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1. INTRODUCTION

Historically, programmers have been trained to write programs correctly. Therefore,
they obsess to eliminate as many software bugs as possible. A recent study [Britton
et al. 2013] has reported that programmers spend 50% of their effort in finding and
fixing bugs. This costs hundreds of billions of dollars a year throughout the world.
By introducing notorious bugs such as data races, atomicity violations, ordering viola-
tions, deadlocks, or sequential consistency violations, parallel programming makes the
already challenging task of writing correct programs even more daunting. These bugs
are usually referred to as concurrency bugs.

There has been significant research to detect [Savage et al. 1997], avoid [Lucia and
Ceze 2009], or expose [Park et al. 2009] concurrency bugs. Despite all of these efforts
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to trade system efficiency for correctness, programmers continue to struggle with con-
currency bugs. Accordingly, this article investigates the idea of deviating from the con-
ventional wisdom of writing concurrency bug—free, hence correct, parallel programs. It
explores the possibility of accepting buggy but approximately correct parallel programs
by leveraging the inherent tolerance of emerging parallel applications to inaccuracy in
computations. We introduce the concept of a new class of concurrency bugs: accuracy
bugs. These are the concurrency bugs that do not lead to program failures but man-
ifest themselves as inaccuracy in outputs. Our goal is to understand how embracing
accuracy bugs can potentially improve the overall system efficiency by compromising
accuracy, but not correctness.

Emerging recognition, mining, and synthesis (RMS) applications [Chen et al. 2008]
exhibit an inherent ability to tolerate inaccuracy in computations [Rinard 2012, 2013].
This is because, RMS applications process noisy and highly redundant data, they are
based on probabilistic, often iterative algorithms, and they generate a range of valid
outputs as opposed to single golden output. These applications’ output is much less
sensitive to faults in data-centric program phases, as opposed to control [Li and Ye-
ung 2007]. Accuracy bugs comprise the subset of concurrency bugs that mainly affect
the dataflow. Therefore, embracing accuracy bugs is more likely to hurt accuracy than
correctness of computation. By focusing on accuracy and integrity rather than correct-
ness, not only can programmers be relieved from the burden of finding and fixing all
concurrency bugs but also the overall system efficiency (i.e., performance, complexity,
and energy efficiency can improve).

To understand the impact of embracing accuracy bugs, we carefully analyze many
buggy execution scenarios. To identify accuracy bugs, and to mimic buggy execution
semantics, we inject different concurrency bugs into correct programs by relaxing syn-
chronization points. A cautious reader might wonder why we do not use existing bugs
from bug databases. We do not rely on those bugs, because the bugs confirmed by the
developers are clear-cut harmful or critical ones (they cause crash, deadlock, etc.) and
hence cannot be considered as accuracy bugs, which is the focus of our study. The bugs
that we consider as accuracy ones are not reported in bug databases and therefore are
not available publicly.

Concurrency bugs may prevent program termination. Even if the program termi-
nates successfully, the application output may be invalid (i.e., incorrect). Accuracy
bugs, on the other hand, can only lead to valid (i.e., correct) application output, by
definition. Accuracy bugs can degrade the accuracy of application outputs at varying
levels, and the resulting output quality degradation may or may not be acceptable.
Based on acceptability, we can distinguish between two classes of accuracy bugs: ac-
ceptable accuracy bugs and unacceptable accuracy bugs. Acceptability tightly depends
on the level of accuracy bug—induced degradation in the output quality. At the same
time, acceptability is a strong function of the context in which an application is used.
The very same level of output degradation due to accuracy bugs, for the very same
application, may be acceptable in one context and totally unacceptable in another. As
our study is context oblivious, we will report ranges for expected quality degradation
under different (accuracy) buggy execution scenarios.

On the other hand, accuracy bugs may also affect convergence criteria. A buggy
execution may feature an increased number of iterations until convergence and thereby
degrade performance, particularly for a critical class of RMS applications based on
iterative refinement [Recht et al. 2011].

To understand accuracy bugs, we seek to find answers to the following questions:

—Wohat types of concurrency bugs occur when different synchronization operations are
relaxed?
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—How many of these bugs are accuracy ones and why?

—What is the impact of accuracy bugs on different variables?

—How sensitive is the output quality on these variables?

—What is the overall quality degradation under different accuracy bugs?

—How does the execution time change under quality degradation? What contributes
to that change?

—How can we exploit our findings to improve efficiency?

This article is the first (to the best of our knowledge) comprehensive study to provide
answers to these questions. We examine all applications from PARSEC [Bienia et al.
2008] and one application from the SPLASH2 [Woo et al. 1995] benchmark suites. For
each application, we conduct extensive experiments to find out answers to these ques-
tions. We experiment on both simulated and real machines. Our experiments reveal
many interesting findings, such as the following: (i) 84/134 synchronizations affect the
dataflow, and their relaxation introduces less than 10% inaccuracy (75/84); (ii) 404/533
injected bugs and affected variables are confined to dataflow; and (iii) applications’
performance gain due to embracing accuracy bugs is not significant at a lower thread
count, but the potential gain increases at a higher thread count (as we sweep the
thread count from 2 to 64). Finally, we point out implications of these findings in future
research for efficient system design and algorithm/software development.

We believe that the applications we examine represent many important classes of
RMS applications; however, we do not intend to draw any general conclusion for all
RMS or all parallel applications. In particular, it should be noted that all characteris-
tics and findings are associated with the examined applications (and others like them).
Moreover, the applications might have some latent bugs of which we are not aware.
In that case, comparison with unmodified applications to quantify accuracy and cor-
rectness may lead to misleading results. Therefore, the findings of this work should
be considered with the specific set of applications and the evaluation methodology
(Section 3) in mind.

2. MOTIVATION

An important emerging class of parallel applications, RMS [Chen et al. 2008] exhibits,
by construction, an inherent ability to tolerate faults due to massive yet noisy and
redundant input data, the reliance on iterative and often probabilistic algorithms, and
the existence of a range of valid outputs. Therefore, the application output is much
less sensitive to faults in data-centric program phases, as opposed to control [Li and
Yeung 2007]. Provided that accuracy bugs only affect the dataflow, embracing this class
of concurrency bugs is more likely to hurt accuracy than correctness of computation.
In other words, we can embrace concurrency bugs only if (i) they are accuracy bugs
(i.e., confined to data-centric program phases and hence manifest as a degradation in
accuracy) and (ii) the bug-induced degradation in accuracy remains within acceptable
boundaries. Accordingly, we need to explore to what extent we can meet these two
conditions.

Impact on execution semantics. Correct parallel execution demands careful orches-
tration of how parallel tasks access shared data. This entails preventing both (i) si-
multaneous accesses to shared data, particularly if at least one of the accesses is to
modify the data, and (ii) any execution order that breaks producer-consumer depen-
dencies among parallel tasks. Any violation of parallel access semantics can give rise
to concurrency bugs.

