
International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.13, February 2016

34

Test Cases Generation on Robotics for basis Path

Testing using Genetic Algorithm

Anju Bala
Research Scholar

Maharshi Dayanand University, Rohtak

Rajender Singh Chhillar, PhD
Professor in Department Of Computer Science &

Applications
Maharshi Dayanand University, Rohtak

ABSTRACT
The paper explores the Genetic Algorithm approach to

generate adequate and accurate test data for a specific target

path. Software plays an important role in many of the

systems, where the usage of software for a variety of purposes

in different domains of modern life is rapidly increasing. With

advancements in technology, it becomes quite complex

whereas, software often contains errors. So testing consumes

more money and time, which leads to automation that reduces

human effort in finding bugs and errors. Actually, Automation

in the last phase of system development is similar to manual

testing. In both cases, bugs are detected only after code has

been complete. Software testing is the most important

component of software development process. Path testing is a

popular structural testing method which uses the source code

of a program to find every possible executable path. Test data

generation is a key problem in software testing and its

automation will improve the efficiency and effectiveness of

software testing. Genetic Algorithm is an adaptive heuristic

search algorithm that premise on evolutionary ideas of natural

selection and genetic. In this paper, Genetic Algorithm is

used to generate path by converting the program into its

corresponding Control Flow Graph and then automatically

generates the test data for the target path using different sets

of GA operators.

Keywords
Testing Techniques, Genetic Algorithm, Case Study and Path

Testing, Conclusion

1. INTRODUCTION
Software testing is a process to analyze the software to detect

the bugs, fault and failures; it is used to validate the features

of the software, and is used to ensure that it satisfies the

customers and developers requirements. Mainly there are

three approaches in software testing namely, black-box

testing, white-box testing and grey box testing. Black-box

testing is testing the functionality against software

specifications. Testers determine what input should be given,

what output should be generated, and testers analyze the

external behaviour of the software. On the other hand, white-

box testing is an examination of the logic, and the procedure

used in the software. It focuses on testing the data structures,

branches, loops, conditions, objects, messages, critical paths

generated. Grey-box testing is a combination of both white

and black box testing. In grey box testing tested doesn’t have

complete information of the system but has some idea about

the system. So grey box testing is not completely white box or

black box testing Software testing is a verification process

which promises the clients expectations and requirements

about the software. Verification is done to guarantee that

developed software is meets clients requirements.

1.1 Testing Techniques
1.1.1 Black Box Testing
Black box testing is mainly used to execute the requirements

of the system. Black-Box testing examines functionality

without knowledge of internal implementation. It mainly

concentrates on whether the input is accepted and output is

generated or not. It concentrates on functional requirements so

it is also called as functional testing. Functional testing

evaluates the correctness of the program without any

knowledge of how the software is implemented. In black box

testing, testers test software through user interfaces, data

structures, data base, or the application programming

interfaces at the later stages of software development.

1.1.2 White Box Testing
White box testing known as clear box testing, glass box

testing, transparent box testing and structural testing. In White

box testing an internal perspective of the system, as well as

programming skills are used to design test cases. White box

testing is detailed examination of the code. Code coverage

criteria is defined using segment coverage, branch coverage,

node testing, statement coverage, condition coverage, basis

path testing, data flow testing, path testing and loop testing.

White box testing can be applied at the unit integration and

system levels of software testing process. The test procedure

attempts to execute every part of the source code using the test

data.

1.1.3 Grey Box Testing
Grey-box testing is a combination of benefits of both black

box-testing and white box-testing. Grey box testing involves

having knowledge of internal data structures and algorithms

for designing tests, while executing those tests at the user or

black-box level. As with black-box testing, grey-box testing

uses a specification for creating test cases. In grey box testing

the tester has limited knowledge of the system. Grey-box

testing implements intelligent test scenarios, based on limited

information. The specification used in grey-box testing does

not specify only the requirements of a system, but it also

describes the behavior of the system.

2. DATA COLLECT FROM

INDUSTRIES (WITHOUT GENETIC

ALGORITHM)
The Robotics & Mechatronics division covers very large

areas. It is difficult to point out the key parameters for looking

over and predicting the comprehensive technical development

and discuss the future of these technologies. Thus, in this

roadmap, we decided to focus on the industrial robots that

have been increasing the social and technical importance.

They are automatically controlled, reprogrammable

multipurpose manipulator, programmable in three or more

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.13, February 2016

35

axes, which may be either fixed in place or mobile for use in

industrial applications. In this research paper we discussed

that Metal detector Robot; we will find finest result with the

help of Genetic algorithm as compare to Random selection of

best cases.

i. Mean power rate density

ii. Accuracy

iii. Intelligence level

3. GENETIC ALGORITHM IN

ROBOTICS
First of all Evolutionary Robotics which used the concept of

Genetic Algorithm. It is the Methodology that uses

Evolutionary Computation to develop controllers for

autonomous robots. Algorithms in ER operate on Populations

of candidate controllers, initially selected for some

distribution. Wherever, this population is then repeatedly

modified according to fitness function. In the case of Genetic

Algorithms, a common method in evolutionary computation,

the population of candidate controllers is repeatedly grown

according to crossover, mutation and other GA operators and

then called according to the fitness function.

