
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51269 300

Fast Audio Fingerprinting System using GPU and

a Clustering-Based Technique

Shweta Patil
1
, N.R. Wankhade

 2
, J.V. Shinde

3

Student, Comp Department, Late G.N. Sapkal College of Engineering, Nashik, India
 1

Asst. Professor, Comp Department, Late G.N. Sapkal College of Engineering, Nashik, India
2, 3

Abstract: We present our audio fingerprinting system that detects a transformed copy of an audio from a large

collection of audios in a database. The audio fingerprints in this system encode the positions of salient regions of binary

images derived from a spectrogram matrix. The similarity between two fingerprints is defined as the intersection of

their elements (i.e. positions of the salient regions). The search algorithm labels each reference fingerprint in the

database with the closest query frame and then counts the number of matching frames when the query is overlaid over

the reference. The best match is based on this count. The salient regions fingerprints together with this nearest neighbor

search give excellent copy detection results. However, for a large database, this search is time consuming. To reduce

the search time, we accelerate this similarity search by using a graphics processing unit (GPU). To speed this search

even further, we use a two-step search based on a clustering technique and a lookup table that reduces the number of

comparisons between the query and the reference fingerprints. We also explore the trade off between the speed of

search and the copy detection performance. The resulting system achieves excellent results on TRECVID 2009 and

2010 datasets and outperforms several state-of-the-art audio copy detection systems in detection performance,

localization accuracy and run time.

Keywords: Audio fingerprint, content-based copy detection, fast search, parallel processing, GPU.

I. INTRODUCTION

Audio fingerprint is extracted from spectrograph by a

process called feature extraction. Track identification

using audio fingerprinting is considered to be one of the

fastest and accurate forms of music recognition. Audio

fingerprints are compact content based signatures of audio

recordings. These audio fingerprints capture highly

specific characteristics of a short audio fragment. This

feature makes it possible to accurately identify the

fingerprint and distinguish itself from millions of songs.

The key specialty of audio fingerprinting is to link

unknown audio to corresponding metadata, irrespective of

its audio format. An ideal audio fingerprinting system

should be able to recognize an unknown audio fragment

from the database regardless of the noise in the

environment. The audio fingerprint system should be

efficient. This is attained by making the fingerprints

compact and implementing a complex and smarter search

algorithm. It also requires the fingerprint extraction

process to be powerful. Fingerprints and matching

algorithms should result in the same content taken from

the distorted audio recording. Fingerprints extract the

characteristics of the audio recording in robust and concise

format

II. OBJECTIVE

1. To propose a fast and robust audio fingerprinting

system using parallel computing.

2. To optimized algorithm searching time using gpu shared

memory.

3. To propose search algorithm based on a clustering

technique that reduces the number of fingerprint

comparisons significantly.

III. LITERATURE SURVEY

Hendrik Schreiber and Meinard Muller presented various

improvements for the audio ID system originally proposed

by Haitsma and Kalker. Our main observation was that the

probability of finding a matching reference sub-print is

elevated in the case that multiple consecutive query sub-

prints are identical. Which supports for mildly distorted

audio files.

J. Haitsma and T. Kalker presented a new approach to

audio Fingerprinting. The Fingerprint extraction is based

on extracting a 32 bit sub Fingerprint every 11.8

milliseconds. The sub-Fingerprintare generated by looking

at energy differences along the frequency and the time

axes. A Fingerprint block, comprising 256 subsequent sub

Fingerprints, is the basic unit that is used to identify a

song. The Fingerprint database contains a two-phase

search algorithm that is based on only performing full

Fingerprint comparisons at candidate positions pre-

selected by a sub-Fingerprint search with reference to the

parameters like Robustness, Reliability, Fingerprint size,

Granularity, Search speed and scalability.

A.Wang processes the Fingerprint from the unknown

sample and matched with a large set of Fingerprint derived

from the music database. The candidate matches are

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51269 301

subsequently evaluated for correctness of match. Some

guiding principles for the attributes to use as Fingerprint

are that they should be temporally localized, translation

invariant, robust, and sufficiently entropic. The temporal

locality guideline suggests that each Fingerprint hash is

calculated using audio samples near a corresponding point

in time, so that distant events do not affect the hash.

