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Abstract—We present an efficient algorithm to compute the perform convex decomposition on non-convex models and can
generalized penetration depth PDY) between rigid models. Given be rather slow for interactive applications. Overall, thare
two overlapping objects, our algorithm attempts to compute the no good and practical solutions to compute the PD between

minimal translational and rotational motion that separates the Lo . S
two objects. We formulate thePD® computation based on model- non-convex models, thereby limiting their applicationk [4],

dependent distance metrics using displacement vectors. As a[10].

result, our formulation is independent of the choice of inertial and Akevi in PO ion is the choi f .
body-fixed reference frames, as well as specific representatiaf ey issue in PD computation Is the choice of an appropriate

the configuration space. Furthermore, we show that the optimum distance metric. It is non-trivial to define a distance neetiniat
answer lies on the boundary of the contact space and posecan naturally combine the translational and rotationaliomot
the computation as a constrained optimization problem. We use for an undergoing model, such that the resulting distance
global approaches to find an initial guess and present efficient ¢ jshi-invariantwith the choice of inertial and body-fixed

techniques to compute a local approximation of the contact space f f I f ii tationkeof t
for iterative refinement. We highlight the performance of our reference frames, as well as of Specific representationseo

algorithm on many complex models. configuration space [11]. Specifically, it is well-known ter
the spatial rigid body motion group SE(3), it is impossilide t
|. INTRODUCTION define a bi-invariant distance metric unless the shape of the

model is known a priori [12], [13]. Finally, the distance met

Penetration depth (PD) is a distance measure that quantiéesshould be easy to evaluate in order to devise an efficierft PD
amount of interpenetration between two overlapping objectomputation algorithm.
Along with collision detection and separation distance, PD
is one of the proximity queries that is useful for manyA. Main Results
applications including dynamics simulation, haptics, imot We present an efficient algorithm for computing Pibr
planning, and CAD/CAM. Specifically, PD is important forfigid, non-convex models. We formulate Pzomputation
computing collision response [1], estimating the time ofi-coas a constrained optimization problem that minimizes an
tact in dynamics simulation [2], sampling for narrow passsag objective function defined by any proper distance metri¢ tha
in retraction-based motion planing [3], [4], and C-obstacicombines both translational and rotation motions, such as
query in motion planning [5]. DISP [14] andobject norm[15]. We use global approaches,

] ] based on motion coherence and random sampling, to compute
There has been considerable work on PD computation, g initial guess and incrementally walk on tbentact space
good algorithms are known for convex polytopes. As for nongng the maximally-decreasing direction of the objective
convex models, prior approaches on PD computation can fgiction to refine the solution. The algorithm computes @loc
classified |_nto local or global algonthms. The .Iocall algioms approximation of the contact space, and we present culling
only take into account the translational motion, tensla- techniques to accelerate the computation. As compareceto th

tional PD (P[}), and the results may be overly conservativeyiior approaches, our algorithm offers the following betsefi
In many applications, including torque computation for &

haptic rendering or motion planning for articulated modéls . Generality: Our approach is general and applicable to
is important to compute a penetration measure that alsstake both convex and non-convex rigid models. The algorithm

into account the rotational motion, i.generalized penetra- can be also extended to articulated or deformable models.
tion depth(PD®). However, the computational complexity of « Practicality: Unlike the prior approaches, our algorithm
global PD between non-convex models is high. For',AD is relatively simple to implement and useful for many
can be computed usinglinkowski sunformulation with the applications requiring both translational and rotatiorame
combinatorial complexityO(nf), wheren is the number of sures for inter-penetration.