Concurrency bugs may result in deadlocks. Since deadlocks prevent program termi-
nation (i.e., affect the control flow), RMS applications cannot mask them. Prevalent
classes of concurrency bugs such as ordering violations, atomicity violations, and data
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races, however, often affect the dataflow and hence can be classified as accuracy bugs
most of the time. A recent study reports that 97% of nondeadlock concurrency bugs
stem from ordering or atomicity violations and data races [Lu et al. 2008]. If multiple
parallel tasks access shared data, where at least one of the accesses is a write, the pro-
gram output may change with order of accesses, due to data races. Ordering violations
manifest if parallel tasks execute out of the required order to guarantee correctness.
Atomicity violations, on the other hand, emerge if the execution of a (supposedly) atomic
code segment is interleaved with accesses from another concurrent task.

The common pathology of improper synchronization between parallel tasks of exe-
cution can easily lead to concurrency bugs—ordering or atomicity violations and data
races. Injecting concurrency bugs by relaxing synchronization can change not only the
interleaving but also the concurrency of threads, which in turn affect the data values
protected by synchronization primitives. Depending on how such changes in data val-
ues propagate to the program outputs, we can define two distinct, broad classes for
bugs. In the first class, critical, the bugs prevent proper termination of the program
due to hangs, deadlocks, segmentation faults, and so forth. Such bugs affect the control
flow of the program. The bugs of the second class, accuracy, on the other hand, result
in output quality degradation but at varying quantities. Sometimes these bugs may
render an unacceptably high degradation in application output quality. We will refer
to this subclass as unacceptable accuracy bugs to differentiate them from acceptable
accuracy bugs. At the same time, nondeterminism in the execution may cause the same
concurrency bug to appear as a different class. To be able to exploit algorithmic fault
tolerance, we need to carefully assess the conditions leading to such divergent behavior.

Implications on system design. We can analyze the impact of embracing accuracy
bugs from two perspectives: implications on performance and complexity. Can accuracy
bugs, if embraced, lead to any performance benefit? If so, what is the extent of such
benefit? If we can harvest the performance benefit, energy efficiency and application
scalability benefits are likely to follow. As for complexity, can accuracy bugs, when
embraced, lead to simplicity in system design? In principle, one would expect most of
the hardware overhead incurred by concurrency bug detection, avoidance, or recovery to
be minimized, if not eliminated. Cache coherence and memory consistency protocols can
be made flexible by relaxing constraints for accuracy oblivious data as well. However,
the need for safety nets persists to sustain accuracy (at a desired level) and to guarantee
program integrity. For example, checkpoint recovery support may be provided, likely of
much less complexity, since embracing accuracy bugs would likely demand less frequent
checkpointing of (possibly less) architectural state. At the same time, we should not
overlook new sources of complexity introduced by embracing accuracy bugs, mainly due
to the addition of one more degree of freedom. A system capable of embracing accuracy
bugs should be at least equipped with some control logic to decide and orchestrate
which concurrency bugs to embrace, at which point of execution. In this article, we
would like to shed some light on these questions.

3. EVALUATION SETUP

Simulation infrastructure. We use the cycle-accurate microarchitectural simulator
Sniper-6.0 [Carlson et al. 2011]—along with a real system that consists of four sockets
with eight-core Intel Xeon E5-4620 v2 processors—for benchmark profiling in terms of
application output quality, execution semantics, and performance. The configurations
of the simulated processor and the real machine are given in Table I.

Benchmarks. We examined all benchmarks from the PARSEC-3.0 suite [Bienia 2011]
and one benchmark from the SPLASH2 suite [Woo et al. 1995]. The PARSEC-3.0 suite
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Table I. Technology and Architecture Parameters

H Simulated ‘ Measured (E5-4620 v2) H
H System & Technology Parameters H
Tech. node: 22nm Tech. node: 22nm

Frequency = 2.60GHz (64 cores) Frequency = 2.60GHz (8 cores/socket with 4 sockets)
I Architectural Parameters |

L1-I Cache: 32KB L1-I Cache: 32KB
L1-D Cache: 32KB L1-D Cache: 32KB
L2 Cache (private): 256 KB L2 Cache (private): 256 KB
L3 Cache (shared): 20MB L3 Cache (shared): 20MB

Table II. Concurrency Bug Injection Techniques

H Injection Method H Description H
Lock elimination (LE) Removal of a lock and unlock operation
Barrier elimination (BE) Removal of a barrier
Condition elimination (CE) Removal of a conditional wait and surrounding lock-unlock
Lock splitting (LS) Splitting of the critical section of a lock
Atomicity elimination (AE) Replacing an atomic operation with a conventional one

covers a representative collection of RMS applications by construction [Chen et al.
2008]. Among the PARSEC benchmarks, Blackscholes and Swaptions do not use any
classic synchronization primitive (which complicates concurrency bug injection accord-
ing to Table IT), and Freqmine does not employ pthreads for parallelization. Accordingly,
we exclude these benchmarks. The rest of the PARSEC benchmarks, Canneal, Dedup,
Ferret, Streamcluster, Fluidanimate, Bodytrack, Vips, Raytrace, and X264, along with
Barnes from SPLASHZ2, still cover a representative sample of RMS applications. For
performance analysis, we profile the (prespecified) region of interest (ROI) for PARSEC,
and the parallel section for SPLASH2, where the actual computation takes place.

Concurrency bug injection. Ideally, we would like to start by exploring various con-
currency bugs that either arose during development time or are reported by users.
Unfortunately, bugs of the first category are not available to anyone other than the
developers. Bugs of the second category, as mentioned in Section 1, are either clear-cut
harmful ones (because they cause crash, hang, deadlock, etc.) or not classified as bugs
at all (as decided by developers). Hence, we resort to injecting different bugs artificially
for this study. Table II lists the techniques that we applied for concurrency bug injec-
tion.! Table III provides the points of injection (i.e., synchronization points subject to
the methods in Table II) for each application. The second column specifies the range
(which we use as labels to identify the synchronization points throughout evaluation)
of the synchronization points within the source file given in the third column. Synchro-
nization points are numbered according to the order of appearance in the source file.
The last column tabulates the respective line numbers in the source files. An interested
reader can examine the source files to determine the type of each synchronization point.

