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ABSTRACT 

Random Projection Code (RPC) is a mechanism that combines channel coding and modulation together and realizes 
rate adaptation in the receiving end. Random projection code’s mapping matrix has significant influences on decoding 
performance as well as hardware implementation complexity. To reduce hardware implementation complexity, we de-
sign a quasi-cyclic mapping matrix for RPC codes. Compared with other construction approaches, our design gets rid of 
data filter component, thus reducing chip area 7284.95 um2, and power consumption 331.46 uW in 0.13 um fabrication. 
Our simulation results show that our method does not cause any performance loss and even gets 0.2 dB to 0.5 dB gain 
at BER 10-4. 
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1. Introduction 

Rate adaptation plays a critical role in modern wireless 
communications because channel conditions are dynamically 
changed in a wide range. The physical layer in wireless 
systems mainly consists of channel coding and modula- 
tion, where actual transmission rate is adjusted by setting 
rate of channel coding and constellation points of modulation 
[2,3]. These approaches have two long-standing problems. 
First, it is difficult to get the accurate channel state 
information (CSI) due to inaccurate channel estimation 
and feedback delay of estimated CSI. Second, there are 
only limited combinations of coding rate and modulation 
scheme, thus transmission rate can be adjusted only at a 
stepwise way, which is not able to fully use channel 
capacity. The work in [1] has exhibited a fast decoding 
algorithm as a modulated coding scheme for seamless 
rate adaptation in wireless communication.  

For hardware architecture design, two main architect- 
tures of LDPC hardware decoder are full-parallel decod- 
ing and partial-parallel decoding. [6,7] have given a 
typical low density parity check code (LDPC) decoder 
architecture, including a data input buffer module, a set 
of variable node processor, a group of check nodes proc- 
essor, a decision module, the corresponding storage con- 
trol module and a data output caching module. In full- 
parallel architecture, each column and each row of the  

parity check matrix is mapped to a different processing 
unit and all these processing units operate in parallel [8]. 
While in partial-parallel decoding [9], the parity check 
matrix is partitioned into some non-overlap regions so 
that a set of check nodes and variable nodes are updated 
per cycle. [10] has given pipelined hardware imple- 
mentation architecture of LDPC codes to achieve high 
data throughput rate. 

Similar to LDPC codes, the structure of mapping ma- 
trix directly determines the hardware implementation 
complexity of RPC codes. Belief propagation decoding 
algorithm can achieve optimal performance in a Tanner 
graph, because short girth affects the independence of 
information transmission which can reduce the decode 
performance. Meanwhile, the more randomized the non- 
zero weights distribution is, the better decoding per- 
formance is. Min et al [1] has proposed a multilevel cy- 
clic-shift approach to generate the mapping matrix which 
can facilitate the partial-parallel RPC decoding architect- 
ture. Cui et al [4] has also proposed a method that ran- 
domly exchanging columns of sub matrices, and then 
stacking all the randomly generated sub matrices. At 
simulation stage, the two methods have similar bit error 
rate (BER) and throughput rate. While in hardware im- 
plementation, there are two or more kinds of non-zero 
weights in one sub-matrix, which will increase the hard- 
ware implementation complexity. 

In order to design a good mapping matrix, we design a 
quasi-cyclic matrix, which can be suitable for hardware 
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module partition, avoid access conflict of memory read 
and write, simplify probability information transmission 
in the iteration process, and not cause decoding performance 
loss. The cyclic-shift times of each sub-matrix are 
computed by two parameters and every sub-matrix is 
only corresponding to one non-zero weighting. The 
simulation results prove that quasi-cyclic matrix has 
certain SNR gain compared to the cyclic-shift and the 
randomly-shift approaches in random projection code 
when BER is 10-4. As for hardware architecture design, 
almost all the existing structures are match to a fixed 
dimension matrix. Therefore, our hardware architecture 
research is mainly focused on designing a new mapping 
matrix which has better decoding performance without 
changing the hardware architecture. For flexible hard- 
ware implementation [5], we propose a configurable 
architecture using wishbone bus to initialize registers and 
memory bits before decoding, which can support different 
dimensions of mapping matrix and weights.  