features in the models [6]. For PDit can be formulated « Efficiency: We use a local optimization algorithm and
by computing the arrangement of contact surfaces, and the reduce the problem of FDcomputation to multiple
combinatorial complexity of the arrangement@n'?) [7]. collision detection and contact queries. As a result, our
As a result, prior algorithms for global PD only compute  algorithm is efficient and can be used for interactive
an approximate solution [5], [8]. Moreover, these algarith applications with high motion coherence.
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We have implemented our Plalgorithm and applied it to 1) Distance Metrics in SE(3)The spatial rigid body displace-
many non-convex polyhedra. In practice, our algorithm sakenents form a group of rigid body motion, SE(3). Throughout
about a few hundred milli-seconds on models composed offe rest of the paper, we will refer to a model-independent
few thousand triangles. distance metric in SE(3) as a distance metric in SE(3). In
theory, there is no natural choice for distance metrics i(3pE
B. Organization [12], [13]. Loncaric [29] showed that there is no bi-invaria
Riemannian metric in SE(3).
The rest of our paper is organized as follows. We provi
a brief survey of related work on PDcomputations in Sec.
2. In Sec. 3, we present a formulation of Plnd give
an overview of distance metrics. In Sec. 4, we provide o
optimization-based algorithm to compute PDVe present its
implementation and highlight its performance in Sec 5.

df) Model-dependent Distance Metric&lsing the notion of
a displacement vectaofor each point in the model, the DISP
distance metric is defined as the maximum length over all
e displacement vectors [14], [28], [30]. The object norm,
proposed by [15], is defined as an average squared length of
all displacement vectors. Hofer and Pottmann [31] prop@sed
similar metric, but consider only a set of feature pointsha t

II. PREVIOUS WORK model. All of these displacement vector-based metrics @n b

efficiently evaluated. The length of a trajectory traveltgda

There has been considerable research work done on proxin‘ﬂ'mnt on a moving model can be also used to define model-

queries including collision detection, separation dis&rand gependent metrics [5], [32]. However, it is difficult to coutp
PD computation [16], [17]. In this section, we briefly dissusihe exact value of these metrics.
prior approaches to PD computation and distance metrics.

I1l. GENERALIZED PENETRATION DEPTH AND DISTANCE

A. PD Computation METRICS

In this section, we introduce our notation and highlightiess
Most of the work in PD computation has been restricted {§ choosing an appropriate distance metric for definingf PD
PD, and these algorithms are based on Minkowski sums [Gbr polyhedral models. We then show that our metrics can
[18]. A few good algorithms are known for convex polytopeatyrally combine translational and rotational motionayen
[19], [20] and general polygonal models [8]. Due to thgnyariance properties, and can be rapidly calculated. \We al
difficulty of computing a global PD between non-convex show that the optimal solution for FDcomputation with
[no;je[ls,]some local Plalgorithms have been proposed [9respect to each metric exists on the contact space.
10], [21].

A. Notation and Definitions
A few authors have addressed the problem off Rbmpu-

tation. Ong's work [22], [23] can be considered as one %Ve first introduce some terms and notation used throughout
the earliest attempts. The optimization-based methodgusi € restbof th? Eaper. f\.Ne dgflne tg%nte;]ct Spacy?(gcontfacth
a quadratic objective function can be regarded as implicit?‘S a subset of the configuration space,that consists of the

computing PB [24]. Ortega et al. [25] presented a metho&onfigurations at which a roboft only touches one or more
to locally minimize thekinetic distancebetween the config- obstacles without any penetrat|on. The.umon of free space
@_nd contact space constitutes the valid spatgq, of the

urations of a haptic probe and its proxy using constrain i L ) ) ¢ )
based dynamics and continuous collision detection. Zhang' @00t and any configuration fivaiig is avalid configuration.
e complement of# in ¥ is the C-obstacle space or.

