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Abstract

Background: High resolution multiphoton and confocal microscopy has allowed the acquisition of large amounts of data to be
analyzed by neuroscientists. However, manual processing of these images has become infeasible. Thus, there is a need to create
automatic methods for the morphological reconstruction of 3D neuronal image stacks.

New Method: An algorithm to extract the 3D morphology from a neuron is presented. The main contribution of the paper is
the segmentation of the neuron from the background. Our segmentation method is based on one-class classification where the 3D
image stack is analyzed at different scales. First, a multi-scale approach is proposed to compute the Laplacian of the 3D image
stack. The Laplacian is used to select a training set consisting of background points. A decision function is learned for each scale
from the training set that allows determining how similar an unlabeled point is to the points in the background class. Foreground
points (dendrites and axons) are assigned as those points that are rejected as background. Finally, the morphological reconstruction
of the neuron is extracted by applying a state-of-the-art centerline tracing algorithm on the segmentation.

Results: Quantitative and qualitative results on several datasets demonstrate the ability of our algorithm to accurately and robustly
segment and trace neurons.

Comparison with Existing Method(s): Our method was compared to state-of-the-art neuron tracing algorithms.
Conclusions: Our approach allows segmentation of thin and low contrast dendrites that are usually difficult to segment. Compared

to our previous approach, this algorithm is more accurate and much faster.
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1. Introduction

Neurons are the main part of the nervous system. They al-
low processing and transmission of information. Thus, to un-
derstand the neuronal process at the cellular level, it is neces-
sary to develop mathematical models allowing simulation of the
neuronal function. In another direction, new research [1] sug-
gests that anorexia nervosa affects the morphology structure of
the neuron, such as the dendritic length and dendritic branches.
Hence, it is necessary to trace the neuron from a 3D image stack
to extract the morphology representation of the neuron. The
first step of this process is the segmentation of the neuron from
the background. Recent developments in confocal and multi-
photon microscopy allow the acquisition of large volumes of
neuronal images. Manual processing of these images is infea-
sible, as it would require an excessive amount of manual ef-
fort and would be likely to suffer from human errors. All of
these reasons establish the need for the development of meth-
ods for the automatic segmentation of neurons from the 3D im-
age stack. The main challenges to address when developing a
segmentation algorithm are: (i) irregular cross-section (i.e., not
semi-elliptical cross-sections such as those of vessels) of den-
drites due to structures attached to the dendrites (spines); (ii)
variability in the size of the dendrites to be segmented; (iii) thin
dendrites can be as small as one voxel radii (depending on the

voxel size); (iv) thin dendrites appear as low contrast objects;
(v) contrast variation across different datasets due to different
acquisition modalities; and (vi) noise.

The remainder of the paper is organized as follows: in Sec.
2, previous work in the segmentation of neurons is presented.
In Sec. 3, an overview of our algorithm is presented, Sec. 4
our approach for neuron segmentation is presented with math-
ematical detail, Sec. 5 reports results in real datasets, and our
conclusions are presented in Sec. 6.

2. Previous Work

Different approaches have been proposed to segment neurons
from the background of the 3D image stack, including Machine
Learning Algorithms (ML). The most common approach in ML
is supervised learning where the user usually trains a support
vector machine (SVM) classifier which allows separation of the
training data in a high-dimensional space. The training data
usually consist of two classes, positive samples corresponding
to the structure of interest (dendrites) and negative samples cor-
responding to the background. The main difference between
the various supervised learning approaches is the selection of
the feature vector. Gonzalez et al. [2] used 3D steerable fil-
ters to create rotationally invariant feature vectors that are less
sensitive to the irregularities of dendrites. Jimenez et al. [3]
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proposed using isotropic low-pass, high-pass and Laplacian fil-
ters to compute a set of features that are computationally effi-
cient. Santamaria-Pang et al. [4] used the eigenvalues of the
Hessian matrix as descriptors to learn the local geometry of
the dendrites. The main limitation of these approaches is the
assumption that training and testing samples follow the same
distribution, which may not be true due to the large variety in
datasets (different imaging technologies and preparations with
various resolutions and labeling methods [5]). These methods
require re-training when the assumptions are not satisfied and a
different model must be created for each dataset. This process
is usually difficult since it requires properly selecting the posi-
tive and negative samples. In addition, the user needs previous
knowledge in ML to set the correct parameters of the classifier.
Furthermore, due to the variability in the size of the dendrites,
these approaches usually have difficulty segmenting thin den-
drites.

The segmentation process can also be implemented by
thresholding. Janoos et al. [6] used a non-linear diffusion filter
to de-noise the image. Thus, the neuron was segmented using a
global threshold. Chothani et al. [7] proposed enhancing den-
drites using a multi-scale center-surround filter and applying a
threshold to the enhanced image to segment neurons. Then, a
post-processing step was employed to remove regions with a
small number of voxels. Xie et al. [8] used the triangle method
over the histogram of the 3D image stack to compute a global
threshold for segmentation. Then, a morphological closing op-
eration was employed to fill artificial holes produced by the seg-
mentation. Xiao et al. [9] used the average intensity of the 3D
image stack as a threshold value to create an over-segmentation
of the dendrites. These approaches assume that the staining is
homogeneous, which is usually incorrect. As a consequence,
these approaches are not robust to segmentation errors. In ad-
dition, it is difficult to know in advance the correct threshold
value for segmentation. For a complete review of neuron seg-
mentation algorithms see Meijering et al. [10] and Donohue et
al. [11].

Recently, our team [12] proposed a semi-automatic method
based on one-class classification for the segmentation of neu-
rons. First, a monoscale isotropic Laplacian filter was proposed
to detect a training set consisting of points belonging to the
background. These points are used to train a single decision
function that allows determining how similar an arbitrary point
is to the points in the background class. Finally, the unlabeled
points rejected as background are labeled as foreground. A lim-
itation of [12] is that a-priori knowledge of the likely size of
dendrites to be segmented is required to determine the suitable
scale of the mono-scale isotropic Laplacian filters used in the
training step. In addition, neurons with a high degree of het-
erogeneity in dendrite diameter are difficult to segment since a
single scale will not cover the range of dendrite diameters.