We use Thread Sanitizer [Serebryany and Iskhodzhanov 2009] and Helgrind
[Nethercote 2004] to detect data races. Since there is no publicly available tool to
detect atomicity and ordering violations, we manually inspect the reported data races
and bug injection sites to determine these violations. If a bug can be categorized as

1In principle, these injection methods may lead to bugs other than concurrency bugs, but we did not observe
such cases in our evaluation.
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Table Ill. Points of Injection (i.e., Synchronization Points Subject to the Techniques from Table )
H Benchmark H Synchronization Points H Source File H Line Number H
sync 1-7 code.c 285, 410, 414, 658, 721, 735,
barnes 807
sync 8-12 load.c 45,51, 53, 217, 233
sync 1-3 annealer_thread.cpp 90, 120, 121
sync 4 main.cpp 119
canneal sync 5-6 netlist.cpp 58, 84
sync 7-10 netlist_elem.cpp 57, 63, 81, 90
sync 11 rng.h 46
sync 1-3 encoder.c 267, 317, 486
dedup sync 4-6 mbuffer.c 197, 230, 280
sync 7-9 queue.c 39, 53, 87
fluidanimate || sync 1-16 pthreads.cpp 603, 732, 741, 834, 843, 1126,
1129, 1131, 1133, 1135, 1137,
1139, 1141, 1143, 1149, 1262
streamcluster || sync 1-27 streamcluster.cpp 706, 738, 744, 759, 770, 785,
789, 794, 803, 812, 825, 956,
991, 1008, 1021, 1036, 1073,
1102, 1115, 1150, 1212, 1231,
1239, 1503, 1514, 1569, 1608
ferret sync 1-3 queue.c 27, 34, 56
sync 1-4 AsynclO.cpp 66, 73, 88, 93
sync 5-12 ParticleFilterPthread.h 110, 112, 114, 120, 125, 127,
bodytrack 129, 138
sync 13-24 TrackingModelPthread.cpp || 142, 144, 149, 154, 167, 169,
174, 180, 188, 190, 195, 200
sync 25-31 WorkerGroup.cpp 71,78,99, 112, 114, 118, 129
sync 1-2 window.c 139, 355
sync 3 im_close.c 311
sync 4-5 semaphore.c 87, 124
vips sync 6 init.c 188
sync 7 debug.c 477
sync 8 threadpool.c 499
sync 9-14 region.c 203, 230, 253, 287, 335, 387
sync 15 im _XYZ2Lab.c 80
raytrace sync 1-8 RTThread.cxx 24,186,218, 239, 263, 287, 342,
361
x264 sync 1-2 frame.c 882, 890

both a data race and an atomicity (ordering) violation, we categorize it as an atomicity
(ordering) violation.

Metrics to capture application output quality. Canneal implements a simulated an-
nealing (SA)-based optimization algorithm and generates a numeric output correspond-
ing to the minimum (routing cost). To quantify how the outcome of buggy and bug-free
runs differ, we use the buggy routing cost normalized to the bug-free one as a relative
quality metric. For Dedup, a compression algorithm, we deploy the relative compres-
sion rate when compared to the bug-free execution as the quality metric, provided
that the output generated by the buggy execution can be decompressed.? For Fer-
ret, a content-based similarity search algorithm, our quality metric is based on the

2For Dedup, we explicitly check whether the output can be decompressed, as the output cannot be valid if
decompression is not possible.
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Table IV. Benchmarks Deployed

H Benchmark H Domain H Quality Metric H
Barnes (ba) N-body simulation Difference in body positions
Canneal (ca) Optimization (Relative) Routing cost
Dedup (de) Compression (Relative) Compression rate
Fluidanimate (fa) N-body simulation Difference in particle positions
Streamcluster (sc) Clustering Number of common clusters
Ferret (fe) Similarity search Number of common images
Bodytrack (bt) Computer vision SSD of output vectors
Vips (vp) Image processing Peak-signal-to-noise ratio (PSNR)
Raytrace (rt) Real-time animation PSNR
X264 (x2) Video encoding Structural similarity (SSIM)

number of common images that buggy and bug-free versions of the code produce for
any given query image. A similar metric is used for Streamcluster, a clustering applica-
tion, to capture the intersection of buggy and bug-free outputs. For Vips and Raytrace,
an image processing and a real-time animation benchmark, respectively, we use peak
signal-to-noise ratio (PSNR) to determine the output quality. Specifically, we normalize
the PSNR of the output image of the buggy version to the PSNR of the bug-free version.
For X264, a video encoding benchmark, we use structural similarity (SSIM) [Wang et al.
2004] as the quality metric. Specifically, we normalize the SSIM of the encoded video
under buggy execution to the SSIM of the bug-free version. The rest of the benchmarks
output vectors, so we rely on the average relative error per vector element as the qual-
ity metric.? Vector elements correspond to three-dimensional (3D) particle positions
for Fluidanimate and 3D body positions for Barnes. For Bodytrack, the output is a
vector of tracked configurations, and we rely on the sum of squared distance (SSD) as
the quality metric. Table IV summarizes the quality metrics. To calculate the quality
degradation under buggy execution, we repeat each experiment 100 times and report
the mean along with statistical significance.

4. EVALUATION RESULTS

To characterize how embracing accuracy bugs can enhance system efficiency, we inject
concurrency bugs following Table II and provide an in-depth analysis of application
output quality, execution semantics, and performance.

4.1. Impact on Application Output Quality

To demonstrate the impact of concurrency bugs on application output quality, we profile
representative RMS applications from the PARSEC suite [Bienia et al. 2008] with
the input dataset simsmall* and thread count (16) fixed, along with Barnes from the
SPLASH2 suite [Woo et al. 1995]. We run the experiments 100 times on the real
system from Table I and report the statistical significance. For each application, we
use a numeric metric to quantify the relative quality degradation with respect to the
bug-free (i.e., fully synchronized) execution, as shown in Table IV. To inject concurrency
bugs, we deploy the techniques from Table II. We inject one concurrency bug at a time.

Classification. Some synchronization points, if relaxed according to Table II to in-
ject a concurrency bug, prevent proper program termination. We call them critical

3We also provide maximum relative error; both average and maximum relative error are within reasonable
range of each other.

4Except for X264, where we use simlarge, as this benchmark requires a larger problem size for runs involving
more than eight threads.
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Table V. Impact of Injected Concurrency Bugs on Application Output

Quality Degradation Bin
=0% [ <1% | <50% || <100% [ NoTermination [ Invalid

Benchmarks Share of Synchronization Points in Quality Degradation Bin (%)
ba 25 33.3 8.3 8.3 25 0

ca 0 63.6 27.3 0 0 9.1
de 33.3 11.1 0 0 11.1 44 .4
fa 56.25 6.25 0 0 25 12.5
sc 18.5 0 3.7 18.5 59.3 0

fe 33.3 0 0 0 66.6 0

bt 71 0 0 0 29 0

vp 73.3 0 0 0 26.7 0

rt 62.5 0 0 0 37.5 0
x2 0 50 0 0 50 0

synchronizations. No output can be generated due to hangs or segmentation faults. Ac-
cordingly, concurrency bugs induced by the relaxation of critical synchronization points
cannot be masked by algorithmic fault tolerance. Critical synchronization points are
essential for the proper functioning of the applications. The rest of the synchronization
points, which are referred to as noncritical, do not prevent proper program termination
if relaxed according to Table II to inject a concurrency bug. Concurrency bugs due to the
relaxation of the noncritical synchronization points (i.e., accuracy bugs) render varying
degrees of degradation in the application output quality and hence can potentially be
masked by algorithmic fault tolerance.

