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Abstract— We present an efficient algorithm to compute the
generalized penetration depth (PDg) between rigid models. Given
two overlapping objects, our algorithm attempts to compute the
minimal translational and rotational motion that separates the
two objects. We formulate thePDg computation based on model-
dependent distance metrics using displacement vectors. As a
result, our formulation is independent of the choice of inertial and
body-fixed reference frames, as well as specific representationof
the configuration space. Furthermore, we show that the optimum
answer lies on the boundary of the contact space and pose
the computation as a constrained optimization problem. We use
global approaches to find an initial guess and present efficient
techniques to compute a local approximation of the contact space
for iterative refinement. We highlight the performance of our
algorithm on many complex models.

I. I NTRODUCTION

Penetration depth (PD) is a distance measure that quantifiesthe
amount of interpenetration between two overlapping objects.
Along with collision detection and separation distance, PD
is one of the proximity queries that is useful for many
applications including dynamics simulation, haptics, motion
planning, and CAD/CAM. Specifically, PD is important for
computing collision response [1], estimating the time of con-
tact in dynamics simulation [2], sampling for narrow passages
in retraction-based motion planing [3], [4], and C-obstacle
query in motion planning [5].

There has been considerable work on PD computation, and
good algorithms are known for convex polytopes. As for non-
convex models, prior approaches on PD computation can be
classified into local or global algorithms. The local algorithms
only take into account the translational motion, i.e.transla-
tional PD (PDt), and the results may be overly conservative.
In many applications, including torque computation for 6-DOF
haptic rendering or motion planning for articulated models, it
is important to compute a penetration measure that also takes
into account the rotational motion, i.e.generalized penetra-
tion depth(PDg). However, the computational complexity of
global PD between non-convex models is high. For PDt , it
can be computed usingMinkowski sumformulation with the
combinatorial complexityO(n6), where n is the number of
features in the models [6]. For PDg, it can be formulated
by computing the arrangement of contact surfaces, and the
combinatorial complexity of the arrangement isO(n12) [7].
As a result, prior algorithms for global PD only compute
an approximate solution [5], [8]. Moreover, these algorithms

perform convex decomposition on non-convex models and can
be rather slow for interactive applications. Overall, there are
no good and practical solutions to compute the PD between
non-convex models, thereby limiting their applications [4], [9],
[10].

A key issue in PDg computation is the choice of an appropriate
distance metric. It is non-trivial to define a distance metric that
can naturally combine the translational and rotational motion
for an undergoing model, such that the resulting distance
metric isbi-invariantwith the choice of inertial and body-fixed
reference frames, as well as of specific representations of the
configuration space [11]. Specifically, it is well-known that for
the spatial rigid body motion group SE(3), it is impossible to
define a bi-invariant distance metric unless the shape of the
model is known a priori [12], [13]. Finally, the distance metric
should be easy to evaluate in order to devise an efficient PDg

computation algorithm.

A. Main Results
We present an efficient algorithm for computing PDg for
rigid, non-convex models. We formulate PDg computation
as a constrained optimization problem that minimizes an
objective function defined by any proper distance metric that
combines both translational and rotation motions, such as
DISP [14] andobject norm[15]. We use global approaches,
based on motion coherence and random sampling, to compute
an initial guess and incrementally walk on thecontact space
along the maximally-decreasing direction of the objective
function to refine the solution. The algorithm computes a local
approximation of the contact space, and we present culling
techniques to accelerate the computation. As compared to the
prior approaches, our algorithm offers the following benefits:

• Generality: Our approach is general and applicable to
both convex and non-convex rigid models. The algorithm
can be also extended to articulated or deformable models.

• Practicality: Unlike the prior approaches, our algorithm
is relatively simple to implement and useful for many
applications requiring both translational and rotation mea-
sures for inter-penetration.

• Efficiency: We use a local optimization algorithm and
reduce the problem of PDg computation to multiple
collision detection and contact queries. As a result, our
algorithm is efficient and can be used for interactive
applications with high motion coherence.
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We have implemented our PDg algorithm and applied it to
many non-convex polyhedra. In practice, our algorithm takes
about a few hundred milli-seconds on models composed of a
few thousand triangles.

B. Organization

The rest of our paper is organized as follows. We provide
a brief survey of related work on PDg computations in Sec.
2. In Sec. 3, we present a formulation of PDg and give
an overview of distance metrics. In Sec. 4, we provide our
optimization-based algorithm to compute PDg. We present its
implementation and highlight its performance in Sec 5.

II. PREVIOUS WORK

There has been considerable research work done on proximity
queries including collision detection, separation distance, and
PD computation [16], [17]. In this section, we briefly discuss
prior approaches to PD computation and distance metrics.

A. PD Computation

Most of the work in PD computation has been restricted to
PDt , and these algorithms are based on Minkowski sums [6],
[18]. A few good algorithms are known for convex polytopes
[19], [20] and general polygonal models [8]. Due to the
difficulty of computing a global PDt between non-convex
models, some local PDt algorithms have been proposed [9],
[10], [21].

