the system goes from idle to active once a service

request arrives.

— Sleep state: The SP moves to the Sleep state- where it has reduced power consumption- only from the idle

state. The device turns into active as soon as a service request arrives.

— Off state refers to a completely turned off system.

Fig.3. State diagram of a service provider.

3.2. Battery Model

We use state-of-charge (SoC) to denote the status of the battery. A battery SoC is usually changing

over time depending both on user activities and on battery properties. Ideally, the battery voltage is constant

over a complete discharge cycle, and it drops to zero when the battery is fully discharged. In practice, the battery

output voltage decreases as a function of the discharge time, and the battery is exhausted when its output voltage

falls below a given voltage threshold [7]. Thus, the battery output voltage describes the battery SoC.

Recall that the targeting system has two active modes with different performance and power

consumption levels. The SP switching between its two busy HP and busy LP states depends on the status of the

power supply, i.e., the battery SoC. More precisely, we use the battery voltage threshold for setting the

appropriate active mode. Thus, an efficient DPM framework must identify the best battery output voltage

threshold Vth to be set in order to make the battery service lifetime optimal.

In addition, two other important factors distinguish the real batteries from ideal ones. These factors are

the basis of the proposed DPM framework: i) the total energy capacity of a battery is strongly related to its

discharge current rate. More precisely, the deliverable capacity of the battery decreases as the discharge current

rate increases. This phenomenon is called the rate-capacity characteristic [25]; and ii) a battery can recover some

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 38 | Page

of its deliverable capacity when it is given some rest in a state during which no current is drawn. This property

is called the recovery or relaxation characteristic [26], [27]. This characteristic will be exploited in a dual-

battery powered system case.

For this study, we are considering a Lithium-Ion battery given its wide use in portable systems. We use

the equivalent circuit model of a Li-ion battery given in [28] as shown in Figure 4. This circuit model can be

used to predict both the battery runtime and I–V performance accurately.

Fig.4. Equivalent circuit model of the Li-ion battery [18].

On the right of Figure 4, the used battery model consists of a series resistor RS and two RC parallel

networks (RTS, CTS) and (RTL, CTL). These components are modeling for the battery transient response to load

events at a particular open-circuit voltage VOC. For example, in a step load current event, RS is responsible for

the instantaneous voltage drop of the step response. (RTS, CTS) and (RTL, CTL) are respectively modeling for the

short time constant and long time constant responses.

On the left, a capacitor Cb and a current-controlled current source ib model the capacity, State of

Charge (SoC), and runtime of the battery. Cb represents the whole charge stored in the battery, i.e., SoC. ib is

used to charge or discharge Cb so that the SoC changes dynamically and the battery runtime is obtained when

the battery voltage reaches the end-of-discharge voltage. Rsd is used to characterize the self-discharge energy

loss when batteries are stored for a long time. Theoretically, all the parameters of the proposed model are

multivariable functions of SoC, discharge current, temperature, and cycle count. However, within certain error

tolerance, the model parameters’ dependence on temperature, discharge current and cycle number can be

simplified given their negligible effects [29]. Finally, the circuit model component values are obtained

according to the following non-linear single variable equations [29].

where

 :is an empirically-extracted regression coefficient. Its detailed extraction methods can be found in

[30].

 : represents the nominal energy capacity of the battery (SoC) in Ahr

 : denotes the open circuit voltage and

 : denotes for the initial voltage across Cb that quantitatively represents the battery SoC.

Table 1 lists the empirically-extracted regression coefficients as detailed in [30].

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 39 | Page

Table I. Extracted simulation parameters of the battery.
b11 -0.67 b12 -16.21 b13 -0.03

b14 1.28 b15 -0.40 b16 7.55

b21 0.10 b22 -4.32 b23 0.34

b31 0.15 b32 -19.60 b33 0.19

b41 -72.39 b42 -40.83 b43 102.80

b51 2.07 b52 -190.41 b53 0.20

b61 -695.30 b62 -110.63 b63 611.50

Cinit 0.35

IV. Dynamic Power Management Framework Using Reinforcement Learning
This paper focuses on extending the service lifetime of a battery-powered electronic system. The goal

is to develop a Power Manager (PM) that implements the optimal policy for minimizing the energy delivered

from the battery while maintaining an acceptable average number of waiting requests in a service queue.