The rest of this paper is organized as follows. Section 
II gives the hardware architecture and the former con- 
structions of mapping matrices. Section III introduces 
our quasi-cyclic matrix construction method. Section IV 
presents the hardware implementation results. The ana-
lyses of decoding performance and simulation results are 
included in Section V. Finally, Section VI concludes this 
paper. 

2. Hardware Architecture 

In this section, we first give the hardware architecture of 
random projection code decoder. After that, we discuss 
the construction of random permutation matrix and mul- 
tilevel cyclic-shift matrix. Meanwhile, we analyze the 
shortcomings brought by the two methods above. 

2.1. Log-domain RPC and Hardware  
Architecture 

In practical wireless systems, the fast message passing 
algorithms for channel codes typically use log likelihood 
ratio (LLR) as messages rather than probability and 
likelihood ratio (LR). It can convert multiplications of 
messages to additions, which significantly reduces the 
decoding computation.  

In our previous work, we convert the decoding algo- 
rithm from arithmetic domain to log-domain [1]. And we 
build look-up-table to solve the computationally inten- 
sive problem of convolution. We have designed a partial- 
parallel hardware decode architecture as well. The map- 
ping matrix is partitioned into  non-overlap regions 
as Figure 1. Each memory bank module is connected to 
a random address generator (RAG), a horizontal unit 
processor (HUP) and a vertical unit processor (VUP) 
which accommodates a 

L L

N L N L  block of the N N  
dimension mapping matrix. 

 

 

Figure 1. Partial-parallel decoding hardware architecture. 
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2.2. Former Mapping Matrix Design of RPC 

Cui et al [4] has proposed a weight table  1, 2, 4, 4   

2A 4A

 
for the non-zero weights of mapping matrix. First, they 
construct three elementary matrices ,  and . 
Each elementary matrix’s dimension is 

1A
N 8 N 4 . The 

structure of  is shown as follows. Matrices  and 
 have the same structure. 
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Then it form a N 2 N  matrix G0 by stacking random 
permutation of the elementary matrices. Finally, two G0 
are combined to form the N N  matrix. 

We call this construction method as random permutation. 
The prominent feature is that the elementary matrices are 
fully randomized in columns, which may bring perfor- 
mance gain. However, from the hardware design and 
implementation perspective, it will cause memory access 
collisions among different parallel modules. The reason 
is that the column number of two elements in one row 
may be in [1:N 8 ] or [N 8 1:N 4 ]. 

To avoid the memory access collisions, min et al [1] 
proposed multilevel cyclic-shift construction method. 
The difference between the two methods is how to con- 
struct the elementary matrix. They first generate two 
identity matrices with N 8 N 8  dimension, denoted by 

1  and , respectively. Then two breakpoints iA 2iA ip  
and jp  in N 8  length are randomly selected. The col- 
umns of sub matrix are permutated according to the seq  

i j i j
Np : , p :p 1,1:p 1
8

seq    

'

 

Two permutated matrices 1 2i  are created. 
Next, matrix  is formed by concatenating matrices 

1 2 . Finally, the elementary matrix 

'
iA and A 

'
iA

'
i

'
iA and A ( )iA  can 

be created by random replacing the two 1’s on each row 
with a pair of + i and – i.  

For multilevel cyclic-shift construction method, the 
data filter modules in Figure 1 are required to sort data 
from memory banks. Because that the order of data must 
consistent with the looking-up table storied in HUP. 
Figure 2 describes the process of sorting data in RTL 
realization.  needs data vector which except the 

 data, i.e., 
ijHUP
thj 'q  1 2 j 1 j 1 8q ,q , ,q ,q , ,q  

'q
, to run con- 

volution operator. The should be allocated according 
to the weights set w = {-4, -4, -2, -1, 1, 2, 4, 4}.  

