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Abstract 
With the development of Internet-of-Things (IoT) technologies, large-volume sensor data streams are sent to cloud in 
near real-time which raise an important requirement for high performance sensor big data analytics. This paper 
focuses on the scalability challenges for analyzing large-volume mobile data streams, as mobile data streams convey 
valuable spatio-temporal information (termed as trajectory or semantic trajectory). A framework for high 
performance trajectory streams processing is proposed together with a learning method for workload assignment 
optimization and a dispatching method for high-throughput geo-message dispatching. By taking the spatial 
connectivity implied by trajectory streams into consideration, a trajectory preserving partitioning method is proposed 
for improving the quality of geo- partitioning.   Based on the optimized geo-partitioning, a novel Geohash Tree based 
dispatching method is developed for achieving high-throughput geo-message dispatching.  Via mobility localization 
formalism, we demonstrate that an implementation of our geo-spatial partition algorithms could balance workload 
and minimize cross-node communication. And experimental evaluations using real world and simulated data also 
validate the performance of the proposed methods. 
Keywords:  service scalability, mobile data streams, graph partitioning, trajectory, geohash tree 

__________________________________________________________________________________________________________________ 

1. INTRODUCTION 
Mobile sensors (e.g., built-in sensors on mobile phones 

or portable devices, and in-vehicle sensors) are pervasively 

available nowadays. Information such as location, speed, 

temperature, fuel consumption, and driving operation, can 

be continuously sensed and uploaded to back-end cloud 

environment in the form of mobile data streams through 

mobile network. Hence providing cloud services analyzing 

large volume mobile data streams becomes a key capability 

in many application domains including connected vehicles, 

smart traffic and logistic, mobile commerce, and telematics 

insurance.  

The main payload of mobile data streams is the 

trajectory information. A trajectory is a sequence of spatio-

temporal data records describing a journey of a moving 

object together with the sensed information along that 

journey. In recent years, trajectory analytics has got 

increasingly research interest (Bu, 2009), (Liu 2011), 

(Davics, 2006) along with the booming volume of available 

trajectory data. And there is also increasing requirement for 

analyzing trajectory streams with low latency in many 

applications. In real-time traffic applications that fuse 

sensed vehicle speed on the same road to estimate road 

traffic condition, Map Matching (Newson, 2009) infers a 

vehicle’s traversing roads from a sequence (usually 5 to 20) 

of sensed GPS records from that vehicle. And in telematics 

insurance services, driving behavior is expected to be 

analyzed from a sequence of sensed driving operations (e.g., 

decelerate-turn-accelerate) immediately for alerting driving 

risk in-time. And also to enable online trajectory prediction 

in mobile commerce applications, the recent location 

records of a moving object, in addition to the current 

location, shall be considered for accurate prediction. Hence 

processing trajectory streams in a sliding window approach 

is a common scheme in many mobility analytics services. 

And with the growing volume of mobile clients and mobile 

sensors, throughput and scalability are critical issues for 

many cloud services analyzing trajectory streams.  

In recent years, stream computing platforms (e.g., 

Storm, InfoSphere Streams (Gedik, 2008), and S4 

(Neumeyer, 2010)) become popular for scalable and real-

time data stream processing. And there is also solid research 

outcome on scalable streaming, such as (Andrade, 2009), 

(Schneider, 2009), (Khandekar, 2009), and stream data 

mining, such as (Gaber, 2005), (Domingos, 2000), (Chen, 

2002). However, to the best of our knowledge, there is little 

research addressing the scalability challenge of trajectory 

streams processing. In existing location-based services 

(LBS), usually the static geo-spatial continuity is considered 

in geo-partitioning (i.e., partition a geo-space into multiple 

sub geo-areas). The partitioning result serves as rules for 

dispatching workload to different servers for parallel 

processing. While for cloud services analyzing trajectory 
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streams, geo-partitioning shall also take the geo-spatial 

continuity implied by the trajectory streams into 

consideration. Otherwise it would cause large amount cross-

server trajectories and incur cross-server data access which 

will lower parallelization throughput. And service scalability 

will be impacted. 

In this paper, we extend the trajectory preserving 

partitioning method (Zhang, 2014) into a scalable trajectory 

streams processing framework. By analyzing the unique 

requirement in high performance trajectory streams 

processing, we come up with the scalable framework and 

major performance measurements. Key algorithms are 

developed to optimize the workload partitioning and 

improve the efficiency of service dispatching. 

The major research contributions of this paper are:  

1. A framework for high performance trajectory streams 

analysis is proposed which covers both the offline optimal 

partition learning and online message dispatching. 

2. A novel geo-partitioning optimization method is 

proposed and key algorithms are implemented for 

optimizing geo-partitioning taking mobility localization and 

workload into consideration. 

3. A Geohash Tree approach and related algorithms are 

devised to achieve high performance geo-message 

dispatching. 

4. The effectiveness of the proposed framework and 

methods is validated through experiments on both real-

world and simulated data. 

The remainder of this paper is organized as follows. 

Section 2 discusses the trajectory streams features and 

presents the framework for scalable trajectory streams 

processing. The mobility localization principle and 

measurements are also introduced. In section 3, the geo-

partitioning optimization method is depicted and related 

enabling algorithms are introduced. Section 4 presents the 

devised algorithm for high performance trajectory streams 

dispatching. Experiments are described in section 5. And 

related work is given in section 6. Section 7 concludes the 

paper and highlights the future work. 
 

2. FRAMEWORK FOR SCALABLE 

TRAJECTORY STREAMS PROCESSING 
A general scalability strategy in location-based services 

is geo-partitioning that enables dispatching data records (or 

requests) according to their geo-locations. For the benefit of 

computational efficiency, spatially near-by data records are 

dispatched to the same processing node (Jensen, 2007), 

(Mouratidis, 2005). So partitioning the whole geo-space into 

multiple geo-areas according to the geo-spatial continuity is 

a common practice in location-based services. After that, 

computation nodes are associated with partitioned geo-areas 

to handle corresponding data workload. Through this 

approach, geo-spatial message can be dispatched to 

corresponding computation node according to its geo-

location and scalable parallel processing can be achieved on 

cloud.  

