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ABSTRACT 
 

We propose an adaptive affine combination of two adaptive filters in that combination select one is fast and one 

slow. In this paper we proposed LMS, NMLS and CMA algorithm technique. By using these algorithm 

techniques we calculate the mixing parameter (η)   at every instant and the performance of the measurement 

parameter that is excess mean square error EMSE is varied with the step size (μ) according to the variation the 

step size we achieve the good convergence rate and its adaptation is also taken into account in the transient 

analysis and steady state analysis. The proposed combination should acquire the good convergence properties 

for all kinds of stationary and non stationary environments.  The resulting combination should profit than 

single filter technique. 
 

Keywords: Adaptive filters, transient analysis, steady state analysis, EMSE, CMA. 
 

 

I. INTRODUCTION 

One of the most popular algorithms for adaptive 

filtering is the LMS algorithm. LMS adjusts the 

adaptive filter weights and modifying them by an 

amount proportional to the instantaneous estimate of 

the gradient of the error surface [1]. It neither 

requires correlation function and matrix inversions 

method, which makes it simple and easy when 

compared to other algorithms. 

 

Minimization of MSE is achieved due to the iterative 

procedure incorporated in it[2].To make successive 

corrections in the direction of negative of the 

gradient vector of  it .The adaptive filters that exhibit 

good convergence properties in stationary 

environments[3], do not necessarily present good 

tracking performance in non stationary environment. 

for combination of algorithms we calculate the 

convergence rate and EMSE in adaptive filters.  

 

The rest of the paper is organized as follows In the 

next section II, we describe the affine combination of 

two adaptive filters, In Section III, analytical 

expressions for the optimum mixing parameter and 

the optimum EMSE, Section IV will discuss about the  

 

steady-state analysis two LMS filters, two NLMS 

filters and two CMA equalizers. Section V is about 

simulation results and discussion, some conclusion is 

given in Section VI. 

 
II. COMBINATION OF SUPERVISED ALGORITHMS 

 

The linear combination of two supervised adaptive 

filters is depicted in Fig.1, where the filter weights 

are adjusted to minimize the mean-square error cost 

function, obtaining at the output an estimate of the 

given “desired signal” d(n). The output of the overall 

filter is given by 

 

  )()(1)()()( 21 nynnynny     ………………(1) 

 

where (n)   is the mixing parameter and yi(n), i=1,2 

are the outputs of two transversal filters, 

i.e., )1()()(  nwnuny i
T

i .The superscript T denotes 

transposition, wi(n − 1), i = 1, 2 represent the length-M 

coefficient column-vectors characterizing the 

component filters, and u(n) is their common input 

regressor column-vector 

International Journal of Research and Applications  

April - June © 2014 Transactions; 1(2): 63-68 ISSN (online): 2349-0020 

http://ijraonline.com 

mailto:ramabmaha@gmail.com
mailto:ravinderoranganti@gmail.com
mailto:m.raju2002@gmail.com


International Journal of Research and Applications  

Apr - Jun © 2014 Transactions 

 
IJRA | 2014 |  Volume 1 |  Issue 2                                                                                                            P a g e  | 64 

 
Fig1. Linear combination of two supervised adaptive 

filters 

 

We focus on the affine combination of two 

algorithms of the following general class 

 

)()()()1()( nenunnwnw iiii    ……………..(2) 

 

where ρi(n) is a step-size and ei(n) is the estimation 

error. Many algorithms can be written, by proper 

choices of ρi(n) and ei(n). In supervised adaptive 

filtering, a “desired signal” d(n) is available such  

 

)()()( nyndne ii                      ………………..(3) 

 

and a linear regression model holds, i.e., 

)()1()()( nvnwnund o
T                 …………..(4) 

 

with wo(n− 1) being the time-variant optimal solution 

and v(n) a zero-mean random process uncorrelated 

with u(n), whose variance is denoted by     

 )(22 nvEv   the sequences {u(n)} and {v(n)} are 

assumed stationary and that v(n) is independent of 

u(n) (not only uncorrelated). Defining the weight 

error Vectors )()()(
~

nwnwnw ioi  the a priori errors   

)1()()(
~

,  nwnune i
T

ia               ………………..(5) 

 

An important consequence of this model is that v(k) 

will be independent of all wi(j), )(
~

jwi  and ea,i(k) , i = 

1,2 j < k. 