The simulation results show that the BER performance 
and the data throughput rate of the two approaches in 

AWGN channel and fading channel are close. No matter 
for random permutation matrix or multilevel cyclic-shift 
matrix, there are one or two different weights corre- 
sponding to one HUP module. We find that HUP module 
need store two looking-up tables, which are used to per- 
form the probability convolution. In addition, the data 
filter module is required to sort the iterative probability 
information in the hardware architecture as Figure 2. 
However, sorting data in hardware is very complicated. 
For the architecture described in Figure 1, it will con- 
sume amount of storage and computing resource. The 
area and power consumption of the data filter will be 
illustrated in section IV. Therefore, we expect that only 
one weight corresponding to a sub matrix in partial-par- 
allel hardware architecture. 

3. Quasi-cyclic Mapping Matrix Design 

Due to the complicated data sorting operation, we want 
to find a new approach to generate mapping matrix of 
RPC which facilitates hardware implementation. This 
section mainly focuses on our quasi-cyclic mapping ma- 
trix design. But we should guarantee that any modifica- 
tion or new design of mapping matrix should not incur 
any performance degradation. The two most important 
metrics for performance are bit error rate and data 
throughput rate. On the basis of the partial-parallel ar- 
chitecture, our sub matrix has dimension N L N L . 
Then we assemble L L  sub matrices together to form 
N N  mapping matrix. Here we assume L=8. Detailed 
design processes are described as follows. 

First, we generate N 8 N 8  dimension diagonal 
identity matrix A. 

N N
8 8

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0

A
0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1 

 
 
 
 
 
 
  


  

Second, we adopt the quasi-cyclic method to acquire 
the column permutation rules, which contains the right 
cyclic-shift of each sub matrix. Here, we set two parameters 
 

 

Figure 2. Data filter of probability information. 
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x and y, and the times of right cyclic-shift for each sub matrix is listed below. 

1 x x^2 x^3 x^4 x^5 x^6 x^7
1*y x*y x^2*y x^3*y x^4*y x^5*y x^6*y x^7*y

1*y^2 x*y^2 x^2*y^2 x^3*y^2 x^4*y^2 x^5*y^2 x^6*y^2 x^7*y^2
1*y^3 x*y^3 x^2*y^3 x^3*y^3 x^4*y^3 x^5*y^3 x^6*y^3 x^7*y^3

index
1*y^4 x*y^4 x^2*y^4 x^3*y^4
1*y^5 x*y^5



8 8

x^4*y^4 x^5*y^4 x^6*y^4 x^7*y^4
x^2*y^5 x^3*y^5 x^4*y^5 x^5*y^5 x^6*y^5 x^7*y^5

1*y^6 x*y^6 x^2*y^6 x^3*y^6 x^4*y^6 x^5*y^6 x^6*y^6 x^7*y^6
1*y^7 x*y^7 x^2*y^7 x^3*y^7 x^4*y^7 x^5*y^7 x^6*y^7 x^7*y^7 

 
 
 
 
 
 
 
 
 
 

 

 
After every identity matrix A has right cyclic shifted 

according to the corresponding element in index matrix, 
for example the  and  are showed in Figure 3, 
we can get the binary domain mapping matrix . 
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Third, to cover all the non-zero weights combination 
cases in a line of horizontal process units of random pro- 
jection code, we generate a non-zero weights set W of 
the N N  dimension mapping matrix. In each row and 
each column of W, eight weights{-4,-4,-2,-1,1,2,4,4}are 
included. 

8 8

4 4 4 4 2 2 1 1
2 2 1 1 4 4 4 4
4 4 4 4 1 1 2 2
1 1 2 2 4 4 4 4

W
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4 4 2 2 1 1 4 4
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Finally, the weights vector table W is mapped to the 
binary domain mapping matrix , . So, we 
get the non-binary domain mapping matrix for random 
projection code. Supposing the parameters 

*G *
ij ij ijG G *W

x 2 , y 3  
and N 400 , then we get a  dimension map-
ping matrix as Figure 4. 

400400
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Figure 3. QC shift elementary matrices. 

