
Services Transactions on Cloud Computing (ISSN 2326-7550) Vol. 3, No. 1, January-March 2015

LEARNING-BASED HIGH-THROUGHPUT

DISPATCHING FOR TRAJECTORY STREAMS
Xin Zhang1,2, Guoqiang Hu2, Ning Duan2, Peng Gao2, Weishan Dong2,Jun Zhu2, Rong Chang3

1Automation Department of Tsinghua University
z-xin07@mails.tsinghua.edu.cn

 2IBM Research – China
{zxin, hugq, duanning, bjgaop, dongweis, zhujun}@cn.ibm.com

 3IBM Research, USA & China
 rong@us.ibm.com

Abstract
With the development of Internet-of-Things (IoT) technologies, large-volume sensor data streams are sent to cloud in
near real-time which raise an important requirement for high performance sensor big data analytics. This paper
focuses on the scalability challenges for analyzing large-volume mobile data streams, as mobile data streams convey
valuable spatio-temporal information (termed as trajectory or semantic trajectory). A framework for high
performance trajectory streams processing is proposed together with a learning method for workload assignment
optimization and a dispatching method for high-throughput geo-message dispatching. By taking the spatial
connectivity implied by trajectory streams into consideration, a trajectory preserving partitioning method is proposed
for improving the quality of geo- partitioning. Based on the optimized geo-partitioning, a novel Geohash Tree based
dispatching method is developed for achieving high-throughput geo-message dispatching. Via mobility localization
formalism, we demonstrate that an implementation of our geo-spatial partition algorithms could balance workload
and minimize cross-node communication. And experimental evaluations using real world and simulated data also
validate the performance of the proposed methods.
Keywords: service scalability, mobile data streams, graph partitioning, trajectory, geohash tree

__

1. INTRODUCTION
Mobile sensors (e.g., built-in sensors on mobile phones

or portable devices, and in-vehicle sensors) are pervasively

available nowadays. Information such as location, speed,

temperature, fuel consumption, and driving operation, can

be continuously sensed and uploaded to back-end cloud

environment in the form of mobile data streams through

mobile network. Hence providing cloud services analyzing

large volume mobile data streams becomes a key capability

in many application domains including connected vehicles,

smart traffic and logistic, mobile commerce, and telematics

insurance.

The main payload of mobile data streams is the

trajectory information. A trajectory is a sequence of spatio-

temporal data records describing a journey of a moving

object together with the sensed information along that

journey. In recent years, trajectory analytics has got

increasingly research interest (Bu, 2009), (Liu 2011),

(Davics, 2006) along with the booming volume of available

trajectory data. And there is also increasing requirement for

analyzing trajectory streams with low latency in many

applications. In real-time traffic applications that fuse

sensed vehicle speed on the same road to estimate road

traffic condition, Map Matching (Newson, 2009) infers a

vehicle’s traversing roads from a sequence (usually 5 to 20)

of sensed GPS records from that vehicle. And in telematics

insurance services, driving behavior is expected to be

analyzed from a sequence of sensed driving operations (e.g.,

decelerate-turn-accelerate) immediately for alerting driving

risk in-time. And also to enable online trajectory prediction

in mobile commerce applications, the recent location

records of a moving object, in addition to the current

location, shall be considered for accurate prediction. Hence

processing trajectory streams in a sliding window approach

is a common scheme in many mobility analytics services.

And with the growing volume of mobile clients and mobile

sensors, throughput and scalability are critical issues for

many cloud services analyzing trajectory streams.

In recent years, stream computing platforms (e.g.,

Storm, InfoSphere Streams (Gedik, 2008), and S4

(Neumeyer, 2010)) become popular for scalable and real-

time data stream processing. And there is also solid research

outcome on scalable streaming, such as (Andrade, 2009),

(Schneider, 2009), (Khandekar, 2009), and stream data

mining, such as (Gaber, 2005), (Domingos, 2000), (Chen,

2002). However, to the best of our knowledge, there is little

research addressing the scalability challenge of trajectory

streams processing. In existing location-based services

(LBS), usually the static geo-spatial continuity is considered

in geo-partitioning (i.e., partition a geo-space into multiple

sub geo-areas). The partitioning result serves as rules for

dispatching workload to different servers for parallel

processing. While for cloud services analyzing trajectory

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

streams, geo-partitioning shall also take the geo-spatial

continuity implied by the trajectory streams into

consideration. Otherwise it would cause large amount cross-

server trajectories and incur cross-server data access which

will lower parallelization throughput. And service scalability

will be impacted.

In this paper, we extend the trajectory preserving

partitioning method (Zhang, 2014) into a scalable trajectory

streams processing framework. By analyzing the unique

requirement in high performance trajectory streams

processing, we come up with the scalable framework and

major performance measurements. Key algorithms are

developed to optimize the workload partitioning and

improve the efficiency of service dispatching.

The major research contributions of this paper are:

1. A framework for high performance trajectory streams

analysis is proposed which covers both the offline optimal

partition learning and online message dispatching.

2. A novel geo-partitioning optimization method is

proposed and key algorithms are implemented for

optimizing geo-partitioning taking mobility localization and

workload into consideration.

3. A Geohash Tree approach and related algorithms are

devised to achieve high performance geo-message

dispatching.

4. The effectiveness of the proposed framework and

methods is validated through experiments on both real-

world and simulated data.

The remainder of this paper is organized as follows.

Section 2 discusses the trajectory streams features and

presents the framework for scalable trajectory streams

processing. The mobility localization principle and

measurements are also introduced. In section 3, the geo-

partitioning optimization method is depicted and related

enabling algorithms are introduced. Section 4 presents the

devised algorithm for high performance trajectory streams

dispatching. Experiments are described in section 5. And

related work is given in section 6. Section 7 concludes the

paper and highlights the future work.

2. FRAMEWORK FOR SCALABLE

TRAJECTORY STREAMS PROCESSING
A general scalability strategy in location-based services

is geo-partitioning that enables dispatching data records (or

requests) according to their geo-locations. For the benefit of

computational efficiency, spatially near-by data records are

dispatched to the same processing node (Jensen, 2007),

(Mouratidis, 2005). So partitioning the whole geo-space into

multiple geo-areas according to the geo-spatial continuity is

a common practice in location-based services. After that,

computation nodes are associated with partitioned geo-areas

to handle corresponding data workload. Through this

approach, geo-spatial message can be dispatched to

corresponding computation node according to its geo-

location and scalable parallel processing can be achieved on

cloud.

While for mobility analytics services, beside the static

geo-spatial continuity, geo-partitioning shall also take the

geo-spatial relationship and workload implied by the

trajectory streams into consideration. Otherwise there could

be massive communication overhead caused by cross-server

data access and service scalability will be degraded. Figure

1 displays an illustrating sample. Two schemes are applied

for handling workload on a geo-space with 3 computation

nodes. The dark dot lines are the trajectories of moving

objects. The rectangles represent partitioned geo-areas and

arrowed lines indicate the assignment between computation

nodes and partitioned geo-areas. Intuitively scheme 1

(Upper side of Figure 1.) incurs a lot of cross-server data

communication as mobility is not considered during geo-

partitioning. And the data workload is unbalanced among

partitions. While scheme 2 successfully suppresses cross-

server communication as it manages most of trajectories

within individual geo-areas. And the workload is evently

distributed among partitions. With the capability of reducing

cross-node communication and keeping workload balancing,

parallelization efficiency will be improved hence scalability

can achieved. In real-world services, where there are large

volume of moving objects and trajectories and a geo-area

usually has irregular shape, determining the optimized

partition boundary is not a simple task.