IV. RELATED WOK

A review of audio copy detection systems shows three

main approaches to accelerate fingerprint search: binary

search, hashing-based search and approximate search. The

energy difference fingerprint, where a binary fingerprint

encodes the energy differences along the frequency and

the time axes, figures among the fastest CBCD systems.

The binary representation of the fingerprints makes the

search very fast. However, this fast search results in a

modest performance compared to other methods. Regions

around selected points from the maxima in the Mel-

filtered spectrum are encoded to generate binary

fingerprints. Compared to, this approach improved

significantly the detection accuracy while maintaining a

fast search. Local regions of the spectrogram image are

transformed into a set of 32 bit vectors, and a classical

hash table is used to perform the search. In the Shazam

system, several time-frequency points are chosen from the

spectrogram. Compact signatures representing peak pairs

are then generated to form fingerprint hashes that allow

very fast search. Approximate searching techniques such

as Locality Sensitive Hashing (LSH) are used in several

works to accelerate the search. Wavelets with the largest

magnitude are selected from spectrogram, and LSH is used

to accelerate fingerprint similarity search. Although more

robust than and this system is computationally very

expensive. A comparative study in terms of detection

accuracy and computation time can be found. The

Weighted Audio Spectrum Flatness (WASF) is used as

audio features, and LSH is adapted to compute the

dissimilarity between two WASF features. LSH is used in

many works to accelerate the search, but it is slower than

the hashing-based search.

Recently, Graphics Processing Units (GPUs) have been

used to accelerate scientific computations. Using GPU to

accelerate large-scale applications became easier with

NVIDIA‟s CUDA platform. Several GPU

implementations of widely used algorithms such as k-

nearest neighbor and LSH are available and can be used

for audio copy detection. A GPU implementation of the

Metric Permutation Table algorithm speeds up the search

of digital images. A GPU implementation of the nearest

neighbor search between the reference and query

fingerprint is then described in, where the copy detection

algorithm has been modified to perform advertisement

detection. Compared to its CPU implementation, this GPU

implementation improves speed by a factor of 70. Similar

GPU based nearest neighbor search is used in search

through millions of fingerprints. However, these papers do

not include a description of the GPU implementations. A

parallel implementation is introduced and tested over a

large database of more than 11,600 hours of audio. A GPU

is used to parallelize two parts of the system leading to an

overall speedup of a factor of 5. The authors also explored

the use of three GPUs instead of only one allowing them

to further improve performance by a factor of 3 on some

parts of the system.

In another work, the computation of the cross-correlation

between two audio windows is accelerated using a GPU .

The database used to test this algorithm is very small (1

hour), and the GPU lead to a moderate improvement by a

factor of 2 (compared to the CPU implementation). In

Another technique that reduces search time and

complexity is starting from the fact that search time is

related to the size of the database, the authors partitioned

the database of 100,000 songs into 10 sub-databases. The

search then executes 10 independent processes on different

machines. It divides the fingerprints database into several

parts, and the search algorithm is executed in parallel

based on the Message Passing Interface (MPI) standard.

Clustering techniques have been used in several works to

avoiding exhaustive search. In binary fingerprints of the

reference videos are grouped into k different clusters, and

only fingerprints that belong to the cluster closest to the

query fingerprint are searched to find a match. The

algorithm continues to examine other clusters if a match is

not found. The problem in using this strategy is the

possibility of visiting all the k clusters before a match is

found resulting in an exhaustive search.

V. PROPOSED SYSTEM

Fig. 1 System overview.

In a typical CBCD task, we search for a query audio in a

database of reference audio files (containing copyrighted

or original audio content) to see if the query is a copy of

one of these reference audio files. For this task, we first

extract robust audio fingerprints from these reference

audio files. To extract these fingerprints, we first

transform the audio signal into a spectrogram. We convert

the resulting spectrogram into a set of 2-D binary images.