Table V characterizes concurrency bug—induced degradation in application output
quality. Each column corresponds to a specific bin for the percentage of quality degra-
dation. Two separate columns capture the bins for invalid outputs and no termination.
For each benchmark, we report the percentage share of synchronization points falling
in a particular bin (as captured by the columns). We observe that out of 134 synchro-
nization points, 43 lead to nonterminating execution and hence are critical. Similarly, 7
synchronization points lead to termination; however, invalid outputs are generated, so
these are also considered critical. The rest (i.e., 84 synchronization points) are noncrit-
ical. We also observe that (across all benchmarks) out of 84 noncritical synchronization
points, only 9, when relaxed, cause more than 10% degradation in output quality. For
the majority of the noncritical synchronizations (i.e., 71), the maximum output quality
degradation remains below 0.1%.

We relaxed one synchronization point at a time and repeated each relaxation ex-
periment 100 times to estimate the quality bin for each synchronization point inde-
pendently. The presence of a synchronization point p in a quality bin (i.e., column) q
in Table V indicates that the relaxation of p caused a degradation corresponding to
g in more than 90 of the 100 experiments. Using normal approximation for binomial
confidence intervals [Leon-Garcia 1994], this translates into less than 5.88% binning
error with 95% confidence on a per synchronization point basis.

Noncritical synchronization points. We next analyze how the relaxation of each non-
critical synchronization point changes the application output quality. Figure 1 pro-
vides histograms for the percentage of quality degradation. The x-axis captures the
percentage of degradation in output quality, and the y-axis shows how many times we
observed the corresponding output quality degradation (out of 100 trials) when syn-
chronizations are relaxed either individually or in combination with other (noncritical)
synchronizations. For example, combined sync 1 in Figure 1(a) characterizes the com-
bined relaxation of synchronization points 3, 5, 7, and 11 for Barnes. For Canneal,
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Fig. 1. Percentage of quality degradation due to relaxed synchronization.
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Fig. 2. Maximum relative error observed per vector element for vector-based outputs due to relaxed
synchronization.

combined sync 1, 2, 3, 4, and 5 from Figure 1(b) characterize the combined relaxation
of synchronization points (1, 3), (1, 5, 6), (1,7, 10), (1, 5,6, 9), and (1, 3, 7, 9), respectively.
For Dedup, combined sync I and 2 in Figure 1(c) characterizes the combined relaxation
of synchronization points (1, 5) and (2, 5), respectively. For Fluidanimate, combined sync
1, 2, 3, and 4 in Figure 1(d) characterizes the combined relaxation of synchronization
points (2, 13), (3, 5, 14), (3, 4, 9, 14), and (2, 3, 13, 14), respectively. For Streamcluster,
combined sync 1 in Figure 1(e) characterizes the combined relaxation of synchroniza-
tion points (21, 27). For Bodytrack, combined sync 1 in Figure 1(g) characterizes the
combined relaxation of synchronization points 7, 8, and 10. For Vips, combined sync 1,
2, and 3 in Figure 1(h) characterize the combined relaxation of synchronization points
(11, 13, 14), (9, 10, 11) and (7, 11, 13), respectively. For Raytrace, combined sync 1 and
2 in Figure 1(i) characterize the combined relaxation of synchronization points (2, 6)
and (6, 8), respectively.

No combined relaxation applies for Ferret and X264, as these benchmarks have only
one noncritical synchronization point (see Figures 1(f) and (j)).

For combined cases, we only consider noncritical synchronization points. We could
not experiment with all possible combinations of these due to the excessively large
number of possibilities. Instead, in Figure 1, we report how the application output
quality changes as we combine several noncritical synchronization points that caused
relatively low quality degradation in isolation as a best-case study variant. Overall, we
observe that combining such noncritical synchronization points is unlikely to result in
excessive quality degradation.

For vector-based outputs, the average of (relative) degradation across all vector ele-
ments can hide notable deviations and hence be misleading. Figure 2 shows the maxi-
mum relative degradation observed per vector element, along with the average, across
all experiments (we do not show the minimum, as it is always zero). Figure 2(a) char-
acterizes the combined relaxation of synchronization points (3, 5, 7, and 11) for Barnes,
and Figure 2(b) characterizes the combined relaxation of synchronization points (2, 3,
13, and 14) for Fluidanimate. The x-axis shows the experiment number (recall that
we run each experiment 100 times for statistical significance), whereas the y-axis (in
log scale) captures the percentage of output quality degradation. The error bars show
the maximum relative degradation observed per vector element, and the data points
show the average quality degradation of all vector elements, on a per-experiment basis.
We observe that the maximum relative degradation per vector element remains less
than 4% for Fluidanimate and less than 1% for Barnes. Bodytrack is the only remain-
ing benchmark with vector-based output, where the experiments did not result in any
sizable difference between the maximum relative degradation and the average relative
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Fig. 3. Percentage of quality degradation versus thread count.

degradation (recall that we found the average relative degradation for Bodytrack to be
practically negligible).

Injecting concurrency bugs by relaxing synchronization can change not only the in-
terleaving but also the concurrency of threads, which in turn affects the data values
protected by the synchronizations and hence the application output quality. At the
same time, both the interleaving and the concurrency strongly depend on the number
of parallel threads of execution. Figure 3 shows how the output quality degrades as a
function of the number of threads. For this analysis, as representative combinations,
we relax synchronization points 3, 5, 7, and 11 for Barnes; 1, 3, 7, and 9 for Canneal;
2 and 5 for Dedup; 2, 3, 13, and 14 for Fluidanimate; 21 and 27 for Streamcluster; 7,
8, and 10 for Bodytrack; 7, 11, and 13 for Vips; and 2 and 6 for Raytrace. We relax
synchronization point 3 for Ferret and synchronization point 1 for X264. These com-
binations resulted in the lowest-quality degradation for our 16-threaded default runs.
We observe that Barnes and Canneal are the most sensitive to the changes in thread
count, featuring a slight increase in percentage of degradation in output quality as the
thread count increases. However, the degradation across all benchmarks still remains
less than 1%. The output quality of the remaining benchmarks (Dedup, Fluidanimate,
Streamcluster, Ferret, Bodytrack, Vips, Raytrace, and X264) is practically unaffected.
For the benchmark applications considered, we observe that the execution outcome
is practically insensitive to the number of parallel threads of execution. This finding
appears to be counterintuitive, as a higher thread count usually implies higher con-
tention critical sections, which increases the likelihood of simultaneous write accesses
to shared data under relaxation (hence of more corruption in the value of respective
shared data). Even under this scenario, however, the quality degradation in the ap-
plication output may remain negligible, depending on how sensitive the application
output is to the changes in the values of such corrupted shared variables. On the other
hand, as we will discuss in the following case study, it may also be the case that in-
jected concurrency bugs are never activated (i.e., the injected execution follows the very
same trajectory as the bug-free execution) depending on thread interleavings, even at
a relatively high thread count.
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The values of data protected by synchronizations and their impact on output quality
also depend on the input of the application. To quantify the impact of input size on
output quality under buggy executions, we repeated the analysis for simmedium and
simlarge inputs of PARSEC (and equivalents for SPLASH2). To be consistent with
previous evaluations, we relax synchronization points 3, 5, 7, and 11 for Barnes; 1, 3,
7, and 9 for Canneal; 2 and 5 for Dedup; 2, 3, 13, and 14 for Fluidanimate; 21 and
27 for Streamcluster; 3 for Ferret; 7, 8, and 10 for Bodytrack; 7, 11, and 13 for Vips;
and 2 and 6 for Raytrace. We fixed the thread count to 16. We observe that the output
quality degradation is not sensitive to the input size for Fluidanimate, Streamcluster,
Bodytrack, Vips, and Raytrace. For Ferret, output quality degradation increases by
1.2% for simlarge over simsmall. The output quality remains below 1% for both Barnes
and Canneal across all input sizes—simlarge leads to even smaller quality degradation
when compared to simmedium and simsmall. For X264, we relax synchronization point
1 and fix the thread count to eight for simsmall and simmedium. X264 does not generate
any output when more than eight threads are used for simsmall and simmedium. The
quality degradation under simsmall remains around 0.14%; under simmedium and
simlarge, it remains around 0.37%. This implies that our findings are highly oblivious
to the input size for the benchmark applications considered.