Motivated by the unique characteristic of trajectory

streams, a framework for scalable trajectory streams

processing is proposed and shown in Figure 2. In general,

the framework consists of the offline part and the online part.

The offline part learns from large volume of historical

trajectory data and generates optimized geo-partitions as the

base for geo-message dispatching rules. The mobility

preserved geo-partitioning service associates the trajectory

data with map and mines the optimal geo-area boundaries.

And the geo-dispatching rule builder processes the

partitioned geo-areas and generates rules for geo-message

dispatching. The online part has two layers: the messaging

layer and the streaming layer. The messaging layer serves as

the front-end server handling massive concurrent

connections and continuous network messages from mobile

Figure 1. Assignment Schemes.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

devices. As a core component in the streaming layer, the

geo-message dispatching service is responsible for

dispatching the mobile data messages to the right

computation nodes according to dispatching rules.

Throughput is a critical performance measurement for the

dispatching service and is one important indicator of service

scalability. Modern messaging services usually take the pub-

sub scheme to decouple message producers and message

consumers. The lightweight MQTT protocol (Locke, 2010)

enables efficient message transmitting interface between

dispatching service and computation nodes. At the

streaming layer, computation nodes are a cluster of

processing units connecting to dispatching service with high

network bandwidth. Each computation node (or a set of

nodes) is responsible for processing data located in a certain

geo-area. Obviously preserving trajectories locally within

individual geo-areas is much more efficient than splitting

trajectories onto multiple geo-areas, which incurs cross-

server remote access and would significantly impact the

processing latency and throughput. So a good architectural

strategy is to localize a node’s computation and reduce the

cross-node data access or data migration as much as

possible. And the more the cross-node communication exists,

the less scalable the service is. Therefore geo-partitioning

service is critical for service scalability. And the efficiency

of dispatching service is also important to the overall

runtime performance and to avoid being the bottleneck of

cloud services.

Before further introducing the methods and algorithms

enabling the framework, the key performance measurements

are defined in the rest of this section. We term the principle

to preserve trajectories within individual partitions as the

mobility localization. Technically we measure the mobility

localization by Mobility Localization Index (
mlI) which is

defined as the ratio of within-node trajectory volume to the

number of whole trajectories.

    
00

, ,ml j j j i

i

I t t Trj l t l P Trj
 

     
 
 (2.1)

In (2.1),  Trj is the whole set of trajectories used for

partitioning. Usually a big volume of historical trajectory

data is used representing the statistical mobility pattern of

the geo-space to be partitioned.
iP is the i-th partition and

jt is a trajectory which has all of its discrete location l in

one partition. And correspondingly we define the Mobility

Delocalization Index as
mdI , which is closely related with

cross server communication.

1md mlI I 

 (2.2)

Besides the mobility localization, workload balance is

another measurement for partitioning quality. In existing

geo-partitioning, usually some static factors are regarded for

balancing, e.g., the weighted number of road links or the

size of spatial area. In the trajectory streams processing

context, trajectory streams exactly represent the

computation workload. For example, more vehicles are in

cities than rural areas. So it is more reasonable to balance

the workload according to vehicle data distribution than to

cut the city map into sub areas with even geo-spatial size.

So in addition to the mobility localization, trajectory-load-

based balance is another measurement for partition

performance. For the balance constraint, a ratio of

imbalance R (Karypis, 1999) is defined as:

 ,max / (/) 1sum i sumR W W k for i k   (2.3)

k is the total number of partitions, and
,sum iW denotes the

sum of node weight in the i-th resulting partition, i.e.,

weight of
iP . For trajectory-load-based balance, the node

weight is specifically modeled according to the distribution

of trajectories related with the node. sumW denotes the sum of

node weight of the whole graph. So (sumW k) is the average

partition weight, which is constant when the graph and the

partition number k are given. A balance constraint can thus

be defined as:

1R   (2.4)

Where 0  is a user-defined parameter indicating the

tolerance of imbalance. And 1  implies the weight of any

partition shall not exceed twice of the average partition

weight. Users can choose a proper  according to

application need to control the imbalance level.

Beside the mobility localization index and ratio of

imbalance, the Messaging throughput (mT) is another

important performance measurement. It is defined as the

number of geo-messages dispatched to computation nodes

per unit time.

 /m mT n t (2.5)

Messaging throughput measures the online geo-message

dispatching efficiency and evaluates when the dispatching

service may get to be the bottleneck. It is a preferable

measurement on general platform performance than the end

to end throughput which is application specific. The end to

end throughput depends on the computation node

configuration and application specific computation

complexity, which is beyond the scope of this paper.

Figure 2. Framework for Scalable Mobile Data Streams
Processing.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

3. TRAJECTORY PRESERVING

PARTITIONING METHOD AND

ALGORITHMS
For achieving mobility localization, the spatial

connectivity implied by trajectory data has to be leveraged

in geo-partitioning. While some spatial grid based approach

and geometric partitioning methods, e.g., (Simon, 1991),

(Farhat, 1993), are available for geo-partitioning, the rigid

grid shape and the limit of spatial distance metric can

significantly impact the partitioning result. A recent

enhancement to spatial partitioning is road network distance

based partitioning (Ventresque, 2012). The road network-

based partitioning can more correctly reflect the localized

relationship in many applications. For example, two persons

who are 200 meters away spatially actually need more than

1 kilometer to meet each other in terms of road network

distance. However the focus of (Ventresque, 2012) is on

static network based partitioning, without taking data

continuity into consideration. And the connection between

road network partitioning and geo-partitioning is not

addressed.

In this section a trajectory preserving partitioning method

is proposed and corresponding algorithms are developed in

following sub-sections. The general idea of trajectory

preserving partitioning method is to overlay the trajectory

information on top of road network. And then a graph model

can be built and graph partitioning method can be applied.

After that, the road network partitioning result needs to be

projected back into geo-partitions (for the sake that geo-

partitions enable much faster dispatching than road network

partitions since it’s costly to compute the road link of each

data record at the point of message dispatching). Figure 3

shows the component diagram of the trajectory preserving

partitioning method. The map road network and historical

trajectory data are the input of the method. And the

partitioned geo-areas are the output. The partitions here

imply that the union of the geo-areas covers the whole geo-

space and there is no overlap between any pair of geo-areas.

As the first step, the Road Network Transformer transforms

the map road network from node graph into link graph.

Section 3.1 will discuss the transformation process. Map

Matching is a well-studied algorithm to associate

trajectories with road networks. It takes trajectory data as

input and output the sequence of road links that the

trajectory traverses. Interested audiences can refer to (Lou,

2009), (Newson, 2009) for Map Matching technology. As a

front step before graph partition, the Constructor builds a

trajectory weighted graph model according to the

transformed road network and trajectory data matched on

road network, which will be depicted in section 3.2. Then

graph partitioning can be performed. Graph partitioning is a

classic mathematical technique with abundant applications.

In the domain of traffic network analysis, graph partitioning

methods are applied in partitioning large-scale road to

speedup shortest path search (Delling, 2009), (Delling, 2011)

and distributed transportation simulation (Xu, 2012). In this

paper, the METIS toolkit (Karypis, 1999) is adopted for

partitioning the weighted road network. METIS takes a

heuristic partitioning approach and has been widely referred

in research and practice for its proven performance. The

trajectory preserving road network partitioning algorithm is

described in section 3.3. After that an algorithm is

developed to project from road network partitions back to

geo-partitions, which will be introduced in section 3.4.