A few authors have addressed the problem of PDg compu-
tation. Ong’s work [22], [23] can be considered as one of
the earliest attempts. The optimization-based method using
a quadratic objective function can be regarded as implicitly
computing PDg [24]. Ortega et al. [25] presented a method
to locally minimize thekinetic distancebetween the config-
urations of a haptic probe and its proxy using constraint-
based dynamics and continuous collision detection. Zhang et
al. [5] proposed the first rigorous formulation of computing
PDg. They presented an efficient algorithm to compute PDg

for convex polytopes, and provide bounds on PDg of non-
convex polyhedra. The problem of PDg computation is closely
related to the containment problem [26]. The notion ofgrowth
distancehas been introduced to unify separation and penetra-
tion distances [22]. Recently, Nawratil et al. [27] have also
described a constrained optimization based algorithm for PDg

computation.

B. Distance Metrics in Configuration Space

The distance metric in configuration space is used to measure
the distance between two configurations in the space. It is well-
known that model-independentmetrics are not bi-invariant,
and thus most approaches usemodel-dependent metricsfor
proximity computations [11], [14], [28].

1) Distance Metrics in SE(3):The spatial rigid body displace-
ments form a group of rigid body motion, SE(3). Throughout
the rest of the paper, we will refer to a model-independent
distance metric in SE(3) as a distance metric in SE(3). In
theory, there is no natural choice for distance metrics in SE(3)
[12], [13]. Loncaric [29] showed that there is no bi-invariant
Riemannian metric in SE(3).

2) Model-dependent Distance Metrics:Using the notion of
a displacement vectorfor each point in the model, the DISP
distance metric is defined as the maximum length over all
the displacement vectors [14], [28], [30]. The object norm,
proposed by [15], is defined as an average squared length of
all displacement vectors. Hofer and Pottmann [31] proposeda
similar metric, but consider only a set of feature points in the
model. All of these displacement vector-based metrics can be
efficiently evaluated. The length of a trajectory travelledby a
point on a moving model can be also used to define model-
dependent metrics [5], [32]. However, it is difficult to compute
the exact value of these metrics.

III. GENERALIZED PENETRATION DEPTH AND DISTANCE

METRICS

In this section, we introduce our notation and highlight issues
in choosing an appropriate distance metric for defining PDg

for polyhedral models. We then show that our metrics can
naturally combine translational and rotational motions, have
invariance properties, and can be rapidly calculated. We also
show that the optimal solution for PDg computation with
respect to each metric exists on the contact space.

A. Notation and Definitions

We first introduce some terms and notation used throughout
the rest of the paper. We define thecontact space, Ccontact,
as a subset of the configuration space,C , that consists of the
configurations at which a robotA only touches one or more
obstacles without any penetration. The union of free spaceF

and contact space constitutes the valid space,Cvalid, of the
robot, and any configuration inCvalid is a valid configuration.
The complement ofF in C is the C-obstacle space orO.

PDg is a measure to quantify the amount of interpenetration
between two overlapping models. Given a distance metricδ
in configuration space, PDg between two polyhedral models
A andB can be defined as:

PDg
δ (A,B) = {min{δ (qo,q)}‖ interior(A(q))∩B = /0,q ∈ C },

(1)
where qo is the initial configuration ofA, and q is any
configuration inC .

PDg can be formulated as an optimization problem under
non-penetration constraints (Fig. 1(a)), where the optimization
objective is described by some distance metric to measure
the extent of a model transformed from one configuration
to another. Therefore, the computation of PDg is directly
governed by the underlying distance metric.
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Fig. 1. PDg Definition and Contact Space Realization: (a) PDg is
defined as the minimal distance between the initial collision configuration
qo and any free or contact configuration, with respect to some distance
metric. (b) The optimal configurationqb, which realizesPDg

DISP or PDg
σ ,

must be on the contact spaceCcontact; otherwise, one can compute another
contact configurationqb

′, which further reduces the objective function.qb
′

is computed by applying thebisection method on thescrew motionthat
interpolatesqo and qb.

B. Distance Metric

We address the issue of choosing an appropriate distance
metric to define PDg. In principle, any distance metric in C-
space can be used to define PDg. We mainly use two distance
metrics for rigid models,displacement distance metricDISP
[28], [30] andobject norm[15].

1) Displacement distance metric:Given a modelA at two
different configurationsqa and qb, the displacement distance
metric is defined as the longest length of the displacement
vectors of all the points onA [28], [30]:

DISPA(qa,qb) = max
x∈A

||x(qb)−x(qa)||2. (2)

2) Object norm:Also based on displacement vectors, Kazer-
ounian and Rastegar [15] make use of an integral operator to
define theobject norm:

σA(qa,qb) =
1
V

∫
A

ρ(x)||x(qb)−x(qa)||
2dV, (3)

whereV andρ(x) are the volume and mass distribution ofA,
respectively.