Basically, the first problem we are addressing in this paper is to identify the battery output voltage threshold Vth

to be set in order to make the battery service lifetime optimal. For this aim, reinforcement learning techniques

are used to learn the optimal Vth that guarantees the best tradeoffs between the battery lifetime and the system-

performance. A system with a given pre-specified timeout policy is first used and an optimal voltage threshold

value for that fixed timeout value is obtained by reinforcement learning. Then, the framework is enhanced with

an optimal timeout-policy that integrates a learned voltage threshold policy to get best system performance.

Learning optimal battery output voltage threshold

The Battery SoC is regularly changing over time and the SoC values are sampled at regular intervals

regardless of the system events. Therefore, discrete time RL is adopted for learning the optimal threshold

voltage Vth according to Eq. (1).

Policy evaluation

The goal of the PM is to extend battery lifetime by reducing the system power consumption while

maintaining an acceptable performance level. In this problem, the SP power value is known for each power state

and the average delay is used as a performance metric. The average delay stands for the average number of

waiting requests in the SQ. This is reasonable because as indicated in [9], the average number of requests in the

SQ is proportional to the average latency per request that is defined by the average waiting time for each request

to be processed. The average service time represents the time between the moment the request is generated and

the moment the SP finishes processing it i.e., it includes queuing time plus execution time.

In this work, we use “cost rate” instead of “reward rate” in RL algorithms. The cost rate is a linearly

weighted combination of the SoC degradation starting from the initial battery charge state, and the number of

requests buffered in the SQ. The SoC degradation is directly related to the battery discharge current which is a

function of the instantaneous SP power consumption that is obtained from its power state observation. In this

way, the value function Q(s,a) for each state-action pair (s,a) is a linear combination of the expected total

discounted SoC degradation and latency. The relative weight between the SoC degradation and latency can be

changed to get a SoC-latency tradeoff curve. More precisely, upon selection of action from state , the cost

function is defined as follows:

 (11)

where represents the drawn charge from the battery; denotes the caused delay and is a user-

defined parameter enabling the SoC-delay tradeoff.

Battery output voltage threshold learning algorithm

A timeout policy is assumed to be the SP policy due to its wide usage in many devices. Under such

policy, the SP moves into the sleep state if it remains idle for more than a specified timeout period. Fist, a

system with a given pre-specified timeout policy is used. The optimal voltage threshold for a fixed timeout

value is obtained by applying reinforcement learning. Let Vth denote the threshold value of the battery output

voltage. In the RL technique, a list of Vth serves as the PM action set for controlling the SP switching between

its two busy HP and busy LP states. The PM learns to choose the optimal action , which corresponds to

the optimal Vth value, by using the RL technique. Notice that, to accurately learn the best supply voltage, we

must run multiple battery charging/discharging cycles.

The proposed RL framework operates as follows. The PM continuously observes the following

parameters (i) the SP power state: busy, idle and sleep, (ii) the SQ state: number of waiting requests, and (iii) the

battery output voltage that is nonlinearly related to the SoC as represented in the battery model. Based on these

observable parameters, the PM makes a decision and issues commands to the SP in the following four cases:

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 40 | Page

1. The SP is in the idle state and a request comes before the timeout period expires. Thus, the PM decides to

turn the SP into the active state.

2. The SP is transitioning to the active state. Depending on the battery output voltage, the PM decides either

to turn the SP into the low performance (Busy LP) state or to keep it into the high performance (Busy HP)

state. More precisely, if the battery output voltage falls below Vth, the SP is operated in the LP state.

3. The SP is in the idle state and the timeout has expired. Thus, the SP is put to sleep.

4. The SP is in the sleep state and a request comes. In this case, the PM turns the SP active to process the

incoming requests.

In this implementation, the optimal policy is achieved by minimizing the cost function which is a

linearly weighted combination of (i) the drawn charge from the battery and (ii) the caused delay as explained

above. Details of the proposed RL-based algorithm are provided in Algorithm 1.

ALGORITHM 1. The basic RL-Based DPM Algorithm.

Input: the timeout value, the action set (a set of V th values), the battery output voltage

 .

Do for 1,2,3,..,80 (number of charge/discharge cycles)

Initialization : The battery is fully charged

Choose an action , which corresponds to a specific battery output voltage threshold, from the

action set .

repeat

At each decision epoch :

Let the PM execute the timeout policy with timeout value .

if the SP is in the idle state then

if some request comes before the timeout period expires then

The PM turns the SP active for processing requests until the SP becomes idle again.