Finally, we extract the top-d salient regions from each

binary image.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51269 302

Each Salient-Regions fingerprint is represented by a d-

dimensional vector, which contains the positions of the

selected salient regions only, and stored into a reference

fingerprint database. Once all reference fingerprints have

been generated, a k-means like clustering algorithm

groups the reference fingerprints into different clusters.

These clusters are then used to accelerate the fingerprint

search. Query fingerprints are extracted in the same way

with an optional time-frequency scaling step (resampling)

that reduces the speed difference between the query and

the reference. Fingerprint retrieval is a two-step search:

clustering-based retrieval followed by a GPU-based

retrieval. This two step retrieval reduces the search time

by several orders of magnitude. In this two-step search

algorithm, a similarity search is performed using either the

reference clusters (in case of clustering-based retrieval) or

the original references (in case of GPU-based retrieval) to

find the closest query fingerprint for each reference

fingerprint. This similarity search associates with each

reference fingerprint a query frame number corresponding

to the best matching query fingerprint. The similarity

search is followed by a matching step that associates a

matching score between each reference file and the query.

This matching step produces the final results and

determines if the query is a copy of a reference audio file.

A. Feature Extractions

The feature extraction step is shown in Fig. 2. The

spectrogram matrix in this figure represents the intensity

of the signal at any given time and frequency. Finally,

each binary image is divided into small square tiles of size

11 × 11 resulting in 744 tiles2. The sum of all the 121

elements within each tile is computed to obtain a

quantized image. Then, a few salient tiles that have the

highest sums are selected. The fingerprint encodes the

positions of these salient tiles and eliminates their sums.

The example in Fig. 2 shows a binary image divided into

16 tiles (D = 16) and 6 salient tiles (d = 6) are selected.

Fig. 2 Feature extraction with 16 tiles (D=16) and 6

salient tiles (d = 6) from quanized binary image derived

from the spectrogram matrix.

The positions of these 6 salient tiles represent the compact

fingerprint. Adding more information to the spectrogram

here does not increase the complexity of our system, since

this spectrogram will be converted into compact

signatures. These parameters are not critical to our system,

and changing their values to a certain degree will not

affect the system performance. Each spectrogram matrix is

composed of 333 consecutive spectrograms derived from

96 ms windows with a frame advance of 3 ms. Second, the

large overlap (1-sec frame length with 24 ms frame

advance) is chosen to overcome the lack of

synchronization between the query and the reference. In

fact, a large frame advance can prevent matching of query

and reference frames when the start of the query is not

synchronized with the start of the reference.

B. Retrival

Once all the reference and query fingerprints have been

created, a search is performed to see if the query is a copy

of an original audio in the reference database. Two

principal steps for the retrieval process are:

Similarity search: Each reference frame is labeled with

the frame number of its closest query fingerprint. The

query consists of a number of frames, say n. For each

query frame we compute its fingerprint as shown in Fig. 2

Similarly, each reference consists of a number of frames

m, with a fingerprint extracted for each frame as shown in

Fig. 2. For the fingerprint corresponding to each reference

frame, we find the closest query fingerprint. The query

frame number of this closest query fingerprint is then

associated with that reference frame. In other words, in

similarity search, we are associating a query frame number

to each reference frame through this search. In this

similarity search, the similarity measure is equal to the

number of salient positions that coincide (i.e. intersection

between reference and query fingerprint elements). Each

reference frame is then labeled with the frame number of

the closest query fingerprint. The total number of frame

matches in the similarity search between a query

(containing n frames) and a reference (containing m

frames) is n × m (the total computing is proportional to n ×

m × d).

Matching: After the closest query frame has been found

for each reference frame, the total number of reference

frames that match the query frame-synchronously is

computed: We move the query over the reference, and we

count the number of reference frames that match exactly

the query frame number for each alignment. This count

represents the confidence in the match between the query

and the reference.