3.1 Road Network Transformation.
In most existing road network partitioning methods, the

link cut scheme is applied to partition road network by

splitting road links connecting different part of sub road

networks. It take a straightforward mapping between road

network model and graph model, i.e., each node of road

network (e.g., road junction or endpoints) is modeled as a

vertex of a graph, and each link(connecting two nodes on

road network) is modeled as a graph edge connecting two

corresponding vertexes. Thus a graph partitioning problem

is defined by minimizing the number of road links cut

during the partitioning. At the same time, balance constraint

can be imposed on the optimization procedure so that the

resulting sub-graphs are balanced in terms of the sum of

node weight.

For the trajectory preserving partitioning, it turns out to

be a different situation. Cutting on road links leaves the

issue of which partitions the cut road links shall join. Since

road links have their own geo-shape (could be as long as

several kilometers), different joining choices can

significantly impact the boundary of geo-areas and could

lead to a non-optimum solution. On the contrast it won’t be

Figure 3. Component Diagram of Trajectory Preserving
Partitioning.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

an issue if partitioning is performed on the nodes of road

network: As in road network, nodes are physically modeled

as points with no geo-shape. So no matter which partition a

cut node joins, it makes no difference to the geo-area

boundary. To enable the node cutting, the road network

needs to be transformed into a “link graph”. A link graph

takes each road link on the road network as its vertex (i.e.,

link vertex) and builds the edges connecting vertexes based

on the connectivity between links. In this way, the

partitioning on nodes of road network is enabled.

3.2 Trajectory Weighted Graph Construction.
To build the edges connecting vertexes, and more

importantly, to define the weights on the edges, both the

road network connectivity and the trajectory information

needs to be considered. For each adjacent pair of links, the

weight on the edge connecting corresponding link vertexes

is increased with a certain value
lw 1 . And for each

trajectory traversing a sequence of links, each adjacent pair

of links in the trajectory will have a certain value
tw 2

contributing to the corresponding edge of the graph. The

ratio between
lw and

tw , instead of their absolute value, is

important for balancing between the static connectivity and

the dynamic connectivity. The static connectivity is more

stable with good coverage, while the trajectory is more live

through may not cover the full spectrum of network. Merely

weighting on static connectivity would lead to non-optimum

situation as illustrated in Figure 1. While, in another

extreme, purely trajectory based weighting may lead to

disconnected graph. As trajectory usually provides many

more instances of connectivity than road network (as a pair

of links could be traversed by thousands of trajectories), it

needs a factor to balance the relative importance of two

weights. The principle for weight balance used in this paper

is to ensure equal contribution of total weights. For

presetting weights
lw and

tw , a tuning factor,
wr , is

calculated reflecting the ratio of total static weight to total

dynamic weight.

() / ()w l t

link traversed
pairs pairs

r w w   (3.1)

Then the
tw can be tuned by multiplying

wr :
' *t t ww w r

 (3.2)

Static and dynamic weight can be integrated

automatically by this approach. One could also adjust wr

manually if prior knowledge is available on application

scenario or data quality.

Trajectory data also serves as more precise workload

information than static network or geo-spatial elements. As

a direct model of workload, each link vertex in the link

1 lw can be varying on different pairs of links according to

certain extra information, e.g., road level, or intersection

level. Here we ignore the detail without loss of generality.
2 tw can also be varying, e.g., according to trajectory length.

graph has the weight that equals to the number of

trajectories traversing that link.

3.3 Trajectory Preserving Road Network
Partitioning Algorithm.

The trajectory preserving partitioning algorithm is

presented in Figure 43. It takes road network and trajectory

data as input together with two parameters: k is the

expected number of partitions and ubR is the upper

boundary of imbalance ratio R . It outputs the partitioned sub

road networks, each of which contains a list of road links.

Step 1- 4 of the algorithm build the link graph and estimate

the static edge weight
. se w

, the dynamic edge weight
. de w

,

and the node workload weight
. wlv w

. Step 5 calculates the

weight tuning factor wr . And step 6 integrates the static

weight with dynamic weight automatically according to wr .

Step 7 invokes graph partitioning algorithm and gets the

partitioned vertex sets. Then in step 8 the partitioned vertex

sets are mapped back into sub road networks denoting as

lists of road links, which are returned as algorithm output in

step 9.

Trajectory Preserving Road Network Partitioning

Algorithm

Input:

 (,)RN N L : Road network consists of node set N

and link set L .

  iTrj t : Trajectory data set.

((,...) ,i x y x ywhere t l l l l L )

 k : Number of partitions to be generated.

 ubR : Upper boundary of imbalance ratio R .

Output:

 { }isubRN : each
isubRN is denoted by

 i s s s iL l l L l subRN    and

1

nP

j i jL L i j L L     holds.

BEGIN

1l tw w  , without loss of generality.

1. Create an empty link graph (,)G V E , ,V E  .

2. For each il L

a) Create a link vertex iv and add into vertex set

iV V v 

b) Initialize the workload weight of iv :

. 0i wlv w 

3. For each in N

a) For each pair of links (,)i jl l connected at in

3 For clarity of presentation, the multi-link (multiple links

between two nodes) handling is omitted.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

i. Create an edge
ije and add into edge set

 ijE E e 

ii. Set the static weight of
ije : .ij s le w w

iii. Initialize the dynamic weight of
ije :

. 0ij de w 

4. For each  jt Trj

a) Parse each adjacent pair of links (,)x yl l of
jt

i. Update dynamic weight

of
xye : . .xy d xy d te w e w w  .

ii. Update workload weight of corresponding

vertexes . . 1 , ,i wl i wlv w v w i x y  

5.
, ,

(.) / (.)w ij s ij d

i j i j

r e w e w  

6. For each
ije E

a) . . * .ij ij s w ij de w e w r e w 

7. { } _ (, ,)jsV Metis GraphPartition G k ubR

8. For each jsV

a) Create a jL 

b) For each i jv sV

i. Add corresponding link to jL :

j j iL L l 

9. Return { } , 1jL j k

END
Figure 4. Trajectory Preserving Road Network Partitioning

Algorithm.

The computational complexity of the algorithm depends

on the step 4 and step 7. Step 4 has the time cost  tn (i.e.,

linear to the number of trajectories in training set
tn). And

Step 7 has the approximate complexity of

   n m klog k  according to the author of METIS

(Karypis, 1998), where n is the number of nodes, m is the

number of edges, and k is the number of expected

partitions. So the algorithm’s computational complexity is

approximately    tn n m klog k   .

3.4 Margin Maximized Geo-Partitioning Algorithm.
The trajectory preserving road network partitioning

algorithm introduced in section 3.3 generates the road

network partitions as output. Each road network partition

contains a list of road links. For geo-messages in trajectory

streams, the location information is generally presented in

terms of geo-spatial coordinates (e.g., longitude and

latitude). Since associating coordinates with road links relies

on Map Matching which is computationally costly, road

network partition is not an ideal structure for online geo-

message dispatching. In contrast to a road network partition

defined as a list of road links, a geo-partition is defined in

terms of a geo-area having a polygon as its boundary.

Computationally matching coordinates with polygons is

much more effective than associating coordinates with road

links. Hence there is a need to transform from road network

partitions into geo-spatial partitions for effective geo-

message dispatching.

Developing one-one mapping between road network

partitions and geo-partitions (represented by a polygon as

the boundary) has the following requirements. Basically

each polygon shall include all road links allocated to the

corresponding road network partition and exclude any road

links of other partitions. And there shall be no overlapping

or missing coverage between the geo-partitions. Moreover,

the position of boundary shall maximize its distance from

the data of adjacent partitions as much as possible, so as to

be resilient to data noise (if the boundary is close to data,

noisy data could float into the other partition and cause

wrong dispatching). This raises the need to maximize the

margin between polygon boundary and road links near

polygon boundary.

