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Abstract—The future-generation wireless systems will combine
heterogeneous wireless access technologies to provide mobile
users with seamless access to a diverse set of applications
and services. The heterogeneity in this inter-technology roaming
paradigm magnifies the mobility impact on system performance
and user perceived service quality, necessitating novel mobility
modeling and analysis approaches for performance evaluation. In
this paper, we present and compare three mobility models in two-
tier integrated heterogeneous wireless systems, the independence
model as a naive extension of the traditional cell residence time
modeling techniques for homogeneous cellular networks, the
basic Coxian model which takes into consideration the correlation
between the residence time within different access technologies,
and the extended-Coxian model for further improved estimation
accuracy. We propose a general stochastic performance analysis
framework based on application session models derived from
these mobility models, applying it to a 3G-WLAN integrated
system as an example. Our numerical and simulation results
demonstrate the general superiority of Coxian-based mobility
modeling over the independence model. Furthermore, using the
proposed modeling and analysis methods, we investigate the im-
pact of different parameters, including WLAN coverage, handoff
blocking probability, call holding duration, and mobility pattern,
on system performance metrics such as network utilization time,
handoff rates, and forced termination probability, for a wide
range of user applications.

Index Terms—Heterogeneous wireless networks, mobility mod-
eling, performance analysis, beyond 3G, phase-type distribution,
Coxian structure.

NOTATION

As a general rule, we use bold-face capital letters and lower-
case letters to represent matrices and vectors, respectively.
Superscripts are used to represent absorption states and/or
mobility models.
tc ∼ PH(αc,Tc) - cell residence time
twr ∼ PH(αwr,Twr) - WLAN technology residence time
tcr ∼ PH(αcr,Tcr) - cellular technology residence time
PH(αm,Tm) - heterogeneous phase-type cell residence

time mobility models
tch ∼ Exp(ζch) , twh ∼ Exp(ζwh) - session holding times

for cellular network and WLAN respectively
PH(αm,TS) - heterogeneous phase-type session models
qX - column vector representing absorbing rates to state

X ∈ {Term, SHH, HHFT, V HFT}
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PX
AB - absorption probability to state X for a session of type

B ∈ {n, h} starting in an A-type cell, where A ∈ {C, W}
πTo - session initial phase distribution
Pn, Ph - probability of new and handoff sessions
Pwo - probability of WLAN-cellular technology overlap
Pco - probability of unique cellular coverage
Bh and Bv - horizontal and vertical handoff blocking

probabilities
I - identity matrix
e - all-one column vector

I. INTRODUCTION

Next-generation wireless networks (NGWN) will feature a
high level of heterogeneity due to the service convergence
of different pervasive access technologies, such as wireless
cellular networks, wireless Local Area Networks (WLAN),
and wireless mesh networks. Further contributing to this
heterogeneity will be the characteristic diversity of the newly
introduced revenue generating applications and services. The
3G-WLAN integrated system is an example of this hetero-
geneous wireless access paradigm, which has received strong
support from industrial [1] and standardization bodies [2], [3]
as they currently represent the most pervasive wireless access
technologies. In this system, 3G networks provide universal
coverage, while WLANs provide large bandwidth resources
for the users at cheaper cost wherever available. Thus, the
network users will generally enjoy the best of each access tech-
nology, while the service providers will save precious wireless
resources by offloading part of the 3G traffic to WLANs and
take advantage of new potential revenue sources created by
novel applications and services. However, the integration of
different technologies increases system complexity and com-
plicates the design and performance evaluation. Consequently,
developing accurate traffic and mobility models emerges as a
crucial requirement for the design of various processes such
as location updating and paging, radio resource management,
and technical network planning [4].

Generally, mobility models can be categorized into an-
alytical and simulation models. Analytical models usually
limit user mobility to a specific region of residence within
the network while simulation models are based on periodic
tracking of the user in small time steps. Random way-point
[5], [6], random trip [7], and Gauss-Markov [8] models are
examples of common generic mobility models in wireless
cellular system simulations. Clearly, the simulation models
presented in the literature can be also used for NGWN
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simulation after introducing heterogeneous network overlays
into the simulation setup. However, such models are generally
intractable when the network coverage topology is under
consideration. Therefore, the goal of this work is to develop
new analytical models for heterogeneous systems.

In homogeneous cellular networks, the mobility of a mobile
terminal (MT) is uniquely modeled by its cell residence time
(CRT), defined as the duration spent by the MT within a
cell. This level of granularity is sufficient to describe the
MT mobility in homogeneous networks since the exact MT
position within the cell is irrelevant to its application traffic
pattern or service bandwidth demand. In the literature, the
exponential random variable is extensively used to model the
CRT [9]–[11] due to its analytical tractability. On the other
hand, several works [12], [13] analytically prove, using simple
mobility assumptions such as uniformly distributed random
variables or bounded random variable variations, that the CRT
has other more general distributions. Zonozzi and Dassanayake
[12] show that the generalized Gamma distribution is a good fit
for CRT, while the channel holding time can be approximated
by an exponential distribution. The latter result is also proved
by Hong and Rappaport [13]. Similarly, a few papers assume
that the CRT follows a general distribution such as the
generic phase-type (PH) distribution [14], Erlang distribution
[15], [16], Gamma distribution [16], [17], hyper-exponential
and hyper-Erlang distributions [15], and Sum of Hyper-
Exponential (SOHYP) [18]. Based on such assumptions, these
papers analytically derive different performance metrics such
as the number of registration area crossings, channel holding
time distribution, and forced termination probability [14]–[18].

In NGWN, inter-technology roaming, commonly known as
vertical handoff (VHO) [19], affects different system perfor-
mance metrics such as resource utilization, signaling load,
and user perceived QoS, especially when the heterogeneous
application characteristics are considered. For example, in the
3G-WLAN integrated model, the bandwidth provided to the
MT in these networks may vary by one order of magnitude
after any VHO. Combining this fact with the bandwidth
greediness of some applications due to their buffering or
prefetching capabilities [20], one can infer the large influence
of VHO on next-generation session dynamics. Hence, VHO
details should be accurately modeled for precise design and
performance evaluation of NGWN.

Clearly, the current mobility models employing CRT as
a unique MT mobility representation cannot describe VHO
details in heterogeneous integrated systems. Hence, the main
focus of this work is to develop accurate mobility models and
performance analysis methods for next-generation heteroge-
neous two-tier systems. In a previous work [21], we explore
heterogeneous mobility modeling for WLANs located strictly
within cell borders. In this work, we relax this constraint,
and propose a novel stochastic analysis framework to derive
a wide range of performance metrics. To the best of our
knowledge, this work is the first extensive study that addresses
mobility modeling and performance analysis in an integrated
heterogeneous network.