3) Properties of DISP andσ : Both metrics can combine
the translational and rotational components of SE(3) without
relying on the choice of any weighting factor to define PDg.
Since both metrics are defined by using displacement vectors,
they have someinvariance properties; they are independent of
the choice of inertial reference frame and body-fixed reference
frame [11], and also independent of the representation ofC .

Moreover, DISP andσ metrics can be computed efficiently.
In [14], we show that for a rigid model, the DISP distance
is realized by a vertex on its convex hull. This leads to an
efficient algorithm, C-DIST, to compute DISP. Forσ , by
using a quaternion representation, we can further simplifythe
formula originally derived by Kazerounian and Rastegar [15]
into:

σA(qa,qb) =
4
V

(Ixxq
2
1 + Iyyq

2
2 + Izzq

2
3)+q2

4 +q2
5 +q2

6, (4)

wherediag(Ixx, Iyy, Izz) forms a diagonal matrix computed by
diagonalizing the inertia matrixI of A. (q0,q1,q2,q3) is the
quaternion for therelative orientation ofA betweenqa and
qb, and(q4,q5,q6) is the relative translation.

C. Properties of PDgDISP and PDg
σ

Geometrically speaking, the generalized penetration depth
under DISP, PDgDISP, can be interpreted as the minimum of
the maximum lengths of the displacement vectors for all the
points onA, whenA is placed at any collision-free or contact
configuration. Also, the generalized penetration depth under
σ , PDg

σ , can be interpreted as the minimum cost to separate
A from B, where the cost is related to the kinetic energy ofA.

Due to the underlying distance metric, both PDg
DISP and

PDg
σ are independent of the choice of inertial and body-

fixed reference frames. In practice, these invariance properties
are quite useful since one can choose any arbitrary reference
frame and representation of the configuration space to compute
PDg

DISP and PDg
σ .

D. Contact Space Realization

For rigid models, PDgDISP (or PDg
σ ) has a contact space

realization property. This property implies that any valid
configurationqb that minimizes the objective DISP (orσ ) for
PDg must lie on the contact space ofA andB, or equivalently,
at this configurationqb, A andB just touch with each other.

Theorem 1 (Contact Space Realization)For a rigid model
A placed at qo, and a rigid model B, ifqb ∈ Cvalid and
DISPA(qo,qb) = PDg

DISP(A,B), then qb ∈ Ccontact. A similar
property holds forPDg

σ .

Proof: We prove it by contradiction. Suppose the config-
urationqb realizing PDg

DISP does not lie on the contact space
Ccontact. Then,qb must lie in the free spaceF ((Fig. 1(b)).

We use Chasles’ theorem in Screw theory [33], which states
that a rigid body transformation between any two configura-
tions can be realized by rotation about an axis followed by
translation parallel to that axis, where the amount of rotation
is within [0,π]. The screw motion is a curve in C-space, and
we denote that curve betweenqo to qb ass(t), wheres(0) = qo
and s(1) = qb. Sinceqo is in O, andqb is in F , there is at
least one intersection between the curve{s(t)|t ∈ [0,1]} and
the contact space (Fig. 1). We denote the intersection pointas
qb

′.

Based on Chasles theorem, we can compute the length of the
displacement vector for any pointx on A betweenqo and any
configuration on the screw motions(t). Furthermore, we can
show that this length strictly increases with the parametert.
Therefore, for each point onA, the length of the displacement
vector betweenqo andqb is less than the one betweenqo and
qb

′. Since DISP metric uses the maximum operator for the
length of the displacement vector over all points onA, we can
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Fig. 2. Optimization-based PDg Algorithm : our algorithm walks on the
contact spaceCcontact, i.e. fromqa to qb, to find a local minimumqm under
any distance metric.

infer that DISPA(qo,qb
′) < DISPA(qo,qb). This contradicts

our assumption thatqb is the realization for PDgDISP.

Similarly, we can inferσA(qo,qb
′) < σA(qo,qb), and thus

prove the property for PDgσ .

According to Thm. 1, in order to compute PDg, it is sufficient
to search only the contact spaceCcontact, which is one dimen-
sion lower than that ofC . Our optimization-based algorithm
for PDg uses this property.

IV. PDg COMPUTATION ALGORITHM

In this section, we present our PDg computation algorithm.
Our algorithm can optimize any distance metric (or objective)
presented in Sec. 3 by performing incremental refinement on
the contact space. As Fig. 2 illustrates, our iterative optimiza-
tion algorithm consists of three major steps:

1) Given an initial contact configurationqa, the algorithm
first computes a local approximationLqa of the contact
space aroundqa.

2) The algorithm searches over the local approximation to
find a new configurationqb that minimizes the objective
function.

3) The algorithm assignsqb as a starting point for the next
iteration (i.e.walk from qa to qb) if qb is on the contact
space with smaller value of the objective function as
compared toqa’s. Otherwise, we compute a new contact
configurationqb

′ based onqb .

These steps are iterated until a local minimum configuration
qm is found or the maximum number of iterations is reached.
Next, we discuss each of these steps in more detail. Finally,
we address the issue of computing an initial guess.