To fulfill the above requirements, the Margin Maximized

Geo-Partitioning Algorithm is developed and shown in

Figure 5. The algorithm determines a compact hull for each

road network partition
jsubRN and extends those compact

hulls into a geo-partition solution in three steps. Firstly,

based on the detected compact hulls, the algorithm discovers

buffer zones. Then for each buffer zone, it generates

separating polylines maximizing the margin in buffer zone.

After that the compact hulls are extended into geo-partitions

by replacing some lines of compact hull with separating

polylines (and corresponding nodes as well). The algorithm

assumes that a road network can be modeled as a planar

graph, which is valid for most road networks.

Margin Maximized Geo-Partitioning Algorithm

Input:

 { }isubRN : each
isubRN is denoted by a list of road

links  i s s s iL l l L l subRN    .

 { }jpn : set of partitioned nodes across subRN s.

Output:

 { }jGeoArea : each GeoArea is represented by a

polygon as its boundary.

BEGIN

1. Generate a compact convex hull  ,allH Hn Hl for

the whole road network jsubRN . Hn and Hl are

the boundary nodes and boundary lines
respectively.

2. Clockwise traverse the boundary polygon and mark
the direction of each line on the boundary the same
as traversing direction.

3. Generate a compact hull  ,j j jH Hsn Hsl for each

sub road network { }jsubRN . jHsn and
jHsl are the

boundary nodes and boundary lines of jsubRN

respectively.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

4. Clockwise traverse the boundary polygon of each
sub road network and mark the direction of each
line on the boundary the same as traversing
direction.

5. Initialize buffer zone set  iZb 

6. For each node in the partitioning node set { }jn pn

a) Discover buffer zones
jz starting from n by

searching in all hull elements all jH H .

b)    i i jZb Zb z 

7. Initialize separating polyline set  Ps 

8. For each  j iz Zb

a) Find the separating polylines  kp to

maximize the margin in the buffer zone
jz .

b)      kPs Ps p

9. For each
jsubRN

a) Extend
jsubRN 's hull  ,j j jH Hsn Hsl to

margin maximized boundary

 ,j j jB Bsn Bsl by replacing some of its

boundary lines with those separating polylines

 ip Ps which have both end nodes belong

to
jHsn . Maximized margin geo-partition for

jsubRN is bounded by
jB .

10. Return margin maximized boundary set { }jB

END
Figure 5. Margin Maximized Geo-Partitioning Algorithm.

To determine the compact hull (i.e., spatial outer borders)

of a road network can be realized by constructing a minimal

hull to encompass all nodes of the road network. Since each

edge of the road network stands for a road segment modeled

by a straight line, the resulting hull encompasses all the

network edges as well. Algorithms are available for the hull

generation (e.g., (DeBerg, 2000)). By representing each

edge using its vertex points, hull generation algorithm can

output a polygon as the boundary of a list of network edges.

And each vertex of the polygon is a boundary node of the

road network and each edge stands for an outer border. To

integrate the border information into the road network

model, each edge of the polygon (i.e., line) is added to the

road network as a new edge, if there is no overlap with

existing network edge. After compact hulls are identified, all

nodes and lines which are not in the compact

hulls all jH H are regarded as internal elements and can be

ignored in the following operations. And it’s obvious that all

partitioned nodes are kept in compact hulls’ node

set jHn Hsn .

A buffer zone can be specified by its border (i.e., a

polygon composed by lines in compact hulls jHl Hsl and

with no road network node in it). A sample is shown in

Figure 6. The discovery of each buffer zone starts from a

boundary node between two sub road networks (i.e.,

partitioned node), e.g., the boundary node V. And then it

traverses on jHl Hsl following the link direction

generated in step 2 and step 4 of Figure 5 (i.e., clockwise

direction of each individual polygon). When getting into

another boundary node share by two sub network (e.g.,

boundary node U in Figure 6), it switches to the boundary of

another hull and continues the traversing. The process stops

when the starting boundary node is revisited. Then the

traversed lines form a polygon as the border of a buffer zone.

For finding the separating polylines to maximize the

margin in the buffer zone, a triangulated approach is

implemented. The buffer zone is triangulated first and the

division lines are obtained by chaining the cendoids of

triangle and connecting further to the boundary nodes. The

resulting division polylines become the border lines of final

geo-spatial partitions. A sample is depicted in Figure 7

which finds the separating polyline in a buffer zone

involving two sub road network boundaries. When a buffer

zone border involves multiple sub road networks, similar

approach can be applied and multiple polylines will be

output. For the interest of paper length, the detail is the

omitted here. The Margin Maximized Geo-Partitioning

Algorithm has the complexity

Figure 6. Sample of Discovering Buffer Zone.

Figure 7. Sample of Finding Separating Polylines
Maximizing Margin in Buffer Zone.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

of      p h hk n log m n n log m     , where n is

number of nodes, m is the number of edges, k is the number

of partitions, np is the size of { }jpn , nh is the size of

jHn Hsn and mh

is the size of jHl Hsl .

With the method proposed in this section, optimized geo-

partitions can be generated from road network partitions. On

top of the geo-partitions, high performance geo-message

dispatching can be enabled, which will be introduced in the

next section.

4. HIGH PERFORMANCE GEO-MESSAGE

DISPATCHING
For dispatching geo-messages, the dispatching service

needs to compare the location information in each geo-

message with boundary of geo-areas to identify the right

geo-area the message located. Then the message will be

routed to the computation node responding for the workload

of that geo-area. Comparing to key based or attribute-value

based dispatching in ordinary data streams, geo-message

dispatching is still heavier in terms of computation:

calculating the geo-spatial relationship is in general more

complex than value matching. So the dispatching service is

prone to scalability bottleneck.

In this section, based on the Geohash technology (Fox,

2013), a Geohash Tree scheme is proposed to codify the

dispatching rules for high performance geo-message

dispatching. The Geohash Tree gains the performance

advantage by transforming geo-spatial matching into less

expensive Geohash code matching. And moreover, Geohash

Tree takes a hierarchical and flexible layered structure

comparing with grid approach: when a node has its bound

within a single partitioned geo-area, the node is marked as

leaf node and needs not to be split further. Therefore both

the storage space can be saved and levels of comparison can

be reduced. Geohash Tree has the similar idea of spatial

index tree such as R+-tree (Sellis, 1987). While a major

difference in a Geohash Tree is that each node has its

Geohash code by inheriting the Geohash code from its

parent node and extending with one character. The character

uniquely differentiates the node from other nodes with the

same parent and maps to a specific sub-area of the parent’s

area. The number of children that a node can have equals to

the cardinality of the Geohash character set. In practice, a

Geohash Tree with its character set cardinality of 32 can

reach to meter level resolution on its node in the 10th level

of depth. On the one hand, Geohash tree shares the same

advantage as R+-tree on effective indexing and space saving

comparing to grid index scheme (by enabling leaf node on

high level of the tree and avoiding massive low level pieces).

On the other hand, Geohash tree replaces R+-tree’s geo-

spatial matching with character matching, which is

computationally much more effective.

Figure 8 gives the algorithm pseudo-code for generating

a Geohash Tree. And Figure 9(b) illustrates a sample

instance of Geohash Tree and Figure 9(a) visualizes the

relationship between Geohash codes and spatial areas.

Dispatching Rule Generation Algorithm

Input:

 { }jB : Boundary polygons of geo-partitions.

Output:

 GHTree : Geohash Tree. Each node on the

GHTree has the attributes of

    , , _ , ,code isleaf geo area bound child . code is

the Geohash code of the tree node; isleaf is true if

the node is leaf node (with no children nodes);

 _geo area is the areas the node maps to; bound is

the geo-spatial boundary of the node in terms of up-

left limit point and down-right limit point;

 child contains the children nodes if it’s not a leaf

node.