The contribution of this work is three-fold. First, we in-
troduce the notion of technology residence time (TRT) to

model the duration spent by an MT inside a specific access
technology. For the 3G-WLAN integrated model, it includes
the WLAN residence time and the inter-WLAN residence
time. We then describe three MT mobility models using
different PH distributions for different TRTs. They include a
naive independence model (IM), the Coxian model (CM), and
the extended-Coxian model (ECM). IM extends the existing
PH representation of the CRT in homogeneous systems, by
simply combining the homogeneous CRT model dynamics
with the dynamics of different TRTs assuming that they
are independent. On contrary, CM and ECM adopt a novel
approach where the CRT is modeled as a probabilistic sum
of WLAN and inter-WLAN residence times to physically
represent the MT handoff transitions within a cell. Second,
we develop new application session models, based on all three
mobility models, to derive several salient performance metrics
such as network utilization times, handoff rates, and session
forced termination probabilities for different applications. Nu-
merical and simulation results show that by accommodating
the dependence between the CRT and TRTs, CM and ECM
offer significantly improved estimation accuracy over IM, with
ECM outperforming CM in modeling highly random MT
mobility. Finally, we propose a stochastic analysis framework
to study the impact of different system parameters, such as
WLAN coverage, handoff blocking probability, and user mo-
bility on the modeling accuracy and the system performance
based on an extensive set of performance metrics and a wide
range of user applications.

The rest of this paper is organized as follows. Section II
presents the proposed next-generation mobility models. The
corresponding session models are developed in Section III.
The proposed network performance evaluation framework is
then introduced in Section IV. The simulation and analysis
results are presented in Section V; and finally, we conclude in
Section VI.

II. MODELING MOBILITY IN TWO-TIER NETWORKS

In this section, we present three MT mobility models
for any two-tier integrated heterogeneous system, using a
3G-WLAN integrated system as an example for illustration
purpose. As shown in Figure 1, in the 3G-WLAN integrated
system, WLANs overlap with the 3G cellular coverage form-
ing hotspots with dual coverage and non-hotspot areas with
unique 3G cellular coverage. As the MT traverses the overlay
cellular cell, it may encounter zero or more hotspots during
its CRT, denoted as tc. Cell to cell transition may occur in
a unique coverage area (e.g. T1 in Figure 1) or through a
WLAN that overlaps with two different 3G cells (e.g. T2 in
Figure 1). Hence, the MT cell residence may initially start in
any of the two technologies. Moreover, during any cell visit,
the MT may traverse different technologies as in T1 and T2,
spending a random amount of time in each visit, or may just
traverse one technology, as in T3. All these mobility details
are accommodated using TRTs, denoted as twr and tcr for
WLAN and inter-WLAN residence times respectively and can
be generally modeled as PH distributions.
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Fig. 1. 3G-WLAN integrated system

A. PH Distribution Overview

Phase-type distributions are highly versatile stochastic mod-
els that can be used to approximate the distribution of any non-
negative random variables [22] and at the same time enjoy ana-
lytical tractability due to their underlying Markovian structure.
Generally, a PH random variable is defined as the absorption
time of an evanescent finite-state Markov chain to a single
absorbent state. This chain is represented by its infinitesimal
generator matrix, Q, and an initial state distribution vector υ
as follows [23]

Q =
(

Tm×m tm×1

01×m 0

)
, (1)

υ = (α1×m, γ1×1) , (2)

where T corresponds to the chain transient dynamics and t
represents the absorption rate vector. It is worth mentioning
that the absorption vector t can be expressed as t = −Te,
where e is an all-one column vector. Hence, the corresponding
PH distribution can be defined by (α,T), such that if a random
variable X is PH(α,T) of order m, then its probability
density function is expressed as

f(x) = α exp(Tx)t, x ≥ 0 . (3)

Generally, there are two different modeling approaches us-
ing PH distributions [24]: fictitious and physical approaches. In
the former, PH distributions are used as a versatile, dense, and
algorithmically tractable class of distributions defined on the
non-negative real numbers; while in the latter, phases or blocks
of phases represent real processes or operations that take
place in the system. In this work, contrary to the traditional
homogeneous models, we use the second approach to develop
heterogeneous PH CRT models using different structures of
PH distributed TRTs. In the following subsections, we explain
the structure of the proposed models and how their parameters
are estimated from mobility traces that record actual movement
behavior for certain segments of the population [25].

B. Independent PH Mobility Model (IM)

For the purpose of comparison, we first describe a naive
modeling approach. IM assumes that the CRT and TRTs are
independent. It fits tc, twr, and tcr from the collected traces to
PH distributions denoted as PH(αc,Tc), PH(αwr,Twr), and
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Fig. 2. Coxian and extended-Coxian mobility model

PH(αcr,Tcr) with orders mc, mwr, and mcr respectively.
It models the possible technology alternation within the cell
borders by replacing each phase in the CRT PH structure by
a stage1 that represents an alternating renewal process of twr

and tcr. This continuous alternation is terminated by stage
exit to another stage or transition into the cell exit state, at
the same corresponding transition rates of the original PH
distribution for tc.2 Clearly, the resultant CRT model has a
PH structure with order mI = mc(mwr + mcr), which is
denoted as PH(αI

m,T
I
m).

C. Coxian Mobility Model (CM)

The proposed Coxian mobility model structurally accommo-
dates the correlation between CRT and TRTs by expressing the
CRT as a probabilistic summation of the TRTs. The Coxian
model inherits its structure from the Coxian PH random
variable structure [27] shown in Figure 2. In this model,
each phase is labeled with a letter and a number. The former
represents the access technology, and the latter represents
the phase sequence. The technology labels A and B may
respectively represent cellular (i.e., inter-WLAN) and WLAN
technologies or vice versa depending on the model’s initial
technology. Hence, inter-phase transitions physically represent
VHOs that take place within the MT cell residence. Whenever
the MT exits phase i, where i = 1, 2, ..., k−1, it may exit the
cell, i.e. is absorbed into the "cell exit" state, with probability
bi or may be vertically handed off to another technology within
the same cell with probability ai, where ai+bi = 1. Following
the standard definition of the Coxian PH distribution, the
duration spent by the MT in any phase i is exponentially
distributed with mean 1/μi. When the MT is in the last phase
k, the MT exits the cell with probability bk = 1. Hence, the
CRT can be expressed as PH(αC

m, T
C
m), where

TC
m =

⎛
⎜⎜⎝

−μ1 a1μ1 0... ..0
0 μ2 a2μ2 ..0
. . .