VI. ALGORITHM

The similarity between two fingerprints is defined as the

intersection between the elements of these two

fingerprints. For example, if F1 = {1, 3, 4, 6, 8} and F2

={1, 2, 4, 7, 9}, then similarity (F1, F2) = count {1, 4} =

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51269 303

2. Formally, for two fingerprints F1 and F2, the similarity

between them is:

Algorithm 1 Hashing-based similarity computation

Input: Two vectors v1 and v2 of size d

Output: The similarity between v1 and v2

1: sim = 0

2: create a vector hash of size D

3: for i = 1 to D do

4: hash[i] = 0

5: end for

6: for i = 1 to d do

7: hash[v1[i]] = 1

8: end for

9: for i = 1 to d, do

10: sim = sim + hash[v2[i]]

11: end for

12: return sim

Algorithm 1a GPU kernel of hashing-based similarity

search

Input: reference fingerprints, query fingerprints

Output: the closest query frame to each reference frame

1: create a vector hash of size D in shared memory

2: create a vector ref of size d in registers/local memory

3: for each thread do

4: load in ref one d-dimensional reference frame from

global memory

5: max = 0

6: sim = 0

7: pos = –1

8: for each query frame n in global memory do

9: for i = 1 to D do

10: hash[i] = 0

11: end for

12: for i = 1 to d do

13: hash[queryframe[n][i]] = 1

14: end for

15: synchronize threads

16: for i = 1 to d do

17: sim = sim + hash[ref [i]]

18: end for

19: if (sim > max) then

20: max = sim

21: pos = n

22: end if

23: end for

24: end for

25: results [threadId] = pos

26: return results

Algorithm 2 Similarity computation without hashing

Input: Two vectors v1 and v2 of size d

Output: The similarity between v1 and v2

1: sim = 0

2: for i = 1 to d do

3: for j = 1 to d do

4: if (v1(i) = = v2(j)) then

5: sim = sim + 1

6: end if

7: end for

8: end for

9: return sim

VII. ALGORITHM WORK

The hashing-based algorithm (Algorithm 1) converts one

d-dimensional fingerprint (vector v1) into a vector of D

dimensions (d << D), and then looks for matching entries

of the second d-dimensional fingerprint in this D-

dimensional vector (See Fig. 2 for definition of d and D).

This algorithm has a linear time complexity. However,

memory is a critical commodity on a GPU, and a D-

dimensional vector, for every thread, may drain GPU‟s

resources (in our experiments D = 744 compared to a

maximum d = 44). The first step in any GPU

implementation is to transfer data from the host (CPU

memory) to the device (GPU memories). Since the GPU

has limited memory space, we process the reference set by

portion. We transfer a reference portion to the GPU‟s

global memory, and we perform the similarity search on

this portion, then we process the next portion until all

reference fingerprints have been processed. The number of

query fingerprints is small and all the query fingerprints

are transferred to the global memory. Once query and

reference fingerprints are transferred into global memory,

the GPU launches a kernel that performs the parallel

portion of the application. In this kernel, hundreds of

threads are executed in parallel, where each of them finds

the frame number of the closest query fingerprint for one

reference fingerprint. Algorithm 1a presents the proposed

kernel, where the input are the reference and query

fingerprints (loaded into global memory) and the output is

a vector containing the frame number of the closest query

fingerprint for each reference fingerprint. This similarity

search uses the hashing-based algorithm. Each thread in

this kernel starts by loading one d-dimensional reference

fingerprint into registers or local memory (depending on

dimension d: if there are not enough registers, then local

memory is used to store one reference fingerprint for each

thread). A D-dimensional vector (named hash) is created

in shared memory to hash the elements of the query. It is

also possible to switch the places for storing these

variables by using the hash vector to hash the reference

instead of the query.

VIII. MATHEMATICAL MODEL

Let system s can be defined as s= { A, As, B, Fd, C, R,

Gm, O }

A = Audio refrence file.

A = { a1, a2, a3,............. an}

As = Audio sectogram generation.

As = { as1, as2, as3,............. asn}

B= Set of binary images generated from audio.

B = { b1, b2, b3,............. bn}

Fd= Set of fingerprint for each audio file.