BEGIN

1. Initial a node queue:
nodeq 

2. Calculate bound of the whole area and generate the

Geohash code code to cover the bound.

3. Create a root node:

  , , _ _ , ,root code FALSE ALL GEO AREAS bound NULL

4. .GHTree root root

5. Push the root node into the node queue:

. ()nodeq push root

6. While (nodeq is not empty)

a) Poll a node from queue: . ()nodend q poll

b) If (
0

.{ _ } 1nd geo area )

i. .nd isleaf TRUE

ii.  .nd child NULL

c) Else

i.  .nd child 

ii. For each option char cr of Geohash code

1. Compute the corresponding sub

boundary
sb in .nd bound .

2. Find the overlapped areas 'ga between

sb and  . _nd geo area .

3. If (
0

' 0ga ) // out of scope.

a) Continue;

4. Else if (
0

' 1ga )

a) New a leaf node:

 , , ', ,s snd code cr TRUE ga b NULL 

b) Add snd to nd ’s children list.

5. Else // may need to break down
a) If reaches max tree level

i. .nd isleaf TRUE

ii.  .nd child NULL

b) Else

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

i. New a node:

 , , ', ,s snd code cr FALSE ga b NULL 

ii. Add
snd to nd ’s children list.

iii. Add to queue: . ()node sq push nd

7. Return GHTree .

END
Figure 8. Dispatching Rule Generation Algorithm.

The Dispatching Rule Generation Algorithm adopts a

breadth-first approach to explore and build the tree. It

initializes a root node and sets its Geohash code covering

the whole geo-area of interest. Then the root node is pushed

into queue as the starting seed. Step 6 is the main body of

the algorithm. In the loop of step 6, nodes are polled out of

the queue in the same sequence as they enter the queue. By

evaluating the relationship between the polled node’s

boundary and the geo-areas, actions are taken on the node to

either mark the node as leaf or explore the children of the

node further. In the action of further exploration of children

nodes (i.e., step 6.c) of Figure 8), a child node could be

either added to tree as leaf node (if it maps to a single geo-

area), or discarded (if it maps to no geo-area of interest), or

pushed into queue for further exploration (if it maps to

multiple geo-areas). In the example in Figure 9, we explore

the space from very beginning to ‘f2j’ and then explore its

grandchildren ‘f2j2p’, ‘f2j8c’, etc. The ‘f2j2p’ node needs to

be explored further since it covers 3 geo-areas (as Figure 9(a)

shows). So ‘f2j2p’ is further split into nodes ‘f2j2p4’,

‘f2j2pd’, ‘f2j2pz’, ‘f2j2pr’, ‘f2j2pe’, ‘f2j2pt’, etc.. Since

each node of ‘f2j2pt’, ‘f2j2p4’ and ‘f2j2pt’ covers only one

partition area, they are marked as leaf node and will not be

further drilled down. On the contrast, ‘f2j2pd’, ‘f2j2ppe’ and

‘f2j2pz’ has to be explored further as each of them covers

multiple geo-areas. Ideally each leaf node on the resulting

Geohash Tree shall map to exactly one geo-area, if the depth

of tree is unrestricted. While in practice, the depth of tree

stops at a level (mostly between 6 and 11) for storage and

precision consideration. So there would be a small portion

of leaf nodes across multiple geo-areas when these leaf

nodes are over the partition boundaries. Only in those cases,

geo-spatial calculation is needed for determine the right

geo-area for a geo-message. The Dispatching Rule

Generation Algorithm is relatively time consuming. In worst

case it takes 1dc k  times of geo-relationship calculation if

all leaf nodes are at the most depth of the tree and there are

no pre-ending branches in the intermediate levels of the tree.

Here c is the cardinality of code, d is the maximum levels of

tree, and k is the number of partitions. Fortunately that will

not happen as Geohash Tree can always function and cut

branches radically at early stage. In practice, it takes less

than a minute to generate a Geohash Tree for a 100,000 km2

and 6 partitions, which is affordable for offline processing.

Figure 10 gives the detail of Geo-message dispatching

algorithm which takes the Geohash Tree as its dispatching

rule.

Geo-Message Dispatching Algorithm

Input:

 m : a geo-message which is a tuple with the

following attributes  , , , , _id lon lat ts message body .

id is the moving object’s id; lon and lat are the

location information in longitude and latitude; ts is

the timestamp of the message; _message body has

information that needs to be dispatched to

computation node.

Output:

 GeoArea id : the GeoArea id (eventually, the

responsible computation node id) that the geo-

message shall be dispatched to.

BEGIN
1. Get Geohash Tree Root Node .nd GHTree root .

2. Generate Geohash code for m :

. . (. , .)mcode geohash gen mlon mlat

3. If m is within the area of

interest:  _ . , .has prefix mcode nd code .

a) While (not .nd isleaf)

i. Find nd ’s child node snd that

 _ . , .shas prefix mcode nd code

ii. Get down a level: snd nd

b) If (
0

.{ _ } 1nd geo area )

i. Return . _ .nd geo area id

c) Else
i. Do geo-spatial comparison between m ’s

location with the geo-areas nd covers.

ii. Return the matched geo-area id.
4. Else // m is out of the scope.

a) Return Out-Of-Map-Scope error.

END
Figure 10. Geo-message Dispatching Algorithm.

The computational complexity of Geo-Message

Dispatching Algorithm is linear to the number of geo-

messages. In most cases, it only takes a Geohash code

(a) (b)

Figure 9. Geohash Tree.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

generation operation and several operators on tree node

access for dispatching a geo-message, which is very

efficient.

5. EXPERIMENT
In this section, the performance of proposed methods and

accompany algorithms are evaluated by experiments using

both real world trajectory data collected from GPS equipped

vehicles and simulated trajectory data streams. The

performance measurements are the Mobility Localization

Index (mlI
), the ratio of imbalance (R), and the Messaging

Throughput (mT
) which are introduced in section 2. A set of

experiments are conducted on partition performance for

validating the soundness of trajectory preserving partition

method. The experiment context and result will be

introduced in section 5.1. Another set of experiments are

perform for real-time messaging dispatching performance,

which will be introduced in section 5.2.

Table 1. Experiment Real-World Datasets

Two real-world datasets were collected and used for

experiments, as shown in Table 1. The trajectory data was

generated from 3000 GPS equipped vehicles travelling in a

large city in 7 days. Each raw trajectory is a sequence of

GPS data records (and each record contains longitude,

latitude, velocity, timestamp, and vehicle ID). After the

preprocessing of associating GPS with road network, a

trajectory of a vehicle can be expressed as a sequence of

road links that the vehicle traverses. The first dataset,

CityWideU, is a relatively large dataset which contains

imbalance workload: central urban traffic is much heavier

than that of sub-urban areas. From this perspective, the

trajectory density is a good reflection of the urban roads

popularity, but is biased when the suburban roads are

concerned. The second dataset, UrbanWideB, has a smaller

scale and a more balanced trajectory distribution. For

evaluating geo-message dispatching throughput, simulated

data was generated beside the real-world datasets. The detail

will be introduced in section 5.2.

The experiments were conducted on a cloud environment

using SoftLayer machines. The server for geo-spatial

partition and message dispatching is a dedicated server. Its

configuration is 4-CPU x86 Server with 16 G memory and

Linux OS. The computation nodes are virtual machines with

4-CPU x86 Server with 8 G memory running map matching

tasks. As formerly noted, since this paper focuses mainly on

the message dispatching throughput instead of application

dependent workload throughput, we ensure there are

sufficient computation nodes and they would not be a source

of bottleneck in the experiments.

5.1 Experiments on Partition Performance.
In the sub section, the Mobility Localization Index (mlI

)

and the ratio of imbalance (R) are evaluated for the

partition performance using datasets described in Table. 1.