From the construction process above, we find that 
there is only one weight in every sub matrix. In each row 
of the mapping matrix, the order of weights is certain. So 
the data filter can be avoided, which can reduce hardware 
area and power consumption of decoder. Our simulation 
results show that it does not bring performance degrada- 
tion. The reduced hardware resources and decoding 
throughput are listed in section IV. The detailed per- 
formance analysis is presented in the section V. 

4. Hardware Implementation 

The log-domain RPC and the partial-parallel hardware 
architecture have been realized using VHDL. For data 
filter module, we use Synopsys design compiler with 
0.13 um library for synthesis. The hardware area of a 
data filter is 7284.95 um2, and the power consumption is 
331.46 uW. Here we set clock frequency as 300 MHz in 
our timing analysis. 

However, in our new design, we use the proposed 
quasi-cyclic mapping matrix in our hardware implementa- 
tion. Therefore, the data filter can be completely gotten 
rid of, with the area and power reduced according. The 
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Figure 4. Final generated random mapping matrix. 
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decoding results including soft probability information 
and the hard decision bits are fully bit match to the fixed 
point simulation. During the arithmetic operation, all 
variables are fixed point format. Besides, all decoder’s 
input symbols are 16-bit vectors, and some intermediate 
variable vectors are reached to 20 bits. Due to the all 
pipelines, the throughput of our decoder has been greatly 
improved compared with former RTL work in [1]. In our 
RTL implementation, the clock consumption of horizontal 
unit is 16 clock cycles per iteration, and 3 clock cycles 
per iteration for vertical unit. If we set the iteration times 
as 16, the decoder needs     16 N/L 3 N/L 16 1904    

25M bps

 
cycles to finish the decoding of a block with N = 400 bits 
and L = 8. So the information throughput is about 

 in our hardware 
implementation. Obviously, the throughput of our current 
decoder is about 13 times higher than previous design 
[1]. 

300M Hz N /1904 63.0 

Almost all the existing LDPC codes or RPC codes 
hardware designs are fixed to a certain dimension matrix. 
But in actual system, we sometimes need to change the 
mapping matrix. So in configurable hardware architec- 
ture, we may need many counters to generate enable- 
signals. Also, in iteration decoding processing, we use 
RAM memory to store the non-zero weights permutation 
information and Probability information in every itera- 
tion process.  

In summary, the mapping matrix determines different 
values of counter and the size of RAM memory in RTL 
implementation. Figure 5 shows our configurable hard- 
ware architecture design. So as to match all kinds dimen- 
sion matrix, all counter values are corresponding to the 
maximal dimension. In actual implementation, we have a 
global reset-enable signal for RPC decoder. Before de- 
coding, all the counters and RAM memory should be 
initialized through the wishbone bus. Within the wishbone 
bus, there is an address decoder for updating the counter 
values. The wishbone bus is controlled by a peripherals 
CPU. When data initialization has been completed, the 
decoder begins to read receiving symbols and then starts 
decoding. In order to realize configurable hardware im- 
 

receive symbols decoder bits

 

Figure 5. Configurable hardware architecture. 

plementation, the original matrix weights permutation 
information saved in ROM memory should be converted 
to RAM memory. The proposed configurable hardware 
architecture is now under way.  

5. Simulation Results 

In this section, we evaluate the decoding performance of 
the proposed matrix construction approach compared 
with random permutation matrix and cyclic-shift map- 
ping matrix. In detail, we will analyze the short girth, the 
minimum code weight, bit error rate and data throughput 
rate of the three mapping matrices. 

5.1. Short Girth and Minimum Code Weight 

In the following performance analysis, we define 400  
 random permutation matrix as Phix, the 400 400 400  

multilevel cyclic-shift mapping matrix as Gcs, and our 
proposed matrix as Gqc with parameters x 2  and 
y 3 . 