Implement Path Testing Using GA (Total Path)

Path testing is a structural testing method that finds every

possible executable path from the source code of a program.

The method ensures that every path through a program has

been executed at least once. One of the major difficulties in

the automation of software testing is automatic generation of

adequate set of test data that satisfies the complete path

coverage of a given program. Since it is impossible to cover

all paths in software, the path testing method selects a subset

of paths to execute and find test data to cover it. Many

attempts were made to automate the test data generation

process for path testing and suffered many limitations as the

test data generation process is extensive and difficult process.

The paper focuses on the Genetic Algorithm approach which

is an adaptive heuristic search algorithm that premise on the

evolutionary ideas of natural selection and genetic, to

automate test data generation for a target path. This paper

presents the utility and implementation of GA to

automatically generate the test data to ensure the complete

coverage of the target path.

4. STATE CHART DIAGRAM

Fig 1: State-chart diagram

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.13, February 2016

36

5. CONTROL FLOW GRAPH

Fig 2. Control Flow Graph

6. METHODOLOGY

State chart diagram
1. Collect all Objects, method of scanner and detection.

2. For every conditional Detection, one mode two edges

3. For every possible time, there is detection or not which

represented one node for each condition, one for true and

other for false.

4. For every other detection there allot one node and one

edge.

5. Connect the nodes and edges according to the order they

occur.

7. PROPOSED METHOD
1. Draw the state chart diagram.

2. Convert state chart diagram to control flow graph using

the above said algorithm.

3. Assign weights to the nodes as the parents weight is the

weight of the node. If a node has multiple parents then

add the weights of the parents to be the weight of the

node.

4. Apply Genetic Algorithm to generate all paths between

the source and destination with loops.

5. To calculate fitness value

 For each path calculate the cost of the path, here the

path’s cost will be the sum of all the costs assigned

to each link in the path

 Apply the fitness functions as F(X)=X*X

 Calculate the probability of the individual as

 P (i)= F(x)/∑F(x)

6. To select the individuals from large initial population

produce a new generation of solutions by picking from

the existing pool of solutions with a preference for

solutions which are better suited than others.

 The probability range is divided into bins, sized

according to the relative fitness of the solution

which they represent.

 By generating random values and seeing the bin

where it fall into, to pick the individuals that will

form the basis of the next generation.

7. To perform crossover, mate the first two strings together

and the second two strings together and so on. For the

first two pairs perform single point crossover on the fifth

bit from left. For the next two pairs perform single point

crossover on the third bit from left.

8. Mutate every fourth bit if random number generated is

less than 0.2 to obtain the best path. 10. Reevaluate

fitness of the new generation.

9. Repeat this process until the fitness value minimizes or

all the paths have been covered or maximum number of

generations is reached

10. Best Test path generated.

11. End.

8. CASE STUDY
The Genetic Algorithm (GA) is an optimization algorithm

based on biological evolutionary system, mainly based on

principal of “survival of fittest” proposed by Charles Darwin.

It is a metal detector robot, which start from power on ,

scanner moves to detect metal until no metal is detected. To

detect the metal, genetic algorithm proved that it is the best

optimization technique to generate path and gives the best

path for detection the metal in less money and efforts. With

the help graph, generate all possible path, select path

randomly and apply GA and its operator.

Randomly selected path

The Possible unique paths generated from the above graph are

Srcnode: P1=>P2=>P4=>P9=>P10: dstnode, cost= 35

Srcnode:P1=>P2=>P3=>P5=>P6=>P7P8=>P9=>P10:dstnode

, cost=66

srcnodeP1=>P2=>P3=>P5=>P9=>P10: dstnode, cost=35

Srcnode P1=>P2=>P3=>P5=>P10: dstnode, cost=66

Number of all possible paths = 4

Table 1.

S.N

o.

Chromosome

s

X X*X Probabilit

y

Associated

Bin

1 00100011 35 1225 0.10763 0-0.10763

2 01000010 66 4356 0.38274 0.1-0.49037

3 00100110 35 1444 0.10763 0.4-0.61724

4 01000010 66 4356 0.38274 0.6-1

11381

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.13, February 2016

37

Table 2

Rando

m

no.

Fal

l

ino

bin

Selectio

n

Crossov

er

Point

crossove

r

mutation

0.8247 4 0100101

0

4 0100001

0

0100001

0

0.9158 4 0100101

0

4 0100001

0

0100001

0
0.1260 2 01000010 2 01000010 01001010

0.9132 4 01001010 2 01000010 01000010

Table 3

s.no. Chromosomes X X*X probability Associated

bin

1 01000010 66 4356 0.23490 0-0.2349

2 01000010 66 4356 0. 23490 0.1-0.4698

3 01001010 74 5476 0.29529 0.4-

0.76509

4 01000010 66 4356 0. 23490 0.76-1

18544

Table 4

Random

no.