Observation: On average, 62% of all synchronizations (84/134) are found to be non-
critical. When noncritical synchronization points are relaxed, output quality degra-
dation remains less than 10% for the majority of cases. In addition, the degradation
is found to be highly insensitive to different thread counts and inputs for the bench-
mark applications deployed.

The reported numbers strongly depend on the classification of synchronization
points, which incurs less than 5.88% error with 95% confidence.

Case study. As we relax synchronization points to inject concurrency bugs, each time
we execute the given portion of the code we may encounter a different interleaving
of threads. Moreover, the execution outcome may change as a function of these inter-
leavings. For example, we can have the buggy and bug-free executions resulting in the
very same thread interleaving, which translates into the injected concurrency bug not
being activated. If the bug is activated, depending on thread interleavings, a variety
of execution outcomes are possible, ranging from nonterminating cases (e.g., due to
segmentation faults) to varying degrees of output quality degradation. The thread in-
terleavings in the presence of injected concurrency bugs may affect the performance of
the application in positive or negative ways as well.

1 // streamcluster.cpp: barrier @ 991 in pgain()
2 ...

3 if(pid == 0){

4 work_.mem = (double x) malloc (...);
5

6

7 pthread_barrier_wait(barrier);

8 for(i = kl; i < k2 ; i++){

9 if(is_center[i]){

10 center_table[i] = count++;
11}

12

13 work.mem|[ pid+stride] = count;

14

Listing 1. Elimination of barrier @ 991 of Streamcluster.
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Next we review a case study to demonstrate the impact of interleavings in the pres-
ence of injected concurrency bugs, specifically how interleavings can hide or expose the
injected concurrency bugs, which in turn can affect the output quality and performance
in different ways. In Listing 1, we show a code snippet taken from Streamcluster. We
inject a concurrency bug by eliminating the barrier at line 7. Now consider an inter-
leaving where the master thread (whose pid (i.e., thread id) is 0) is right at line 3. At
the same time, a worker thread may reach line 13. Since the master thread has not
allocated memory for work_mem yet (the allocation takes place at line 4), the worker
thread will try to access an unallocated memory location at line 13. This will cause
a segmentation fault. On the other hand, all other possible interleavings will lead to
successful termination without any output degradation if the master thread allocates
memory for work_mem at line 4, before any worker thread gets to line 13. This example
shows how interleavings can hide or expose the injected concurrency bugs.

intshuffle (feasible , numfeasible);

1 // streamcluster.cpp: barrier @ 1231 in pFL()
2 ...

3 while( change/cost > 1.0xe){

4 change = 0;

5 numberOfPoints = points—num;

6 if (pid == 0){

7

8

9

pthread_barrier_wait(barrier);
10 for(i = 0; i < iter; i++){

11 x = i % numfeasible;

12 change += pgain(feasible[x], ...);
13

14 cost —= change;

15 pthread_barrier_wait(barrier);

16 }

17 return cost;

Listing 2. Elimination of barrier @ 1231 of Streamcluster.

Next, let us demonstrate how thread interleavings in the presence of injected con-
currency bugs can change output quality as well as performance. In Listing 2, the
concurrency bug is injected by eliminating the barrier at line 9. An array called feasi-
ble stores integer values. The integer values stored in this array are shuffled at every
iteration by the master thread at line 7. This very same array is accessed by the rest
of the threads, and an element from this array is passed as a value to the pgain()
function at line 12. The value passed to pgain() is used as an index (to select a point
in calculating the cost). Now consider the case where a worker thread passes a value
from the feasible array to the pgain() function at line 12, before the feasible array is
shuffled by the master thread at line 7. The pgain() function receives a value from the
unshuffled array, so it may generate a wrong return value to be assigned to the change
variable at line 12, which in turn determines cost. Eventually, the value of the cost
variable can be different than anticipated as it is updated at line 14.

Notice that both cost and change variables are used in evaluating the condition of
the while loop at line 3. Depending on the corruption in these variables, the number
of iterations executed by the while loop may be less or more than anticipated. This
can change the performance of the application. We observed that under certain thread
interleavings, the execution time increases considerably. Similarly, for the interleavings
where threads pass values from the unshuffled feasible array to the pgain() function,
we observed degradation on the output quality at varying degrees.
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Fig. 4. A critical(a) and an accuracy bug (b). Dotted boxes represent relaxed synchronization operations.

Similar to Streamcluster, many RMS applications rely on iterative refinement. As
the case study reveals, and as observed in previous studies [Recht et al. 2011; Dean
et al. 2012], controlling the number of iterations until convergence may be a more
effective knob for these applications in trading performance for accuracy than em-
bracing accuracy bugs by relaxing synchronization. This is mainly because accuracy
bugs may render both premature or late convergence (i.e., the number of iterations
until convergence (hence, execution time) may decrease or increase), which challenges
deterministic control in the performance-accuracy trade-off space.

4.2. Impact on Execution Semantics

In this section, we inspect how the concurrency bugs induced by the injection techniques
from Table II change the execution semantics. In Section 4.2.1, we start with the
categorization of different types of injected bugs. We then provide, in Sections 4.2.2
and 4.2.4, an in-depth analysis of the characteristics of various affected variables and
their impact on the accuracy of end results, along with a function-level analysis in
Section 4.2.3.

4.2.1. Bug Categorization. We apply our injection techniques to one synchronization
point at a time. We experiment with simsmall input (except X264, where we use sim-
large as in Section 4.1) and 16 threads on the real machine (Table I). We run each ex-
periment 100 times. We use program termination status, thread sanitizer report, and
manual code inspection to analyze the bugs. More specifically, we determine whether
a particular bug can cause deadlock, hang, crash, memory leak, inaccurate computa-
tion, and so forth. We categorize the bugs that lead to accuracy loss in program end
results as accuracy bugs, as opposed to critical bugs, which result in no termination or
improper termination. Notice that accuracy bugs that do not alter the final results at
all are referred to as benign bugs by prior literature [Narayanasamy et al. 2007]. Thus,
benign bugs represent a subset of accuracy bugs. Both critical and accuracy bugs may
correspond to data races, atomicity violations, ordering violations, and others.