Then we have reached decision epoch .

 else

The PM keeps SP idle for period of time.

 end

else if the SP is in the sleep state then

if some request comes then

The PM turns the SP active for processing requests until the SP becomes idle again.

Then we have reached decision epoch .

else

The PM keeps SP in the sleep state.

end

else (the SP is in the active state)

if then
The PM turns the SP into the Low Performance state for processing requests.

 Then we have reached decision epoch .

else

The PM turns the SP into the High Performance state for processing requests.

Then we have reached decision epoch .

end

end

 until the battery is fully discharged

Evaluate the chosen action using the RL technique (Equation 1).

Learning the optimal timeout policy

In addition to learning the optimal battery output voltage threshold, we propose to enhance the

framework to automatically adjust the power management policy by learning the optimal timeout value under

non-stationary workloads. Recall that the timeout policy is assumed to be the service provider policy due to its

wide usage in many devices. The timeout determines the tradeoff between the service latency and power

dissipation of the SP. The major difficulty is to accurately define the optimal timeout period. An undesirable

situation is where the SP is put to sleep too fast, only to be awakened immediately. Thus, the system would

suffer from extra energy consumption and latency of waking up the SP and bringing it to the active state.

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 41 | Page

On the other hand, if the timeout is set to be too long and meanwhile no service requests arrives, the SP has

unnecessarily wasted energy by waiting in the idle state. Predicting the optimal timeout value under a given

system performance constraint is a major concern for us in this case.

For learning the optimal timeout value, since the system functions in an event driven manner,

continuous-time learning based on TD(λ) learning method for SMDP is used. The update rules for the SMDP

TD(λ) algorithm are defined according to Eqs. (2) and (3). In this case, the PM simultaneously learns the

optimal timeout policy and adapts the suitable output voltage threshold for that timeout policy.

Policy evaluation

To learning the optimal timeout value, we use the cost function which is a linearly weighted

combination of (i) instantaneous power consumption and, (ii) the number of requests buffered in the SQ. The

cost function is defined as follows:

 (12)

where is the service provider absorbed power for state s; is the delay and is a user-

defined parameter enabling the power-delay tradeoff.

Timeout value learning algorithm

For this aim, the RL algorithm uses two action sets: (i) a list of output voltage values that serve for the

selection of the battery output voltage threshold, and (ii) a second list of timeout values to be used when the SP

is idle. At a given decision epoch tk , the SP is idle and SQ contains no requests, the PM chooses an action from

the timeout action set (list of timeout values) and then executes the learning of the optimal battery output

threshold voltage based on the chosen timeout value as described in the previous section. At the next decision

epoch , the system finds itself either in the sleep state (no request came during the timeout period) or in the

idle state (some request came in that period). The system evaluates the chosen action using the continuous-time

TD(λ) algorithm for SMDP presented before. Details of the optimal timeout policy enhancement are shown in

Algorithm 2.

Dual-battery Policy

Modern battery powered systems can accommodate two batteries or more, e.g. portable computers and

mobile phones where batteries are generally used in sequence one after the other. The second battery starts

operating only when the first battery is totally discharged. However, as it was discussed earlier, a battery can

recover some amount of its deliverable capacity when it is given some rest after some period of current

discharge. This is due to its electro-chemical characteristics [7] that can be fruitfully exploited in a dual-battery

system by enabling the PM to alternate the use of the two batteries. In this way, one battery powers the system

and the other can recover while it is temporarily disconnected from the load. An effective power management

scheme must consider such a recovery effect to extend the battery lifetime.

In this context, a dual-battery system (B1 and B2) is considered where batteries are alternated in

operating the system. As performed for a single battery system, RL technique is used to learn the optimal

threshold voltages for both the two batteries (Vth1 and Vth2) that guarantee the best tradeoffs between battery

lifetime and system-performance. When the output voltages of the two batteries exceeds their corresponding

optimal threshold voltages, the system operates in an HP mode and we perform the switching between the two

batteries with a fixed frequency f. Using this policy, the lifetime of the system is expected to increase. However,

this strongly depends on f. For very low f, each battery is drained for a long time with full current load. In the

limiting case of , two batteries are discharged in sequence. In the Experiment section, a suitable

procedure for locating the most suitable value of f is implemented. When the output voltage of the currently

operated battery, e.g., B1’s voltage falls below Vth1 while B2’s voltage exceeds Vth2, B1 is disconnected from the

load and it is given some rest. In this case, no switching between the batteries is performed and the system is

kept powered only B2 such that the SP continues to operate in an HP until B2 becomes exhausted.