A. Local Contact Space Approximation

Since it is computationally prohibitive to compute a global
representation of the contact spaceCcontact, our algorithm
computes a local approximation. Given a configurationqa,
where A is in contact with B, we enumerate all contact
constraints according to the pairs of contact features [28], [34].
We further decompose each contact constraint intoprimitive
contact constraints, i.e. vertex/face (v− f ), face/vertex(f −v)
or edge/edge (e− e). Conceptually, each primitive contact
constraint represents a halfspace, and the set of all primitive
constraints are used to characterize the local non-penetration
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Fig. 3. Local Contact Space Approximation: the local contact space is
algebraically represented as a set of contact constraints concatenated with
intersection or union operators (Eq. 5). Columns (a) and (b)explain how to
obtain proper operators when decomposing a constraint intoprimitive contact
constraints using 2D examples (cf. Sec IV.A). Column (c) shows a multiple
contact situation. The last row illustrates the corresponding linearization for
each local contact space.

computation betweenA and B. Therefore, we obtain a local
approximationLqa of Ccontact around the contact configuration
qa after concatenating all these primitive constraints{Ci}
using proper intersection or union operators{◦i}:

Lqa = {C1◦1C2 · · · ◦n−1Cn}. (5)

It should be noted that we do not explicitly compute a
geometric representation ofLqa. Instead, it is algebraically
represented, and each primitive constraint is simply recorded
as a pair of IDs, identifying the contact features fromA and
B, respectively.

When decomposing each constraint into primitive constraints,
we need to choose proper Boolean operators to concatenate the
resulting primitive constraints. This issue has been addressed
in the area of dynamics simulation [35] and we address it in
a similar manner for PDg computation. Fig. 3 shows a 2D ex-
ample with a triangle-shaped robotA touching a notch-shaped
obstacleB. When decomposing av−v contact constraint into
two v−e constraintsC1 andC2, if both of the contact vertices
of A and B are convex (Fig. 3(a)), we use a union operator,
because if either constraintC1 or C2 is enforced, there is
no local penetration. Otherwise, if one contact vertex is non-
convex (Fig. 3(b)), the intersection operation is used. For3D
models, a similar analysis is performed by identifying the
convexity of edges based on their dihedral angles. In case of
multiple contacts, one can first use intersection operations to
concatenate all the constraints. Each individual constraint is
then further decomposed into primitive constraints.

B. Searching over Local Contact Space

Given a local contact space approximationL of the contact
configurationqa, we search overL to find qb that minimizes
the objective function. Since the contact space is a non-linear
subspace ofC , we use two different search methods: random
sampling inL and optimization over a first-order approxima-
tion of L . Each of them can be performed independently.



aq

l
q

C
1

C
2

L
1 2
{ }

aq
c c

F

O

Fig. 4. Sampling in Local Contact Space: Lqa is a local approximation
of contact space aroundqa, represented by the intersection of its contact
constraints C1 and C2. Our algorithm randomly generates samples on C1 and
C2. Many potentially infeasible samples, such asql , can be discarded since
they are lying outside the halfspace ofLqa .

1) Sampling in Local Contact Space:Our algorithm randomly
generates samples on the local contact approximationLqa

around qa (Fig. 4), by placing samples on each primitive
contact constraintCi as well as on their intersections [36].
We discard any generated sampleq if it lies outside of the
halfspace formulated byLqa by simply checking the sign
of Lqa(q). SinceLqa is a local contact space approximation
built from all contact constraints, this checking ofL allows
us to cull potentially many infeasible colliding configurations.
For the rest of the configuration samples, we evaluate their
distancesδ to the initial configurationqo, and compute the
minimum.

These samples are efficiently generated for each non-linear
contact constraintCi . First, we generate random values for the
rotation parameters. By plugging these values into a non-linear
contact constraint, we formulate a linear constraint for the
additional translation parameters. Under the formulated linear
constraint, random values are generated for these translation
parameters.

In practice, an optimal solution for PDg may correspond
to multiple contacts, suggesting that one needs to generate
more samples on the boundary formed by multiple contact
constraints. As a result, we set up a system of non-linear
equations for each combination of these constraints, generate
random values for the rotation parameters in the system
(thereby making the system linear), and sample the resulting
linear system for the translation parameters.

2) Linearizing the Local Contact Space:We search for a
configuration with smaller distance to the contact space by lin-
early approximating the contact space. For each basic contact
constraintCi , we compute its Jacobian, which is the normal
of the corresponding parameterized configuration space. Using
this normal, we obtain a half-plane, which is a linearization
of the contact surface [21], [37]. By concatenating the half-
planes using Boolean operators◦i , we generate a non-convex
polyhedral cone, which serves as a local linear approximation
of Ccontact.

3) Local Search:The sampling-based method is general for
any distance metric. Moreover, we can generate samples on
each non-linear contact constraint efficiently. Finally, using the
local contact space approximation, our method can cull many
potentially infeasible samples.