We denote the proposed trajectory preserving partition

method and algorithms as TPP. And the road network-based

partitioning method (Ventresque, 2012), denoting as RNP, is

used as the baseline scheme for performance comparison.

Since the geo-partitioning is a learning process, the

experiments follow the cross validation scheme to avoid

over-fitting. Specifically ten-fold cross validation is applied

and the final result is consolidated from the ten running

output.

The number of expected partitions is the major parameter

of the partition algorithms. In the experiments, different

numbers of partitions (4, 6, 8, 10, 12 partitions respectively)

are tested on both datasets. In the following the experiment

result of both datasets will be presented.

Experiment Result on CityWideU. Table 2 summaries

the overall partitioning result of both TPP and RNP on the

CityWideU dataset with different setting of partition

numbers. And the overall ratio of improvement is presented

in the last column. In Table 2, the average number of cross-

partition trajectories is significantly reduced from 70,200 to

27,496 which contributes to the remarkable improvement of

Mobility Localization Index (12.32% taking the mlI
of RNP

as the base). Also TPP provides more balanced result and

reduces the Ratio of Imbalance (R) by 67.11% comparing

with RNP.

Figure 11 displays the detail partitioning result on the

number of cross-partition trajectories with various setting of

partition numbers. And Figure 12 is the detail result on the

Mobility Localization Index (mlI
). TPP gets higher mlI

than

RNP in every tested setting of partition numbers. And it

stably keeps the mlI
beyond 90% while RNP drops down to

less than 80% when the partition number gets larger.

Dataset CityWideUa UrbanWideBb

Road network size

(number of links)

62,810 31,434

Geo-message

volume (number

of records)

80,297,139 57,102,570

Trajectory data

volume (number

of trajectories)

416,840 315,636

Average Length of

Trajectory

(number of

records) c

192.6 180.9

Dataset characteristics:
a CityWideU is on a larger map with unbalanced

trajectory distribution (trajectories on certain areas of

the road network are much dense than those on other

areas).
b UrbanWideB is on a small map with near balanced

trajectory distribution.
c Mobile Data was sampled every 25 seconds/record

in average.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

Table 2. Summary Result of Experiment on CityWideU

The ratio of imbalance detail of CityWideU is shown in

Figure 13. Considering the CityWideU dataset is

characterized as the geospatially imbalanced distribution of

trajectory workload, the ratio of imbalance would have

challenge to control. The result of RNP algorithm with

different numbers of partitions verified this. The ratio of

imbalance always approaches or exceeds 3.0, indicating the

workload of some partition is 3 times the average workload

of all the partitions. While the TPP remarkably keeps the

ratio of imbalance in the range of [1.03, 1.25], which means

a nearly even workload distribution among partitions (i.e.,

the partition with the heaviest workload is less than 25%

higher to the average workload).

The experiment on the CityWideU dataset with different

settings of partition numbers shows the stable performance

of TPP method, which demonstrates the advantage of

mobility localization and balanced partitioning.

Experiment Result on UrbanWideB. Table 3

summarizes the partitioning result on the UrbanWideB

dataset. The UrbanWideB dataset is a smaller dataset than

CityWideU, and is more connected with dense trajectories.

In general it is more challenging to sustain the mobility

localization. So it costs more in partitioning. This can be

observed by comparing Table 3 with Table 2: both the

average number of cut trajectories and the average mobility

localization index of Table 3 are lower than those of Table 2.

On the UrbanWideB dataset, TPP gets in average 19.74% of

improvement on the
mlI gets remarkably 44.54%

improvement on the Ratio of Imbalance comparing to RNP.

The details of the cross-partition trajectories and mobility

localization comparison result on the UrbanWideB dataset

are shown in Figure 14 and Figure 15 respectively.

The
mlI of partition result by TPP are mostly more than 90%

(except the case that partition number is 12). And in each

setting of partition number, TPP gets more than 10% higher

on
mlI than that of RNP.

Table 3. Summary Result of Experiment on UrbanWideB

Figure 16 is the detail result of Ratio of Imbalance. RNP

improves its performance since the UrbanWideB dataset is

much more balanced than the CityWideU dataset. But it has

still at least 0.8 higher than TPP on each of the cases.

Measurement

s

TPP RNP Ratio of

Improvement

Number of

Cross-Partition

Trajectories

27,49

6

70,20

0

60.83%

Mobility

Localization

Index (mlI
)

93.40

%

83.16

%

12.32%

Average Ratio

of Imbalance(R)

1.159 3.524 67.11%

Figure 11. Cross-Partition Trajectories on Partitioning
CityWideU

Figure 12. Mobility Localization Index on Partitioning
CityWideU.

Figure 13. Ratio of Imbalance on Partitioning CityWideU.

Measurements TPP RNP Ratio of

Improvement

Number of

Cross-Partition

Trajectories

30,001 93,765 68.00%

Mobility

Localization

Index (mlI
)

92.80% 77.51% 19.74%

Average Ratio of

Imbalance(R)

1.195 2.154 44.54%

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

TPP has its computation time range from 52 seconds to 5

minutes generating an experiment result. RNP requires

much less time for partitioning. It generates result within 30

seconds in any of the experiment cases. Since the partition is

a learning process that can be done offline, the time is not a

big concern. When there is a need to perform partitioning in

online mode to reflect the trajectory pattern changes timely,

the computation time will be an important measurement.

5.2 Experiments on Dispatching Performance.
Messaging throughput is evaluated in this sub section. A

grid based dispatching method is implemented for

comparison. Grid index is a single layer structure. It’s very

effective to locate a spatial point to a cell of the grid. The

size of the grid cell is the major parameter that could affect

indexing performance. Here we choose two grid sizes:

Grid_DA50 is the grid dispatching algorithm with 50 meter

cell configuration. And Grid_DA200 is the grid dispatching

algorithm with 200 meter cell configuration. GHT_DA

represents the Geohash tree based dispatching algorithm we

proposed in section 4 (i.e., the Dispatching Rule Generation

Algorithm and the Geo-Message Dispatching algorithm).

Figure 17 and Figure 18 are the messaging throughput

result on CityWideU and UrbanWideB respectively. In the

case of CityWideU, the throughputs of GHT_DA range

from 0.8~1 million records/second in different

configurations of partition numbers. The throughputs of

Grid_DA50 and Grid_DA200 are in the range of [390k,

630k]. Grid_DA50 gets slightly better result than

Grid_DA200. This attributes to the smaller grid size which

reduces the probability for calculating geo-shape

Figure 14. Cross-Partition Trajectories on Partitioning
UrbanWideB.

Figure 17. Geo-Message Dispatching Throughput on
CityWideU.

Figure 15. Mobility Localization Index on Partitioning
UrbanWideB.

Figure 18. Geo-Message Dispatching Throughput on
UrbanWideB.

Figure 16. Ratio of Imbalance on Partitioning UrbanWideB.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

relationship. The Figure 18 shows the similar result. In

experiments on both datasets, GHT_DA has more than 30%

improvement of the message dispatching performance.

For further validating the performance on large-scale

map with more choices of partition numbers, a simulation is

implemented on a map with 420,633 road segments.

6,955,046,200 geo-messages are generated and sent to

server by 8 client machines in UDP protocol. The partition

numbers are set to 4, 10, 20, 40, and 60 respectively. The

dataset is denoted as Simu6B and the result is shown in

Figure 19. The result is consistent with those on CityWideU

and UrbanWideB and shows the promising generalization

capability to apply the technology to large-scale map.