al. [5] proposed the first rigorous formulation of computin(jr
PDY. They presented an efficient algorithm to compute?POPD¥ is a measure to quantify the amount of interpenetration
for convex polytopes, and provide bounds on9P@i non- between two overlapping models. Given a distance metric
convex polyhedra. The problem of PRomputation is closely in configuration space, FDbetween two polyhedral models
related to the containment problem [26]. The notiorgaiwth A andB can be defined as:

distancehas been introduced to unify separation and penetra-

tion distances [22]. Recently, Nawratil et al. [27] haveoals

described a constrained optimization based algorithm Bt P PD3(A,B) = {min{4(do,q)} |interior(A(q)) \B=0,q € %'},

computation. _ o o @
where q, is the initial configuration ofA, and g is any

. L , . configuration iné.
B. Distance Metrics in Configuration Space g

PDY can be formulated as an optimization problem under
The distance metric in configuration space is used to MmeasHkh-penetration constraints (Fig. 1(a)), where the optition
the distance between two configurations in the space. Itlis Weypjective is described by some distance metric to measure
known that model-independeninetrics are not bi-invariant, the extent of a model transformed from one configuration
and thus most approaches us®del-dependent metrider to another. Therefore, the computation of PB directly
proximity computations [11], [14], [28]. governed by the underlying distance metric.



wherediag(lx lyy, I27) forms a diagonal matrix computed by
diagonalizing the inertia matrix of A. (0o, 01,02,03) is the
guaternion for therelative orientation of A betweeng, and
O, and(qs,0s,06) is the relative translation.

C. Properties of P3,gp and PLE

(a) (b)

_ o o ~ Geometrically speaking, the generalized penetration hdept
Fig. 1. PD Definition and Contact Space Realization (a) PDY is  ynder DISP, PBpsp, can be interpreted as the minimum of
defined as the minimal distance between the initial coltistmnfiguration . .
go and any free or contact configuration, with respect to somstadice the_ maximum Iengths of the dlsplacem_er_]t vectors for all the
metric. (b) The optimal configuratiogp, which realizesPDpisp or PD¥,  points onA, whenA is placed at any collision-free or contact
must be on the contact spa@oniaci Otherwise, one can compute anotherconfigyration. Also, the generalized penetration depthennd
contact configuratiorgy’, which further reduces the objective functiam, e . .
is computed by applying thbisection method on thescrew motionthat @, PDPg, can be interpreted as the minimum cost to separate

interpolatesq, and qp. A from B, where the cost is related to the kinetic energyAof

Due to the underlying distance metric, both 3Rp and
B. Distance Metric PDY; are independent of the choice of inertial and body-
fixed reference frames. In practice, these invariance ptigge

We address the issue of choosing an appropriate dlstarégg quite useful since one can choose any arbitrary referenc

metric to define PB In pr!nC|pIe, any t_]llstance metn_c In C'1‘rame and representation of the configuration space to ctenpu
space can be used to define®P/e mainly use two distance PD¥psp and P
O’.

metrics for rigid modelsdisplacement distance metrigISP

[28], [30] andobject norm[15]. D. Contact Space Realization

1) Displacement d_istance metricGiverj a modelA a_t two  pqr rigid models, PBpisp (or PD¥;) has a contact space
different configurationsja andqp, the displacement distance qgjization property. This property implies that any valid

metric is defined as the longest length of the d'Splaceme@anigurationqb that minimizes the objective DISP (ar) for
vectors of all the points o [28], [30]: PD? must lie on the contact space AfandB, or equivalently,
at this configuratiorg,, A andB just touch with each other.
DISPA(Ga, Ab) = max||x(dp) —X(da)l|2- @
Theorem 1 (Contact Space Realization}or a rigid model
2) Object norm:Also based on displacement vectors, KazeA placed atqgo, and a rigid model B, ifq, € %aig and
ounian and Rastegar [15] make use of an integral operatorB{SPa(qo,dn) = PD?pisp(A, B), thenqy € Geontact A Similar
define theobject norm property holds forPD9.