On the other hand, the method of linearizing the contact space

Algorithm 1 Optimization-based Local PDg Algorithm
Input: two intersecting polyhedra:A - movable,B - static.
qo := the initial collision configuration ofA, qo ∈ O.
qa := a seed contact configuration ofA, qa ∈ Ccontact.
Output: PDg(A, B)

1: repeat
2: i++;
3: Lqa := Local contact space approximation atqa;
4: qb := argmin{δ (qo,q),q∈ Lqa};
5: if δ (qo,qb) == δ (qo,qa) then
6: return δ (qo,qa);
7: else if qb ∈ Ccontact then
8: qa := qb;
9: else if qb ∈ F then

10: qa := CCD Bisection(qo, qb);
11: else
12: qb

′ := CCD(qa, qb);
13: Lqa := Lqa

⋂
L ′

qb
;

14: goto 3;
15: end if
16: until i < MAX ITERATION

is suitable for optimizing PDg, if the underlying objective has a
closed form. For example, for theobject norm, we transform
the coordinate in the quadratic function in Eq. (4), from an
elliptic form to a circular one. Now, the problem of searching
over L reduces to finding the closest point in the Euclidean
space fromqa to the non-convex polyhedral cone, formulated
using the linearization ofL . Since the polyhedral cone is
formulated as a local approximation ofCcontact, it typically
has a small size. Therefore, the closest point query can be
performed by explicitly computing the non-convex polyhedral
cone.

C. Refinement

Although searching over the local contact spaceL around
qa can yield a new configurationqb that improves the opti-
mization objective ofqa, we still need to check whetherqb
is a valid contact configuration before advancing to it because
qb is computed based upon a local approximation of contact
space andqb may not be on the contact space.

For instance, the new configurationqb may be a collision-
free configuration due to the first-order approximation. To
handle this case, we projectqb back toCcontact by computing
the intersectionqb

′ between the contact space and a curve
interpolating fromqo to qb using screw motion (Fig. 1). Since
qo is in O andqb is free, the intersectionqb

′ can be efficiently
computed by bisection (CCD Bisection in Alg. 1). Also,
according to the contact space realization theorem in Sec.
III.D, δ (qo,qb

′) < δ (qo,qb). Therefore, we are guaranteed to
obtain a new configurationqb

′, which is closer toqo, and thus
it can be used for successive iterations.

It is also possible the new configurationqb may be a colliding
configuration. As Fig. 5 on the left shows, when moving from
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Fig. 5. Refinement. Left: using the local contact space representation of
qa, which includes only one constraint C1, we obtain new configurationqb.
Thoughqb is still on C1, it may not be on the contact space any more, since
it will violate other constraint, such as C2 here. The right figure shows a dual
example happening in the workspace. When A slides on B, i.e. from qa to qb,
a collision can be created by other portions of the models. Our algorithm
uses CCD to compute a correct, new contact configurationqb

′.

qa to qb, the contact constraintC1 is maintained. However,
qb is a colliding configuration as it does not satisfy the new
constraintC2. The figure on the right highlights this scenario
in the workspace. WhenA moves fromqa to qb, the contact is
still maintained. In order to handle this case, we usecontinuous
collision detection(CCD) to detect the time of first collision
when an object continuously moves from one configuration
to another using a linearly interpolating motion inC [38]. In
our case, whenA moves fromqa to qb, we ignore the sliding
contact of qa, and use CCD to report the first contactqb

′

before the collision [39]. The new configurationqb
′ can be

used to update the local approximation ofqa. This yields a
more accurate contact space approximation and consequently
improves the local search, e.g. culling away additional invalid
samples.

D. Initial Guess
The performance of the PDg algorithm depends on a good
initial guess. For many applications, including dynamic sim-
ulation and haptic rendering, the motion coherence can be
used to compute a good initial guess. Since no such motion
coherence could be exploited in some other applications (e.g.
sample-based motion planning), we propose a heuristic. Our
method generates a set of samples on the contact space as
a preprocess. At runtime, given a query configurationqo,
our algorithm searches for theK nearest neighbors from the
set of precomputed samples, and imposes the inter-distance
between any pair of theseK samples should be greater than
some threshold. The distance metric used for nearest neighbor
search is the same as the one to define PDg. The resultingK
samples serve as initial guesses for our PDg algorithms. To
generate samples on the contact space, we randomly sample
the configuration space and enumerate all pairs of free and
collision samples. For each pair, a contact configuration can
be computed by a bisection method (Fig. 1(b)).

V. I MPLEMENTATION AND PERFORMANCE

We have implemented our PDg algorithm using local contact
space sampling for general non-convex polyhedra. In this
section, we discuss some important implementation issues and
highlight the performance of our algorithm on a set of complex

polyhedral models. All the timeings reported here were taken
on a Windows PC, with 2.8GHZ of CPU and 2GB of memory.