0.. 0 μk

⎞
⎟⎟⎠ (4)

αC
m = [1 0] . (5)

D. Extended-Coxian Mobility Model (ECM)

The extended-Coxian model generalizes the Coxian model
by replacing the exponential TRT phases with PH distributed
TRT stages. Hence, each stage will be PH(αi,Ti), where i

1As a notational remark: a stage refers to a group of phases, keeping the
phase as a notion for exponentially distributed sojourn time states.

2Due to space limitation, the interested reader is referred to [26] for further
details of IM.
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represents the stage index. Clearly, this general model includes
the Coxian model when all the stages have exponential resi-
dence times. This generalization will be shown later to better
accommodate highly random mobility patterns.

The resultant MT mobility model also has a PH structure
with cell exit as an absorption state. Hence, the extended-
Coxian CRT can be expressed as PH(αEC

m ,TEC
m ), where

TEC
m =

⎛
⎜⎜⎝

T1 a1t1α2 0... ..0
0 T2 a2t2α2 ..0
. . .

0.. 0 Tk

⎞
⎟⎟⎠ (6)

αEC
m = [α1 0] . (7)

where ti = −Tie.

E. Estimating the Parameters of Mobility Models

The parameters of the proposed models can be estimated
from mobility traces that are collected per visited overlay
cell, either from practical systems or from simulation. We
emphasize that the exact parameter estimation details are non-
essential to the proposed mobility models, session models,
and stochastic performance analysis framework. We provide
the following parameter estimation methods as an example of
possible approaches.

The required mobility traces contain the initial technology
visited by the MT, WLAN residence times, and inter-WLAN
residence times. The CRT measurements are then obtained
from the WLAN and inter-WLAN residence time information
as the total of these durations per cell. As a first step of the
parameter estimation process, the collected traces are clustered
into two partitions based on the initial technology. Each cluster
is then processed to calculate its corresponding sub-model
parameters. These sub-models completely describe the MT
mobility in a two-tier integrated system. Hence, we use C-type
and W-type to differentiate sub-models with initial cellular and
initial WLAN phases respectively.

In this work, the PH distribution parameters are estimated
using a PH fitting package such as EMPHT [28]. In this
process, the collected data is fitted to different PH distributions
according to the measurement coefficient of variation, θx,
where θx = σx

μx
in which σx and μx represent the standard

deviation and the mean of the corresponding measurements
respectively. According to [27], the hyper-exponential distri-
bution can be used to represent any set of measurements with
θx > 1, the hypo-exponential (generalized Erlang) can be
used to represent any set of measurements with θx < 1, and
the exponential distribution is used to represent measurements
with θx = 1.

In Coxian models, different parameters are originally esti-
mated according to their corresponding physical events. For
example, the exit probabilities are calculated as

bi =
Nc(i)∑∞

j=iNc(j)
,

where Nc(i) denotes the number of cells in which exactly i
technology visits take place. The model order k is determined
by the number of technology visits within the cells in the

collected traces3. Additionally, the time statistics of different
stages are calculated from the corresponding physical network
visit; i.e. the time statistics of the first stage are fitted from
the collected measurements of the first visit to technology A
within the cell. Similarly, the time statistics of the second
stage are calculated from the collected measurements of the
first visit to technology B within the cell. We have also
examined a uniform time statistics approach in which all stages
corresponding to the same technology have the same time
statistics. These statistics are fitted from the measurements of
different stages collectively; hence, fewer traces are required
compared to the exact fitting approach. The uniform approach
produces the same level of accuracy as the exact approach
while reduces fitting time.

III. MODELING APPLICATION SESSIONS IN

HETEROGENEOUS NETWORKS

In this section, we present new session models based on the
aforementioned mobility models. These models are developed
using the application model presented in subsection III-A and
a generic session modeling approach presented in subsection
III-B. Each session model tracks the session activity, which is
affected by user mobility, user-network interaction, and appli-
cation characteristics. Note that active users request resource
allocation from their point of attachment, which may deny
this request based on resource availability. Without loss of
generality, we assume that users prefer WLAN over 3G due
to its larger bandwidth and lower cost. Hence, any active MT
will be always handed off to a WLAN whenever it is available.

A. Application Modeling

Generally, applications can be categorized according to
different criteria such as bandwidth and delay requirements.
In this work, we further categorize the applications as sym-
metric and asymmetric. The former preserves the same level
of resource utilization independent of the available network
resources, while the latter has a greedy nature and can
consume as much bandwidth as the network can provide.
Conversational applications, such as voice over IP (VoIP)
and video conference (V-conf), are examples of the former,
while streaming applications with buffering capabilities, such
as video on demand (VoD) and radio on demand (RoD), are
examples of the latter.

We assume that each service is characterized by expo-
nentially distributed holding times tch and twh with rates
ζch and ζwh for cellular network and WLAN respectively.
Symmetric applications are expected to preserve their holding
time and bandwidth requirement in both networks. Hence, both
parameters have the same value; i.e. ζch = ζwh. On the other
hand, asymmetric applications have shorter WLAN duration
compared to their cellular holding time; i.e. ζch < ζwh.

The exponential session holding time assumption is com-
mon in wireless networks due to their pricing strategies and

3Alternatively, other fitting mechanism can be adopted such as fitting the
model order to realize a specific confidence of the measurement mean. Our
fitting and analytical results show that this approach greatly reduces the model
order for highly random mobility, but it decreases the accuracy of the obtained
performance metrics. Details are omitted for brevity.
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limited power resources. It is well known that charge per time
is the most common pricing strategy; hence, users tend to
avoid long session durations. Additionally, the high power
consumption of active devices is another reason for shortening
session durations. Hence, exponential is a good model for user
controlled session duration such as conversational applications
[29], [30]. In contrast, for streaming applications, several stud-
ies [31], [32] show that files transmitted on the Internet feature
a large variance in comparison to their sizes. In this case,
the hyper-exponential distribution can be used to represent the
streaming session duration. Consequently, the session duration,
L, is expressed as a probabilistic sum of different exponential
distributions, i.e. fL(l) =

∑k
i=1 piζie

−ζil, for which a hyper-
metric z is estimated as a weighted sum of multiple metrics
zi calculated for different values of ζi, i.e. z =

∑k
i=1 pizi.