Figure 4(a) shows an example of a critical bug in Streamcluster. Here, the worker
thread T1 is waiting on a condition variable after it finds open to be false. The master
thread T2 sets open to be true and broadcasts a signal on the condition variable. As
a result, T1 wakes up. However, if we relax the barrier, T2 immediately goes on and
sets open to be false. As a result, T1 again finds open to be false and keeps on waiting
on the condition variable. This leads to a nonterminating state. Therefore, this is a
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Table VI. Categorization of Bugs

Data Race Atomicity Violation Ordering Violation Others
Injection | Critical ‘ Accuracy | Critical ‘ Accuracy | Critical ‘ Accuracy | Critical ‘ Accuracy
LE 12 93 6 41 0 0 2 23
BE 30 52 4 19 0 0 3 15
CE 0 0 0 0 7 7 4 2
LS 0 0 60 144 0 0 0 1
AE 0 0 0 0 0 0 1 7
Table VII. Categorization of Synchronizations
Lock Barrier Condition Variable Atomic Operation

Benchmark | Critical \ Noncritical | Critical \ Noncritical | Critical \ Noncritical | Critical \ Noncritical

ba 1 4 2 5 0 0 0 0

ca 0 1 0 2 0 0 1 7

de 3 3 0 0 2 1 0 0

fa 0 5 6 5 0 0 0 0

sc 2 0 13 11 1 0 0 0

fe 1 0 0 0 1 1 0 0

bt 4 16 3 5 2 1 0 0

vp 3 11 0 0 1 0 0 0

rt 1 4 0 0 2 1 0 0

x2 0 1 0 0 1 0 0 0

(| Total | 15 | 45 | 24 | 28 | 10 | 4 1 ] 7 |

critical bug. Figure 4(b) shows an accuracy bug on the variable seed that causes a
random number generator to be initialized with a different value than usual. However,
it does not affect the generator’s ability to produce random numbers, and hence the
final output is not affected. This is an accuracy bug taken from Canneal.

Table VI shows the bugs injected by different techniques. Lock elimination (LE) and
barrier elimination (BE) inject mostly data races and atomicity violations, 80% of which
are accuracy related. Condition elimination (CE) mostly introduces ordering violations.
Half of them are accuracy related. Lock splitting (LS) injects atomicity violation bugs.
In summary, we introduce a total of 533 bugs. Of them, a total of 404 bugs are accuracy
related.

Based on these results, it might be tempting to believe that we can eliminate most
of the synchronizations and still get a workable program. However, this is not true.
The very same injection technique applied to the very same synchronization point may
give rise to accuracy as well as critical bugs, mainly as a function of interleavings. To
clarify this issue, we categorize a synchronization point as a critical one if its elimina-
tion leads to at least one critical bug. Otherwise, it is categorized as a noncritical one.
Critical synchronization points cannot be eliminated without the risk of no or improper
termination. On the other hand, noncritical synchronizations can be eliminated if we
can accept some inaccuracy. Table VII shows the categorization for different applica-
tions. If the synchronization operation is a lock or atomic operation, it is more likely
to be a noncritical one. Most of the conditional synchronization operations are found to
be critical. As for barrier operations, 46% are critical and the rest are noncritical. In
summary, 62% of the synchronization operations are found to be noncritical.

4.2.2. Variable Categorization. We next categorize shared variables into critical or ac-
curacy ones. For this purpose, we consider only the variables affected by the injected
bugs—that is, the shared variables protected by synchronization primitives that are
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relaxed to inject concurrency bugs. We manually inspect the code to determine how
different shared variables are used. If a variable is used during the process of comput-
ing the (intermediate or final) results, then we categorize it as an accuracy one. Other
shared variables are categorized as critical. These variables are the ones usually used
during pointer manipulation, data structure maintenance, array index calculation, and
so forth. We cross validate our categorization by analyzing the related synchronizations.
An accuracy variable might be affected by both critical and noncritical synchroniza-
tions, whereas a critical variable can be affected only by critical synchronizations.
Figure 5 shows the classification of variables. On average, 72% of the bug-affected
variables are accuracy related and the rest are critical for the benchmark applications
considered.

4.2.3. Functional Analysis. Finally, we investigate the functions encompassing the non-
critical or critical synchronization points. More specifically, we would like to know if
there is any correlation between the type of synchronizations and what the function
does. We are going to present three case studies: two cases for noncritical synchroniza-
tions and one case for critical synchronizations.

Fluidanimate keeps track of the current and last positions of fluid particles for the
purpose of simulating an incompressible fluid. The compute densities phase of the ap-
plication estimates the fluid density at the position of each particle by analyzing how
closely other particles are packed in its neighborhood. The ComputeDensitiesMT func-
tion calculates the particle’s and its neighboring particles’ density, which are protected
by two locks. If we relax both of these locks individually or jointly, we affect density
calculation that can impact the final positions of the particles. ComputeDensitiesMT is
an accuracy-related function because its density calculation affects the accuracy of the
program, not the termination. Its locks are noncritical as well.

Canneal uses cache-aware SA to minimize the routing cost of a chip design. The
annealing algorithm is implemented in the Run function. In this function, per iteration,
two netlist elements are attempted to be swapped to calculate the impact on the routing
cost. This loop continues until the chip design stabilizes or a preset maximum number
of steps is reached. A barrier is placed at the end of the loop body for each thread
to complete the calculation. If we relax the barrier, some threads may start the next
iteration before the rest of the threads complete the current iteration. This might affect
the dereferencing and interchanging of pointers to the netlist elements. Canneal uses
atomic operations to recover from these data races, but this might still increase the
routing cost. Thus, relaxing the barrier is more likely to cause accuracy loss, which
makes Run an accuracy-related function.
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Fig. 6. Percentage of output quality degradation versus percentage of value corruption in shared variables
protected by synchronization primitives (Fluidanimate).

Dedup uses a compression mechanism called deduplication. The mbuffer_split func-
tion splits a memory buffer into two buffers using metainformation, including a refer-
ence counter. This metainformation serves the orchestration of malloc or free opera-
tions. In this function, the updates to the reference counter are protected by a lock. If
we relax the lock, the reference counter may not get updated correctly, which may cor-
rupt malloc and result in a program crash. This means that the mbuffer_split function
is critical in nature as it updates control-centric (i.e., critical) data (pointers).