Through calculation, we know that all the three matri- 
ces’ short girth 4 and girth 6 are zero. But the minimum 
code weight of random permutation matrix, cyclic-shift 
matrix and quasi-cyclic matrix are respectively two, zero 
and zero. So we can probably know that matrix Gqc will 
not incur much performance degradation compared with 
other two matrices. Since there is only one non-zero 
weight in each sub matrix, the data allocator won’t be 
needed. The general performance analysis will be 
showed in next part.  

5.2. Evaluation of BER and Throughput Rate 

We test the BER performance of the three matrices in 
AWGN channel state. The channel SNR in our simula- 
tion is ranged from 1dB to 13dB. The BER performance 
is shown in Figure 6. 
 

0 2 4 6 8 10 12 14
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

B
E

R

 

 

Phix

Gcs

Gqc

 

Figure 6. BER performance of different matrices. 
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For the purpose of matching our hardware implementa- 
tion, all the three matrices have been tested on the log- 
domain random projection codes with a maximum iteration 
16. The BER is calculated after transmitting  bits. In 
Figure 6, it is noticeable that the BER is closely 
approximated, where the SNR ranges from 1dB to 14dB. 
Especially, when BER is 10-4, Gqc can get 0.2dB gain 
than Phix and 0.5dB gain than Gcs, respectively.  

710

Furthermore, we test the data throughput rate of 
proposed matrix construction approach in a practical rate 
adaptation protocol. For each matrix, the block size is N 
= 400 and the increasing step is 10 modulation signals. 
Conventional approach is exemplified by the adaptive 
modulation and coding (AMC) in the 802.11a standard. 
The modulations are BPSK, QPSK, 16-QAM and 
64-QAM as well as the channel code is convolution code. 
So there are totally eight different combinations. In the 
ideal case, we assume that the sender knows exactly what 
the channel condition is and can make the optimal rate 
selection. Therefore, the ideal AMC is the upper bound 
of all conventional rate adaptation schemes. 

We run two wireless channel conditions containing 
additive white Gaussian noise (AWGN) channel and 
IEEE 802.11 a fading channel mode A with the SNR 
ranging from 5 dB to 30 dB. At each SNR, a total of 106 
bits are transmitted. In all the figures, the x-axis is sender 
SNR. We use throughput rate as evaluation metric, which 
is the rate of correctly received bits. 

Figure 7 and Figure 8 show the throughput rate per- 
formance of the three matrices under two channel models. 
In the AWGN channel case, all the receiving symbols 
and probability information values in iteration process 
are in floating point format. Meanwhile, this simulation 
is under the arithmetic domain of random projection 
codes decoding without any look-up table or approximate 
calculation. Figure 7 shows our quasi-cyclic matrix 
hasn’t brought any throughput loss. Figure 8 shows the 
throughput performance of the three matrices in IEEE 
802.11a fading channel mode A. In this simulation, to 
match actual RTL implementation, we run log-domain 
RPC decoding program written by fixed point format. In 
our actual realization, we adopt look-up table to ap- 
proximate log operation. The figure shows that our quasi- 
cyclic matrix incurs very small rate loss to multilevel 
cyclic-shift matrix with a maximum gap of 0.15 bit/s/Hz 
at 14 dB and get 0.1 bit/s/Hz rate gain at 30 dB respec- 
tively. What’s more, compared with random permutation 
matrix, our quasi-cyclic matrix acquires distinct through- 
put rate gain with a maximum gap of 0.27 bit/s/Hz at 12 
dB. 

6. Conclusions 

In this paper, we design a mapping matrix suitable for 
hardware implementation, since our design can get rid of 
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Figure 7. Throughput rate performance in AWGN channel. 
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Figure 8. Through put rate performance in IEEE 802.11a 
fading channel mode A. 
 
data filter component. According to the analysis above, 
our method will not bring decoding performance loss, 
and can reduce the realization complexity for convenient 
hardware implementation. Besides, all these performance 
analyses stated above are based on our solid experiment 
results and RTL work. The main target of our research 
and design is to simplify the hardware realization com- 
plexity, reduce the area and power consumption of chip 
and make the RPC hardware design more flexible in the 
modern communication systems. 
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