While for mobility analytics services, beside the static 

geo-spatial continuity, geo-partitioning shall also take the 

geo-spatial relationship and workload implied by the 

trajectory streams into consideration. Otherwise there could 

be massive communication overhead caused by cross-server 

data access and service scalability will be degraded. Figure 

1 displays an illustrating sample. Two schemes are applied 

for handling workload on a geo-space with 3 computation 

nodes. The dark dot lines are the trajectories of moving 

objects. The rectangles represent partitioned geo-areas and 

arrowed lines indicate the assignment between computation 

nodes and partitioned geo-areas. Intuitively scheme 1 

(Upper side of Figure 1.) incurs a lot of cross-server data 

communication as mobility is not considered during geo-

partitioning. And the data workload is unbalanced among 

partitions. While scheme 2 successfully suppresses cross-

server communication as it manages most of trajectories 

within individual geo-areas. And the workload is evently 

distributed among partitions. With the capability of reducing 

cross-node communication and keeping workload balancing, 

parallelization efficiency will be improved hence scalability 

can achieved. In real-world services, where there are large 

volume of moving objects and trajectories and a geo-area 

usually has irregular shape, determining the optimized 

partition boundary is not a simple task. 

Motivated by the unique characteristic of trajectory 

streams, a framework for scalable trajectory streams 

processing is proposed and shown in Figure 2. In general, 

the framework consists of the offline part and the online part. 

The offline part learns from large volume of historical 

trajectory data and generates optimized geo-partitions as the 

base for geo-message dispatching rules. The mobility 

preserved geo-partitioning service associates the trajectory 

data with map and mines the optimal geo-area boundaries. 

And the geo-dispatching rule builder processes the 

partitioned geo-areas and generates rules for geo-message 

dispatching. The online part has two layers: the messaging 

layer and the streaming layer. The messaging layer serves as 

the front-end server handling massive concurrent 

connections and continuous network messages from mobile 

Figure 1. Assignment Schemes. 
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devices. As a core component in the streaming layer, the 

geo-message dispatching service is responsible for 

dispatching the mobile data messages to the right 

computation nodes according to dispatching rules. 

Throughput is a critical performance measurement for the 

dispatching service and is one important indicator of service 

scalability. Modern messaging services usually take the pub-

sub scheme to decouple message producers and message 

consumers. The lightweight MQTT protocol (Locke, 2010) 

enables efficient message transmitting interface between 

dispatching service and computation nodes. At the 

streaming layer, computation nodes are a cluster of 

processing units connecting to dispatching service with high 

network bandwidth. Each computation node (or a set of 

nodes) is responsible for processing data located in a certain 

geo-area. Obviously preserving trajectories locally within 

individual geo-areas is much more efficient than splitting 

trajectories onto multiple geo-areas, which incurs cross-

server remote access and would significantly impact the 

processing latency and throughput. So a good architectural 

strategy is to localize a node’s computation and reduce the 

cross-node data access or data migration as much as 

possible. And the more the cross-node communication exists, 

the less scalable the service is. Therefore geo-partitioning 

service is critical for service scalability. And the efficiency 

of dispatching service is also important to the overall 

runtime performance and to avoid being the bottleneck of 

cloud services. 

Before further introducing the methods and algorithms 

enabling the framework, the key performance measurements 

are defined in the rest of this section. We term the principle 

to preserve trajectories within individual partitions as the 

mobility localization. Technically we measure the mobility 

localization by Mobility Localization Index (
mlI ) which is 

defined as the ratio of within-node trajectory volume to the 

number of whole trajectories.  

    
00

, ,ml j j j i

i

I t t Trj l t l P Trj
 

     
 
 (2.1) 

In (2.1),  Trj is the whole set of trajectories used for 

partitioning. Usually a big volume of historical trajectory 

data is used representing the statistical mobility pattern of 

the geo-space to be partitioned. 
iP is the i-th partition and 

jt is a trajectory which has all of its discrete location l  in 

one partition. And correspondingly we define the Mobility 

Delocalization Index as
mdI , which is closely related with 

cross server communication.  

1md mlI I 
  

 (2.2) 

Besides the mobility localization, workload balance is 

another measurement for partitioning quality. In existing 

geo-partitioning, usually some static factors are regarded for 

balancing, e.g., the weighted number of road links or the 

size of spatial area. In the trajectory streams processing 

context, trajectory streams exactly represent the 

computation workload. For example, more vehicles are in 

cities than rural areas. So it is more reasonable to balance 

the workload according to vehicle data distribution than to 

cut the city map into sub areas with even geo-spatial size. 

So in addition to the mobility localization, trajectory-load-

based balance is another measurement for partition 

performance. For the balance constraint, a ratio of 

imbalance R   (Karypis, 1999) is defined as: 

 ,max / ( / ) 1sum i sumR W W k for i k     (2.3) 

k  is the total number of partitions, and 
,sum iW  denotes the 

sum of node weight in the i-th resulting partition, i.e., 

weight of
iP . For trajectory-load-based balance, the node 

weight is specifically modeled according to the distribution 

of trajectories related with the node. sumW denotes the sum of 

node weight of the whole graph. So ( sumW k ) is the average 

partition weight, which is constant when the graph and the 

partition number k  are given. A balance constraint can thus 

be defined as: 

1R                                                              (2.4) 

Where 0   is a user-defined parameter indicating the 

tolerance of imbalance. And 1  implies the weight of any 

partition shall not exceed twice of the average partition 

weight. Users can choose a proper  according to 

application need to control the imbalance level.  

Beside the mobility localization index and ratio of 

imbalance, the Messaging throughput ( mT  ) is another 

important performance measurement. It is defined as the 

number of geo-messages dispatched to computation nodes 

per unit time. 

        /m mT n t                (2.5) 

Messaging throughput measures the online geo-message 

dispatching efficiency and evaluates when the dispatching 

service may get to be the bottleneck. It is a preferable 

measurement on general platform performance than the end 

to end throughput which is application specific. The end to 

end throughput depends on the computation node 

configuration and application specific computation 

complexity, which is beyond the scope of this paper. 

 

 

Figure 2. Framework for Scalable Mobile Data Streams 
Processing. 
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3. TRAJECTORY PRESERVING 

PARTITIONING METHOD AND 

ALGORITHMS 
For achieving mobility localization, the spatial 

connectivity implied by trajectory data has to be leveraged 

in geo-partitioning. While some spatial grid based approach 

and geometric partitioning methods, e.g., (Simon, 1991), 

(Farhat, 1993), are available for geo-partitioning, the rigid 

grid shape and the limit of spatial distance metric can 

significantly impact the partitioning result. A recent 

enhancement to spatial partitioning is road network distance 

based partitioning (Ventresque, 2012). The road network-

based partitioning can more correctly reflect the localized 

relationship in many applications. For example, two persons 

who are 200 meters away spatially actually need more than 

1 kilometer to meet each other in terms of road network 

distance. However the focus of (Ventresque, 2012) is on 

static network based partitioning, without taking data 

continuity into consideration. And the connection between 

road network partitioning and geo-partitioning is not 

addressed. 