We note that the session holding time model has its limi-
tations. For example, it does not capture packet-level metrics
such as packet delay. However, packet-level performance in
heterogeneous wireless networks is not the focus of this work
and remains an open problem for future research.

B. Combining Application and Mobility Dynamics

Traditionally, different application performance metrics are
obtained by considering the minimum of the session holding
time and the cell residual time for new calls, or the minimum
of the session residual time and the CRT for handoff sessions
[9], [10], [15]–[17]. In heterogeneous networks, this approach
cannot be generally applied to the proposed models due
to the inherent characteristic diversity of different systems.
Additionally, this approach limits the performance metrics to
the cell level instead of the technology level. In the proposed
session models, system heterogeneity is accommodated by
shifting the analysis down to the TRT instead of the traditional
CRT.

In the heterogeneous session model, the application dynam-
ics are combined with the TRT mobility dynamics by taking
the minimum of each PH TRT and the PH session holding
time. This minimum operation results in a new PH distribu-
tion, i.e. min(PH(α,Twr), PH(1,−ζwh)) = PH(α,Twr −
ζwhI). The minimum operation is repeated with all cellular and
WLAN stages of each mobility model, respectively denoted
as C and W stages. The resultant session model will have
a PH structure, PH(αm,TS), similar to its corresponding
mobility model with modulated stages. It is worth noting that,
the absorption rate from any phase i in this session model
equals the sum of the corresponding phase holding rate; i.e.
either ζch or ζwh depending on the phase technology, and the
mobility model absorbing rate, ti.

In the proposed session model, we additionally define differ-
ent absorbing states to represent the session status according
to application dynamics, user mobility, and user-network in-
teraction. In the case of normal session termination, which
may result from session ending at the user’s will or due
to content transfer completion for the streaming case, the
session is absorbed into a Term state. Additionally, the user-
network interaction is accounted for at the end of each TRT
to represent probabilistic successful and blocked handoffs.

Hence, we define SHH and HHFT absorbing states to
represent successful and blocked horizontal handoff (HHO)
respectively. Similarly, we define V HFT as an absorbing state
for sessions blocked during VHO. Note that each successful
VHO advances the session Markov chain to a transient cellular
technology stage in any of the proposed models.

Hence, the Markovian session process generator matrix, QS

can be expressed as

QS =
(

TS qTerm qSHH qHHFT qV HFT

0 0 0 0 0

)
,

(8)
where the vectors qTerm, qSHH , qHHFT , and qV HFT re-
spectively correspond to the aforementioned absorbing states.
The following two subsections present detailed derivation of
QC

S and QEC
S for CM and ECM, respectively. The derivation

of QI
S for IM is similar and is omitted due to page limitation.

C. Coxian Session Model

In all session models, the transient dynamics are mainly
determined by the minimum of each TRT and the session
holding time within the corresponding technology and the
probable session blocking during roaming from WLAN to the
3G cellular network. Session blocking reduces the transition
rates from WLAN phases to cellular phases to (1 − Bv) of
their corresponding values in the mobility models, where Bv

represents the VHO blocking probability. The remaining Bv

portion of these rates represent the transition rates to qV HFT .
Hence, TC

S can be expressed as

TC
S = [qrs] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−(μr + ζch) ,∀ r = s , r ∈ C
−(μr + ζwh) ,∀ r = s , r ∈W
arμr ,∀ s = r + 1 , r ∈ C
arμr(1 −Bv) ,∀ s = r + 1 , r ∈W
0 , otherwise

,

(9)
and qC,V HFT is expressed as

qC,V HFT = [qr] =
{
arμrBv ,∀ r ∈W
0 , otherwise

,

Similarly, due to session blocking possibility at the cell
border, the cell exit absorbing state is subdivided into two
states qC,SHH and qC,HHFT . It is worth noting that the HHO
that occurs within a WLAN overlapping with the overlay cell
border are never blocked because the user does not request
network resources instantaneously, while those HHOs that
take place while the MT is using the cellular network may
be blocked with a HHO blocking probability of Bh or may
be successfully handed off to another cell with probability
(1 − Bh). Consequently, qC,SHH and qC,HHFT can be
expressed using the cell exit rates as

qC,SHH = [qr] =

⎧⎨
⎩

brμr(1 −Bh) ,∀ r ∈ C
brμr ,∀ r ∈W
0 , otherwise

,

qC,HHFT = [qr] =
{
brμrBh ,∀ r ∈ C
0 , otherwise

,
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Additionally, the session normal termination from each
phase naturally occurs at the session holding rate that corre-
sponds to the phase technology, i.e., at ζch and ζwh for cellular
and WLAN phases respectively. Hence, qC,Term is expressed
as

qC,Term = [qr] =

⎧⎨
⎩

ζch ,∀ r ∈ C
ζwh ,∀ r ∈W
0 , otherwise

.

D. Extended-Coxian Session Model

Similar to the mobility model, the extended-Coxian session
model is a generalized matrix version of the Coxian session
model in which stages have matrix representations. Hence,
by applying the same rules shown in subsection III-C, the
extended-Coxian Markovian session generator matrix can be
expressed as

TEC
S = [Tij ] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ti − ζchI ,∀ i = j , i ∈ C
Ti − ζwhI ,∀ i = j , i ∈W
aitiαj ,∀ j = i+ 1 , i ∈ C
(1 −Bv)aitiαj ,∀ j = i+ 1 , i ∈W
0 , otherwise

,

(10)

qEC,V HFT = [qi] =
{
aitiBv ,∀ i ∈W
0 , otherwise

,

qEC,SHH = [qi] =

⎧⎨
⎩

biti(1 −Bh) ,∀ i ∈ C
biti ,∀ i ∈W
0 , otherwise

,

qEC,HHFT = [qi] =
{
bitiBh ,∀ i ∈ C
0 , otherwise

,

qEC,Term = [qi] =

⎧⎨
⎩

ζche ,∀ i ∈ C
ζwhe ,∀ i ∈W
0 , otherwise

.

IV. NETWORK PERFORMANCE ANALYSIS

Generally, the performance modeling and analysis of cel-
lular systems can be conducted at two levels [16]. The first-
level modeling uses the amount of wireless resources (e.g.,
number of radio channels) available in the cell as an input
parameter to determine the new call-blocking probability and
forced termination probability. The second-level modeling uses
the new call-blocking and the forced termination probabilities
as input parameters to study the call-completion probability,
expected effective call hold times, and expected number of
handoffs. Each level of analysis uses some of the output
metrics of the other level as input parameters. The integration
of both approaches is proposed in [13] and [30] using an
iterative rounds of the first and second levels of analysis to
accommodate the user-network interaction, e.g. traffic arrival
and call admission.