OA(0a, Op) = 1 / P(X)[|X(0p) — X(qa)| P dV, (3) .Proof: We prove it by contradictipn. Suppose the config-
VJa urationqy, realizing PD¥p,sp does not lie on the contact space
whereV andp(x) are the volume and mass distributionAf %contact Then,q, must lie in the free space ((Fig.[1(b)).

respectively. We use Chasles’ theorem in Screw theory [33], which states

3) Properties of DISP ando: Both metrics can combine that a rigid body transformation between any two configura-
the translational and rotational components of SE(3) withotions can be realized by rotation about an axis followed by
relying on the choice of any weighting factor to define %D translation parallel to that axis, where the amount of rotat
Since both metrics are defined by using displacement vectdasswithin [0, 7. The screw motion is a curve in C-space, and
they have som@variance propertiesthey are independent of we denote that curve betwegg to q, ass(t), wheres(0) =qo

the choice of inertial reference frame and body-fixed refeee ands(1) = qp. Sinceqo is in &, andqp is in #, there is at
frame [11], and also independent of the representatio#’.of least one intersection between the cufgét)|t € [0,1]} and

. . the contact space (Fig! 1). We denote the intersection psint
Moreover, DISP ando metrics can be computed efficiently. P (Fig: 1) s

!/

In [14], we show that for a rigid model, the DISP distancgb'
is realized by a vertex on its convex hull. This leads to aBased on Chasles theorem, we can compute the length of the
efficient algorithm, C-DIST, to compute DISP. Far, by displacement vector for any poirton A betweeng, and any
using a quaternion representation, we can further simgiiéy configuration on the screw moticsit). Furthermore, we can
formula originally derived by Kazerounian and Rastegar [15how that this length strictly increases with the parameter
into: Therefore, for each point oA, the length of the displacement

vector between, andqy, is less than the one betwegp and

4 5 5 ) 5 5 o gw’. Since DISP metric uses the maximum operator for the

OA(0a;db) = V('XXQH‘ lyyds +12293) + G4+ 05+ G5, (4)  length of the displacement vector over all pointsAnwe can



Fig. 2. Optimization-based PD? Algorithm : our algorithm walks on the
contact spac&contact 1.€. fromga to gp, to find a local minimungy, under
any distance metric.

infer that DISR(qo,dp’) < DISPa(do,dp). This contradicts
our assumption thady, is the realization for PEpsp.

Similarly, we can inferoa(do,dp’) < 0a(do,dp), and thus
prove the property for P%);. [ |

According to Thm! 1, in order to compute Pt is sufficient

A o
c,Uc, ¢, N 02
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(b) c) Multi-contact

Configuration
space

Linearization of
contact space

Fig. 3. Local Contact Space Approximation the local contact space is
algebraically represented as a set of contact constraimtscatenated with
intersection or union operators (Eg. 5). Columns (a) and ékplain how to
obtain proper operators when decomposing a constraint pmbmitive contact
constraints using 2D examples (cf. Sec IV.A). Column (cyvsha multiple
contact situation. The last row illustrates the correspimgdinearization for

to search only the contact spa@gontac Which is one dimen- each local contact space.
sion lower than that ofs’. Our optimization-based algorithm

for PDY uses this property. computation betweed and B. Therefore, we obtain a local

approximationZy, of Gcontactaround the contact configuration
ga after concatenating all these primitive constraidts;}
using proper intersection or union operatdrs}:

L4a =1{C101Ca---0n1Cn}.

IV. PDY COMPUTATION ALGORITHM

In this section, we present our Pzomputation algorithm.
Our algorithm can optimize any distance metric (or objesjtiv
presented in Sec. 3 by performing incremental refinement on

the contact space. As Fig. 2 illustrates, our iterativeroj2- ¢ should be noted that we do not explicitly compute a
tion algorithm consists of three major steps: geometric representation a¥,. Instead, it is algebraically
represented, and each primitive constraint is simply r@edr
as a pair of IDs, identifying the contact features frénand

B, respectively.