In this section a trajectory preserving partitioning method 

is proposed and corresponding algorithms are developed in 

following sub-sections. The general idea of trajectory 

preserving partitioning method is to overlay the trajectory 

information on top of road network. And then a graph model 

can be built and graph partitioning method can be applied. 

After that, the road network partitioning result needs to be 

projected back into geo-partitions (for the sake that geo-

partitions enable much faster dispatching than road network 

partitions since it’s costly to compute the road link of each 

data record at the point of message dispatching). Figure 3 

shows the component diagram of the trajectory preserving 

partitioning method. The map road network and historical 

trajectory data are the input of the method. And the 

partitioned geo-areas are the output. The partitions here 

imply that the union of the geo-areas covers the whole geo-

space and there is no overlap between any pair of geo-areas. 

As the first step, the Road Network Transformer transforms 

the map road network from node graph into link graph. 

Section 3.1 will discuss the transformation process. Map 

Matching is a well-studied algorithm to associate 

trajectories with road networks. It takes trajectory data as 

input and output the sequence of road links that the 

trajectory traverses. Interested audiences can refer to (Lou, 

2009), (Newson, 2009) for Map Matching technology. As a 

front step before graph partition, the Constructor builds a 

trajectory weighted graph model according to the 

transformed road network and trajectory data matched on 

road network, which will be depicted in section 3.2. Then 

graph partitioning can be performed. Graph partitioning is a 

classic mathematical technique with abundant applications. 

In the domain of traffic network analysis, graph partitioning 

methods are applied in partitioning large-scale road to 

speedup shortest path search (Delling, 2009), (Delling, 2011) 

and distributed transportation simulation (Xu, 2012). In this 

paper, the METIS toolkit (Karypis, 1999) is adopted for 

partitioning the weighted road network. METIS takes a 

heuristic partitioning approach and has been widely referred 

in research and practice for its proven performance. The 

trajectory preserving road network partitioning algorithm is 

described in section 3.3. After that an algorithm is 

developed to project from road network partitions back to 

geo-partitions, which will be introduced in section 3.4. 

 

3.1 Road Network Transformation.  
In most existing road network partitioning methods, the 

link cut scheme is applied to partition road network by 

splitting road links connecting different part of sub road 

networks. It take a straightforward mapping between road 

network model and graph model, i.e., each node of road 

network (e.g., road junction or endpoints)  is modeled as a  

vertex of a graph, and each link(connecting two nodes on 

road network) is modeled as a graph edge connecting two 

corresponding vertexes. Thus a graph partitioning problem 

is defined by minimizing the number of road links cut 

during the partitioning. At the same time, balance constraint 

can be imposed on the optimization procedure so that the 

resulting sub-graphs are balanced in terms of the sum of 

node weight. 

For the trajectory preserving partitioning, it turns out to 

be a different situation. Cutting on road links leaves the 

issue of which partitions the cut road links shall join. Since 

road links have their own geo-shape (could be as long as 

several kilometers), different joining choices can 

significantly impact the boundary of geo-areas and could 

lead to a non-optimum solution. On the contrast it won’t be 

 

Figure 3. Component Diagram of Trajectory Preserving 
Partitioning. 
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an issue if partitioning is performed on the nodes of road 

network: As in road network, nodes are physically modeled 

as points with no geo-shape. So no matter which partition a 

cut node joins, it makes no difference to the geo-area 

boundary. To enable the node cutting, the road network 

needs to be transformed into a “link graph”. A link graph 

takes each road link on the road network as its vertex (i.e., 

link vertex) and builds the edges connecting vertexes based 

on the connectivity between links. In this way, the 

partitioning on nodes of road network is enabled. 

 

3.2 Trajectory Weighted Graph Construction. 
To build the edges connecting vertexes, and more 

importantly, to define the weights on the edges, both the 

road network connectivity and the trajectory information 

needs to be considered. For each adjacent pair of links, the 

weight on the edge connecting corresponding link vertexes 

is increased with a certain value 
lw 1 . And for each 

trajectory traversing a sequence of links, each adjacent pair 

of links in the trajectory will have a certain value 
tw 2 

contributing to the corresponding edge of the graph. The 

ratio between 
lw and 

tw , instead of their absolute value, is 

important for balancing between the static connectivity and 

the dynamic connectivity. The static connectivity is more 

stable with good coverage, while the trajectory is more live 

through may not cover the full spectrum of network. Merely 

weighting on static connectivity would lead to non-optimum 

situation as illustrated in Figure 1. While, in another 

extreme, purely trajectory based weighting may lead to 

disconnected graph. As trajectory usually provides many 

more instances of connectivity than road network (as a pair 

of links could be traversed by thousands of trajectories), it 

needs a factor to balance the relative importance of two 

weights. The principle for weight balance used in this paper 

is to ensure equal contribution of total weights. For 

presetting weights 
lw  and

tw , a tuning factor, 
wr , is 

calculated reflecting the ratio of total static weight to total 

dynamic weight.  

( ) / ( )w l t

link traversed
pairs pairs

r w w                                                 (3.1) 

Then the 
tw can be tuned by multiplying

wr :  
' *t t ww w r

                             (3.2) 

Static and dynamic weight can be integrated 

automatically by this approach. One could also adjust wr  

manually if prior knowledge is available on application 

scenario or data quality. 

Trajectory data also serves as more precise workload 

information than static network or geo-spatial elements. As 

a direct model of workload, each link vertex in the link 

                                                             
1 lw  can be varying on different pairs of links according to 

certain extra information, e.g., road level, or intersection 

level. Here we ignore the detail without loss of generality. 
2 tw  can also be varying, e.g., according to trajectory length. 

graph has the weight that equals to the number of 

trajectories traversing that link. 

 

3.3 Trajectory Preserving Road Network 
Partitioning Algorithm. 

The trajectory preserving partitioning algorithm is 

presented in Figure 43. It takes road network and trajectory 

data as input together with two parameters: k is the 

expected number of partitions and ubR  is the upper 

boundary of imbalance ratio R . It outputs the partitioned sub 

road networks, each of which contains a list of road links. 

Step 1- 4 of the algorithm build the link graph and estimate 

the static edge weight 
. se w

, the dynamic edge weight 
. de w

, 

and the node workload weight 
. wlv w

. Step 5 calculates the 

weight tuning factor wr . And step 6 integrates the static 

weight with dynamic weight automatically according to wr . 