Fall

ino

bin

Selection Crossover

point

crossover mutation

0.8004 4 01001010 3 01000010 01001010

0.1429 1 01001010 3 01000010 01000010

0.4232 2 01001010 2 01000010 01000010

0.7167 3 01000010 2 01001010 01001010

Table 5

s.no. chromosomes X X*X probability Associated

bin

1 01000010 66 4356 0.22152 0-0.22152

2 01001010 74 5476 0. 27847 0.2-
0.49999

3 01000010 66 4356 0.22152 0.4-

0.72151

4 010001010 74 5476 0. 27847 0.72-1

19664

Table 6

Random
no.

Fall
ino

bin

Selection Crossover
point

crossover mutation

0.7911 4 01001010 4 01001010 01001010

0.9695 4 01001010 4 01001010 01001010

0.6667 3 01000010 3 01000010 01000010

0.0329 1 01000010 3 01000010 01000010

Table 7

s.no. chromosomes X X*X probability Associated
bin

1 01001010 74 5476 0.26347 0-0.26347

2 01001010 74 5476 0. 26347 0.2-

0.52694

3 01000010 66 4356 0.22152 0.5-

0.73652

4 010001010 74 5476 0. 26347 0.73-1

20784

Table 8

Random

no.

Fall

ino

bin

Selection Crossover

Point

crossover mutation

0.3821 2 01001010 5 01001010 01001010

0.6524 3 01000010 5 01000010 01000010

0.1812 1 01001010 3 01000010 01000010

0.7030 3 01000010 3 01001010 01000010

Table 9

s.no. Chromoso

mes

x X*X probabilit

y

Associated bin

1 01001010 74 5476 0.29529 0-0.29529

2 01000010 66 4356 0. 23492 0.2-0.53019

3 01000010 66 4356 0.23490 0.5-0.76509

4 01000010 66 4356 0. 23490 0.7-1

18544

9. CONCLUSION
In software testing, the generation of testing data is one of the

key steps which have a great effect on the automation of

software testing. The paper discusses the algorithm that

depends on the principles of genetic algorithms to generate

test data that provide good coverage in terms of the paths it

tests or visits within the application. This paper presented the

test case generation by means of UML state chart diagram

and control flow graph using Genetic Algorithm from which

best test cases can be optimized. The greatest merit of genetic

algorithm in program testing is its simplicity. Genetic

algorithms are often used for optimization problems in which

the evolution of a population is a search for a satisfactory

solution given a set of constraints. The proposed experimental

sets. This method for test case generation inspires the

developers to improve the design quality and to find multiple

test cases ready for execution. In future, it is possible to build

an automatic tool using this approach. This automatic tool will

reduce cost of software development and improve quality of

the software. Have used different combinations of the GA

operator to find the test data for a target path in the CFG of a

program under test.

10. REFERENCES
[1] A. Bouchachia, “An Immune Genetic Algorithm for

Software Test Data Generation”, Seventh International

Conference on Hybrid Intelligent Systems, 0-7695-2946-

1/7 © 2007 IEEE. pp.84-89.

[2] X. Shen, Q. Wang, P. Wang, Bo Zhou, “Automatic

Generation of Test Case based on GATS Algorithm”,

2007AA04Z148, supported by Nation 863 Project.

[3] P.R. Srivastava, T. Kim, “Application of Genetic

Algorithm in Software Testing”, International Journal of

Software Engineering and Its Applications, Vol. 3, No. 4,

October 2009, pp.87-96.

[4] A. Rauf, S. Anwar, “Automated GUI Test Coverage

Analysis using GA”, 2010 Seventh International

Conference on Information Technology, 978-0-7695-

3984-3/10 © 2010 IEEE, pp.1057-1062

International Journal of Computer Applications (0975 – 8887)

Volume 136 – No.13, February 2016

38

[5] M. Harman, “Automated Test Data Generation using

Search Based Software Engineering”, Second

International Workshop on Automation of Software Test

(AST'07) 0-7695-2971-2/07 $20.00 © 2007IEEE.

[6] M. A. Ahmed, I. Hermadi, “GAbased multiple paths test

data generator”, Computers and Operations Research

(2007).

[7] Ashalatha Nayak, Debasis Samanta: "Automatic Test

Data Synthesis using UML Sequence Diagrams", in

Journal of Object Technology, vol. 09, no. 2,

March{April 2010, pp. 75{104,

[8] Li Bao-Lin, Li Zhi-shu, Li Qing, Chen Yan Hong ,” Test

Case automate Generation from UML Sequence diagram

and OCL Expression”, International Conference on

Computational Intelligence and Security 2007, pp 1048-

52.

[9] Monalisa Sarma Debasish Kundu Rajib Mall,

“Automatic Test Case Generation from UML Sequence

Diagrams”,15th International Conference on Advanced

Computing and Communications 2007, pp 60-65.

[10] A. Abdurazik, and J. Offutt, Using UML Collaboration

diagrams for static checking and test generation, in:

Proceedings of the Third International Conference on the

UML, Lecture Notes in Computer Science, Springer-

Verlag GmbH, York, UK, vol. 939,2000,pp.383–395.

IJCATM : www.ijcaonline.org