(®)

1) Given an initial contact configuratiogy, the algorithm
first computes a local approximatiaf,, of the contact
space aroundjs.
The algorithm searches over the local approximation {§hen decomposing each constraint into primitive constsaint
find a new configuration, that minimizes the objective we need to choose proper Boolean operators to concatemate th
function. resulting primitive constraints. This issue has been axiure
The algorithm assigng, as a starting point for the nextin the area of dynamics simulation [35] and we address it in
iteration (i.e.walk from ga to qp) if gp is on the contact a similar manner for PBcomputation. Fig. 3 shows a 2D ex-
space with smaller value of the objective function agmple with a triangle-shaped robattouching a notch-shaped
compared tay’s. Otherwise, we compute a new contacppstacleB. When decomposing @— v contact constraint into
configurationq,’ based orqp . two v— e constraintsC; andC,, if both of the contact vertices

. . - . .of A andB are convex (Fig. 3(a)), we use a union operator,
These steps are iterated until a local minimum configurati cause if either constraii®;, or C, is enforced, there is
Om IS found or the maximum number of iterations is reached, 0 local penetration. Otherwise, if one contact vertex ia-no
Next, we discuss each of these steps in more detail. F'na&mvex (Fig! 3(b)), the intersection operation is used. FDr
we address the issue of computing an initial guess. models, a similar analysis is performed by identifying the
convexity of edges based on their dihedral angles. In case of
multiple contacts, one can first use intersection operation
Since it is computationally prohibitive to compute a globatoncatenate all the constraints. Each individual corstrisi
representation of the contact spagontact OUr algorithm then further decomposed into primitive constraints.
computes a local approximation. Given a configuratopy
where A is in contact with B, we enumerate all contactB. Searching over Local Contact Space
constraints according to the pairs of contact features [38]. Given a local contact space approximatiéfi of the contact
We further decompose each contact constraint primitive configurationgy, we search over? to find g, that minimizes
contact constraintsi.e. vertex/face\(— f), face/vertext —v) the objective function. Since the contact space is a na@®atin
or edge/edge g— €). Conceptually, each primitive contactsubspace of’, we use two different search methods: random
constraint represents a halfspace, and the set of all pramitsampling in.Z and optimization over a first-order approxima-
constraints are used to characterize the local non-péingtra tion of .. Each of them can be performed independently.

2)

3)

A. Local Contact Space Approximation



g Z,=lana) Algorithm 1 Optimization-based Local FDAlgorithm
Input: two intersecting polyhedraA - movable,B - static.

o 7o C. Jo = the initial collision configuration of, g, € 0.
0 q, Oa := a seed contact configuration Af qa € $contact
Output: PDY(A, B)
Fig. 4. Sampling in Local Contact Space .%g, is a local approximation L re?ff_t

of contact space around,, represented by the intersection of its contact
constraints G and G. Our algorithm randomly generates samples ans@d ~ 3: %y, := Local contact space approximation gy
C,. Many potentially infeasible samples, suchas can be discarded since . - ; .
they are lying outside the halfspace .6, . 4 o -=arg min{8(do, ), d € Lga};

5: if 3(do,qp) == 0(do,da) then

1) Sampling in Local Contact Spac@ur algorithm randomly 6 return (o da);
generates samples on the local contact approximatign else if g, € Ceontact then
around g, (Fig. [4), by placing samples on each primitive & Qa ‘= Qp;

contact constrainC; as well as on their intersections [36]. 9  else if ¢ € .7 then

We discard any generated sampjef it lies outside of the 10: fa := CCD_Bisectionfo, dp);
halfspace formulated byZ,, by simply checking the sign 11 €lse

of %,(q). Since.%,, is a local contact space approximationt2: dp’ := CCD(da, b);

built from all contact constraints, this checking &f allows 13 Loa = "%Qaqu/b;

us to cull potentially many infeasible colliding configuoats. 14 goto 3;

For the rest of the configuration samples, we evaluate theie:  end if
distancesd to the initial configurationgo, and compute the 16: until i <MAXITERATION
minimum.