Step 7 invokes graph partitioning algorithm and gets the 

partitioned vertex sets. Then in step 8 the partitioned vertex 

sets are mapped back into sub road networks denoting as 

lists of road links, which are returned as algorithm output in 

step 9. 

 

Trajectory Preserving Road Network Partitioning 

Algorithm 

Input:    

 ( , )RN N L :  Road network consists of node set N  

and link set L .  

  iTrj t : Trajectory data set. 

( ( ,... ) ,i x y x ywhere t l l l l L  ) 

 k : Number of partitions to be generated. 

 ubR : Upper boundary of imbalance ratio R . 

Output: 

 { }isubRN : each 
isubRN  is denoted by 

 i s s s iL l l L l subRN     and  

1

nP

j i jL L i j L L      holds. 

BEGIN 

1l tw w  , without loss of generality. 

1. Create an empty link graph ( , )G V E , ,V E  . 

2. For each il L  

a) Create a link vertex iv  and add into vertex set 

iV V v   

b) Initialize the workload weight of iv : 

. 0i wlv w   

3. For each in N  

a) For each pair of links ( , )i jl l  connected at in  

                                                             
3 For clarity of presentation, the multi-link (multiple links 

between two nodes) handling is omitted. 
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i. Create an edge 
ije and add into edge set 

 ijE E e   

ii. Set the static weight of 
ije : .ij s le w w  

iii. Initialize the dynamic weight of 
ije : 

. 0ij de w   

4. For each  jt Trj  

a) Parse each adjacent pair of links ( , )x yl l of 
jt  

i. Update dynamic weight 

of
xye : . .xy d xy d te w e w w  .  

ii. Update workload weight of corresponding 

vertexes . . 1 , ,i wl i wlv w v w i x y    

5. 
, ,

( . ) / ( . )w ij s ij d

i j i j

r e w e w    

6. For each 
ije E  

a)  . . * .ij ij s w ij de w e w r e w   

7. { } _ ( , , )jsV Metis GraphPartition G k ubR  

8. For each jsV  

a) Create a jL   

b) For each i jv sV  

i. Add corresponding link to jL : 

j j iL L l   

9. Return { } , 1jL j k  

END 
Figure 4. Trajectory Preserving Road Network Partitioning 

Algorithm. 

The computational complexity of the algorithm depends 

on the step 4 and step 7. Step 4 has the time cost  tn (i.e., 

linear to the number of trajectories in training set
tn ). And 

Step 7 has the approximate complexity of 

      n m klog k   according to the author of METIS 

(Karypis, 1998), where n  is the number of nodes, m  is the 

number of edges, and k  is the number of expected 

partitions. So the algorithm’s computational complexity is 

approximately       tn n m klog k   . 

 

3.4 Margin Maximized Geo-Partitioning Algorithm. 
The trajectory preserving road network partitioning 

algorithm introduced in section 3.3 generates the road 

network partitions as output. Each road network partition 

contains a list of road links. For geo-messages in trajectory 

streams, the location information is generally presented in 

terms of geo-spatial coordinates (e.g., longitude and 

latitude). Since associating coordinates with road links relies 

on Map Matching which is computationally costly, road 

network partition is not an ideal structure for online geo-

message dispatching. In contrast to a road network partition 

defined as a list of road links, a geo-partition is defined in 

terms of a geo-area having a polygon as its boundary. 

Computationally matching coordinates with polygons is 

much more effective than associating coordinates with road 

links. Hence there is a need to transform from road network 

partitions into geo-spatial partitions for effective geo-

message dispatching. 

Developing one-one mapping between road network 

partitions and geo-partitions (represented by a polygon as 

the boundary) has the following requirements. Basically 

each polygon shall include all road links allocated to the 

corresponding road network partition and exclude any road 

links of other partitions. And there shall be no overlapping 

or missing coverage between the geo-partitions. Moreover, 

the position of boundary shall maximize its distance from 

the data of adjacent partitions as much as possible, so as to 

be resilient to data noise (if the boundary is close to data, 

noisy data could float into the other partition and cause 

wrong dispatching). This raises the need to maximize the 

margin between polygon boundary and road links near 

polygon boundary. 

To fulfill the above requirements, the Margin Maximized 

Geo-Partitioning Algorithm is developed and shown in 

Figure 5. The algorithm determines a compact hull for each 

road network partition
jsubRN  and extends those compact 

hulls into a geo-partition solution in three steps. Firstly, 

based on the detected compact hulls, the algorithm discovers 

buffer zones. Then for each buffer zone, it generates 

separating polylines maximizing the margin in buffer zone. 

After that the compact hulls are extended into geo-partitions 

by replacing some lines of compact hull with separating 

polylines (and corresponding nodes as well). The algorithm 

assumes that a road network can be modeled as a planar 

graph, which is valid for most road networks. 

 

Margin Maximized Geo-Partitioning Algorithm 

Input:   

 { }isubRN : each 
isubRN  is denoted by a list of road 

links  i s s s iL l l L l subRN    .  

 { }jpn : set of partitioned nodes across subRN s. 

Output: 

 { }jGeoArea :  each GeoArea  is represented by a 

polygon as its boundary. 

BEGIN 

1. Generate a compact convex hull  ,allH Hn Hl  for 

the whole road network jsubRN . Hn and Hl are 

the boundary nodes and boundary lines 
respectively.  

2. Clockwise traverse the boundary polygon and mark 
the direction of each line on the boundary the same 
as traversing direction. 

3. Generate a compact hull  ,j j jH Hsn Hsl  for each 

sub road network { }jsubRN . jHsn and
jHsl are the 

boundary nodes and boundary lines of jsubRN  

respectively. 
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4. Clockwise traverse the boundary polygon of each 
sub road network and mark the direction of each 
line on the boundary the same as traversing 
direction. 

5. Initialize buffer zone set  iZb   

6. For each node in the partitioning node set { }jn pn  

a) Discover buffer zones 
jz  starting from n  by 

searching in all hull elements all jH H . 

b)    i i jZb Zb z   

7. Initialize separating polyline set  Ps   

8. For each  j iz Zb  

a) Find the separating polylines  kp   to 

maximize the margin in the buffer zone
jz . 

b)      kPs Ps p  

9. For each 
jsubRN  

a) Extend
jsubRN 's hull  ,j j jH Hsn Hsl  to 

margin maximized boundary 

 ,j j jB Bsn Bsl by replacing some of its 

boundary lines with those separating polylines 

 ip Ps which have both end nodes belong 

to
jHsn . Maximized margin geo-partition for 

jsubRN  is bounded by
jB . 