In this paper, we propose a multi-scale approach that elim-
inates the drawbacks of our previous approach. The core phi-
losophy of our approach is still the one-class classification seg-
mentation approach [12], but the requirement of the user to pro-
vide the likely width of the neuron to segment is dropped. More
specifically, our contributions in this work are the following:

(i) A multi-scale framework to segment the neurons.

(ii) A mathematically rigorous general approach for the nor-
malization of the response of a multi-scale ensemble of
linear filters motivated by the ad-hoc normalization of
Gaussian low-pass filters used in [13].

(iii) A multi-scale framework to compute the Laplacian of the
3D image stack.

(iv) An approach to compute as many decision functions as
the number of scales (one for each scale) used for seg-
mentation.

(v) A mathematical justification for using different low-pass
filters to compute the Laplacian and the Hessian matrix.

(vi) An extensive experimental evaluation of the performance
of our approach on a number of datasets, including all of
the DIADEM competition and the BigNeuron dataset.

Compared to [12], the method presented here (i) allows detec-
tion of neurons with a high degree of heterogeneity in dendrite
diameter; (ii) allows a fair comparison of the response to the
Laplacian filter at different scales; (iii) allows an automatic se-
lection of samples belonging to the background of the 3D im-
age stack using several scales and allows creation of a partition
of the 3D image stack for each scale; and (iv) allows creation
of specific decision functions for each scale. Due to these ad-
vantages over our previous approach, the Multi-scalE Segmen-
tation Of Neuron (MESON) algorithm is less sensitive to the
varying sizes of the dendrites to be segmented.

3. Materials

3.1. Data Acquisition and Segmentation

The first step of the analysis of neurons is the acquisition of
the 3D image stacks. Neurons are imaged using microscopy
and the voxels usually have anisotropic size where the x − y di-
mensions have the same size but the z dimension usually has a
different value than the x− y. This property creates an elliptical
cross-section of the dendrites in the 3D image stack. Hence,
models that assume circular cross-section usually fail to accu-
rately detect dendrites. Another property due to the acquisition
protocols is that dendrites usually have a decreasing intensity
profile where the maximum value is reached at the center of
the dendrite and the intensity decreases from the center to the
boundary of the dendrite.

3.2. Segmentation

Figure 1 depicts an overview of our segmentation approach.
Our algorithm consists of five steps to segment dendrites from
a 3D image stack and it falls in the category of one-class clas-
sification algorithms.

2



A B C

D E F

Figure 1: Algorithm overview. (A) depicts a slice of a 3D image stack; (B) the multiscale Laplacian calculated using the proposed method that allows to detect
points in the background of the stack; (C) green points depict the automatically detected points (training set) in the background; (D) the training set allows automatic
construction of a one-class classifier (decision functions) for each radii to detect; (E) the decision functions are used to classify whether points belong to the
background; white depicts the rejected points that do not belong to the background; (F) the segmented volume is used to reconstruct the morphology of the neuron.

3.3. Detect a training set of background points
Given a 3D image stack, the first step of our algorithm is to

detect points in the 3D image stack that reliably belong to the
background of the 3D image stack. The second property is used
to accurately detect points in the 3D image stack.

The Laplacian operator is a second-order differential opera-
tor. It has been widely used to detect sharp changes of intensity
as those that occur at the boundary (edges) of the dendrites. To
avoid noisy responses and obtain better responses, the Lapla-
cian operator is usually calculated by convolving the input im-
age with a low-pass filter. The classical approach to computing
the Laplacian is using the Gaussian filter and it is denoted as the
well known Laplacian of Gaussian (LoG). We employ a more
general approach to compute the Laplacian where the family of
Hermite Distributed Approximating Functional (HDAF) is used
as the low-pass filter and the LoG is a special case of the HDAF.
Due to the high variability of dendrite sizes, the Laplacian has
to be computed using several radii (scales). One novelty of this
paper is a mathematically rigorous approach to normalize the
Laplacian (see Proposition 1) of the 3D image stack and to cal-
culate the Laplacian using several radii (multiscale Laplacian).

The multiscale Laplacian defined in this paper has impor-
tant properties. Specifically, (i) it has negative values and is
close to zero near the inside of the boundary of the dendrite;
(ii) it has positive values close to the outside of the boundary
of the dendrite; (iii) it has negative values inside the neuron;
and (iv) it has oscillations between positive and negative val-
ues on the exterior of the neuron. Figure 1(A) depicts a slice
of a 3D image stack where one dendrite is bifurcating. Figure
1(B) depicts the multiscale Laplacian of the stack. Note that the
multiscale Laplacian satisfies the previous properties. Specifi-
cally, it has negative values inside the neuron depicted in blue,
positive values near the outside of the boundary depicted in red,
and positive and negative values outside the dendrite depicted
in yellow. The previous properties allow us to ensure that all
the points from the multiscale Laplacian with positive values

belong to the background of the 3D image stack. Figure 1(C)
depicts an example of some points (green points) with positive
Laplacian value; all of them are in the background of the 3D im-
age stack. Note that there are negative values inside and outside
the neuron due to properties (iii) and (iv). Hence, we need to
develop a method that allow us to differentiate which negative
values belong to the exterior of the neuron and which belong to
the interior of the neuron. In the following sections, a method
to identify which negative values belong to the exterior of the
neuron is presented.