These samples are efficiently generated for each non-lingagitapie for optimizing P8 if the underlying objective has a
contact constraint;. First, we generate random values for th%losed form. For example, for thebject norm we transform
rotation parameters. By plugging these values into a ne@ali o coordinate in the quadratic function in EQ. (4), from an

contact constraint, we formulate a linear constraint foe thslliptic form to a circular one. Now, the problem of searahin
additional translation parameters. Under the formulateedr e o reduces to finding the closest point in the Euclidean
constraint, random values are generated for these trttm;latspace fromga to the non-convex polyhedral cone, formulated
parameters. using the linearization of¢?. Since the polyhedral cone is

In practice, an optimal solution for PDmay correspond formulated as a local approximation @fontacs it typically

to multiple contacts, suggesting that one needs to generB@$ & small size. Therefore, the closest point query can be

more samples on the boundary formed by multiple contaegrformed by explicitly computing the non-convex polyheddr

constraints. As a result, we set up a system of non-line&®ne.

equations for each combination of these constraints, @#erc. Refinement

random values for the rotation parameters in the system .

(thereby making the system linear), and sample the regultifi{though searching over the local contact spagearound

linear system for the translation parameters. Qa Can y'eld, a new conf|gurat.|oqb that improves the opti-
mization objective ofg,, we still need to check whethey,

2) Linearizing the Local Contact SpacelNe search for a is a valid contact configuration before advancing to it beeau

configuration with smaller distance to the contact spacerby | q;, is computed based upon a local approximation of contact

early approximating the contact space. For each basic contgpace andy, may not be on the contact space.

constraintC;, we compute its Jacobian, which is the normal . i . .

of the corresponding parameterized configuration spad«agUsFOr '”Staf‘ce' the new conﬂgurgtl(m, may be a _coll|§|on-

this normal, we obtain a half-plane, which is a Iinearizatiofree configuration due to the first-order approximation. To

of the contact surface [21], [37]. By concatenating the-haIPhanqle this case, /WE projegs tr:ack t0%contact bY com(;)utmg
planes using Boolean operatars we generate a non-convex,t € mter;ecuonqb etween. the contact spacé and a curve
interpolating fromq, to q, using screw motion (Fig./1). Since

polyhedral cone, which serves as a local linear approxonati™ ' * } X o "
Jo is in & andqy is free, the intersectioqy’ can be efficiently

Of Geontact computed by bisectionCCD._Bisection in Alg. 1). Also,

3) Local Search:The sampling-based method is general faiccording to the contact space realization theorem in Sec.
any distance metric. Moreover, we can generate samples|ttD, 5(qo,qy’) < 6(do,dp). Therefore, we are guaranteed to
each non-linear contact constraint efficiently. Finallsing the obtain a new configuratiogy’, which is closer tayo, and thus
local contact space approximation, our method can cull maitycan be used for successive iterations.

potentially infeasible samples.

It is also possible the new configuratigp may be a colliding
On the other hand, the method of linearizing the contactespamnfiguration. As Fig. 5 on the left shows, when moving from



% polyhedral models. All the timeings reported here were take

q, on a Windows PC, with 2.8GHZ of CPU and 2GB of memory.
)\ 4, A. Implementation
Since our PB formulation is independent of the representation
& of the configuration space, we usegaaternionto represent
B o the rotation because of its simplicity and efficiency. In our

PD? algorithm, any proximity query package supporting col-
Fo 5 Rei ¢ Left using the local contact i lision detection or contact determination can be employed.
G which incluces only one consitaing Owe obtaim new confiurations. _OUF Current implementation, we use the SWIFT++ collision
Thoughg is still on G, it may not be on the contact space any more, sincdetection library, because of its efficiency and it provides
it will V:0|ﬁte OthﬁgCcmsttrzzifxbrsESChafézﬂ\;\zghTi"fé%Tgguéfdiggvtsoa dual both these proximity queries [40]. Based on SWIFT++, our
gxgg;l%;naf;r? blegcreated by ot’?\er bortions of the models goritﬂlr)ﬁ algo_mhm .comput.es all the contacts betwekrat a contact
uses CCD to compute a correct, new contact configuratigh configurationg, with B. We sample the contact space locally