10. Return margin maximized boundary set { }jB  

END 
Figure 5. Margin Maximized Geo-Partitioning Algorithm. 

To determine the compact hull (i.e., spatial outer borders) 

of a road network can be realized by constructing a minimal 

hull to encompass all nodes of the road network. Since each 

edge of the road network stands for a road segment modeled 

by a straight line, the resulting hull encompasses all the 

network edges as well. Algorithms are available for the hull 

generation (e.g., (DeBerg, 2000)). By representing each 

edge using its vertex points, hull generation algorithm can 

output a polygon as the boundary of a list of network edges. 

And each vertex of the polygon is a boundary node of the 

road network and each edge stands for an outer border. To 

integrate the border information into the road network 

model, each edge of the polygon (i.e., line) is added to the 

road network as a new edge, if there is no overlap with 

existing network edge. After compact hulls are identified, all 

nodes and lines which are not in the compact 

hulls all jH H  are regarded as internal elements and can be 

ignored in the following operations. And it’s obvious that all 

partitioned nodes are kept in compact hulls’ node 

set jHn Hsn . 

A buffer zone can be specified by its border (i.e., a 

polygon composed by lines in compact hulls jHl Hsl and 

with no road network node in it). A sample is shown in 

Figure 6. The discovery of each buffer zone starts from a 

boundary node between two sub road networks (i.e., 

partitioned node), e.g., the boundary node V. And then it 

traverses on jHl Hsl  following the link direction 

generated in step 2 and step 4 of Figure 5 (i.e., clockwise 

direction of each individual polygon). When getting into 

another boundary node share by two sub network (e.g., 

boundary node U in Figure 6), it switches to the boundary of 

another hull and continues the traversing. The process stops 

when the starting boundary node is revisited. Then the 

traversed lines form a polygon as the border of a buffer zone. 

For finding the separating polylines to maximize the 

margin in the buffer zone, a triangulated approach is 

implemented. The buffer zone is triangulated first and the 

division lines are obtained by chaining the cendoids of 

triangle and connecting further to the boundary nodes. The 

resulting division polylines become the border lines of final 

geo-spatial partitions. A sample is depicted in Figure 7 

which finds the separating polyline in a buffer zone 

involving two sub road network boundaries. When a buffer 

zone border involves multiple sub road networks, similar 

approach can be applied and multiple polylines will be 

output. For the interest of paper length, the detail is the 

omitted here. The Margin Maximized Geo-Partitioning 

Algorithm has the complexity 

 

Figure 6. Sample of Discovering Buffer Zone. 

 

Figure 7. Sample of Finding Separating Polylines 
Maximizing Margin in Buffer Zone. 
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of      p h hk n log m n n log m     , where n is 

number of nodes, m is the number of edges, k is the number 

of partitions, np is the size of { }jpn , nh is the size of 

jHn Hsn and mh
 
is the size of jHl Hsl . 

With the method proposed in this section, optimized geo-

partitions can be generated from road network partitions. On 

top of the geo-partitions, high performance geo-message 

dispatching can be enabled, which will be introduced in the 

next section. 

 

4. HIGH PERFORMANCE GEO-MESSAGE 

DISPATCHING 
For dispatching geo-messages, the dispatching service 

needs to compare the location information in each geo-

message with boundary of geo-areas to identify the right 

geo-area the message located. Then the message will be 

routed to the computation node responding for the workload 

of that geo-area. Comparing to key based or attribute-value 

based dispatching in ordinary data streams, geo-message 

dispatching is still heavier in terms of computation: 

calculating the geo-spatial relationship is in general more 

complex than value matching. So the dispatching service is 

prone to scalability bottleneck. 

In this section, based on the Geohash technology (Fox, 

2013), a Geohash Tree scheme is proposed to codify the 

dispatching rules for high performance geo-message 

dispatching. The Geohash Tree gains the performance 

advantage by transforming geo-spatial matching into less 

expensive Geohash code matching. And moreover, Geohash 

Tree takes a hierarchical and flexible layered structure 

comparing with grid approach: when a node has its bound 

within a single partitioned geo-area, the node is marked as 

leaf node and needs not to be split further. Therefore both 

the storage space can be saved and levels of comparison can 

be reduced. Geohash Tree has the similar idea of spatial 

index tree such as R+-tree (Sellis, 1987). While a major 

difference in a Geohash Tree is that each node has its 

Geohash code by inheriting the Geohash code from its 

parent node and extending with one character. The character 

uniquely differentiates the node from other nodes with the 

same parent and maps to a specific sub-area of the parent’s 

area. The number of children that a node can have equals to 

the cardinality of the Geohash character set. In practice, a 

Geohash Tree with its character set cardinality of 32 can 

reach to meter level resolution on its node in the 10th level 

of depth. On the one hand, Geohash tree shares the same 

advantage as R+-tree on effective indexing and space saving 

comparing to grid index scheme (by enabling leaf node on 

high level of the tree and avoiding massive low level pieces). 

On the other hand, Geohash tree replaces R+-tree’s geo-

spatial matching with character matching, which is 

computationally much more effective. 

Figure 8 gives the algorithm pseudo-code for generating 

a Geohash Tree. And Figure 9(b) illustrates a sample 

instance of Geohash Tree and Figure 9(a) visualizes the 

relationship between Geohash codes and spatial areas.  

 

Dispatching Rule Generation Algorithm 

Input:   

 { }jB : Boundary polygons of geo-partitions. 

Output: 

 GHTree :  Geohash Tree. Each node on the 

GHTree has the attributes of 

    , , _ , ,code isleaf geo area bound child . code is 

the Geohash code of the tree node; isleaf is true if 

the node is leaf node (with no children nodes); 

 _geo area is the areas the node maps to; bound is 

the geo-spatial boundary of the node in terms of up-

left limit point and down-right limit point; 

 child contains the children nodes if it’s not a leaf 

node. 

BEGIN 

1. Initial a node queue: 
nodeq    

2. Calculate bound of the whole area and generate the 

Geohash code code to cover the bound. 

3. Create a root node: 

  , , _ _ , ,root code FALSE ALL GEO AREAS bound NULL  

4. .GHTree root root  

5. Push the root node into the node queue: 

. ( )nodeq push root  

6. While ( nodeq is not empty) 

a) Poll a node from queue: . ()nodend q poll  

b) If (
0

.{ _ } 1nd geo area  ) 

i. .nd isleaf TRUE  

ii.  .nd child NULL  

c) Else 

i.  .nd child   

ii. For each option char cr  of Geohash code 

1. Compute the corresponding sub 

boundary 
sb  in .nd bound .  