Noting that the channel4, traffic classes, and admission con-
trol concepts can be tailored to the NGWN, the same first-level

4Channels may be time slots, frequency bands, spreading codes, or com-
binations of them depending on the multiple-access scheme for the system
under consideration.

analytical approaches can still be used in NGWN analysis.
On contrary, the traditional second level analytical approaches
[14]–[18], which evenly treat the phases in traditional mobility
models, are no longer applicable due to the heterogeneity of
different phases in the presented mobility models. Hence, we
focus in this section on developing a second-level analytical
framework for NGWN to calculate several salient performance
metrics such as network utilization times, handoff rates, and
session termination probabilities. This framework is based
on PH distribution properties and Markovian analytical tech-
niques. Additionally, the analysis considers different scenarios
evolving from different combinations of mobility sub-models
and session types, i.e. new and handoff sessions.

In the analysis, the session type alters the initial phase
distribution, πTo, defined as the probability distribution of
starting the session in a specific phase. For handoff sessions,
since the MT activity completely spans the CRT, the initial
state distribution is equal to the mobility model initial state dis-
tribution, i.e. πTo = αm. For new calls, the MT activity spans
the residual CRT; hence, the initial state distribution equals
the initial state distribution of the residual CRT. Since the
residual time of a PH distribution PH(α,T) is another phase-
type distribution PH(β,T), where β = (αT−1e)−1αT−1

[23, Theorem 3.3.1], we have, for new sessions, πTo =
(αmT−1

m e)−1αmT−1
m . Furthermore, the mobility sub-models

alter the Tm matrix depending on the technology where an ap-
plication session is initiated. Consequently, session generator
matrices QS are altered according to the initial technology
of the mobility sub-model. It is worth mentioning that the
proposed analytical framework represents a novel generic
approach that can be applied to any phase-type system repre-
sentation to obtain the derived performance metrics, including
the IM, CM, and ECM mobility and session models.

A. Horizontal Handoff Rate

The HHO rate is defined as the expected number of
generated horizontal handoffs from a new session. In an
integrated 3G-WLAN network, the HHO rate differs from the
homogeneous case due to session dynamic variations resulting
from inherent network heterogeneity. This metric is estimated
using session absorption probabilities of the Markovian ses-
sion process. Generally, the absorption probabilities can be
estimated using the embedded discrete Markov chain whose
probability transition matrix, WS = [wij ], can be derived
from the session model infinitesimal generator matrix QS [33]:

wrs =

⎧⎪⎪⎨
⎪⎪⎩

−qrs

qrr
,∀r �= s, qrr �= 0

0 ,∀r = s, qrr �= 0
0 ,∀r �= s, qrr = 0
1 ,∀r = s, qrr = 0

. (11)

Similar to QS , WS can be partitioned into transient states and
absorbing states. Hence, we have

WS =
(

WTT WTerm WSHH WHHFT WV HFT

0 e1 e2 e3 e4

)
,

where er is an all-zero column vector except at the rth

location, which is equal to one.
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Let PX
AB denote the absorption probability to state X given

that a session of type B starts in A-type sub-model, then PX
AB

can be calculated as [33]

PX
AB = πT0,AB(I − WTT,A)−1WX

A , (12)

where X can be Term, SHH, HHFT, or VHFT. Using these
absorption probabilities, we define the following probabilities.

• Phh: the probability that a handoff session will be further
horizontally handed off to a neighbor cell. Hence, Phh =
PwoP

SHH
wh + PcoP

SHH
ch , where Pwo is the percentage

of WLAN coverage to the cellular coverage and Pco

represents the percentage of unique cellular coverage and
equals 1 − Pwo. Note that WLAN is assumed to be
randomly located in the cellular coverage.

• Phft: the probability that a handoff session will be termi-
nated in the same cell either due to normal termination or
due to forced termination during VHO. Hence, Phft =
Pwo(1−PSHH

wh −PHHFT
wh )+Pco(1−PSHH

ch −PHHFT
ch ).

• Phs: the probability that a handoff session will perform
exactly one successive HHO. This event takes place either
due to a successful handoff to a neighbor cell in which the
session terminates or due to forced termination at the cell
borders. Hence, Phs = Pwo(PHHFT

wh + PSHH
wh Phft) +

Pco(PHHFT
ch + PSHH

ch Phft).
Consequently, one can derive the marginal distribution func-
tion of the HHO rate, H , assuming the session starts in a
WLAN as follows:

P (H = 0|W ) = PTerm
wn + PV HFT

wn ,
P (H = 1|W ) = PHHFT

wn + PSHH
wn Phft ,

P (H = k|W ) = PSHH
wn P k−2

hh Phs ,∀k ≥ 2 .

Then, the expected number of HHOs for a session starting in
a WLAN is calculated as

E{H|W} =
∞∑

k=0

kP (H = k|W ) .

Using the mathematical identity
∑∞

i=0 ic
i = c

(1−c)2 , |c| < 1,
the expected number of HHO can be expressed as

E{H|W} = PHHFT
wn +PSHH

wn

(
Phft + Phs

(
2 − Phh

(1 − Phh)2

))
.

Similarly, the handoff rate for a session starting in the
cellular network is

E{H|C} = PHHFT
cn +PSHH

cn

(
Phft + Phs

(
2 − Phh

(1 − Phh)2

))
.

The total HHO rate, NHH , is

NHH = E{H|W}Pwo + E{H|C}Pco .

B. Session Termination Probabilities

The successful termination probability, P (ST ), is defined
as the probability that an unblocked session will terminate
normally by the user, i.e. will not be forced to terminate
during handoff. In our session model, successful termination
in a specific cell is represented by the absorption to the Term

state. Hence, assuming that the session starts in a WLAN,
P (ST |W ) can be expressed as

P (ST |W ) = PTerm
wn + PSHH

wn

( ∞∑
k=0

P k
hh

)
Pht ,

where Pht = PwoP
Term
wh + PcoP

Term
ch which represents the

probability that a handoff session will terminate within the
current cell. Similarly, P (ST |C) can be expressed as

P (ST |C) = PTerm
cn + PSHH

cn

( ∞∑
k=0

P k
hh

)
Pht .

Then, the successful termination probability is

P (ST ) = P (ST |W )Pwo + P (ST |C)Pco .

Consequently, the session forced termination probability,
P (FT ), can be expressed as

P (FT ) = 1 − P (ST ) .