3.4. Feature extraction
One-class classification is a machine learning algorithm that,

given a set of training samples, tries to identify objects similar
to the objects in the training set. The objects that are identi-
fied as dissimilar to the objects in the training set are called
outliers. The one-class classification algorithm requires extrac-
tion of features such that similar objects have similar features.
It is well known that the eigenvalues of the Hessian matrix
are good features to differentiate between different structures
such as noise, tubular structures, blob structures and plate-like
structures. These features have been used to enhance dendrites,
vessels, arteries, airways, etc. Hence, the eigenvalues of the
Hessian matrix are used as the features for the one-class clas-
sification algorithm. To account for the anisotropic voxel of
the acquired images, the eigenvalues are computed using an
anisotropic Gaussian filter.

3.5. Learning from training set
Density estimation is a popular one-class classification al-

gorithm. In this approach the algorithm learns the distribution
of the feature vector from the training set and the user sets a
threshold for acceptance as a similar object. Thus, a new ob-
ject is accepted as similar to the objects in the training set if the
features of the object have a distribution value higher than the
threshold. We employ this approach to detect objects similar to
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the objects in the training set. The distribution of the feature
vector from the training set is learned using histogram since it
has some advantages over other approaches such as (i) it is eas-
ier to compute, (ii) it is a fast approach and (iii) it provides good
approximations. The distribution is transformed in order to nor-
malize the values and smoothed to have smooth transition of the
values of the distribution between neighbouring bins. Figure
1(D) depicts the learned decision functions for four different
scales.

3.6. Segmentation of neurons

The constructed decision functions from the training set al-
low us to differentiate which values with negative Laplacian
value belong to the background and which belong to the neuron.
To this end, the features are calculated for each point that has
negative Laplacian value. Then, the distribution value is calcu-
lated for the feature vector. Every point with distribution value
larger than the automatically detected threshold is assigned to
the background class, while points with values smaller than or
equal to the threshold are assigned to the neuron. Finally, a
post-processing step is employed to removed small structures.
Figure 1(E) depicts the rejected points that do not belong to the
background of the 3D image stack (white), while the black rep-
resents the points that were accepted by the decision functions
as belonging to the background.

3.7. Centerline tracing

An state-of-the-art neuron tracing algorithm is used to extract
the centerline from the segmented volume. Figure 1(F) depicts
a visualization of the morphological recontruction of the 3D
image stack. The reconstruction of the neuron is exported in
the SWC file format.

4. Methods

In this section, each step of the proposed segmentation al-
gorithm is explained in detail. Algorithm 1 describes the main
steps of the proposed MESON. In this section, each step of the
proposed algorithm is explained in detail.

Algorithm 1 MESON
Input: A 3D image stack I and scales σr, r = 1, 2, . . . , l
Output: Label 0 for background voxels and 1 for voxels be-

longing to neurons
Step 1: Detect a training set of background points
Step 2: Extract local shape information (features) from the
3D image stack I
Step 3: Estimate a decision function for each detected train-
ing set
Step 4: Detect unlabeled points that are rejected as back-
ground class for each scale σr

Step 5: Post-process the labeling in Step 4.

4.1. Detect a training set of background points
A popular model for the cross-section of a dendritic branch,

with axis parallel to the x-axis, is the radial 2-D Gaussian

gσ(y, z) = e−
y2+z2

2σ2 , where σ can be used to model the radius of
the branch at a given point. We train the proposed algorithm to
detect background points using the fact that close to the bound-
ary of the dendritic branch the values of a certain Laplacian
operator that we construct in this subsection are positive. We
begin by observing that this property is valid for the 2-D Lapla-
cian of a cross-section of any dendritic branch. Indeed,

∆y,zgσ(r) =
1
r
∂

∂r

r
∂
(
e−

r2

2σ2

)
∂r

 =
e−

r2

2σ2

σ2

(
r2

σ2 − 1
)
.

This calculation implies that the “sign-change point” of ∆y,zgσ
in the radial direction is located at radius σ. This radius coin-
cides with the distance from the origin of the circle of all points
of the cross-sectional plane at which the sign of ∆y,zgσ changes
to plus. On the other hand, in the annulus [σ, 2σ] the intensity
values of gσ decrease smoothly and become small, thus corre-
sponding to a region which can be considered to be the “skin”
of the dendritic branch. This model suggests that, indeed, the
set of positive values of ∆y,zgσ in a cross-sectional plane of the
branch belongs to the exterior of the branch. Our goal is to use
a set of isotropic Laplacian filters to detect those points.

The Laplacian operator used is defined by convolution with
a radial filter defined in the frequency domain in the following
way:

F̂L
n,σ(ξ) = −‖ξ‖2F̂L(c2

n,σ‖ξ‖
2), (1)

where F̂L(x) = pn(x) exp−x, x > 0 is a low-pass filter [14] be-
longing to the family of the Hermite Distributed Approximat-
ing Functionals (HDAFs), the “roof” (̂) over the notation of
a function denotes its normalized Fourier transform, pn(x) =∑n

k=0 xk/k! is the nth order Taylor polynomial for the exponen-
tial function and cn,σ :=

√
2n + 1/(

√
2Kσ). The parameters n

and σ play an important role in the design of the low-pass fil-
ter. The choice of the constant cn,σ places the inflection point
of the radial profile of F̂L(c2

n,σ‖ · ‖
2) firmly at radius Kσ from

the origin, regardless of the value of n. As n increases to∞ [15,
Remark 3.4] the width of the radial profile of the transition band
of F̂L(c2

n,σ‖ · ‖
2) is proportional to 1

n . This transition band also
contains the inflection point of the radial profile of F̂L(c2

n,σ‖·‖
2),

for every n. Moreover, as n grows, the values of F̂L(c2
n,σ‖ · ‖

2)
tend to 1 at every point in the ball centered at the origin with ra-
dius Kσ [15, Theorem 3.7]. In other words, the low-pass filter
F̂L(c2

n,σ‖ · ‖
2) asymptotically behaves like an isotropic ideal fil-

ter. Note that the traditional Gaussian low-pass filter is a special
case of the HDAFs obtained for n = 0.