When both batteries are exhausted, the PM turns the SP into the LP mode and the fixed switching policy

between B1 and B2 is again performed until both are fully discharged.

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 42 | Page

ALGORITHM 2. The Enhanced RL-Based DPM Algorithm.

Input: the action set (a set of values), the action set (a set of Vth values), the battery

output voltage .

Do for 1,2,3,..,80 (number of charge/discharge cycle)

Initialization : The battery is fully charged

Choose an action , which corresponds to a specific battery output voltage threshold, from the

action set .

 repeat

 At each decision epoch :

Choose an action , which corresponds to the Timeout value, from the action set .
Let the PM execute the timeout policy with timeout value .

if the SP is in the idle state then

if some request comes before the timeout period (with duration of) expires then

The PM turns the SP active for processing requests until the SP becomes idle again.

Then we have reached decision epoch .

else

The PM keeps SP idle for period of time.

end

else if the SP is in the sleep state then

if some request comes then

The PM turns the SP active for processing requests until the SP becomes idle again. Then

we have reached decision epoch .

else

The PM keeps SP in the sleep state.

end

else (the SP is in the active state)

if then

The PM turns the SP into the Low Performance state for processing requests.

Then we have reached decision epoch .

else

The PM turns the SP into the High Performance state for processing requests.

Then we have reached decision epoch .

end

end

 Evaluate the chosen action using the TD(λ) technique (Equation 2 and Equation 3).

until the battery is fully discharged

Evaluate the chosen action using the RL technique (Equation 1).

V. Experimental Results
In this section, we present the effectiveness of the proposed DPM framework on extending the battery

lifetime. The proposed algorithms are experimented on both single and dual-battery powered systems.

5.1. Experiments on a Single-Battery Powered System

The first set of experiments demonstrates the effectiveness of the basic DPM framework implemented

with a given pre-specified timeout policy fixed to 0.2 Tbe (Tbe refers for the break-event time defined in [4]). We

have conducted two experiments by assuming different Hard Disk drive (HDD) characteristics defined in Table

II such as voltage; current and time of service values for both HP and LP states.

Table II. The HDD characteristics in two experiments [16].

Experiment 1 Experiment 2

LP mode HP mode LP mode HP mode

Current (Amp) 0.4 0.6 0.4 0.8

Voltage (V) 3.6 3.6 3.6 3.6

Time of service (s) 1.7 1.2 1.7 1.2

Power sleep (W) 0.13

Power idle (W) 0.2

Time transition idle to sleep (s) 1.6

Time transition sleep to active (s) 1.6

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 43 | Page

At each state, the battery voltage and current are calculated. Assuming that the battery voltage is

constant in each state, the actual power drawn from the battery is obtained. The SoC degradation denotes the

amount of the consumed charge from the initial battery SoC. We perform different experiments under multiple

battery‘s charging and discharging cycles. For the workload, we measure a real 6-hour server accessing trace

using the tcpdump utility in a Linux server. Then, this real trace has been reproduced and utilized several times

to simulate multiple charge/discharge cycles of a battery.

To assess the effectiveness of the basic DPM framework in improving the battery lifetime, various

experiments have been performed by targeting different SoC-latency tradeoffs. The SoC degradation and

latency tradeoffs are precisely controlled based on a user-defined parameter that is weighing the cost function’s

linear combination of (i) the battery SoC degradation and (ii) the average response time. A low weight for the

SoC degradation implies a highly-constrained latency system. High SoC degradation weights are related to

lowly-constrained latency systems. Figure 5 reports the obtained results for an HDD having different

characteristics as defined in Table II (experiments 1 and 2 settings). These results are compared to what can be

obtained if only a 0.2 Tbe pre-specified timeout policy is used with a preset battery threshold voltage Vth = 3.7V.