2. Find the overlapped areas 'ga between 

sb and  . _nd geo area . 

3. If (
0

' 0ga  ) // out of scope. 

a) Continue; 

4. Else if (
0

' 1ga  ) 

a) New a leaf node: 

 , , ', ,s snd code cr TRUE ga b NULL   

b) Add snd to nd ’s children list. 

5. Else  // may need to break down 
a) If reaches max tree level 

i. .nd isleaf TRUE  

ii.  .nd child NULL  

b) Else 
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i. New a node: 

 , , ', ,s snd code cr FALSE ga b NULL   

ii. Add 
snd to nd ’s children list.  

iii. Add to queue: . ( )node sq push nd  

7. Return GHTree . 

END 
Figure 8. Dispatching Rule Generation Algorithm. 

The Dispatching Rule Generation Algorithm adopts a 

breadth-first approach to explore and build the tree. It 

initializes a root node and sets its Geohash code covering 

the whole geo-area of interest. Then the root node is pushed 

into queue as the starting seed. Step 6 is the main body of 

the algorithm. In the loop of step 6, nodes are polled out of 

the queue in the same sequence as they enter the queue. By 

evaluating the relationship between the polled node’s 

boundary and the geo-areas, actions are taken on the node to 

either mark the node as leaf or explore the children of the 

node further. In the action of further exploration of children 

nodes (i.e., step 6.c) of Figure 8), a child node could be 

either added to tree as leaf node (if it maps to a single geo-

area), or discarded (if it maps to no geo-area of interest), or 

pushed into queue for further exploration (if it maps to 

multiple geo-areas). In the example in Figure 9, we explore 

the space from very beginning to ‘f2j’ and then explore its 

grandchildren ‘f2j2p’, ‘f2j8c’, etc. The ‘f2j2p’ node needs to 

be explored further since it covers 3 geo-areas (as Figure 9(a) 

shows). So ‘f2j2p’ is further split into nodes ‘f2j2p4’, 

‘f2j2pd’, ‘f2j2pz’, ‘f2j2pr’, ‘f2j2pe’, ‘f2j2pt’, etc..  Since 

each node of ‘f2j2pt’, ‘f2j2p4’ and ‘f2j2pt’ covers only one 

partition area, they are marked as leaf node and will not be 

further drilled down. On the contrast, ‘f2j2pd’, ‘f2j2ppe’ and 

‘f2j2pz’ has to be explored further as each of them covers 

multiple geo-areas. Ideally each leaf node on the resulting 

Geohash Tree shall map to exactly one geo-area, if the depth 

of tree is unrestricted. While in practice, the depth of tree 

stops at a level (mostly between 6 and 11) for storage and 

precision consideration. So there would be a small portion 

of leaf nodes across multiple geo-areas when these leaf 

nodes are over the partition boundaries. Only in those cases, 

geo-spatial calculation is needed for determine the right 

geo-area for a geo-message. The Dispatching Rule 

Generation Algorithm is relatively time consuming. In worst 

case it takes 1dc k   times of geo-relationship calculation if 

all leaf nodes are at the most depth of the tree and there are 

no pre-ending branches in the intermediate levels of the tree. 

Here c is the cardinality of code, d is the maximum levels of 

tree, and k is the number of partitions. Fortunately that will 

not happen as Geohash Tree can always function and cut 

branches radically at early stage.  In practice, it takes less 

than a minute to generate a Geohash Tree for a 100,000 km2 

and 6 partitions, which is affordable for offline processing. 

Figure 10 gives the detail of Geo-message dispatching 

algorithm which takes the Geohash Tree as its dispatching 

rule. 

 

Geo-Message Dispatching Algorithm 

Input:   

 m : a geo-message which is a tuple with the 

following attributes  , , , , _id lon lat ts message body . 

id is the moving object’s id; lon  and lat are the 

location information in longitude and latitude; ts is 

the timestamp of the message; _message body has 

information that needs to be dispatched to 

computation node. 

Output: 

 GeoArea id :  the GeoArea  id (eventually, the 

responsible computation node id) that the geo-

message shall be dispatched to. 

BEGIN 
1. Get Geohash Tree Root Node .nd GHTree root  .  

2. Generate Geohash code for m  : 

. . ( . , . )mcode geohash gen mlon mlat  

3. If m is within the area of 

interest:  _ . , .has prefix mcode nd code . 

a) While (not .nd isleaf ) 

i. Find nd ’s child node snd that 

 _ . , .shas prefix mcode nd code  

ii. Get down a level: snd nd  

b) If (
0

.{ _ } 1nd geo area  ) 

i. Return . _ .nd geo area id  

c) Else 
i. Do geo-spatial comparison between m ’s 

location with the geo-areas nd covers. 

ii. Return the matched geo-area id. 
4. Else // m is out of the scope. 

a) Return Out-Of-Map-Scope error. 

END 
Figure 10. Geo-message Dispatching Algorithm. 

The computational complexity of Geo-Message 

Dispatching Algorithm is linear to the number of geo-

messages. In most cases, it only takes a Geohash code 

 

(a)                                            (b) 

Figure 9. Geohash Tree. 
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generation operation and several operators on tree node 

access for dispatching a geo-message, which is very 

efficient. 

 

5. EXPERIMENT 
In this section, the performance of proposed methods and 

accompany algorithms are evaluated by experiments using 

both real world trajectory data collected from GPS equipped 

vehicles and simulated trajectory data streams. The 

performance measurements are the Mobility Localization 

Index ( mlI
), the ratio of imbalance ( R ), and the Messaging 

Throughput ( mT
) which are introduced in section 2. A set of 

experiments are conducted on partition performance for 

validating the soundness of trajectory preserving partition 

method. The experiment context and result will be 

introduced in section 5.1. Another set of experiments are 

perform for real-time messaging dispatching performance, 

which will be introduced in section 5.2.  