Following the mathematical analysis of Proposition 2.3 [16],
we infer that if K is selected large enough, in practice K = 3,
and n is sufficiently large (see Section 5 for values of K and n
used in our experiments), then the values of gσ ∗ FL

n,σ faithfully
(in the uniform norm sense) approximate the values of ∆y,zgσ.
Thus, up to a certain radius sufficiently distant from the origin
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the sign of the values of gσ ∗FL
n,σ will be the same as the sign of

the values of ∆y,zgσ, while farther away the sign of the values
of the former function is no longer positive, as the errors of the
approximation of ∆y,zgσ dominate the outcome. The previous
analysis also explains the behavior of the multi-scale isotropic
Laplacian filtering we next introduce.

Dendrites can be modeled locally as tubular structures of
varying width where thick dendrites predominantly reside in
low frequencies, while thin dendrites occupy higher frequen-
cies in the frequency domain. Thus, the Laplacian filters can
be customized to suit the anticipated sizes of dendrites by ad-
justing the cut-off frequency of the low-pass filter; by selecting
a small scale σ ∈ (0, 0.2), the filter keeps low frequencies and
thus captures thick dendrites. Increasing the value of σ is more
suitable for detection of thinner dendrites. To select the appro-
priate scale of the low-pass filter, the Laplacian filter (Eq. (1))
must be normalized to carry on a fair comparison of the re-
sponse to the filter at different scales. In general, linear filtering
is a convolution linear operator and as such is bounded. The
operator norm determines the “magnitude” or, more precisely,
the norm of the output. Thus, it is expected that linear operators
with equal norms will have comparable outputs in the following
sense: Given the same input, the “strength” of the output of lin-
ear filters compared with the same operator norm depends only
on the qualitative properties of each filter. The operator norm of
a linear filter acting on L2(R3), the space of all 3D images with
finite energy, by h 7→ h ∗ f , with h ∈ L2(R3) is equal to ‖ f̂ ‖∞,
where ‖h‖∞ = sup{|h(x)| : x ∈ R3}. Thus, to normalize the re-
sponse of the linear filter induced by the kernel f , we use the
kernel f N := f

‖ f̂ ‖∞
. To normalize the linear operators induced by

the Laplacian filters FL
n,σ (Eq. (1)) we use the next proposition.

Proposition 1. For every fixed integer n ≥ 0, we have

‖F̂L
n,σ(ξ)‖∞ =

σ2

C

where C is a constant that depends on n.

Since we fix n and we vary only σ we can treat C as a con-
stant, at least during each experiment. The proof of Proposition
1 is in Appendix A.

The normalized isotropic Laplacian filtered output Ln,σ(I) of
the 3D image stack I at scale σ is given by:

Ln,σ(I) = I ∗ FL,N
n,σ = F −1{F̂L,N

n,σ (ξ) · Î(ξ)}

= F −1{
F̂L

n,σ(ξ)
σ2 · Î(ξ)}, (2)

where F −1 is the inverse Fourier transform and Î is the Fourier
transform of the 3D image stack I. Next, we define the multi-
scale isotropic Laplacian of the 3D image stack I by:

LM
n (I)(x) = Ln,σmax(x)(I)(x), (3)

where
σmax(x) = argmax

σ∈{σ1,σ2,...,σl}

{|Ln,σ(I)(x)|} (4)

is the scale at which the response of the Laplacian filter reaches
the maximum absolute value and {σ1, σ2, . . . , σl} are the scales
at which the dendrites are expected to fall. Note that each po-
sition x in the 3D image stack I is assigned to a single scale
σmax(x). Hence, the operator LM

n is not necessarily linear and
the scale selected to compute the multi-scale Laplacian creates
a partition of the 3D image stack I. This partition, which plays
an important role in the extraction of the feature vectors and the
construction of the decision function, is defined by:

P(σr) = {x|σmax(x) = σr}, r = 1, 2, . . . , l. (5)

Figure 2(a) depicts a 3D image stack I of a neuron acquired
with multiphoton microscopy and the red square depicts a sub-
volume used to illustrate the steps of our approach. Figure
2(b) depicts the 2D maximum intensity projection of the sub-
volume along the z−axis. The multi-scale Laplacian (Eq. (3))
of the sub-volume is depicted in Figure 2(c) where four scales
(σ1 = 1.5, σ2 = 2, σ3 = 3, and σ4 = 4) were used to compute
the multi-scale Laplacian. Figure 2(d) depicts the partition (Eq.
(5)) of the sub-volume where each color identifies the assigned
partition for each scale. Note that thin dendrites are assigned
to the smaller scale (blue) while thick dendrites are assigned to
higher scales (red and yellow).

According to the theoretical analysis in the first half of this
section, the multi-scale Laplacian LM

n (I) of the 3D image stack
I (Eq. (3)) has the following properties: (i) its values are close
to zero at the boundary of the neuron; (ii) it is negative inside
the neuron; (iii) it is positive near the exterior of the neuron;
and (iv) it produces oscillations between positive and negative
values on the exterior of the neuron.

From properties (ii) and (iv), it follows that any x with pos-
itive response to the Laplacian operator belongs to the exterior
of the neuron. In addition, properties (i) and (iii) imply that
there are positive values close to the boundary of the neuron,
which is important for having a representative training set of
background points. From the previous observations, a training
set B consisting of background points is selected by:

B = {x |LM
n (I)(x) > 0}, (6)

where x is a point (voxel) in I. Note that a training set of back-
ground points can be defined for each scale σr by

B(σr) = {x ∈ B ∧ P(σr)}, r = 1, 2, . . . , l. (7)

Figures 3(a-d) depict the detected training set B(σr)
(light green) and unlabeled samples (red) for each scale
σ1, σ2, σ3, σ4, respectively. This partition corresponds to Fig-
ure 2(d).