First, as shown in Figure 5, the proposed DPM framework provides a wide range of SoC-latency

tradeoffs for both experiments 1 and 2. Better performances are obtained for HDD with characteristics of

experiment 1 particularly for low latency values. Higher average latencies would imply reduced performance at

the gain of longer battery duration and higher values of battery output voltage threshold. As shown in Table II,

the HDDs are characterized by the same busy LP mode current for both experiments 1 and 2. In this case,

similar tradeoff curve behaviors are observed for increasing latency values for both experiments. In comparison

with the fixed-timeout policy with 3.7 V preset threshold voltage, 15.7% maximum battery SoC improvement is

obtained for high latency value systems for the HDD with parameter settings of experiment 1.

This is shown in Figure 5, when only the fixed timeout policy with the fixed preset threshold voltage is

used, the SoC degradation is about 11.93% for a latency value equal to 4 %. Using our framework, only 10.06 %

of battery SoC degradation is obtained for low performance constrained systems that tolerate up to 7.2 %

latency.

Fig. 5. SoC-latency trade off curves of the 0.2 Tbe fixed timeout policy running the RL-based DPM on HDD for

both experiments 1 and 2

For experiment 2 settings, even better performances are achieved with up to 29.89% of SoC saving

obtained in comparison with the fixed-timeout policy with 3.7 V preset threshold voltage. In this case, similar

SoC/latency tradeoff behavior is observed for high latencies constrained systems. However, when only the fixed

timeout policy with the fixed preset threshold voltage is used, the SoC degradation with experiment 2 settings is

14.34 % with 4 % latency. This even outperforms the method in [8] by 35.86% in terms of battery service

lifetime extension.

Learning the optimal timeout

To evaluate the improvements of the enhanced RL-battery DPM framework with learning the optimal

timeout, we run experiment 3 with the same workload as used for the HDD with experiment 1 settings. For this

experiment, learning the timeout is activated and a second action set of timeout values (), denoted by , is

used as follows: = {0.1Tbe, 0.2 Tbe, 0.3 Tbe,0. 5Tbe, 2 Tbe,3Tbe and 5 Tbe }. In this case, the PM also learns the

optimal timeout value among the timeout action set values and then accordingly learns the best battery voltage

threshold for the resulting timeout policy. The obtained results are given in Figure 6.

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 44 | Page

Fig.6. SoC-latency tradeoff curves of the RL-based DPM with and without learning timeout using HDD with

experiment 1 parameter settings.

It is clear from Figure 6 that learning both timeout and voltage threshold further helps minimizing the

average power consumption leading to more battery service lifetime extension and higher effectiveness of the

proposed DPM framework. Indeed, in comparison with the basic RL framework using a pre-specified 0.2 Tbe

timeout value, the enhanced framework with timeout learning can achieve “wider and deeper” SoC-latency

tradeoffs. In addition, the obtained results outperform the basic framework under the same latency values. The

enhanced RL-based DPM with timeout learning can achieve lower battery SoC degradation in comparison with

the basic framework particularly when the system has tight latency constraints.

For systems that can tolerate high latency values up to 7.2%, the battery SoC degradation is enhanced

to 6.82 % compared to 10.06 % previously obtained with the basic framework. In reference with the 0.2 Tbe pre-

specified timeout policy using 3.7V preset battery threshold Vth voltage, the enhanced framework is capable of

achieving almost 42.83 % of battery SoC savings.

5.2. Experiments using a Dual-Battery Powered System

HDD is used with parameters settings of experiment 1 and two identical batteries are considered with

the same characteristics represented through the extracted simulation parameters given in Table I. The best-

suitable frequency value is obtained by trial-and-error experiments to derive the appropriate switching between

the two batteries. In the first set of experiment, we run multiple battery charging/discharging cycles and use the

RL technique to learn the best battery threshold voltage among a list of voltage thresholds for both batteries with

only a fixed timeout value system of 0.2 Tbe(basic framework). The obtained results are compared to a reference

0.2 Tbe pre-specified timeout policy system with a preset threshold voltage Vth equals to 3.7V, and using the

same batteries with the same switching frequency value. In this case, the SoC degradation/latency tradeoff is

obtained and shown by the red curve in Figure 7. When comparing the proposed DPM framework with the

reference timeout system with a fixed Vth equals to 3.7V, we can see again the improvements achieved using the

proposed approach especially for low-delay constrained system where up to 27.33% of SoC saving can be

achieved.

Fig.7. SoC-latency tradeoff curves of the Dual-Battery DPM with and without learning timeout using HDD

with experiment 1 parameter settings compared to the reference timeout system.