A. Implementation
Since our PDg formulation is independent of the representation
of the configuration space, we use aquaternionto represent
the rotation because of its simplicity and efficiency. In our
PDg algorithm, any proximity query package supporting col-
lision detection or contact determination can be employed.In
our current implementation, we use the SWIFT++ collision
detection library, because of its efficiency and it provides
both these proximity queries [40]. Based on SWIFT++, our
algorithm computes all the contacts betweenA at a contact
configurationqa with B. We sample the contact space locally
aroundqa. For each primitive contact constraintCi , we derive
its implicit equation with respect to the parameters of a rotation
component (a quaternion) and a translation component (a 3-
vector). In order to sample on a constraintCi , we first slightly
perturb its rotational component by multiplying a random
quaternion with a small rotational angle. The resulting rota-
tional component is plugged back into the constraintCi . This
yields a linear constraint with only translational components,
and therefore can be used to generate additional samples.
To linearize Ci , we compute the Jacobian of its implicit
equation forCi . For other types of contacts, we decompose
them into primitive contact constraints. Proper operatorsto
concatenate them are identified by computing the dihedral
angle of contacting edges, thereby determining whether the
contact features are convex or not.

In the refinement step of the algorithm, we perform collision
detection using SWIFT++ to check whetherqb from the local
search step still lies on the contact space. Whenqb is on
contact space, our algorithm proceeds to the next iteration.
Otherwise, whenqb is free, a new contact configurationqb

′ is
computed for the next iteration by performing recursive bisec-
tions (Fig. 1(b)) on the screw motion interpolating betweenqo
andqb. Finally, whenqb is in C-obstacle space, we compute
a new contact configurationqb

′ by using CCD. In our current
implementation, we check for collision detection on a set of
discrete samples on a linear motion betweenqa and qb. In
order to ignore the old contact during CCD query, the idea of
security distanceis used [39]. After computing a new contact
configurationqb

′ from the CCD query, our algorithm updates
the local approximation aroundqa and resumes a local search
again.

B. Performance
We use different benchmarks to test the performance of our
algorithm. Fig. 6(a) shows a typical setup of our experiment
including two overlapping models, whereA (‘Pawn’) is mov-
able andB (‘CAD Part’) is stationary. In (b), our algorithm
computes PDgDISP or PDg

σ to separate the modelA, initially
placed atA0, from the modelB. The three images on the
right highlight the intermediate configurations ofA1 and A2

and a PDgDISP solutionA3 with yellow color. The sequence of
images (b,c,d,e) illustrates that our algorithm successfully finds



Fig. 6. The ‘CAD Part’ example: (a) shows the models A - ‘pawn’ and B - ‘CAD Part’ used in this test. (b) illustrates a typicalPDg query scenario where
the model A at A0 overlaps with B. A1 and A2 are intermediate placements of A during the optimization for PDg

DISP. A3 is the solution for an upper bound
of PDg

DISP. The sequence of images (c,d,e) illustrates that our algorithm incrementally slides the model ‘pawn’ on the model ‘CAD Part’ to minimizeDISP
distance.

Fig. 7. The ‘torus-with-knot’ example : the left image highlights aPDg

query between a model ‘torus-with-knot’ B intersecting with a model ‘L-
shaped box’ at A0 (red). A1 is a collision-free placement of the ‘L-shaped
box’ model as a result ofPDg

σ ; the right image shows the same result but
from another viewpoint.

Fig. 8. The ‘hammer’ example: from left to right: PDg
DISP query between

A and B, an intermediate configuration A1, and the solution A2.

an upper bound of PDgDISP by gradually sliding the ‘pawn’
model on the ‘CAD’ model.

Figs. 7 and 8 show two more complex benchmarks that we
have tested. In Fig. 7, the model ‘torus-with-a-knot’ has hyper-
bolic surfaces. This benchmark is difficult for thecontainment
optimization-based algorithm [5], as that algorithm computes
the convex decomposition of the complement of the model.
On the other hand, our PDg algorithm can easily handle this
benchmark, and compute a tight upper bound on PDg.

Table I summarizes the performance of our algorithm on
different benchmarks. In our implementation, we set the
maximum number of iterations as 30. For the most of the
models we have tested, our algorithm can perform PDg

DISP

query within 300ms, and PDg
δ query with 450ms. Our current

implementation is not optimized and the timings can be further
improved.

C. Comparison and Analysis
Compared to prior method for PDg computation in [5], our
method can handle more complex non-convex models. This is
because we reduce PDg computation to proximity queries such
as collision detection and contact determination. Since there
are well known efficient algorithms for both these queries,

1 2 3

A L-Shape Pawn Hammer
tris # 20 304 1,692

B Torus-with-a-Knot CAD Bumpy-Sphere
tris # 2,880 2,442 2,880

Avg PDg
DISP(ms) 219 297 109

Avg PDg
σ (ms) 156 445 138

TABLE I

Performance: this table highlights the geometric complexity of different

benchmarks we tested, as well as the performance of our algorithm.

our method can handle complex non-convex models. Instead,
the method in [5] reduces PDg computation tocontainment
optimization, which suffers from enumerating convex con-
tainers using convex decomposition, and can result in overly
conservative query results for non-convex models.