Fd = { fd1, fd2, fd3,............. fdn}

C= Set of refrence cluster of audio fingerprint.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51269 304

C = { c1, c2, c3,............. cn}

k= numbers of cluster.

R= Refrence query/search query audio file.

Gm= Set of GPU match result.

Gm = { gm1, gm2, gm3,............. gmn}

O= Set of output match audio files.

O = { o1, o2, o3,............. on}

IX. CONCLUSION

In this work, we propose speed up of a state-of-the-art

audio fingerprinting system appropriate for detecting

audio copies subjected to complicated transformations. To

generate audio fingerprints, this system converts the audio

signal into 2-D binary images derived from the

spectrogram. Each fingerprint encodes the positions of

salient regions selected from this binary image. The

similarity between two fingerprints is defined as the

intersection between their elements.

Because of the high dimensionality of the fingerprints and

the large volume of data, searching over millions of

fingerprints is computationally challenging. We

investigate the use of a GPU to reduce the computing: we

describe an efficient way of utilizing the GPU memories to

search for similar fingerprints in parallel on a database of

60 million fingerprints. Experimental results demonstrate

that the GPU implementation can accelerate the search by

up to 150 times compared to the CPU implementation.

To reduce the run time even further, we propose a two step

clustering based search. In the first step, we cluster the

reference fingerprints into several thousand clusters,

reducing the nearest-neighbor search time significantly. In

the second step, we rescore the top N results obtained in

the first step to produce more accurate copy detection.

Our system also outperformed MASK, WASF feature,

Coherency vocabulary method, the energy difference

fingerprints, and the robust NN-based system. Future work

will be mainly devoted to exploring new strategies to

make the Salient-Regions audio fingerprint invariant to

time-frequency scale modifications. A possible way to

achieve this goal is to encode the positions of the selected

salient regions relative to each other, instead of their

positions within the window.

A time-frequency modification applied to an audio signal

leads to a proportional change in the time and frequency

axes. This proposed strategy will ensure that the temporal

and the spatial information will not be included in the

fingerprint. As another part of our future work, we will

investigate other promising clustering algorithms for

robustness and for computing reduction. Finally, we intend

to adapt the proposed audio fingerprint extraction

technique to the video copy detection problem. In this

case, salient regions will be selected from video images

instead of audio spectrograms.

REFERENCES

1. Youtube. (Mar. 20, 2015). YouTube Statistics [Online]. Available:

https:// www.youtube.com/yt/press/statistics.html.

2. W. Lezi et al., “Contented-based large scale web audio copy
detection,” in Proc. IEEE Int. Conf. Multimedia Expo.

(ICME‟12), 2012, pp. 961–966.

3. A. Saracoglu et al., “Content based copy detection with coarse
audio-visual fingerprints,” in Proc. 7th Int. Workshop Content-

Based Multimedia Index. (CBMI‟09), 2009, pp. 213–18.

4. X. Anguera, A. Garzon, and T. Adamek, “MASK: Robust local
features for audio fingerprintingin Proc. 13th IEEE Int. Conf.

Multimedia Expo. (ICME‟12), Melbourne, VIC, Australia, Jul. 9–

Jul. 13, 2012,pp. 455–460.
5. X. Zhang et al., “SIFT-based local spectrogram image descriptor:

A novel feature for robust music identification,” EURASIP J.

Audio Speech Music Process., vol. 2015, no. 1, pp. 1–15, 2015.
6. H. Jegou et al., “BABAZ: A large scale audio search system for

video copy detection,” in Proc. IEEE Int. Conf. Acoust., Speech,

Signal Process. (ICASSP „12), 2012, pp. 2369–72.
7. M. Malekesmaeili and R. K. Ward, “A local fingerprinting

approach for audio copy detection,” Signal Process., vol. 98, pp.

308–321, 2014.
8. M. Ramona and G. Peeters, “AudioPrint: An efficient audio

fingerprint system based on a novel cost-less synchronization

scheme,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), 2013, pp. 818–822.

http://www.youtube.com/yt/press/statistics.html