4.2. Feature extraction

Dendrites locally resemble a tubular structure, hence we em-
ploy features capturing tubular shape information. The eigen-
values (|λ1| ≤ |λ2| ≤ |λ3|) of the Hessian matrix H are employed
as the feature vector since it is well known that they provide lo-
cal geometric information of the structure. The Hessian matrix
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(a) 3D image stack (b) sub-volume (c) Multi-scale Laplacian (d) Scales

Figure 2: (a) Volume rendering of a 3D image stack I acquired with multiphoton microscopy; (b) Maximum Intensity Projection (MIP) of a sub-volume from the
3D image stack I; (c) illustration of the multi-scale Laplacian filter of the sub-volume; and (d) depiction of the scales at which the Laplacian reaches the maximum
absolute response.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 3: (a-d) Detected training set Bσr (light green) (Eq. (7)) and unlabeled points (red) for each partition Pσr ; (e-h) learned decision function (Eq. (11)) for
each training set Bσr ; (i-l) the values of the similarity function EP(σr )(x) (Eq. (12)) for each partition Pσr ; and (m-p) the detected background points (red) for each
partition Pσr .
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(a) (b)

Figure 4: (a) Background segmentation (red) of the sub-volume and (b) depic-
tion of the dendrite segmentation (gray) of the 3D image stack I.

of the 3D image stack I is computed as:

Hσw
i j (x) =

∂2(I ∗Gσw )
∂xi∂x j

(x), (8)

where Gσw is a Gaussian low-pass filter at scale σw. Note that,
similar to the previous section, the user must select the appro-
priate scale of the Gaussian filter at a given position x. The
partition P (Eq. (5)) allows selection of the correct scale of the
Gaussian low-pass filter, if x ∈ P(σr), thus σw = σr.

Note that the Laplacian filter (Eq. (2)) and the Hessian ma-
trix (Eq. (8)) are computed using different low-pass filters. By
using the same low-pass filter to compute the Laplacian and
Hessian matrix, the automatic selection of the training set is es-
sentially conditioned on the features and thus the discriminative
information to segment the dendrites will not be strong enough.
Using the training set we compute the conditional density of the
features and the segmentation problem is subsequently refor-
mulated as a conditional expectation problem, where the expec-
tation is computed using the conditional density learned from
the training set. This prevents us from using the features whose
conditional joint density we need to learn to define the training
set. In other words, we cannot use a term we wish to define in
the definition of the term. This is due to the following relation:

L(x) = Tr(Hσw (x))
= Hσw

11 (x) + Hσw
22 (x) + Hσw

33 (x)
= λ1(x) + λ2(x) + λ3(x).

Hence, the training set B (Eq. (6)) depends on the feature vector
by the relation

B = {x|λ1(x) + λ2(x) + λ3(x) > 0}.

The relation between the training set and the feature vector no
longer holds if different low-pass filters are used. This is the
main motivation to use different low-pass filters to compute the
Laplacian and the Hessian matrix.

4.3. Learning decision function for each scale

Most of the previous work created explicit functions from the
feature vector to enhance tubular structures by using the prop-
erty that, for an ideal tubular structure, λ1(x) is low and λ2(x)

and, λ3(x) have large negative values ([17]). In this work, den-
drites are indirectly enhanced by creating an implicit decision
function from the feature vector that assigns values close to one
to the background and values close to zero to the foreground.
To this end, a three step approach is used to generate the deci-
sion function for each set B(σr) in the partition of the training
set B: (i) compute the empirical distribution of the eigenval-
ues corresponding to the training set B(σr); (ii) transform the
distribution using a monotonic function to create the decision
function; and (iii) smooth the decision function.

Estimate background distribution: The distribution of the
two eigenvalues1 λ2(x) and λ3(x) from the training set B(σr)
provides information on which points should be assigned with
high probability to belong to background. The higher the value
of the distribution, the more likely the point belongs to the back-
ground. The distribution of the eigenvalues λ2(x) and λ3(x)
from the training set B(σr) is approximated using a 2D his-
togram. We prefer to use a histogram instead of a more com-
plex representation such as kernel density estimation because:
(i) it is easy to compute; (ii) the training set B(σr) may have
millions of points depending on the size of the 3D image stack
I (computing the distribution using kernel density estimation is
very slow. Histograms are very fast to compute even if there
are millions of points); and (iii) it provides a good approxima-
tion of the distribution by selecting an appropriate bin size. The
histogram is computed as:

Dσr (i, j) = c([b1,i, b1,i+1) × [b2, j, b2, j+1)), (9)

where c(R) represents the number of feature vectors that belong
to the two-dimensional interval R, bs,k = ms + k Ms−ms

N ; N is
number of bins for the histogram, and ms,Ms are the minimum
and maximum values of the s−feature in the training set B(σr),
respectively.

Transform the background distribution: The histogram Dσr

has integer values since it counts the number of feature vec-
tors falling in a given bin. The values of the histogram are
transformed such that the minimum and maximum value in the
histogram are zero and one, respectively. A decision function
Dσr ,T from the background distribution Dσr is constructed by
applying the transformation

Dσr ,T (i, j) =
1 − exp−Dσr (i, j)

1 + exp−Dσr (i, j) . (10)

This transformation assigns values close to one to any bin
with Dσr (i, j) ≥ 6 while assigning value zero to bins with
Dσr (i, j) = 0. The motivation behind this transformation is to
ensure that if a two-dimensional interval has at least six feature
vectors from the training set falling on it, any unlabeled feature
vector falling in the interval would be assigned to background
class. In addition, this transformation allows us to ensure that
two-dimensional intervals with zero feature vector would be as-
signed value zero and therefore any unlabeled feature vector
falling on it would not be assigned to background class.

1We use only the two largest eigenvalues since they provide enough shape
information and we avoid the additional computational effort to compute the
3D distribution.
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Smoothing the decision function: A disadvantage of his-
tograms is that they result in piecewise constant functions.
Hence, Dσr ,T is such a function. Therefore, there can be re-
gions having value zero but they may have close regions with
value one. To alleviate those discontinuities, Dσr ,T is smoothed
by convolving it with a Gaussian kernel

Dσr ,s = Dσr ,T ∗Gσs . (11)

Figures 3(e-h) depict the learned decision function Dσr ,s for
each detected training set B(σr). Note that the proposed deci-
sion function assigns high values to regions close to zero. This
is mainly because, according to [17], the eigenvalues of noise
samples (background) have low values.