Table 1. Experiment Real-World Datasets 

 

Two real-world datasets were collected and used for 

experiments, as shown in Table 1.  The trajectory data was 

generated from 3000 GPS equipped vehicles travelling in a 

large city in 7 days. Each raw trajectory is a sequence of 

GPS data records (and each record contains longitude, 

latitude, velocity, timestamp, and vehicle ID). After the 

preprocessing of associating GPS with road network, a 

trajectory of a vehicle can be expressed as a sequence of 

road links that the vehicle traverses. The first dataset, 

CityWideU, is a relatively large dataset which contains 

imbalance workload: central urban traffic is much heavier 

than that of sub-urban areas. From this perspective, the 

trajectory density is a good reflection of the urban roads 

popularity, but is biased when the suburban roads are 

concerned. The second dataset, UrbanWideB, has a smaller 

scale and a more balanced trajectory distribution. For 

evaluating geo-message dispatching throughput, simulated 

data was generated beside the real-world datasets. The detail 

will be introduced in section 5.2. 

The experiments were conducted on a cloud environment 

using SoftLayer machines. The server for geo-spatial 

partition and message dispatching is a dedicated server. Its 

configuration is 4-CPU x86 Server with 16 G memory and 

Linux OS. The computation nodes are virtual machines with 

4-CPU x86 Server with 8 G memory running map matching 

tasks.  As formerly noted, since this paper focuses mainly on 

the message dispatching throughput instead of application 

dependent workload throughput, we ensure there are 

sufficient computation nodes and they would not be a source 

of bottleneck in the experiments. 

 

5.1 Experiments on Partition Performance. 
In the sub section, the Mobility Localization Index ( mlI

) 

and the ratio of imbalance ( R ) are evaluated for the 

partition performance using datasets described in Table. 1. 

We denote the proposed trajectory preserving partition 

method and algorithms as TPP. And the road network-based 

partitioning method (Ventresque, 2012), denoting as RNP, is 

used as the baseline scheme for performance comparison. 

Since the geo-partitioning is a learning process, the 

experiments follow the cross validation scheme to avoid 

over-fitting. Specifically ten-fold cross validation is applied 

and the final result is consolidated from the ten running 

output. 

The number of expected partitions is the major parameter 

of the partition algorithms. In the experiments, different 

numbers of partitions (4, 6, 8, 10, 12 partitions respectively) 

are tested on both datasets. In the following the experiment 

result of both datasets will be presented. 

 

Experiment Result on CityWideU. Table 2 summaries 

the overall partitioning result of both TPP and RNP on the 

CityWideU dataset with different setting of partition 

numbers. And the overall ratio of improvement is presented 

in the last column. In Table 2, the average number of cross-

partition trajectories is significantly reduced from 70,200 to 

27,496 which contributes to the remarkable improvement of 

Mobility Localization Index (12.32% taking the mlI
of RNP 

as the base). Also TPP provides more balanced result and 

reduces the Ratio of Imbalance ( R ) by 67.11% comparing 

with RNP.  

Figure 11 displays the detail partitioning result on the 

number of cross-partition trajectories with various setting of 

partition numbers. And Figure 12 is the detail result on the 

Mobility Localization Index ( mlI
). TPP gets higher mlI

than 

RNP in every tested setting of partition numbers. And it 

stably keeps the mlI
beyond 90% while RNP drops down to 

less than 80% when the partition number gets larger. 

Dataset CityWideUa UrbanWideBb 

Road network size 

(number of  links) 

62,810 31,434 

Geo-message 

volume (number 

of records) 

80,297,139 57,102,570 

Trajectory data 

volume (number 

of trajectories) 

416,840 315,636 

Average Length of 

Trajectory 

(number of 

records) c 

192.6 180.9 

Dataset characteristics:  
a CityWideU is on a larger map with unbalanced 

trajectory distribution (trajectories on certain areas of 

the road network are much dense than those on other 

areas). 
b UrbanWideB is on a small map with near balanced 

trajectory distribution. 
c Mobile Data was sampled every 25 seconds/record 

in average. 
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Table 2. Summary Result of Experiment on CityWideU 

The ratio of imbalance detail of CityWideU is shown in 

Figure 13. Considering the CityWideU dataset is 

characterized as the geospatially imbalanced distribution of 

trajectory workload, the ratio of imbalance would have 

challenge to control. The result of RNP algorithm with 

different numbers of partitions verified this. The ratio of 

imbalance always approaches or exceeds 3.0, indicating the 

workload of some partition is 3 times the average workload 

of all the partitions.  While the TPP remarkably keeps the 

ratio of imbalance in the range of [1.03, 1.25], which means 

a nearly even workload distribution among partitions (i.e., 

the partition with the heaviest workload is less than 25% 

higher to the average workload). 

The experiment on the CityWideU dataset with different 

settings of partition numbers shows the stable performance 

of TPP method, which demonstrates the advantage of 

mobility localization and balanced partitioning. 

 

Experiment Result on UrbanWideB. Table 3 

summarizes the partitioning result on the UrbanWideB 

dataset. The UrbanWideB dataset is a smaller dataset than 

CityWideU, and is more connected with dense trajectories. 

In general it is more challenging to sustain the mobility 

localization. So it costs more in partitioning. This can be 

observed by comparing Table 3 with Table 2: both the 

average number of cut trajectories and the average mobility 

localization index of Table 3 are lower than those of Table 2. 

On the UrbanWideB dataset, TPP gets in average 19.74% of 

improvement on the 
mlI gets remarkably 44.54% 

improvement on the Ratio of Imbalance comparing to RNP. 

The details of the cross-partition trajectories and mobility 

localization comparison result on the UrbanWideB dataset 

are shown in Figure 14 and Figure 15 respectively. 

The
mlI of partition result by TPP are mostly more than 90% 

(except the case that partition number is 12). And in each 

setting of partition number, TPP gets more than 10% higher 

on 
mlI  than that of RNP. 

Table 3. Summary Result of Experiment on UrbanWideB 

Figure 16 is the detail result of Ratio of Imbalance. RNP 

improves its performance since the UrbanWideB dataset is 

much more balanced than the CityWideU dataset. But it has 

still at least 0.8 higher than TPP on each of the cases. 

 

Measurement

s 

TPP RNP Ratio of 

Improvement 

Number of 

Cross-Partition 

Trajectories 

27,49

6 

70,20

0 

60.83% 

Mobility 

Localization 

Index ( mlI
) 

93.40

% 

83.16

% 

12.32% 

Average Ratio 

of Imbalance( R ) 

1.159 3.524 67.11% 

 

Figure 11. Cross-Partition Trajectories on Partitioning 
CityWideU 

 

Figure 12. Mobility Localization Index on Partitioning 
CityWideU. 

 

Figure 13. Ratio of Imbalance on Partitioning CityWideU. 