In a second set of experiment represented by the blue solid curve in Figure 7, we use the reinforcement

learning technique to define both optimal timeout value and threshold values while a fixed frequency switching

between the two batteries is implemented. The outcome of this enhancement is clear as shown in Figure 7. In

comparison with the basic dual battery DPM experiment (red dotted curve).the enhanced framework performs

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 45 | Page

better for both low and high latencies constrained system under the same performance level. For example, for a

system with 6.5% latency constraint, the SoC saving obtained with the enhanced dual battery with a timeout

learning DPM framework is about 46.73% higher than the dual battery basic DPM using the 0.2 Tbe pre-

specified timeout policy. Now, and in reference to 0.2 Tbe pre-specified timeout policy using the 3.7V preset

battery threshold Vth voltage, the dual battery DPM framework enhanced with timeout learning enables up to

55.38% maximum battery SoC savings. This maximum value is calculated from Figure 7 by using the 10.67%

SoC degradation obtained when the fixed timeout policy with the fixed preset threshold voltage is used in

comparison with the 4.76 % minimum SoC degradation obtained for a system that tolerates up to 6.5% latency.

VI. Conclusions
This paper presents an efficient reinforcement learning-based DPM framework that increases battery

lifetime by accurately defining the best battery voltage threshold value and sets accordingly the system active

mode. Moreover, the PM uses the TD(λ) algorithm for SMDP to define the best timeout value and automatically

adjusts the power management policy to further enhance energy savings. The proposed DPM framework is

model-free and requires no prior information of the workload characteristics. The experimental results provide

strong evidences that reinforcement learning performs well for defining the optimal power management policy

particularly for high latency constrained systems. For a single-battery system, the results implemented on an

HDD device show an improvement in battery SoC savings up to 42.83% in reference with a pre-specified

timeout system using a given preset battery threshold voltage. The maximum battery SoC savings are further

improved to 55.38% when using our proposed dual-battery DPM framework enhanced with timeout learning

values. In addition, wider and deeper SoC-delay tradeoffs are obtained with extended battery service lifetime in

comparison with prior works.

References
[1] S.-H. Yi and S.-B. Cho, A battery-aware energy-efficient android phone with bayesian networks, In Ubiquitous Intelligence

Computing and 9th International Conference on Autonomic Trusted Computing (UIC/ATC), pp. 204-209, Sept 2012.

[2] I. Konig, A. Q. Memon, and K. David, Energy consumption of the sensors of smartphones, In Wireless communication Systems

(ISWCS 2013), pp. 1-5.VDE, 2013.
[3] W. Song, N. Sung, B.-G. Chun, and J. Kim, Reducing energy consumption of smartphones using user-perceived response time

analysis, In Proceedings of the 15th Workshop on Mobile Computing Systems and Applications, HotMobile '14, pp 20:1-20:6, NY,

USA, 2014.
[4] L. Benini, A. Bogliolo, and G. De Micheli, A survey of design techniques for system level dynamic power management, IEEE

Trans. on VLSI Systems, 2000, Vol. 8, Issue 3, 299-316.
[5] D. Corujo, M. Lebre, D. Gomes, and R. L. Aguiar, Sensor context information for energy-efficient optimization of wireless

procedures, In International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 1010-1014, 2011.

[6] A. Shye, B. Scholbrock, G. Memik, and P. A. Dinda,Characterizing and modeling user activity on smartphones: Summary, In

Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, pp. 375-

376, NY,USA,2010.

[7] L. Benini, G. Castelli, A. Macii, and R. Scarsi, “Battery-driven dynamic power management,” IEEE Design & Test of Computers,
Vol. 18, pp.53-60, 2001.

[8] P. Rong, and M. Pedram, “Battery-Aware Power Management Based on Markovian Decision Processes,” IEEE Trans. on Computer

Aided Design, Vol. 25, No. 7, Jul. 2006, pp. 1337-1349.
[9] Q. Qiu, M. Pedram, Dynamic Power Management Based on Continuous-Time Markov Decision Processes, DAC, 1999.

[10] Y.Siyu, D. Zhu, Y. Wang, M. Pedram, Reinforcement learning based dynamic power management with a hybrid power

supply, IEEE Computer Design (ICCD), Sept 2012, pp.81-86.
[11] H. Jung, M. Pedram, Dynamic power management under uncertain information, DATE, Apr. 2007, pp. 1060-1065.