C. Network Utilization Times

The utilization time of a specific network is defined as the
expected time spent by the MT in a certain network before it
is handed off to a neighbor cell. For a specific network type,
this metric can be calculated as the duration spent by the MT
in phases corresponding to the same technology. Hence, in the
example integrated 3G-WLAN network, the cellular utilization
and WLAN utilization times are calculated as the duration
spent in the cellular and WLAN phases respectively before
absorption. One way to obtain these metrics is by using [23,
Theorem 2.4.3]. This theorem states that (−T−1)rs is the
expected total time spent in phase s until absorption given
that the initial phase is r. Hence, the expected time spent in
different phases until absorption, LT , can be expressed as

LT = −πToT−1
S . (13)

Consequently, the expected cellular network utilization time
in the integrated model will be E{Lc} =

∑
r∈C LT (r),

and the expected WLANs utilization time will be E{Lw} =∑
r∈W LT (r). To this end, the estimated values represent

conditional metrics estimated for a specific session type and
a specific mobility sub-model. The total metric value is then
estimated using the total probability theorem over different
combinations of mobility sub-models and session types.

The mobility sub-model probability is determined by the
initial network probability that depends on the the percentage
of WLAN overlapping with the cellular network. Therefore,
the probability that the initial network is WLAN equals to
Pwo, and the probability that the initial network is the cellular
network equals Pco. On the other hand, the session-type
probability depends on the application HHO rate. Denoting
λn and λh as the new and handoff session arrival rates of a
specific application respectively, a new session probability can
be expressed as Pn = λn

λn+λh
. Additionally, a handoff session

probability is Ph = 1 − Pn. In [17], it has been shown that
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the handoff arrival rate is λh = λnNHH . Consequently, Pn

and Ph can be expressed as

Pn =
1

1 +NHH
, Ph =

NHH

1 +NHH
.

Hence, the expected cellular utilization time is

E{Lc} = PwoPnE{Lc|WN} + PcoPnE{Lc|CN} +
PwoPhE{Lc|WH} + PcoPhE{Lc|CH} .

Similarly, the expected WLAN utilization time can be es-
timated. Finally, the expected session cell dwelling time,
E{Ls} = E{Lc} + E{Lw}.

D. Vertical Handoff Rates

There are two types of VHOs, upward and downward
handoffs. The former is defined as the transition from a WLAN
to the cellular network, and the latter is the reverse case. These
two types are also known as move out (MO) and move in (MI)
respectively, as shown in Figure 1. The latter taxonomy is due
to the fact that WLAN is considered a preferred network to the
cellular network due to its higher bandwidth and lower cost.
We defined the VHO rate as the expected number of VHOs
induced by an active session within a 3G cell. For all proposed
mobility and session models, the VHO rate is calculated using
Markovian reward models [34]. The expected number of MIs,
E{NMI}, can be expressed as

E{NMI} = πToΨMI ,

where ΨMI is a column vector whose rth element, ψMI
r ,

represents the total expected number of MIs induced from
an active session given that it starts in phase r. Using the
fact that MIs are due to transition from a cellular phase to a
WLAN phase, the expected number of MIs induced from a
phase s ∈ C, given that the session starts in phase r, can be
calculated by assigning a reward that equals the summation
of the transition rates from phase s to any phase l ∈W , i.e.
ρs =

∑
l∈W qsl, where qsl is the transition rate from phase s to

phase l. Hence, the accumulated reward until absorption equals
the product of the assigned phase reward and the duration
spent within this phase (−T−1

S )rs. Consequently, the total
expected number of MIs given that the session starts in phase
r can be expressed as ψMI

r =
∑

s∈C(−T−1
S )rsρs.

Similarly to the network utilization times, the MI rate NMI

is conditionally calculated for different combinations of initial-
network and session types. Then, the metric is calculated using
the total probability theorem as

NMI = PwoPnE{MI|WN} + PcoPnE{MI|CN} +
PwoPhE{MI|WH} + PcoPhE{MI|CH} .

Using a similar reward structure, the MO rate, NMO, can be
obtained. Finally, we have the VHO rate NV HO = NMI +
NMO.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
Pwo 0.3 N 100
Bv 0.01 Bh 0.01

dH (sec) 5 ds(sec) 3

TABLE II
APPLICATION PARAMETERS

VoIP Vconf RoD VoD
1/ζch 3 30 60 90
1/ζwh 3 30 10 15

V. NUMERICAL RESULTS

In addition to the above analysis, we have simulated an inte-
grated heterogeneous system, with square cells for simplicity
of illustration. Each cell is composed of N square subdivi-
sions, where WLANs are randomly located with probability
Pwo. When an MT is handed off to another cell, it experiences
a new random WLAN topology. In order to emulate practical
MT operation, a handoff area [35] of dH seconds is assumed
between overlay 3G cells. This delay corresponds to the
hysteresis introduced in handoff algorithms to decrease the
ping-pong impact during horizontal handoff. Additionally, the
MT MI is delayed with ds seconds as a typical delay required
for WLAN discovery and handoff signaling [36].

In this work, mobility traces are generated by using the
aforementioned network setup. However, it is worth mention-
ing that the traces can alternatively be collected by direct field
measurements with real system implementation using dual
interfaced devices. However, to the best of our knowledge,
mobility traces with the required level of details are not
available in public. On the one hand, cellular traces such as the
Stanford University Mobile Activity Traces (SUMATRA) [37]
are limited to the zone (cell) level of granularity. On the other
hand, traces focusing on WLAN access, such those presented
in [38], [39], only concern MT behavior inside WLANs and
do not contain any information about the cellular network.

For mobility simulation, we adopt a two-dimensional Gauss-
Markov movement model from [8], as it can be easily tuned to
represent a wide range of user mobility patterns between the
two extreme cases of random-walk and constant velocity fluid-
flow. In this model, a MT velocity is assumed to be correlated
in time and is modeled by a Gauss-Markov process. In its
discrete version, at time n, the MT velocity in each dimension,
vn, is given by

vn = αvvn−1 + (1 − αv)μv +
√

1 − α2
v xn−1 , (14)

where αv , 0 ≤ αv ≤ 1, represents a velocity memory factor,
μv is the asymptotic mean of vn, and xn is an independent
and stationary Gaussian process with zero mean and standard
deviation σv , where σv is the asymptotic standard deviation
of vn.