aroundq,. For each primitive contact constrai@t, we derive

its implicit equation with respect to the parameters of ation
Ja to gp, the contact constrain®; is maintained. However, component (a quaternion) and a translation component (a 3-
gp is a colliding configuration as it does not satisfy the newector). In order to sample on a constraif we first slightly
constraintC,. The figure on the right highlights this scenarigerturb its rotational component by multiplying a random
in the workspace. WheA moves fromq, to gp, the contact is quaternion with a small rotational angle. The resultingarot
still maintained. In order to handle this case, we csitinuous tional component is plugged back into the constr&intThis
collision detection(CCD) to detect the time of first collision yields a linear constraint with only translational compoise
when an object continuously moves from one configuratiaand therefore can be used to generate additional samples.
to another using a linearly interpolating motion@ [38]. In  To linearize C;, we compute the Jacobian of its implicit
our case, whe® moves fromg, to gy, we ignore the sliding equation forC; . For other types of contacts, we decompose
contact ofg,, and use CCD to report the first contag’ them into primitive contact constraints. Proper operatimrs
before the collision [39]. The new configuratiap’ can be concatenate them are identified by computing the dihedral
used to update the local approximation gyf. This yields a angle of contacting edges, thereby determining whether the
more accurate contact space approximation and conseguentntact features are convex or not.
improves the local search, e.g. culling away additionaliav

In the refinement step of the algorithm, we perform collision
samples.

detection using SWIFT++ to check whetlmgy from the local

D. Initial Guess search step still lies on the contact space. Wihgnis on
The performance of the PDalgorithm depends on a goodcontact space, our algorithm proceeds to the next iteration
initial guess. For many applications, including dynamimsi Otherwise, whemy, is free, a new contact configuratiop’ is
ulation and haptic rendering, the motion coherence can bemputed for the next iteration by performing recursiveebis
used to compute a good initial guess. Since no such motigens (Fig! 1(b)) on the screw motion interpolating betwegn
coherence could be exploited in some other applicatiors (eandqy. Finally, whengp, is in C-obstacle space, we compute
sample-based motion planning), we propose a heuristic. Gunew contact configuratiom,’ by using CCD. In our current
method generates a set of samples on the contact spacdémgdementation, we check for collision detection on a set of
a preprocess. At runtime, given a query configuratiy) discrete samples on a linear motion betwegnand gy. In
our algorithm searches for th€ nearest neighbors from theorder to ignore the old contact during CCD query, the idea of
set of precomputed samples, and imposes the inter-distaseseurity distancés used [39]. After computing a new contact
between any pair of thedé samples should be greater thargonfigurationqy’ from the CCD query, our algorithm updates
some threshold. The distance metric used for nearest naighthe local approximation aroungh and resumes a local search
search is the same as the one to definé.Pie resultingk again.

samples serve as initial guesses for ourdRilgorithms. To

generate samples on the contact space, we randomly sanfhid erformance
the configuration space and enumerate all pairs of free ahff USe different benchmarks to test the performance of our

collision samples. For each pair, a contact configuratiam c&'90rithm. Fig/ 6(a) shows a typical setup of our experiment

be computed by a bisection method (Fig. 1(b)). including two overlapping mod_els, wherfe(‘Pawn’) is mov-
able andB (‘CAD Part’) is stationary. In (b), our algorithm
V. IMPLEMENTATION AND PERFORMANCE computes PBysp or PD¥, to separate the modd, initially

We have implemented our Plalgorithm using local contact placed atAg, from the modelB. The three images on the
space sampling for general non-convex polyhedra. In thight highlight the intermediate configurations &f and A,
section, we discuss some important implementation issugs @and a P8p sp solutionAg with yellow color. The sequence of
highlight the performance of our algorithm on a set of compleémages (b,c,d,e) illustrates that our algorithm succéigdinds



A . .
>
(@) (b) (d) (e)

Fig. 6. The ‘CAD Part’ example: (a) shows the models A - ‘pawn’ and B - ‘CAD Part’ used in thastt (b) illustrates a typicaPD? query scenario where
the model A at 4 overlaps with B. A and A are intermediate placements of A during the optimizatianAB¥p,sp. A is the solution for an upper bound
of PD¥psp. The sequence of images (c,d,e) illustrates that our algariincrementally slides the model ‘pawn’ on the model ‘CADtRo minimize DISP
distance.