6. RELATED WORK
Providing high quality, scalable and real time analytics is

one unprecedented challenge for the Internet-of-Things

(Aggarwal, 2013). There have been research interests

enabling scalable cloud services for IoT applications from

resource virtualization, networking and architecture angles

(Kovatsch, 2014), (Mukherjee, 2014), (Li, 2013). The

research on scalable data stream processing has two main

threads. The first thread takes the architectural perspective

to enhance the programming model and develop

optimization technologies for platform scalability. The

second thread focuses on algorithm improvement for high

performance distributed data stream analytics.

 (Andrade, 2009) defined a streaming architectural

pattern for the sensor-and-response application domains.

Scalable application can be generated following the

architectural pattern and corresponding programming model.

(Khandekar, 2009) solved the assignment problem of

processing elements (PEs) to processing hosts (PHs) in the

context of high scalable distributed stream processing. It

employed a graph partitioning method to minimize the inter-

PH network communication while simultaneously balancing

load across the PEs. In light of stream workload dynamics,

(Schneider, 2009) proposed a technique to dynamically

adjust the amount of computation of an operator. (Cherniack,

2003) introduced two stream processing systems and

discussed the load (re-)partitioning issue in the context of

generic workload. (Pietzuch, 2006) considered the dynamic

network condition to relocate operator for higher stream

processing performance. The existing work regarded mostly

generic data streams and did not address the mobile

characteristics.

There is also solid research outcome on scalable data

streams analytics focusing on algorithm improvement

(Gaber, 2005). (Domingos, 2000) proposed a general

method, called VFML (Very Fast Machine Learning), for

scaling up machine learning algorithms. In more recent

years, the research on trajectory streams has it applications

on anomaly detection (Bu, 2009), spatio-temporal causal

interactions discovering (Liu, 2011), and map generation

(Davics, 2006). This category of work forms the advanced

analytics workload for scalable streams processing platform.

Beside stream processing platform, graph partitioning

technologies have been well studied and applied in parallel

processing. Interest audiences can refer (Buluc, 2013) for

recent advance of graph partitioning technologies as well as

their applications in parallel processing.

7. CONCLUSIONS AND FUTURE WORK
In the IoT era, large-volume mobile data streams are

generated from pervasive mobile sensors. This provides
opportunities for precise mobility awareness and timely
mobility insight analysis. This paper focuses on the
scalability challenge of cloud services analyzing
trajectory streams. With the proposed trajectory
preserving partition method and Geohash Tree based
dispatching method, high throughput streams processing
cloud services can be achieved with high quality of
balanced workload and reduced cross-server
communication. The algorithms are developed and
validated through experiments.

There are two interesting topics we would like to
further pursue. Currently under the assumption that the
workload pattern is stable and identical to that of
historical data, the paper addresses the offline
partitioning problem. While real world workload could
dynamically shifts along with time. This raises the further
requirement of online (re-)partitioning in face of the
dynamics. Online repartitioning needs to take partition
adjustment cost into consideration and requires
incremental design on algorithm to avoid dramatic
fluctuation. Besides that, the computational efficiency of
online partitioning algorithm is also of interest. And this
paper puts its focus mainly on the geo-message
dispatching efficiency. In the future, with the maturity of
the mobile data streams analytics workload patterns,
end-to-end measurements of scalability performance
with typical application workload patterns can be further
investigated and validated.

Figure 19. Geo-Message Dispatching Throughput on
Simu6B.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

8. REFERENCES
C.C. Aggarwal, N. Ashish, and A. Sheth, (2013). "The Internet of Things:
A Survey From the Data-Centric Perspective," Managing and mining

sensor data, pp. 383-428, 2013.

H. Andrade, B. Gedik, K. Wu, and P.S. Yu, (2009). "Scale-Up Strategies
for Processing High-Rate Data Streams in System S," Proc. IEEE 25th

Inter-national Conference on Data Engineering, pp. 1375-1378, 2009.

Y. Bu, L. Chen, A.W. Fu, and D. Liu, (2009) "Efficient Anomaly
Monitoring Over Moving Object Trajectory Streams," Proc. 15th ACM

SIGKDD International Conference on Knowledge Discovery and Data

Mining, pp. 159-168, 2009.

A. n Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz, (2013).

"Recent Advances in Graph Partitioning ," preprint, 2013.

M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,
Y. Xing, and S.B. Zdonik, (2003). "Scalable Distributed Stream

Processing," Proc. CIDR, pp. 257--268, 2003.

Y. Chen, G. Dong, J. Han, B.W. Wah, and J. Wang, (2002). "Multi-
Dimensional Regression Analysis of Time-Series Data Streams," Proc.

28th international conference on Very Large Data Bases, pp. 323-334, 2002.

J.J. Davics, A.R. Beresford, and A. Hopper, (2006). "Scalable, Distributed,
Real-Time Map Generation," IEEE Pervasive Computing, vol. 5, no.4, pp.

47-54, 2006.

M. De Berg, M. Van Kreveld, M. Overmars, O. Schwarzkopf, and M.H.
Overmars, (2000). "Computational Geometry: Algorithms and

Applications," Springer, , 2000.

D. Delling, M. Holzer, K. Müller, F. Schulz, and D. Wagner, (2009).
"High-Performance Multi-Level Routing," The Shortest Path Problem:

Ninth DI-MACS Implementation Challenge, vol. 74, pp. 73-92, 2009.

D. Delling, A.V. Goldberg, I. Razenshteyn, and R.F. Werneck, (2011).
"Graph Partitioning with Natural Cuts," Proc. 2011 IEEE International on

Parallel & Distributed Processing Symposium (IPDPS), pp. 1135-1146,

2011.

P. Domingos and G. Hulten, (2000). "Mining High-Speed Data Streams,"

Proc. Sixth ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pp. 71-80, 2000.

C. Farhat and M. Lesoinne, (1993). "Automatic Partitioning of

Unstructured Meshes for the Parallel Solution of Problems in

Computational Mechanics," International Journal for Numerical Methods
in Engineering, vol. 36, no.5, pp. 745-764, 1993.

A. Fox, C. Eichelberger, J. Hughes, and S. Lyon, (2013). "Spatio-temporal

indexing in non-relational distributed databases," Proc. IEEE International

Conference on Big Data, pp. 291--299, 2013.

M.M. Gaber, A. Zaslavsky, and S. Krishnaswamy, (2005). "Mining Data

Streams: A Review," ACM Sigmod Record, vol. 34, no.2, pp. 18-26, 2005.

B. Gedik, H. Andrade, K. Wu, P.S. Yu, and M. Doo, (2008). "SPADE: The

System S declarative stream processing engine," Proc. ACM SIGMOD
International Conference on Management of Data, pp. 1123-1134, 2008.

C.S. Jensen and S. Pakalnis, (2007). "Trax: Real-World Tracking of

Moving Objects," Proc. 33rd International Conference on Very Large
Databases, pp. 1362-1365, 2007.

G. Karypis and V. Kumar, (1998). "A fast and high quality multilevel

scheme for partitioning irregular graphs," vol. 20, no.1, pp. 359-392, 1998.

G. Karypis and V. Kumar, (1999). "Parallel Multilevel Series K-Way

Partitioning Scheme for Irregular Graphs," Siam Review, SIAM, vol. 41,

no.2, pp. 278-300, 1999.

R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, J. Wolf, K. Wu, H.

Andrade, and B. Gedik, (2009). "COLA: Optimizing Stream Processing

Applications via Graph Partitioning," Lecture Notes in Computer Science,

vol. 5896, pp. 308-327, 2009.

M. Kovatsch, M. Lanter, and Z. Shelby, (2014). "Californium: Scalable

cloud services for the internet of things with coap," Proc. 4th International

Conference on the Internet of Things, 2014.