Table I lists the default values of system and simulation
parameters. The application parameters used in our simulations
are shown in Table II. The chosen applications includes both
symmetric-conversational applications, VoIP and Vconf, and
asymmetric-streaming applications, RoD and VoD. Note that
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Fig. 3. Network utilization

the numbers within Table II represent application durations
that combine application data requirements, application sym-
metry, and the bandwidth offered in each network.

Since system details at the packet level are non-essential to
the performance analysis under consideration, both simulation
and analysis results have been obtained using Matlab. The fol-
lowing subsections compare the performance of the proposed
models and show the impact of different system parameters
such as WLAN coverage, MT mobility, and system blocking
probability on the derived performance metrics.

A. Mobility Modeling Accuracy

In this subsection, we compare the accuracy of the proposed
models assuming MT mobility parameters to be αv = 0.9
and αv = 0 with μv = 0 and σv = 2.5. Figures 3-6
illustrate the cellular and WLAN network utilization times,
VHO rate, HHO rate, and forced termination probability
respectively for different applications. All figures show that
the Coxian-based models provide significantly better match
between simulation and analysis results when compared to
the independence model. For the Coxian models, and ECM in
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Fig. 4. VHO rate

particular, the discrepancy between simulation and analysis is
less than 8%. In comparison, the independence model gener-
ally results in much larger mismatch and may lead to 500%
discrepancy as in estimating the forced termination probability
for conversational applications such as VoIP. It is clear that
this mismatch is due to ignoring the dependence between
the CRT and the WLAN and inter-WLAN residence times,
which leads to an inaccurate estimation of the absorption
probabilities and consequently, the performance metrics. On
contrary, accommodating the correlation between CRT and
TRTs using the Coxian structure results in far better estimates
for different metrics.

Additionally, we observe that the difference between CM
and ECM is insignificant for large memory values shown for
αv = 0.9; however, this difference increases as the motion
becomes more random as shown for αv = 0. In general,
our results show that the basic Coxian model can be used
in most cases, for easy parameter estimation and numerical
analysis due to its simpler structure. However, for systems with
highly random mobility patterns, the extended-Coxian model
provides more accurate results. This observation is further
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Fig. 5. HHO rate

explored in Section V-B4.

B. Network Performance and System Design Guidelines

The integrated system of heterogeneous wireless networks
is rich with different system parameters that seriously affect
the system performance. In this subsection we investigate the
impact of several parameters such as WLAN coverage, user
mobility behavior, and other system parameters. This inves-
tigation is based on accurate performance analysis using the
proposed Coxian-based modeling techniques. In the following,
we present analysis results based on CM for most cases, except
those involving highly random mobility patterns, in which case
results based on ECM are also presented. In all figures, unless
stated otherwise, solid lines and dashed lines represent the
analysis and simulation results, respectively. Furthermore, all
simulation results include 95% confidence intervals.

1) WLAN Coverage: WLAN coverage is one of the most
important system parameters in NGWN as it greatly affect
system resource utilization as the users migrate between both
3G network and WLANs. Additionally, its impact is even more
significant for asymmetric applications due to its noticeable
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Fig. 6. Forced termination probability

impact on their session dynamics. In this subsection, the MT
mobility parameters are set to αv = 0.9, μv = 0, and
σv = 2.5. Figure 7 shows the network utilization times of
different applications versus WLAN coverage. The figures
suggest an excellent match between simulation and analysis
results with less than 5% discrepancy. Intuitively, the figure
shows that the utilization time of a technology is proportional
to its coverage. The estimated values enable the estimation of
cellular and WLAN traffic load and consequently can be used
to determine the required resources for different cells with
different WLAN coverage.

Figure 8 plots the VHO rates of different applications
versus WLAN coverage. This figure shows an interesting
phenomenon in which VHO rate changes its increasing trend
after WLAN coverage exceeding 50%. The accurate estimation
of VHO rate values is important for determining the required
processing capacity of different mobility servers that handles
handoff requests, e.g the home agent in Mobile IP. Clearly,
WLAN coverage has a great impact on the server capacity as
its variation leads to large changes in the number of VHOs
performed by the MT. Figure 8 shows that VoD, RoD, and
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Fig. 7. Network utilization time versus WLAN coverage.
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Fig. 8. VHO rate versus WLAN coverage.

Vconf perform 1.7 VHOs per session per cell on average
for WLAN coverage of 10% and up to approximately 4.5
VHOs per session per cell on average for WLAN coverage of
50%. This VHO rate variation approximately corresponds to
150% increase in the signaling load; hence, WLAN coverage
variation should be carefully considered during the design
phase.

Figure 9 shows HHO rate variations for different appli-
cations versus WLAN coverage. Intuitively, the HHO rates
of asymmetric applications decrease as the WLAN coverage
increases as they take the advantage of larger bandwidth of
WLANs, while symmetric application HHO rate is indepen-
dent of WLAN coverage. Hence, integrating 3G and WLAN
services is generally expected to decrease the HHO signaling
load of 3G systems.

Figure 10 shows the session forced termination probability
of different applications versus WLAN coverage. The figure
suggests a maximum for the forced termination probability
of symmetric applications at 50% coverage, after which the
Forced termination probability changes its variation trend. The
forced termination increasing trend is due to the probable
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Fig. 9. HHO rate versus WLAN coverage.
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Fig. 10. Forced termination probability versus WLAN coverage.

forced termination during repetitive VHO as WLAN coverage
increases. However, as the WLAN coverage increases beyond
50%, the probability that the coverage of different WLANs
overlap increases and fewer VHOs are performed. Hence,
the forced termination probability decreases. On contrary, as
asymmetric applications benefit from the higher bandwidth in
WLAN, in addition to coverage increase, the turning point is
shifted to lower WLAN coverage percentages.

2) Vertical Blocking Probability: The vertical blocking
probability, Bv , is a new design parameter beyond traditional
cellular systems. Generally, the value of the blocking prob-
abilities are determined by the session management system
designer. Figures 11-14 plot the derived metrics versus VHO
blocking probability for the same mobility and application
parameters as in the previous section and WLAN coverage
of 30%. In these figures, we vary Bv between zero and
ten times Bh, where zero represents an ideal system with
uninterrupted VHO, while with Bv = Bh, the system designer
choose to treat VHO the same way as HHO from neighbor
cell, i.e. the session management system design will be kept
unchanged. Similar to the previous results, the CM provides
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Fig. 11. Network utilization times versus VHO blocking probability.
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Fig. 12. VHO rate versus VHO blocking probability.

an accurate estimate for different metrics. Additionally, the
figures clearly show that the impact of Bv variation on session
metrics is much more than that on cell metrics. For example,
Figure 14 shows that treating VHOs as HHOs result in a
noticeable increase in session forced termination probability
that approximately equals four times of that in a system with
zero VHO blocking. Additionally, the figure shows that the
forced termination probability can be effectively decreased
by prioritizing VHOs and maintaining Bv at 0.001. This
result demonstrates the critical impact of session management
system design on NGWN performance. Hence, the system de-
signer should carefully allocate the amount of guard bandwidth
to satisfy the application target QoS level.