For any particular time instant k. considering the 

combination of two LMS filters and the minimization 

of the overall instantaneous square error 

 22 )()()( nyndne  proposed the following gradient 

based algorithm 

 )()()()()1( 21 nynynenn n   ………...(6) 

  

To obtain a tradeoff between stability of this 

recursion and the algorithm’s tracking capability in 

the initial phase of adaptation, η(n) <=1 

 

A) Combination of blind algorithms 

It is a simplified communications system with a 

combination of two blind equalizers. In this case, the 

signal a(n), assumed i.i.d. (independent and 

identically distributed) and non Gaussian, is 

transmitted through an unknown channel, whose 

model is constituted by an FIR filter and additive 

white Gaussian noise..  

Algorithms based on the constant modulus cost 

function define the “estimation error” as 

 

  )()()( 2 nynyrne iii           ………………(7) 

where  r = E{a4(n)} / E{a2(n)} .  

 

These assumptions were used in[10] obtain simple 

linear models that capture the behavior of CMA close 

to an optimum solution.  

 

Thus, (7) was approximated by  

ei(n)(n)ea,i(n)+(n             ….(8) 

where  

(n)=3a2(ntd)r             …….…..(9) 

and 

(n)=a(ntd)a3(ntd)          …....(10) 

 

The variable β(n) is identically zero for constant-

modulus constellations, so the variability in the 

modulus of a(n) (as measured by β(n)) plays the role 

of measurement noise for constant-modulus based 

algorithms. Model [5] was proposed to study convex 

combinations of constant-modulus based algorithms 

and extended  to obtain explicit stability conditions 

for CMA to update the mixing parameter in order to 

combine two CMA equalizers, we could use a 

gradient rule to minimize the instantaneous 

constant-modulus cost   22
~

)()( nyrnJ cm   as 

considered in the convex combination.. Thus, we 

propose a stochastic gradient algorithm to minimize 

the instantaneous square decision error 

)()( 2
~

nenJ dd  ,  

where  

)()()()( ddd naandnynane  

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the estimate of the transmitted signal at the output of 

the decision device. This results in the following 

update equation 

 

 )()()()()1( 21 nynynenn d           ….(11) 

 

In the presence of noise and/or when both 

component filters are far from convergence. assume  

  ed(n)  ea(n) 

 

B) A common formulation 

Comparing (8) to (5), we can write the following 

general expression  

 

ei(n)=k(n)ea,i(n)+(n)     ,i=1,2..              ……(12) 

 

where κ = 1 and ϕ(n) = v(n) for a supervised 

algorithm or κ(n) = γ(n) and ϕ(n) = β(n) for a blind 

one. In both cases E{(n)} = 0. This model also holds 

for the overall scheme, i.e., 

 

                e(n)=κ(n)ea(n)+(n)                13) 

 

where e(n) represents the error of the combined 

filter: e(n)=d(n)−y(n) for supervised algorithms or e(n) 

= [r − y2(n)]y(n) for constant-modulus-based 

algorithms, and ea(n) is the a priori error of the 

overall scheme. It should be noticed that (12) and (13) 

are approximations in the blind case. For the sake of 

simplicity, we use the equality sign here and in the 

expressions derived from (12) and (13).  

 

The supervised LMS and NLMS algorithms and the 

blind CMA employ the step-sizes ρi(n)and the 

estimation errors ei(n),where Qn is a regularization 

factor and k. k represents the Euclidean norm. The 

models for the errors ei(n) of these algorithms are also 

shown in this table for convenient reference. The 

step-size interval which ensures the convergence and 

stability is different for each algorithm. For the LMS 

and NLMS algorithms, the step-size intervals are 

well-known in the literature whereas for CMA, the 

derivation of this interval was shown recently. 