4.2.4. Sensitivity Analysis. We next explore how sensitive the accuracy loss in the end
result of applications is with respect to corruption in shared variables protected by
synchronization primitives subject to relaxation. We analyze Fluidanimate as a case
study. We corrupt the value of various representative shared variables, each protected
by a synchronization primitive, one at a time, for 1% of the total execution time, by a
quantity varying from —100% to +100% of the bug-free, correct value. We do not relax
the synchronization points during this sensitivity study. Rather, the goal is to measure
the sensitivity of application output to corruption of these particular variables in an
attempt to better understand our findings from Sections 4.1 and 4.2. Figure 6 captures
the percentage of degradation in output quality as a function of the percentage of data
corruption, separately for each variable. We identify the variables by the synchroniza-
tion primitives protecting them. In each graph, the x-axis captures the percentage of
corruption in the corresponding variable. We analyze seven variables, protected by
seven synchronization points. We observe that the variables protected by synchroniza-
tions 3, 7, and 11 have the highest impact on the output quality—in these cases, the
output accuracy loss can exceed 20%, as captured by the y-axis. Synchronization 3
degrades output quality by more than 5% only if the associated variable’s value is
corrupted by more than —50%. For the variable protected by synchronization point 7,
the execution fails if we corrupt the value by more than +5%. Synchronization 11’s
impact on output quality is similar to synchronization 3. These results are in line with
our findings from Sections 4.1 and 4.2, which identified synchronization points 7 and
11 as critical. For synchronizations 2 and 12, output accuracy loss remains virtually
the same across different values of the corruption in the associated variables. For syn-
chronization points 4 and 5, on the other hand, fluctuations in the output accuracy loss
become more visible. Synchronization points 2, 4, 5, and 12 all were deemed noncritical
by our analysis from Sections 4.1 and 4.2.
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Observation: On average, 76% of all injected bugs are accuracy related (404/533).
CE introduces approximately the same number of accuracy and critical bugs. Other
techniques tend to introduce more accuracy bugs. Locks and atomic operations tend
to be noncritical, whereas conditional synchronizations tend to be critical. A barrier
can be critical or noncritical with similar probabilities (i.e., 46.2% and 53.8%, respec-
tively). On average, we observe that 72% of the bug-affected variables are accuracy
related. Most accuracy bugs cause insignificant accuracy loss due to the fact that the
values of the affected variables do not get corrupted significantly for the benchmark
applications deployed.

4.3. Impact on Performance

In this section, we assess how embracing accuracy bugs can impact the execution time
and scalability of parallel programs. As in the previous sections, we inject accuracy
bugs by eliminating synchronization points 3, 5, 7 and 11 for Barnes; 1, 3, 7 and
9 for Canneal; 2 and 5 for Dedup; 2, 3, 13 and 14 for Fluidanimate; 21 and 27 for
Streamcluster; 3 for Ferret; 7, 8 and 10 for Bodytrack; 7, 11, 13 for Vips; 2 and 6 for
Raytrace; and 1 for X264, as representative combinations.

4.3.1. Time Overhead of Synchronization. Figure 7 shows how the time overhead of syn-
chronization changes as a function of the number of threads, considering the original,
bug-free execution. The y-axis depicts the percentage of total execution time spent in
synchronization events. We observe that for all applications, the synchronization over-
head increases with the number of threads. This is because (as we keep the problem
size, i.e., the input dataset constant) per thread work, the overall execution time of the
program reduces as the number of threads increases, whereas the number of sharers
for a given chunk of data tends to grow. When we inject concurrency bugs by eliminating
synchronizations, time spent in synchronization represents a loose upper bound for the
potential speedup in execution. With 64 threads, the time spent on synchronizations
ranges from 6.16% to 61.52% across the benchmarks.

4.3.2. Impact on Concurrency. When we inject accuracy bugs by eliminating synchro-
nization points, synchronization-induced stalls are minimized—ifnot eliminated. Thus,
we expect to have more threads to be active concurrently. Figure 8 shows how the
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Fig. 8. Impact of accuracy bugs on concurrency.

concurrency, as measured by the number of active threads (y-axis), changes over the
course of the execution (x-axis), until the application terminates, for 32-threaded runs.
We obtained these data from the simulator in Table I. We monitored changes in the
state of each thread over the course of execution by keeping track of sleep and wake-
up times on a per-thread basis. In each graph, the profile in black corresponds to the
bug-free (i.e., default) execution, whereas the buggy outcome is depicted in gray.

In Figure 8, we observe that the original and relaxed profiles mostly overlap for
Dedup, Streamcluster, and Vips, which is contrary to our expectations. For these cases,
we can still identify a slight increase in the level of concurrency each time a synchro-
nization point is relaxed; however, this sporadic boost in performance does not render a
notably reduced execution time for the buggy run: only 1.06%, 1.2%, and 0.19% reduc-
tion for Dedup, Streamcluster, and Vips, respectively. Yet we see 16.9%, 16.07%, 6.42%,
8.14%, and 2.55% reduction in execution time due to increased concurrency for Barnes,
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Table VIII. Impact of Concurrency Bugs on Performance

H Benchmark Bug-Free Exec. Time (ms) ‘ Buggy Exec. Time (ms) ‘ Change (%) H
barnes 66.50 55.27 16.9
cannel 38.11 38.83 -1.8
dedup 229.17 226.73 1.06
fluidanimate 95.06 79.78 16.07
streamcluster 509.97 503.84 1.2
ferret 351.35 328.79 6.42
bodytrack 52.05 52.93 -1.6
vips 379.7 378.97 0.19
raytrace 161.88 148.89 8.14
x264 2,038.86 1,986.75 2.55

Fluidanimate, Ferret, Raytrace, and X264, respectively. On the contrary, buggy runs
are slowed down by 1.8% and 1.6% for Canneal and Bodytrack. This slowdown is due
to deteriorated cache performance, as an increased number of active threads causes
more cache contention—this is a known potential artifact of concurrency bugs [Liu
et al. 2014]. Dedup, Ferret, and X264 are pipelined parallel programs. Ferret and X264
have only one synchronization point subject to relaxation, which is a lock confined in
a pipeline stage (Table III). Accordingly, the slight divergence in concurrency between
bug-free and buggy executions is confined to the time window in which this particular
pipeline stage is executed. Despite this, we still observe 6.42% and 2.55% reduction in
the overall execution time for Ferret and X264, respectively. The impact of accuracy
bugs on performance is summarized in Table VIII.

In Figure 8, for Canneal, Fluidanimate, and Bodytrack, the active number of threads
fluctuates in the bug-free run between 32 and 1 due to frequent synchronization. For
Canneal, relaxation eliminates these fluctuations, rendering a practically constant
number of active threads (i.e., 32) within the course of execution. However, the buggy
run takes slightly longer due to performance-limiting artifacts of increased concurrency
such as increased cache contention and off-chip bandwidth pressure. For Fluidanimate,
on the other hand, the buggy run does not eliminate the fluctuations, as was the case for
Canneal, but reduces the number of fluctuations, leading to a reduced execution time:
the bug-free run finishes at 95.06ms and the buggy run at 79.78ms. For Bodytrack,
the buggy run takes longer due to increased cache contention and off-chip bandwidth
pressure, as in the case of Canneal. For Bodytrack, the bug-free run finishes at 52.05ms
and the buggy run at 52.93ms.

We should note that relaxing synchronization to inject concurrency bugs can affect
convergence conditions of parallel applications (e.g., Streamcluster) and can result in
an even larger execution time than the bug free, although our experiments did not
generate a severely slowed down buggy run when compared to the bug free. If this
were the case, convergence criteria needed to be adjusted accordingly.