3) Session Holding Time and Network Gain: In this sub-
section, we investigate the impact of varying session holding
time and the network asymmetry on the derived performance
metrics. The latter factor can be used to study the impact of
WLAN congestion level or the impact of limiting WLAN-
provided service rate according to user service profile as-
suming that WLAN has infinite resources. Figures 15-18 plot
the derived metrics versus cellular holding time and different
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Fig. 13. HHO rate versus VHO blocking probability.
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Fig. 14. Forced termination probability versus VHO blocking probability.

network gains of 1, 3, 6, and 10, where the network gain is de-
fined as ζwh/ζch, representing the ratio of utilized bandwidth
(by symmetric or asymmetric applications) between WLAN
and the cellular network. These figures show that network
utilization and VHO saturate as the application session holding
time increase. This saturation is due to the fact that the
MT CRT is limited. Hence, one can estimate the maximum
expected network utilization and signaling load per cell. On
contrary, session based metrics, such as HHO rates and forced
termination probability, intuitively increase as session holding
time increases.

4) User Mobility Patterns: In this section, we investigate
the impact of user mobility patterns on both the performance
metrics and the accuracy of CM and ECM. In the simulation
and mobility trace collection for the analysis, the mobility
change is realized by varying the user memory factor αv of
the Gauss-Markov mobility model, from zero to one corre-
sponding to the complete spectrum between random-walk and
fluid-flow mobility patterns respectively.

The mobility pattern variation leads to noticeable changes in
both the first and second order statistics of different residence
times. Generally, as the motion randomness increases, i.e. the
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Fig. 15. Network utilization versus call holding time.
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Fig. 16. VHO rate versus call holding time.
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Fig. 17. HHO rate versus call holding time.
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Fig. 18. Forced termination probability versus call holding time.

TABLE III
COXIAN MODEL ORDER

αv 0 0.25 0.5 0.75 0.9 1

Exact fitting 693 541 455 258 123 15

memory factor decreases, both the mean and the variance
of different residence times increase. This increase is due to
the inverse relation between motion randomness and the MT
locality. Clearly, fluid-flow travelers preserve their direction
and speed and consequently, stay for a short duration around
the same location, while random walkers continuously change
both their direction and their velocity and consequently, stay
for a longer duration around the same location. Furthermore,
the variance of different time variables increases even more
significantly compared to the mean. This fact is depicted in
Figure 19.

We observe that increased mobility randomness generally
leads to a great increase in the order of the Coxian model
as shown in Table III. However, the impact of this increase
on the calculation speed of different metrics is limited due
to the highly sparse representation of the Coxian distribution.
Noting that each stage communicates only with its successor,
the matrix fill-in is upper-bounded by 2

m ∗ 100%, where m
is the model order. This bound also applies to ECM whose
order is scaled by the order of its PH stages. Furthermore, it
is worth mentioning that two-phase distributions are usually
sufficient for accurate data fitting [27], [40].

Figures 20-23 plot the impact of the MT mobility pattern
variation on the derived metrics for different applications. An
important observation is that both CM and ECM approxi-
mately have the same accuracy in all performance metrics
except the network utilization times for which ECM provides
better estimates as the mobility randomness increases. For
example, ECM improves the cellular utilization estimation
mismatch from 30% to 6% for αv = 0. On contrary, the
handoff rates and forced termination probability estimates of
both CM and ECM have similar accuracy level. Hence, we
conclude that the exponential assumption is acceptable for
transition related metrics such as handoff rates and forced
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Fig. 19. Coefficient of variation of residence times
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Fig. 20. Network utilization versus mobility randomness

termination probability, while the same assumption leads to
inaccurate estimates for time based performance metrics such
as utilization times.

Figure 20 shows a significant increase in technology uti-
lization times as the mobility randomness increases, which is
a logical consequence for the increase of different residence
times. For example, the cellular and WLAN utilization of
RoD is approximately doubled as the user mobility pattern
changes from fluid-flow to random-walk. Hence, during the
system design phase, these results should be considered when
different system resources are allocated to different cells with
different mobility patterns. Generally, as mobility randomness
increases, more resources should be allocated for the cell. For
example, cells dominated by random walkers, such as those
in downtown locations, should be allocated more resources
than other cells where fluid-flow travelers are expected, such
as cells that cover highways.

Figure 21 shows a similar increasing trend in VHO signaling
for most applications except for VoIP. This exception reflects
the impact of the interaction between mobility and application
characteristics. Clearly, as TRTs increase, the probability that
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Fig. 21. VHO rate versus mobility randomness
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Fig. 22. HHO rate versus mobility randomness
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Fig. 23. Forced termination probability versus mobility randomness
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a VoIP session ends without performing VHOs increases
due to the comparatively shorter session duration. Hence,
VoIP VHOs decreases as mobility randomness increases. On
contrary, the signaling load of other applications is increased
due to the increase of both the session duration and motion
randomness. Finally, Figures 22-23 show that both the HHO
rate and forced termination probability of different applications
increase as mobility randomness decreases, which is a logical
consequence for the decreasing residence times.

VI. CONCLUSION

Network heterogeneity is an intrinsic property of future-
generation wireless networks due to the convergence of dif-
ferent access technologies to support diverse applications and
services. This imposes design challenges that require novel
mobility and analysis models to accommodate the evolving
complexities in an integrated wireless system. In this work,
we have presented three mobility models, IM, CM, and
ECM, their corresponding application session models, and a
stochastic analysis framework for performance evaluation in a
two-tier heterogeneous wireless network, using the 3G-WLAN
integration as an example architecture. We show that the Cox-
ian random variable-based modeling approach accounts for the
dependency between cell and WLAN residence times, leading
to significant improvement in analysis accuracy. Furthermore,
the simpler CM approach provides similar performance results
as ECM for a wide range of mobility and traffic patterns, while
ECM is more suitable in estimating the network utilization
time for systems with highly random mobility patterns. Finally,
using the proposed modeling and analysis methods, we have
studied the impact of several important parameters on the
system performance in terms of different metrics, providing
insights and design guidelines for future-generation integrated
heterogeneous wireless systems.
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