 

Using equation model (5) in the supervised case, and 

the fact that      ed(n)  ea(n) in the blind case, we can 

write a general expression for updating the mixing 

parameter, i.e.,    

 

(n+1)=(n)+neg(n)[y1(n)y2(n)+………(14) 

where 

        eg(n) =ea(n) + b(n)            ……(15) 

 

and b(n) = v(n) for the combination of supervised 

algorithms or b(n) = 0 for the combination of 

constant-modulus-based algorithms. In both cases, 

η(n) is constrained to be less than or equal to 1 for all 

n . Algorithm (14) is denoted here by η-LMS. 

 
III. THE OPTIMUM MIXING PARAMETER AND EMSE 

An analytical expression for the optimum mixing 

parameter η0(n) can be obtained equating to zero the 

expected value of the gradient used to update η(n) in 

(14), i.e., The error eg(n) in (16) can be rewritten as a 

function of the a priori errors ea,i(n),  

 

i = 1, 2, as follows. Using (1), (12), and (13), the a 

priori error ea(n) of the overall scheme can be written 

as 

)]2()()[()(

)()](1[)()()(

2,1,2,

2,1,

aaa

aaa

enenne

nennenne








      …(17) 

 

Replacing (17) in (15), and remarking that  

y1(n)–y2(n)=ea,1(n)-ea,2(n)        and  

 

         

 
  

  0)]()()[(

)()()(

)()()(

1,2,

2
1,2,

2,1,
2

2,







nenenbE

nenenE

neneneE

aa

aao

aaa

              ...(18) 

 

In the blind case, b(n) = 0 and in the supervised case, 

b(n) = v(n), which is assumed independent of ea,i(n),  i 

= 1, 2. Hence, in both cases the third term on the 

L.H.S. of (18) is equal to zero. 

To proceed, we remark that the EMSE of the 

component filters and the cross-EMSE can be 

calculated (18), respectively as 

 

 
 .)()()(

2,1,)()(

2,1,12

2
,

neneEn

andineEn

aa

iaii









…………..…(19) 

                                                      …………(20) 

Introducing the differences 

ii(n) = ii(n) - 12(n), i = 1,2,                   (21) 

and using (19)-(21) in (18), we arrive at 

       
)()(

)(
)(

2211

22

nn

n
no









            …….(22) 

 

A similar expression was also obtained for the 

convex combination of two LMS filters at the steady-

state. We should notice that (22) is more general: it 
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holds for all n ≥ 0 (not only at the steady-state) and 

the mixing parameter is not restricted to the interval 

[0, 1]. Defining the EMSE of the overall combined 

scheme as               

                (n)=E{e2a(n)}                       ……(23) 

 

We now obtain an analytical expression for its 

optimum value. By squaring both sides of (17) with 

η(n) = ηo(n) and taking expectations, we arrive at 

 

E{e2a(n)} = 2o (n) E{e2a,1(n)}  

                    + [1- o (n)]2 E{ e2a,2(n) 

                   +2o(n)[1-o(n)]E{ea,1(n)ea,2(n)}                            

                                                                 …...(24) 

Using (19)-(22) in (24), we obtain 

     o(n) = 22(n) - o (n)22(n)  

                                                           ……….(25) 

 

After some algebraic manipulations, (25) can be 

rewritten as 

)()(

)()(
)()(

2211

2211
12

nn

nn
nno









     ………(26) 

 

This expression was obtained for the convex 

combination of two LMS filters at the steady state, 

but again it also holds for all n > 0.As already 

mentioned in (8) (22) (26) hold for the combination of 

any two algorithms that satisfy (12).The values of 

ii(n) ,i = 1,2 however do depend on the actual 

algorithms that are being combined .Thus provided 

approximations for    ij(n) i = 1,2 are available,(22) 

and (26) can applied to the affine combination of 

different algorithms ,including combinations of 

algorithms of different families.   