(c)

1 2 3
A L-Shape Pawn Hammer
tris # 20 304 1,692
B Torus-with-a-Knot| CAD | Bumpy-Sphere
tris # 2,880 2,442 2,880
‘ Avg Pmmsp(ms) ‘ 219 ‘ 297 ‘ 109 ‘
[ Avg PD9(ms) | 156 | 445 ] 138 |
TABLE |
Performance this table highlights the geometric complexity of differe
Fig. 7. The ‘torus-with-knot'" example: the left image highlights &D° benchmarks we tested, as well as the performance of ourittigar

query between a model ‘torus-with-knot’ B intersectinghwa model ‘L-
shaped box’ at 4 (red). A is a collision-free placement of the ‘L-shaped
box’ model as a result oPD%; the right image shows the same result butour method can handle complex non-convex models. Instead,

from another viewpoint. the method in [5] reduces PDcomputation tocontainment
optimization which suffers from enumerating convex con-
tainers using convex decomposition, and can result in pverl
conservative query results for non-convex models.

Our algorithm computes an upper bound on%PBince the
resulting configuration is guaranteed to be on the contact
space. Moreover, in general, the algorithm converges teca lo
Fig. 8. The ‘hammer’ example: from left to right: PD%p sp query between minimum due to the ConStrained optimizgtiqn f‘?rm‘_"atiOhET
A and B, an intermediate configuration Aand the solution A termination condition for the iterative optimization is¢beck

o whether the gradient of the distance metric is proportidgoal
an upper bound of P#sp by gradually sliding the ‘pawn’ that of the contact constraint after each iteration. Howeve
model on the ‘CAD’ model. some issues arise in checking this condition in practice. Fo

Figs.[7 and B show two more complex benchmarks that vé&ample, in the case of DISP metric, one can only compute an
have tested. In Fig. 7, the model ‘torus-with-a-knot’ hapéry @pproximation of the gradient, since no closed form is avail
bolic surfaces. This benchmark is difficult for toentainment able for DISP metric. Furthermore, a convergence analgsis i
optimizationbased algorithm [5], as that algorithm computedifficult, due to the discontinuity in contact space causgd b
the convex decomposition of the complement of the modénultiple contacts.

On the other hand, our PDalgorithm can easily handle this VI. CONCLUSION

benchmark, and compute a tight upper bound of.PD

We present a practical algorithm to compute 9Pdr non-

Table[1 summarizes the performance of our algorithm ogpnvex polyhedral models. Using model-dependent distance
different benchmarks. In our implementation, we set th®etrics, we reduce the PDcomputation to a constrained
maximum number of iterations as 30. For the most of tHeptimization problem. Our algorithm performs optimizatio
models we have tested, our algorithm can perfornPfigp On the contact space, and the experimental results show that
query within 300ns and PI¥5 query with 450ns Our current We can efficiently compute a tight upper bound of%PD
implementation is not optimized and the timings can be &nth

. The main limitation of our approach is that our algorithm
improved.

can not guarantee a global solution for PDBomputation.

Its performance depends on the choice of an initial guess.
For future work, it is worthwhile to analyze the convergence
Spiroperties of the algorithm, as well as an error bound on the
aﬁproximation. We would also like to apply our algorithm to

motion planning, dynamic simulation, and haptic rendering

C. Comparison and Analysis

Compared to prior method for PDcomputation in [5], our
method can handle more complex non-convex models. Thi
because we reduce PBomputation to proximity queries such
as collision detection and contact determination. Sinegeth
are well known efficient algorithms for both these querieg\cknowledgements: We would like to thank Ming C. Lin and
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