4.4. Segmentation of Neurons
For each set P(σr) in the partition, a function EP(σr) is cre-

ated that measures how similar a point x ∈ P(σr) is to the back-
ground

EP(σr)(x) =

{
1 if x ∈ B(σr)

Dσr ,s(Q(λ2(x), λ3(x))) otherwise , (12)

where Q(λ2(x), λ3(x)) indicates the bin position of
(λ2(x), λ3(x)). Figures 3(i-l) depict the corresponding
values of EP(σr)(x) for each x ∈ P(σr). Note that points x in
the background are assigned to values close to one (red) while
points in the foreground are assigned values close to zero (light
green) as expected.

A point x ∈ P(σr) is assigned to the background class if the
value of function EP(σr) is higher than a threshold Tσr :

S P(σr) = {x|EP(σr)(x) > Tσr }, (13)

which the user can vary to optimize results. The threshold Tσr

controls the accuracy of the classification on the training set
B(σr) by correctly classifying x ∈ B(σr) if the value Dσr ,s as-
sociated to x is larger than Tσr , otherwise x is classified incor-
rectly. The threshold Tσr is automatically set by selecting the
value that correctly classifies 99.9% of the training set as back-
ground. Note that the segmentation depends on the threshold
Tσr ; by selecting a threshold with less accuracy, more back-
ground would be classified incorrectly and noise would be in-
corporated in the segmentation. Thus, the set of points that
belongs to the background of the 3D image stack is given by:

S B = S P(σ1) ∪ S P(σ2) ∪ · · · ∪ S P(σl), (14)

which is the union of all the points that were detected as back-
ground in each partition Pσr . Finally, the function used to seg-
ment the dendrites is defined as:

S D = ¬S B ∨ (I > T1), (15)

where the first term detects dendrites as those points that are re-
jected as background points and the second term is a threshold
operator (T1 = 0.90 × max

x
{I(x)}) that allows detection of den-

drites that exceed the maximum radii provided for the scales.

Note that the second term is necessary to segment thick den-
drites in cases where few images are provided for the z-axis.
For example, assume that n images are provided for the z-axis.
Then, the maximum value allowed for the scales is n/2 since
any scale exceeding this value would exceed the number of im-
ages provided in the z-axis. Thus, any dendrite with radii larger
than n/2 would not be detected by the first term. However,
it would be detected by the second term since the thicker the
dendrite, the higher the intensity. Figures 3(m-p) depict the de-
tected points in the background S P(σr) for each scale. Figure
4(a) depicts the segmentation of the background S B. Figure
4(b) depicts segmentation of the neuron for the 3D image stack
I. Note that thin and thick dendrites are detected and also low
contrast dendrites are segmented.

4.5. Post-processing

The segmentation S D may still identify false dendrites, which
usually have few voxels. They are detected by identifying con-
nected components using a 26-connected neighborhood and
disregarding components with fewer than cm voxels.

4.6. Centerline tracing

The morphological reconstruction of the neuron is achieved
by applying the centerline tracing algorithm of [4] to our seg-
mentation. Note that the morphological reconstruction of the
neuron is represented in the standard SWC file format [18].

5. Results

In this section, qualitative and quantitative results of the per-
formance of the proposed approach are presented on multiple
datasets. The publicity available DIADEM [5] and the BigNeu-
ron [19, 20, 21] datasets were used to evaluate our algorithm.
The DIADEM dataset was release in 2012 and the 3D im-
age stacks are provided from different laboratories with a va-
riety of acquisition modalities, resolutions and labeling meth-
ods. Hence, it is a representative dataset of the challenges to be
faced by neuron morphology tracing algorithms. The BigNeu-
ron dataset is a recent dataset (2015), which incorporates new
challenges to be addressed by neuron tracing algorithms. Fur-
thermore, one additional dataset acquired with confocal mi-
croscopy is used to compare our MESON algorithm against our
previous approach (OCCEN).

Qualitative results are presented for four (Cerebellar Climb-
ing Fiber (CF), Hippocampal CA3 Interneuron (CA3), Neo-
cortical Layer 1 Axons (NL), Visual Cortical Layer 6 Neuron
(VC6)) of the six DIADEM datasets, six datasets (chick uw,
frog scrippts, fruitfly larvae gmu2, human allen confocal, hu-
man culturedcell Cambridge and mouse RGC uw) of the
BigNeuron dataset, and one confocal dataset. In addition, quan-
titative results are presented in two (Neuromuscular Projection
Fibers (NP), and Olfactory Projection Fibers (OP)) DIADEM
datasets.

Parameter Settings: Our approach requires four parameters
n, N, σs and cm. These parameters were fixed to n = 60,N =
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500 and σs = 5 for all the experiments. We choose n = 60 be-
cause it provides a small transition band. The parameter N de-
pends on the size of the training set Bσr : the larger the training
set, the smaller the bin size to obtain a good approximation of
the distribution. Hence, 1M samples from Bσr were randomly
selected and N was fixed to 500; we set σs = 5 because it is
an adequate value for the size of the histogram. The parameter
cm = (2×σrmax )3 where σrmax is the larger scale used for segmen-
tation. The number of scales used for segmentation affects the
segmentation; increasing the number of scales would improve
the segmentation. However, there are usually no large differ-
ences between the segmentations beyond ten scales. Therefore,
ten scales are usually used in our experiments.

5.1. Qualitative results

In this section qualitative results are presented in the DI-
ADEM, BigNeuron and Confocal datasets to demonstrate the
robustness of our approach to handle different datasets. The
Confocal dataset is used to qualitatively compare our algorithm
against our previous approach (OCCEN).