Observation: Although we did not observe a significant performance boost for the
majority of benchmarks with which we experimented, per Amdahl’s law the trend of
quickly increasing time overhead of synchronization from Figure 7 suggests to expect
notable performance benefits at much higher degrees of parallelism than 32 threads,
even if we are not able to relax all of the synchronization points.

5. DISCUSSION
In this section, we discuss key implications of our findings.
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Implication 1. As mentioned in Section 4.1, even when we eliminate synchronization
points, critical concurrency bugs (i.e., nonterminating cases) occur only under few
special thread interleavings. Other interleavings either do not expose the bugs or
introduce accuracy bugs. If we restrict the program execution so that it avoids the
critical bug-triggering interleavings, we can get away with concurrency bugs being
present in the program. To this end, we need to find an efficient and lightweight
way to manage interleavings. In other words, relaxing synchronizations and thereby
embracing concurrency bugs become more predictable and controllable in interleaving-
restrictive environments such as deterministic systems [Devietti et al. 2009; Bocchino
et al. 2009]. More specifically, we can envision a deterministic system that enforces
determinism only for critical synchronizations while ignoring the noncritical ones.

Implication 2. Section 4.1 shows that in an inadequately synchronized program,
certain thread interleavings might cause longer execution time, whereas others accel-
erate execution. If we find a way to determine and enforce those interleavings (e.g.,
as facilitated by a deterministic system), we might embrace accuracy bugs to improve
performance.

Implication 3. Section 4.2.1 analyzes critical and noncritical synchronizations as well
as variables. These can be utilized to design a bug filtering and ranking tool. We can
think of an automated tool that, given a buggy execution, can determine the bug-related
variables using program slicing techniques [Weiser 1981]. By determining the type of
variables and bugs automatically, it can produce a ranking of reported bugs so that
critical bugs are placed higher in the rank than accuracy ones. The programmer can
then focus her effort in fixing the critical ones and leaving behind the accuracy ones.
This is likely to save programmer’s debugging effort.

Implication 4. We validated that RMS programs feature a sizable fraction of accu-
racy variables that can tolerate inaccuracy (e.g., due to errors). We do not need to
strictly protect accuracy variables, and therefore we can simplify the complexity of
checkpoint and recovery schemes. Presumably, we would need to check point only crit-
ical variables. During rollback, we omit recovery of accuracy ones and leave them in
an inaccurate state without significantly affecting the final result. The knowledge of
accuracy variables can be utilized during software development and testing process
as well. Programmers can be less rigorous in synchronizing and testing accuracy vari-
ables. This knowledge can also be utilized in other dimensions of architectural design
for simplification.

6. RELATED WORK

There has been significant research over the years to detect concurrency bugs. Among
the various types of concurrency bugs, data races are the ones most commonly stud-
ied [Savage et al. 1997]. Research on data races leads to commercial tools like Intel
Inspector [Petersen 2011]. ToleRace [Ratanaworabhan et al. 2012] provides runtime
support for detecting and masking asymmetric data races. Proposals like AVIO [Lu
et al. 2006] and MUVI [Lu et al. 2007] detect atomicity violation bugs where a group
of memory accesses that is supposed to be executed atomically by a single thread gets
interleaved by accesses from other threads. Most of these proposals share a common
shortcoming—they target only one type of bug. To remedy this, researchers have pro-
posed schemes like PSet [Yu and Narayanasamy 2009] and Bugaboo [Lucia and Ceze
2009] that do not rely on the symptoms of any particular bug. Instead, these propos-
als focus on identifying correct data communications among threads and provide a
general solution to handle any type of concurrency bug. In addition to these, there
are proposals to expose and fix concurrency bugs. CHESS [Musuvathi et al. 2008],
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CTrigger [Park et al. 2009], and RaceFuzzer [Sen 2008] expose concurrency bugs mainly
by changing thread interleavings. Some of them are based on model checking, whereas
others use a delay mechanism. Liu et al. [2014] propose to fix concurrency bugs by
using locks. Grail uses a context-aware analysis to find a minimal set of locks that do
not introduce any deadlock. There is not much prior work that investigates the effect
of concurrency bugs on output accuracy. The closest one is from Renganarayana et al.
[2012], who perform a study on the effect of synchronization relaxation in the context of
approximate computing. This study shows performance improvement of the programs
without providing any detailed characterization. Narayanasamy et al. [2007] propose
a way to filter out benign data races from the harmful ones. They define a data race
to be “benign” if it does not change the end result at all. Our goal is to study not only
benign data races but also any other concurrency bugs that affect end results within
(or beyond) an acceptable limit (i.e., the accuracy bugs).

There has been a growing interest in the field of approximate computing. Early work
focuses on trading off accuracy for performance [Lin et al. 1987]. Proposals to exploit
algorithmic fault tolerance for energy efficiency follow [Hegde and Shanbhag 1999;
Shanbhag 2002]. The impact of soft errors on the output quality is analyzed by fault
injection in the context of multimedia [Li and Yeung 2007], artificial intelligence [Li
and Yeung 2007], and probabilistic inference algorithms [Wong and Horowitz 2006].
For emerging RMS applications, the output quality is shown to be insensitive to errors
in the dataflow as opposed to control [Wong and Horowitz 2006; Li and Yeung 2007; Cho
et al. 2012]. This characteristic is leveraged by dividing multicore compute power into
two groups: unreliable cores in charge of data and reliable cores in charge of control [Cho
et al. 2012]. In de Kruijf et al. [2010], a software recovery approach is explored based
on the observation that emerging applications can tolerate even discarding of compu-
tations. Recently, approximate data structures [Rinard 2013], along with the required
hardware support [Esmaeilzadeh et al. 2012], have been explored. Efforts have been
made to design language constructs and verify acceptability properties of approximate
programs [Carbin et al. 2012]. To the best of our knowledge, this and a similar body
of work on approximate computing mainly exploit algorithmic fault tolerance to mask
lower level faults, mainly stemming from hardware, as opposed to concurrency bugs.

7. CONCLUSION

This work investigated the potential for deviating from the conventional wisdom of
writing concurrency bug—free, and hence correct, parallel programs. It explored the
benefits and pitfalls of accepting buggy but approximately correct parallel programs
by leveraging the inherent tolerance of 10 representative parallel applications to in-
accuracy in computations. This work is the first (to the best of our knowledge) to do
a comprehensive study on this issue. For each application, we conducted extensive
experiments on both simulated and real machines. Our experiments revealed many
interesting findings, some of which are the following: (i) most of the synchronizations
are noncritical, and their relaxation introduces less than 10% inaccuracy; (ii) most of
the injected bugs and affected variables are accuracy related; and (iii) the applica-
tions’ performance gain due to embracing accuracy bugs is not significant at a lower
thread count, but the potential gain increases significantly at a higher thread count.
The article also provided possible implications of such findings, namely how to use
a deterministic environment as an enabler to embrace accuracy bugs, how to reduce
debugging effort, and how to take advantage of accuracy variables.
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