 
IV. STEADY-STATE ANALYSIS OF THE OPTIMUM 

COMBINER 

 

In this section, the optimum mixing parameter and 

the optimum EMSE of the combination, given 

respectively by expressions (22) and (26), are 

particularized for the combination of two LMS filters, 

two NLMS filters, and two CMA equalizers in 

steady-state for stationary and non stationary 

environments. We assume that in a non stationary 

environment, the variation in the optimal solution 

wo follows a random-walk model, that is, 

 

w0(n) =wo(n - 1) + q(n)        ………            (27) 

 

In this model, q(n) is an i.i.d (independent and 

identically distributed). vector with positive-definite 

autocorrelation  matrix Q=E{q(n)qT(n)} independent 

of the initial conditions {wo(-1),w(-1),(-1)} and of 

{u(l)} for all l [4]. In supervised filtering, q(n) is also 

assumed independent of the desired response {d(l)} 

for all l < n. In blind equalization, wo(n) represents the 

zero-forcing solution and q(n) models the channel 

variation. The analyses. 

 

A) Transient Analysis of Realizable Schemes 

In this section, we take into account the adaptation of 

η(n) in the analysis By squaring both sides of (17) and 

taking expectations, we Obtain 

 

     
 )]()()()[(2

)]()()[()()(

2
2,1,2,

2
2,1,

22
2,

2

nenenenE

nenenEneEneE

aaa

aaaa









    

                           

                                                               …… (29) 

To proceed, we assume that:  

A1. The adaptation of η(n) is slow so that the         

correlation between it and ea,i(n),ea,j(n),i,j = 1,2          

can be  disregarded.  

This assumption follows from observations: 

simulations show that η(n) converges slowly 

compared to variations in the input u(n) and thus to 

variations on the a-priori errors. Using A1, (19)-(21) 

and (23), we can rewrite (29) as 

 

    )()(2)()()()( 22
2

22 nnEnnEnn    

                                               ……………….(30) 

where we define 

   )()()()()( 2211
2

21 nnnynyEn  


 

                                                                ……(31) 

 

To estimate the EMSE of the combination for all n ≥0 

using (30), analytical expressions for  ij(n), i = 1,2, 

E{(n)}, and E{2(n)} should be obtained. It is 

common in the literature to evaluate the EMSE as 

  ))1(()()()( ,, 


nRSrneneEn ijjaiaij    ….(32) 

 

V. SIMULATION RESULTS 

 

To verify the transient analysis in the supervised 

case, we consider the identification of a time 

invariant system. The optimum solution is formed 

with M = 7 independent random values between -1 

an 1, and is given by wo = [+0.90 −0.54 −0.03 +0.78 

+0.52 −0.09].We assume white Gaussian input with 

variance 1/M so that Tr(R) = 1, and an average of 500 
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runs. Moreover, i.i.d. noise v (n) with variance   σ2 v 

= 0.01 is added to form the desired signal. 

 

Fig. 2 shows the results of the EMSE and the mixing 

parameter for the affine combination of two LMS 

filters in the same situations considered in Fig. 3 and 

4 in which the mixing parameter is updated with the 

N-LMS algorithm,  where μn = 3,. Similarly, with μn = 

0.1, the analysis can predict that the combination is 

not able to switch to the slow filter, We should notice 

that, due to the constraint imposed in the η-LMS 

algorithm  (η(n) ≤ 1),.  
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          Fig. 2. Affine combination of two signals. 
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Fig. 3. Ensemble average of n(n) adapted with the N-

LMS algorithm. 
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Fig. 4. Convex combination of two LMS filters at the 

steady state, but it holds for all n > 0. 

VI. CONCLUSIONS 

We proposed transient and steady-state analyses for 

the EMSE and the mixing parameter of the affine 

combination, based on the theoretical EMSE and 

cross-EMSE of the component filters and on the 

adaptation of the mixing parameter. This states the 

application to different combinations of algorithms 

of LMS, NLMS and CMA, considering white or 

colored inputs and stationary or non stationary 

environments. Good agreement between the analysis 

and the simulations was always observed. Moreover, 

we proposed and analyzed two normalized 

algorithms for updating the mixing parameter. The 

theoretical models can predict situations in which 

these algorithms can achieve a good performance 

results. 
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