Our algorithm computes an upper bound on PDg, since the
resulting configuration is guaranteed to be on the contact
space. Moreover, in general, the algorithm converges to a local
minimum due to the constrained optimization formulation. The
termination condition for the iterative optimization is tocheck
whether the gradient of the distance metric is proportionalto
that of the contact constraint after each iteration. However,
some issues arise in checking this condition in practice. For
example, in the case of DISP metric, one can only compute an
approximation of the gradient, since no closed form is avail-
able for DISP metric. Furthermore, a convergence analysis is
difficult, due to the discontinuity in contact space caused by
multiple contacts.

VI. CONCLUSION

We present a practical algorithm to compute PDg for non-
convex polyhedral models. Using model-dependent distance
metrics, we reduce the PDg computation to a constrained
optimization problem. Our algorithm performs optimization
on the contact space, and the experimental results show that
we can efficiently compute a tight upper bound of PDg.

The main limitation of our approach is that our algorithm
can not guarantee a global solution for PDg computation.
Its performance depends on the choice of an initial guess.
For future work, it is worthwhile to analyze the convergence
properties of the algorithm, as well as an error bound on the
approximation. We would also like to apply our algorithm to
motion planning, dynamic simulation, and haptic rendering.

Acknowledgements: We would like to thank Ming C. Lin and



Stephane Redon for providing helpful discussions. This project
was supported in part by ARO Contracts DAAD19-02-1-0390 and
W911NF-04-1-0088, NSF awards 0400134 and 0118743, ONR Con-
tract N00014-01-1-0496, DARPA/RDECOM Contract N61339-04-C-
0043 and Intel. Young J. Kim was supported in part by the grant
2004-205-D00168 of KRF, the STAR program of MOST and the
ITRC program.

REFERENCES

[1] B. V. Mirtich, “Impulse-based dynamic simulation of rigid body sys-
tems,” Ph.D. dissertation, University of California, Berkeley, 1996.

[2] D. E. Stewart and J. C. Trinkle, “An implicit time-steppingscheme
for rigid body dynamics with inelastic collisions and coulombfriction,”
International Journal of Numerical Methods in Engineering, vol. 39, pp.
2673–2691, 1996.

[3] D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin, “On finding
narrow passages with probabilistic roadmap planners,”Proc. of 3rd
Workshop on Algorithmic Foundations of Robotics, pp. 25–32, 1998.

[4] M. Saha, J. Latombe, Y. Chang, Lin, and F. Prinz, “Finding narrow
passages with probabilistic roadmaps: the small step retraction method,”
Intelligent Robots and Systems, vol. 19, no. 3, pp. 301–319, Dec 2005.

[5] L. Zhang, Y. Kim, G. Varadhan, and D.Manocha, “Generalized pen-
etration depth computation,” inACM Solid and Physical Modeling
Symposium (SPM06), 2006, pp. 173–184.

[6] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, “Computing
the intersection-depth of polyhedra,”Algorithmica, vol. 9, pp. 518–533,
1993.

[7] D. Halperin, “Arrangements,” inHandbook of Discrete and Computa-
tional Geometry, J. E. Goodman and J. O’Rourke, Eds. Boca Raton,
FL: CRC Press LLC, 2004, ch. 24, pp. 529–562.

[8] Y. J. Kim, M. C. Lin, and D. Manocha, “Fast penetration depth
computation using rasterization hardware and hierarchicalrefinement,”
Proc. of Workshop on Algorithmic Foundations of Robotics, 2002.

[9] B. Heidelberger, M. Teschner, R. Keiser, M. Mueller, andM. Gross,
“Consistent penetration depth estimation for deformable collision re-
sponse,” inProceedings of Vision, Modeling, Visualization VMV’04,
November 2004, pp. 339–346.

[10] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha, “Fast
proximity computation among deformable models using discrete voronoi
diagrams,”Proc. of ACM SIGGRAPH, pp. 1144–1153, 2006.

[11] Q. Lin and J. Burdick, “Objective and frame-invariant kinematic metric
functions for rigid bodies,”The International Journal of Robotics
Research, vol. 19, no. 6, pp. 612–625, Jun 2000.

[12] J. Loncaric, “Normal forms of stiffness and compliance matrices,”
IEEE Journal of Robotics and Automation, vol. 3, no. 6, pp. 567–572,
December 1987.

[13] F. Park, “Distance metrics on the rigid-body motions withapplications
to mechanism design,”ASME J. Mechanical Design, vol. 117, no. 1, pp.
48–54, March 1995.

[14] L. Zhang, Y. Kim, and D. Manocha, “C-DIST: Efficient distance
computation for rigid and articulated models in configurationspace,”
in ACM Solid and Physical Modeling Symposium (SPM07), 2007, pp.
159–169.