Measurements TPP RNP Ratio of 

Improvement 

Number of 

Cross-Partition 

Trajectories 

30,001 93,765 68.00% 

Mobility 

Localization 

Index ( mlI
) 

92.80% 77.51% 19.74% 

Average Ratio of 

Imbalance(R) 

1.195 2.154 44.54% 
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TPP has its computation time range from 52 seconds to 5 

minutes generating an experiment result. RNP requires 

much less time for partitioning. It generates result within 30 

seconds in any of the experiment cases. Since the partition is 

a learning process that can be done offline, the time is not a 

big concern. When there is a need to perform partitioning in 

online mode to reflect the trajectory pattern changes timely, 

the computation time will be an important measurement. 

5.2 Experiments on Dispatching Performance. 
Messaging throughput is evaluated in this sub section. A 

grid based dispatching method is implemented for 

comparison. Grid index is a single layer structure. It’s very 

effective to locate a spatial point to a cell of the grid. The 

size of the grid cell is the major parameter that could affect 

indexing performance. Here we choose two grid sizes: 

Grid_DA50 is the grid dispatching algorithm with 50 meter 

cell configuration. And Grid_DA200 is the grid dispatching 

algorithm with 200 meter cell configuration. GHT_DA 

represents the Geohash tree based dispatching algorithm we 

proposed in section 4 (i.e., the Dispatching Rule Generation 

Algorithm and the Geo-Message Dispatching algorithm). 

 

Figure 17 and Figure 18 are the messaging throughput 

result on CityWideU and UrbanWideB respectively. In the 

case of CityWideU, the throughputs of GHT_DA range 

from 0.8~1 million records/second in different 

configurations of partition numbers. The throughputs of 

Grid_DA50 and Grid_DA200 are in the range of [390k, 

630k]. Grid_DA50 gets slightly better result than 

Grid_DA200. This attributes to the smaller grid size which 

reduces the probability for calculating geo-shape 

 

Figure 14. Cross-Partition Trajectories on Partitioning 
UrbanWideB. 

 

Figure 17. Geo-Message Dispatching Throughput on 
CityWideU.  

Figure 15. Mobility Localization Index on Partitioning 
UrbanWideB. 

 

Figure 18. Geo-Message Dispatching Throughput on 
UrbanWideB.  

Figure 16. Ratio of Imbalance on Partitioning UrbanWideB. 
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relationship. The Figure 18 shows the similar result. In 

experiments on both datasets, GHT_DA has more than 30% 

improvement of the message dispatching performance. 

For further validating the performance on large-scale 

map with more choices of partition numbers, a simulation is 

implemented on a map with 420,633 road segments. 

6,955,046,200 geo-messages are generated and sent to 

server by 8 client machines in UDP protocol. The partition 

numbers are set to 4, 10, 20, 40, and 60 respectively. The 

dataset is denoted as Simu6B and the result is shown in 

Figure 19. The result is consistent with those on CityWideU 

and UrbanWideB and shows the promising generalization 

capability to apply the technology to large-scale map. 

 

6. RELATED WORK 
Providing high quality, scalable and real time analytics is 

one unprecedented challenge for the Internet-of-Things 

(Aggarwal, 2013). There have been research interests 

enabling scalable cloud services for IoT applications from 

resource virtualization, networking and architecture angles 

(Kovatsch, 2014), (Mukherjee, 2014), (Li, 2013). The 

research on scalable data stream processing has two main 

threads. The first thread takes the architectural perspective 

to enhance the programming model and develop 

optimization technologies for platform scalability. The 

second thread focuses on algorithm improvement for high 

performance distributed data stream analytics.  

 (Andrade, 2009) defined a streaming architectural 

pattern for the sensor-and-response application domains. 

Scalable application can be generated following the 

architectural pattern and corresponding programming model. 

(Khandekar, 2009) solved the assignment problem of 

processing elements (PEs) to processing hosts (PHs) in the 

context of high scalable distributed stream processing. It 

employed a graph partitioning method to minimize the inter-

PH network communication while simultaneously balancing 

load across the PEs. In light of stream workload dynamics, 

(Schneider, 2009) proposed a technique to dynamically 

adjust the amount of computation of an operator. (Cherniack, 

2003) introduced two stream processing systems and 

discussed the load (re-)partitioning issue in the context of 

generic workload. (Pietzuch, 2006) considered the dynamic 

network condition to relocate operator for higher stream 

processing performance. The existing work regarded mostly 

generic data streams and did not address the mobile 

characteristics.  

There is also solid research outcome on scalable data 

streams analytics focusing on algorithm improvement 

(Gaber, 2005). (Domingos, 2000) proposed a general 

method, called VFML (Very Fast Machine Learning), for 

scaling up machine learning algorithms. In more recent 

years, the research on trajectory streams has it applications 

on anomaly detection (Bu, 2009), spatio-temporal causal 

interactions discovering (Liu, 2011), and map generation 

(Davics, 2006). This category of work forms the advanced 

analytics workload for scalable streams processing platform. 

Beside stream processing platform, graph partitioning 

technologies have been well studied and applied in parallel 

processing. Interest audiences can refer (Buluc, 2013) for 

recent advance of graph partitioning technologies as well as 

their applications in parallel processing. 

 

7. CONCLUSIONS AND FUTURE WORK 
In the IoT era, large-volume mobile data streams are 

generated from pervasive mobile sensors. This provides 
opportunities for precise mobility awareness and timely 
mobility insight analysis. This paper focuses on the 
scalability challenge of cloud services analyzing 
trajectory streams. With the proposed trajectory 
preserving partition method and Geohash Tree based 
dispatching method, high throughput streams processing 
cloud services can be achieved with high quality of 
balanced workload and reduced cross-server 
communication. The algorithms are developed and 
validated through experiments. 

There are two interesting topics we would like to 
further pursue. Currently under the assumption that the 
workload pattern is stable and identical to that of 
historical data, the paper addresses the offline 
partitioning problem. While real world workload could 
dynamically shifts along with time. This raises the further 
requirement of online (re-)partitioning in face of the 
dynamics. Online repartitioning needs to take partition 
adjustment cost into consideration and requires 
incremental design on algorithm to avoid dramatic 
fluctuation. Besides that, the computational efficiency of 
online partitioning algorithm is also of interest. And this 
paper puts its focus mainly on the geo-message 
dispatching efficiency. In the future, with the maturity of 
the mobile data streams analytics workload patterns, 
end-to-end measurements of scalability performance 
with typical application workload patterns can be further 
investigated and validated. 

 

 

Figure 19. Geo-Message Dispatching Throughput on 
Simu6B. 
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