F. Li, V. Michael, M. Claesens, and S. Dustdar, (2013). "Efficient and

Scalable IoT Service Delivery on Cloud," Proc. IEEE Sixth International

Conference on Cloud Computing (CLOUD), pp. 740--747, 2013.

W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing, (2011). "Discovering

Spatio-Temporal Causal Interactions in Traffic Data Streams," Proc. 17th

ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1010-1018, 2011.

D. Locke, (2010). "Mq telemetry transport (mqtt) v3. 1 protocol

specification,"

http://www.ibm.com/developerworks/webservices/library/ws-

mqtt/index.html, 2010.

Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and Y. Huang, (2009).
"Map-Matching for Low-Sampling-Rate GPS Trajectories," Proc. 17th

ACM SIGSPATIAL International Conference on Advances in Geographic

In-formation Sys-tems, pp. 352-361, 2009.

K. Mouratidis, D. Papadias, and M. Hadjieleftheriou, (2005). "Conceptual

Partitioning: an Efficient Method for Continuous Nearest Neighbor

Monitoring," Proc. ACM SIGMOD International Conference on Man-
agement of Data, pp. 634-645, 2005.

A. Mukherjee, H.S. Paul, S. Dey, and A. Banerjee, (2014). "Angels for

Distributed Analytics in IoT," Proc. 2014 IEEE World Forum on Internet of
Things (WF-IoT), pp. 565-570, 2014.

L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, (2010). "S4: Distributed

Stream Computing Platform," Proc. IEEE International Conference on Data

Mining Workshops (ICDMW), pp. 170-177, 2010.

P. Newson and J. Krumm, (2009). "Hidden Markov Map Matching through
Noise and Sparseness," Proc. 17th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, pp. 336-343,

2009.

P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and M.

Seltzer, (2006). "Network-Aware Operator Placement for Stream-

Processing Systems," Proc. 22nd IEEE International Conference on Data
Engineering, pp. 49--60, 2006.

S. Schneider, H. Andrade, B. Gedik, A. Biem, and K. Wu, (2009). "Elastic

Scaling of Data Parallel Operators in Stream Processing," Proc. IEEE
International Symposium on Parallel & Distributed Processing, pp. 1-12,

2009.

T. Sellis, N. Roussopoulos, and C. Faloutsos, (1987). "The R1-tree: A
Dynamic Index for Multi-Dimensional Objects," Proc. Thirteenth

International Conference on Very Large Data Bases, pp. 507–518, 1987.

H.D. Simon, (1991). "Partitioning of Unstructured Problems for Parallel
Processing," Computing Systems in Engineering, vol. 2, no.2, pp. 135-148,

1991.

A. Ventresque, Q. Bragard, E.S. Liu, D. Nowak, L. Murphy, G. Theodo-
ropoulos, and Q. Liu, (2012). "SParTSim: A Space Partitioning Guided by

Road Network for Distributed Traffic Simulations," Proc. 16th IEEE/ACM

In-ternational Symposium on Distributed Simulation and Real Time Ap-
plications, pp. 202-209, 2012.

Y. Xu and G. Tan, (2012). "An Offline Road Network Partitioning Solution

in Distributed Transportation Simulation," Proc. IEEE/ACM 16th Interna-
tional Symposium on Distributed Simulation and Real Time Applications,

pp. 210-217, 2012.

X. Zhang, G. Hu, N. Duan, P. Gao, W. Dong, and J. Zhu, (2014). "Scalable
Mobile Data Streaming with Trajectory Preserving Partitioning," Proc.

IEEE International Conference on Mobile Services, pp. 16-23, 2014.

International Journal of Cloud Computing (ISSN 2326-7550) Vol. X, No. Y, Month Year

.

AUTHORS
Xin Zhang is with IBM Research –

China and Automation Department of

Tsinghua University, Beijing, China.

He got his master degree in computer

science and technology from BeiHang

University, and joined IBM Research

in 2000. His main research interest

includes mobility big data analytics,

mining data streams, graph model and graph-based

optimization technology. In recent years, he led multiple

projects in the domain of asset preventive maintenance

analytics, railway transportation schedule optimization, IoT-

based intelligent traffic systems, scalable dynamic map

analysis, and big data analytics.

 Guoqiang Hu received his B.S.

Degree from the Shanghai Jiao-Tong

University, China, in 1997 and the M.S.

Degree in Information Technology from

the University of Stuttgart, Germany, in

2002. From 2002 to 2007, he was with

the Institute of Communication

Networks and Computer Engineering,

Stuttgart, Germany as a research staff and Ph.D. candidate.

From 2008 to 2010, he worked as a research fellow in the

Centre for Quantifiable Quality of Service in

Communication Systems, Trondheim, Norway. He joined

IBM Research - China in 2010 and researched in the domain

of Internet-of-Things and Connected Vehicles. His research

interests include distributed system architecture design,

performance evaluation and large-scale data mining

technologies.

Ning Duan is a research staff member of

IBM Research, China. His research

mainly focuses on the big moving object

data mining and management. He has

been in the area of data mining for

almost 6 years. And apply big data

mining and machine learning technology

on connected vehicle area for more than

3 years. He received his Master degree in 2006 from XiDian

University of China.

Peng Gao is a staff researcher of IBM

Research, China. He received Ph.D.

from Tongji University in 2010, and

joined IBM subsequently. With a

research experience of 10 years in

Traffic & Transportation domain, he

once served as a trustee of Traffic &

Transportation Engineering Society of

Tongji University. His research interests include: Complex

Science, Intelligent Transportation System, Multi-agent

System & Simulation, and Analytics & Optimization. He

has over 10 publications and 12 patents.

Weishan Dong is a Research Staff

Member from IBM Research, China.

He acts as a research team leader

working on big data processing,

spatiotemporal analytics, and mobile

computing. He received his B.E. degree

in computer science and technology

from the University of Science and

Technology of China (USTC) in 2004,

and his Ph.D. degree in pattern recognition and intelligent

system from the Institute of Automation, Chinese Academy

of Sciences in 2009. He joined IBM Research – China in

2009. His current research mainly focuses on data mining,

especially mining big spatiotemporal data with addressing

large scale and low latency. He is also interested in

evolutionary computation and computer vision topics. Dr.

Dong has more than 30 refereed publications in

international journals and conferences and over 20 patents.

Jun Zhu is a Senior Technical Staff

Member at the IBM Research, China in

Shanghai and Senior Manager driving

the Smarter Mobility research project.

He joined IBM after graduation from

Shanghai JiaoTong University in 2001,

and has been involved in several

research projects including model-

driven business process analytics, cloud-based service

delivery platform, data-driven testing planning &

optimization, and connected vehicle service platform & data

analytics solutions. Mr. Zhu was an IBM Master Inventor

with more than 50 patents filed. He published 30+ papers.

Rong N. Chang is with IBM Research,

USA & China, leading a global team

creating innovative IoT cloud services

technologies. He received his PhD

degree in computer science and

engineering from the University of

Michigan at Ann Arbor in 1990 and his

B.S. degree in computer engineering with honors from the

National Chiao Tung University in Taiwan in 1982. Before

joining IBM in 1993, he was with Bellcore researching on

B-ISDN realization. He has won one IEEE Best Paper

Award, received four IBM corporate-level Outstanding

Technical Achievement Awards, held 30+ patents and

published 40+ papers. He is Member of IBM Academy of

Technology, ACM Distinguished Engineer, Chair of IEEE

Computer Society Technical Committee on Services

Computing (TCSVC), Chair of 2015 IEEE World Congress

on Services, EIC of the Int. J. of Cloud Computing, and

Associate Editor of IEEE Trans. on Services Computing and

the Int. J. of Services Computing.