[15] K. Kazerounian and J. Rastegar, “Object norms: A class ofcoordinate
and metric independent norms for displacement,” inFlexible Mechanism,
Dynamics and Analysis: ASME Design Technical Conference, 22nd
Biennial Mechanisms Conference, G. K. et al, Ed., vol. 47, 1992, pp.
271–275.

[16] M. Lin and D. Manocha, “Collision and proximity queries,” in Handbook
of Discrete and Computational Geometry, 2003.

[17] C. Ericson,Real-Time Collision Detection. Morgan Kaufmann, 2004.

[18] P. Agarwal, L. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir,
“Penetration depth of two convex polytopes in 3d,”Nordic J. Computing,
vol. 7, pp. 227–240, 2000.

[19] G. van den Bergen, “Proximity queries and penetration depth computa-
tion on 3d game objects,”Game Developers Conference, 2001.

[20] Y. Kim, M. Lin, and D. Manocha, “Deep: Dual-space expansion for
estimating penetration depth between convex polytopes,” inProc. IEEE
International Conference on Robotics and Automation, May 2002.

[21] S. Redon and M. Lin, “Practical local planning in the contact space,”
ICRA, 2005.

[22] C. Ong, “Penetration distances and their applicationsto path planning,”
Ph.D. dissertation, Michigan Univ., Ann Arbor., 1993.

[23] ——, “On the quantification of penetration between general objects,”
International Journal of Robotics Research, vol. 16, no. 3, pp. 400–
409, 1997.

[24] V. Milenkovic and H. Schmidl, “Optimization based animation,” in ACM
SIGGRAPH 2001, 2001.

[25] M. Ortega, S. Redon, and S. Coquillart, “A six degree-of-freedom god-
object method for haptic display of rigid bodies,” inIEEE Virtual
Reality, 2006.

[26] V. Milenkovic, “Rotational polygon containment and minimum enclo-
sure using only robust 2d constructions,”Computational Geometry,
vol. 13, no. 1, pp. 3–19, 1999.

[27] G. Nawratil, H. Pottmann, and B. Ravani, “Generalized penetration
depth computation based on kinematical geometry,” Geometry Preprint
Series, Vienna Univ. of Technology, Tech. Rep. 172, March 2007.

[28] J. Latombe,Robot Motion Planning. Kluwer Academic Publishers,
1991.

[29] J. Loncaric, “Geometrical analysis of compliant mechanisms in
robotics,” Ph.D. dissertation, Harvard University, 1985.

[30] S. M. LaValle,Planning Algorithms. Cambridge University Press (also
available at http://msl.cs.uiuc.edu/planning/), 2006.

[31] M. Hofer and H. Pottmann, “Energy-minimizing splines in manifolds,”
in SIGGRAPH 2004 Conference Proceedings, 2004, pp. 284–293.

[32] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,”International Journal of Computational Geometry
and Applications, vol. 9, no. (4 & 5), pp. 495–512, 1999.

[33] R. Murray, Z. Li, and S. Sastry,A Mathematical Introduction to Robotic
Manipulation. CRC Press, 1994.

[34] J. Xiao and X. Ji, “On automatic generation of high-levelcontact state
space,”International Journal of Robotics Research, vol. 20, no. 7, pp.
584–606, July 2001.

[35] K. Egan, S. Berard, and J. Trinkle, “Modeling nonconvexconstraints
using linear complementarity,” Department of Computer Science, Rens-
selaer Polytechnic Institute (RPI), Tech. Rep. 03-13, 2003.

[36] X. Ji and J. Xiao, “On random sampling in contact configuration space,”
Proc. of Workshop on Algorithmic Foundation of Robotics, 2000.

[37] D. Ruspini and O. Khatib, “Collision/contact models forthe dynamic
simulation of complex environments,”Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, 1997.

[38] X. Zhang, M. Lee, and Y. Kim, “Interactive continuous collision
detection for non-convex polyhedra,” inPacific Graphics 2006 (Visual
Computer), 2006.

[39] S. Redon, “Fast continuous collision detection and handling for desktop
virtual prototyping,”Virtual Reality, vol. 8, no. 1, pp. 63–70, 2004.

[40] S. Ehmann and M. C. Lin, “Accurate and fast proximity queries between
polyhedra using convex surface decomposition,”Computer Graphics
Forum (Proc. of Eurographics’2001), vol. 20, no. 3, pp. 500–510, 2001.


	Introduction
	Main Results
	Organization

	Previous Work
	PD Computation
	Distance Metrics in Configuration Space
	Distance Metrics in SE(3)
	Model-dependent Distance Metrics


	Generalized Penetration Depth and Distance Metrics
	Notation and Definitions
	Distance Metric
	Displacement distance metric
	Object norm
	Properties of DISP and 

	Properties of PDgDISP and PDg
	Contact Space Realization

	PDg Computation Algorithm
	Local Contact Space Approximation
	Searching over Local Contact Space
	Sampling in Local Contact Space
	Linearizing the Local Contact Space
	Local Search

	Refinement
	Initial Guess

	Implementation and Performance
	Implementation
	Performance
	Comparison and Analysis

	Conclusion
	References