[12] A. Paul, Real-Time Power Management for Embedded M2M using Intelligent Learning Methods, ACM Transaction on Embedded

Computing Systems, Article No:148, Vol.13, Issue 5s, July 2014.
[13] A. Paul, C.Bo-wei, J. Jeong, and J. Wang, Video Search and Indexing with Reinforcement Agent for Interactive Multimedia

Services, ACM Transaction on Embedded Computing Systems, Vol.12, Issue 2, Article no:25, February 2013.

[14] A. Paul, C. Bo-Wei, J. Jeong, J. Wang, Dynamic power management for embedded ubiquitous systems, International Conference on
Orange Technologies (ICOT), 2013, pp. 67 – 71.

[15] U.A. Khan, B. Rinner, A Reinforcement Learning Framework for Dynamic Power Management of a Portable, Multi-camera

Traffic Monitoring System, Green Computing and Communications (GreenCom), 2012, pp. 557 – 564.
[16] V.L. Prabha, E.C. Monie, Hardware Architecture of Reinforcement Learning Scheme for Dynamic Power Management in

Embedded Systems, EURASIP Journal on Embedded Systems, Vol. 2007.

[17] Y. Tan, W. Liu, Q. Qiu, Adaptive Power Management Using Reinforcement Learning, ICCAD, Nov. 2009, pp. 461-467.
[18] Y. Wang, Q. Xie, A.C. Ammari, M. Pedram, Deriving a near-optimal power management policy using model-free reinforcement

learning and Bayesian classification, DAC, Jun. 2011, pp. 875-878.

[19] S. Bradtke, and M. Duff, Reinforcement learning methods for continuous-time Markov decision problems, in Advances in Neural
Information Processing Systems 7 , MIT Press, 1995, pp. 393-400.

[20] M. Triki, Y. Wang, A.C. Ammari, and M. Pedram, Reinforcement Learning-Based Dynamic Power Management of a Battery-

Powered System Supplying Multiple Active Modes, IEEE European Modelling Symposium, 2013.
[21] L. P. Viswanathan and E. C. Monie, Reinforcement temporal Difference Learning Scheme for Dynamic Energy Management in

Embedded Systems, in International conference on VLSI Design, 2006.

[22] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998.
[23] M. Triki, Y. Wang, A.C. Ammari, M. Pedram, Dynamic power management of a computer with self power-managed components,

Lecture Notes in Computer Science (LCNS), Volume 7606, pp 215-224, 2013.

Extending the Service Lifetime of a Battery-Powered System Supporting Multiple Active Modes

DOI: 10.9790/1676-1203023446 www.iosrjournals.org 46 | Page

[24] M. Triki, Y. Wang, A. C. Ammari, and M. Pedram, ‘Hierarchical power management of a system with autonomously power-

managed components using reinforcement learning’, Integration, the VLSI Journal, Volume 48, January 2015, Pages 10–20

[25] M. Doyle, J. Newman, “Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process,”
Journal of Applied Electrochemistry, Vol. 27, Iss. 7, 846-856, 1997.

[26] T.F. Fuller, M. Doyle and J. Newman, "Relaxation phenomena in lithium-ion-insertion cells," Journal of Electrochemical Society,

Vol. 141, No. 4, Apr. 1994.
[27] D.W. Dennis,V. S. Battaglia, and A.Belanger, “Electrochemical modeling of lithium polymer batteries,” J. Power Source, vol. 110,

no. 2, pp. 310– 320, Aug. 2002.

[28] M. Chen and G. Rincon-Mora, “Accurate electrical battery model capable of predicting runtime and I-V performance,” IEEE T. on
Energy Conversion, 2006.

[29] D. Shin, Y. Wang, N. Chang, and M. Pedram, “Battery- supercapacitor hybrid system for high-rate pulsed load applications,” Proc.

of Design Automation and Test in Europe (DATE), Mar. 2011.
[30] B. Schweighofer, K. M. Raab, and G. Brasseur, “Modeling of high power automotive batteries by the use of an automated test

system,”IEEE Trans. Instrum. Meas., vol. 52, no. 4, pp. 1087–1091, Aug. 2003.

http://www.sciencedirect.com/science/journal/01679260/48/supp/C
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx5YW56aGl3YW5ndXNjfGd4OjY1ZjI0NmE4MDNjYTNhOWI