CF - DIADEM dataset: The 3D image stacks from this
dataset have three channels. The third channel is used as our
input image I since the blob structures are attenuated in this
channel. Furthermore, this dataset is highly anisotropic since
the z-distance between successive images within an image is
8.8 pixels, creating a spacing of [1 1 8.8] voxels for the x, y and
z-axis, and only 34 images are provided for the z-axis. Figure
5(a) depicts the Maximum Intensity Projection (MIP) along the
z-axis of a 3D image stack from this dataset, the manual re-
construction (green), and the reconstruction from our software
(red). The total reconstruction time was 1h 11min. Note that
our reconstruction highly agrees with the manual reconstruc-
tion. In addition, our reconstruction is able to detect branches
that were not traced in the manual reconstruction (blue squares).
The scales for the segmentation are σr = {2, 3, 4, . . . , 10, 11,
12}.

CA3 - DIADEM dataset: The neurons from this dataset
appear as black structures in the raw images, hence the inten-
sity of the images is inverted to depict neurons as bright struc-
tures. Furthermore, some dendrites appear as a sequence of
unconnected dendrites due to gaps. In addition, the dendrites
are very elongated along the z-axis due to the anisotropic ratio
1:1:8. Figure 5(b) depicts a comparison between the reconstruc-
tion from our algorithm (red) and the manual reconstruction
(green). Note that both reconstructions are very similar; this is
mainly because our segmentation algorithm is able to detect the
bright tubular structures in the 3D image stack. In addition, our
method is able to detect some dendrites (blue squares) missed
in the manual reconstruction. However, note that our algorithm
missed a branch traced in the manual reconstruction (yellow
square). This is mainly because there is a very large gap in the
dendrite. The scales used for segmentation are σr = {1.5, 1.6
, 1.7, . . . , 3.0}. Due to the highly anisotropic ratio, some false
dendrites are detected along the z-axis that are not removed by
the default parameters of Step 5. Hence, for this dataset the
parameter Cm is manually selected to remove those false den-

drites. The total reconstruction time was 3h 55min. Note that
this is a big stack with size 4824 × 2655 × 110 voxels.

VC6 - DIADEM dataset: The neuron from this dataset was
acquired with transmitted light bright-field microscopy and the
z-distance between successive images is 2.93 pixels. Figure
6(a) depicts the minimum intensity projection of the 3D im-
age stack from the VC6 dataset and the reconstruction from
our algorithm where it has been shifted to better visualize the
neuron, blue squares identify low contrast dendrites that were
accurately segmented and traced by our algorithm, while the
yellow square depicts a thick dendrite accurately detected by
our algorithm. The computational time was 14m 49s.

NL - DIADEM dataset: This is a challenging dataset be-
cause dendrites are crossing and there are gaps in the axons due
to low signal-to-noise ratio; this may lead to topological errors
in the reconstruction such as incomplete tracings and incorrect
labeling of axons at cross-over. Figure 6(b) depicts a maximum
intensity projection of a 3D image stack from the NL dataset;
the labeling and tracing of each axon is depicted using different
colors. Our algorithm is able to accurately extract the topology
of each axon due to the centerline tracing algorithm because
the tracing algorithm from [4] is designed to correct this type of
topological error. The reconstruction time was 1m 33s.

BigNeuron dataset: The BigNeuron dataset is a new pub-
licly available dataset and it should be used as a baseline for
testing neuron tracing algorithms. Figure 7 depicts the results
of the neuron tracing for six different datasets of the BigNeu-
ron. Red lines correspond to the reconstruction from the pro-
posed algorithm. The results are fairly good for detecting the
dendrites of the datasets. The proposed approach is able to de-
tect thin and thick dendrites for each of the datasets. Addi-
tional visualization of the tracings for the different stacks of
the BigNeuron dataset can be found in Supplementary Figures
2-11. Given a dataset, the scales used for our segmentation al-
gorithm were fixed for each stack of the dataset to the minimum
and maximum radii to detect.

MESON against OCCEN - CONFOCAL dataset: To
demonstrate the advantage of using a multi-scale approach
rather than a single approach, MESON is compared to OCCEN
in a 3D image stack with a high degree of heterogeneity in den-
drite diameter. Figure 8(a) depicts a volume rendering of the 3D
image stack that includes the following properties: (i) high de-
gree in dendrite diameter, (ii) high and low contrast dendrites,
and (iii) high and low curvature of dendrites. Figure 8(b) de-
picts the segmentation from MESON where the scales used for
segmentation were σr = { 0.5, 1.0, 1.5, 2.0, . . . , 4.5, 5.0}. Fig-
ures 8(c–e) depict the segmentation from OCCEN where the
scales used for segmentation were σ = 1, 1.5, and 2, respec-
tively. Note that MESON is able to segment thin dendrites (red
squares) while OCCEN fails to segment them. In addition, by
increasing the scale of OCCEN, more dendrites are not seg-
mented. This is the main weakness of our previous approach
since given a single scale σ, it has difficulty segmenting den-
drites with radii smaller than σ. Furthermore, it has difficulties
segmenting dendrites with radii much larger than σ since it cre-
ates a hollow at thick dendrites. Then, thick dendrites are traced
as two parallel dendrites, which results in incorrect tracings.
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(a) DIADEM CF (b) DIADEM CA3

Figure 5: Qualitative results. (a,b) MIP along the z-axis of the 3D image stacks from DIADEM CF and CA3, respectively. Manual reconstruction (green), the
reconstruction from our software (red), branches detected by our algorithm but missed in the manual reconstruction (blue squares), and a part of a dendrite missed
by our algorithm (yellow square).

(a) DIADEM VC6 (b) DIADEM NL

Figure 6: Qualitative results. (a) Minimum Intensity Projection along the z-axis of a 3D image stack from the DIADEM VC6 and reconstruction by our software
(red), blue squares identify low contrast dendrites acurately detected by our algorithm and the yellow square identifies a thick dendrite; (b) MIP along the z-axis of
a 3D image stack from the NL dataset, different tracings labeled with different colors.

5.2. Quantitative results

Our method was quantitatively compared to state-of-the-art
neuron reconstruction algorithms (Neurostudio ([22]), APP2
([9]), Neutube ([23]), ORION 2[3], ORION [4] and OCCEN
[12]). The default parameters were used for each of the algo-
rithms. The parameter settings for our segmentation algorithm
were fixed as described previously, and we did not include man-
ual interaction. Even though tuning some of the parameters
can increase the accuracy of our segmentation for each dataset,

such as the value cm used for removing small structures or the
threshold values Tσr and Tl used for the detection of dendrites
(Supplementary Figure 1 depicts an example of reconstruction
with default parameters and reconstruction with the parameters
tuned).

To quantitatively measure the performance of our proposed
algorithm, the morphological reconstruction of the neuron
(traced centerline) is used for comparison. The metrics used for
comparison are Precision (P), Recall (R) and Miss-Extra-Score
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(a) checked6 chick uw case1 dataset - BigNeuron (b) checked6 frog scrippts dataset - BigNeuron (c) checked6 fruitfly larvae dataset - BigNeuron

(d) checked6 human allen dataset - BigNeuron (e) checked6 human cultured cell dataset - BigNeuron (f) checked6 mouse RGC uw dataset - BigNeuron

Figure 7: Qualitative results BigNeuron dataset. (a-f) Tracing results of case1 slide2, Recon112012, 1 CL-I X OREGON R ddaD membrane-GFP, in house1,
image7, and ho 091202c2 stacks from the BigNeuron Project.

(a) 3D image stack (b) MESON (c) OCCEN σ = 1 (d) OCCEN σ = 1.5 (e) OCCEN σ = 2

Figure 8: Comparison of MESON over OCCEN. (a) Volume rendering of a 3D image stack with high degree of heterogeneity in dendrite radii. (b) Segmentation
result of MESON where red squares depict thin dendrites that are correctly segmented. (c,d,e) Segmentation result of MESON where the scales used for segmentation
were σ = 1, 1.5 and 2, respectively.

(MES):

P =
S C

S t
, R =

S C

S C + S m
and MES =

S G − S m

S G + S e
,

where S C is the total length of the correct segments from the

traced centerline, and S t and S G are the total length of the traced
centerline and manual reconstruction, respectively. The total
length of extra segments in the traced centerline is denoted by
S e. The total length of missing segments from the ground truth
is denoted by S m. Given a point pi in the correct segments from
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the traced centerline, the displacement error of pi is defined as
the minimum Euclidian distance between the point pi and all
the points in the ground truth. The metric Precision measures
the percentage of the centerline that is correctly detected, Re-
call is a metric that penalizes the traced centerline if it misses
segments (the algorithm fails to detect dendrites), and MES pe-
nalizes the extra and missing parts from the centerline.

It is important to point out that since the automatic recon-
struction is performed on a 3D grid there may be small errors
between the manual reconstruction and the traced centerline.
To account for this error, a point pe in the centerline is classi-
fied correctly if there is a point pg in the manual reconstructions
such that ‖pe − pg‖ ≤ C, where C is a constant defined by the
user. The constant C used for computing the metrics is the same
as those used in [3]. For the OP dataset, the value C = 3 is used
while C = 7 is used for the NP dataset.

MESON against OCCEN. NP - DIADEM dataset: First,
the proposed algorithm to trace neurons is quantitatively com-
pared against our previous approach [12] in the NP dataset. Ta-
ble 1 presents the average value for Precision, Recall and MES
for 30 image stacks from the NP dataset. We only report results
on 30 out of 152 stacks, since the gold standard misses some of
the fibers for the remaining stacks as pointed out by [3] and this
affects the value of the metrics. Methods A1-A6 represent our
previous approach where the scale used for segmentation was
σ = 1.5, 2.0, 2.5, 3.0, 3.5 and 4.0, respectively. Method D cor-
responds to our multi-scale approach where the scales used for
our segmentation algorithm were σr = {1.5, 1.75, 2.0, ..., 5.0}.
Note that our multi-scale framework has the highest value for
the metrics Precision and MES. The highest value for the met-
ric Recall is achieved by OCCEN with σ = 1.5. However,
OCCEN with σ = 1.5 produces the lowest value for the metric
Precision indicating that the tracing is creating the most spu-
rious branches among the other reconstructions. Furthermore,
the metric MES for OCCEN with σ = 1.5 is lower than the
multi-scale approach, indicating that it produces more branches
and it missed more branches than our multi-scale framework.
Hence, the quantitative results demonstrate that the multi-scale
approach outperforms the single scale. The computational time
to trace the NP dataset was 5h 27min, 4h 54min, 5h 07min, 4h
41min, 5h 10min and 6h 11min by the OCCEN algorithm for
each scale. Hence, the total time to extract the 180 (six for each
image stack since six scales are analyzed in the single scale)
reconstructions was 31h 30min. The multi-scale approach took
1h 21min to reconstruct the 30 image stack. In addition to the
quantitative advantage of our multi-scale scale, our approach is
faster than the single scale because tracing the centerline from
the segmentation is a time consuming task and tracing the same
stack six times (for the OCCEN algorithm) takes a large amount
of time. The average size of the stacks is 512 × 512 × 96.

NP - DIADEM dataset: Table 2 summarizes the perfor-
mance result for each algorithm on the NP dataset. The
scales used for our segmentation approach are σr = {1.5,
1.75, 2.0, . . . , 4.0}. The computational time to trace the 30
stacks was 1h 3m where the average size of the stacks was
512 × 512 × 96. The algorithm of [12] was tested using six
scales. Then, six traces were returned for each 3D image stack.

The trace with the highest value of Precision, Recall and MES
was selected to compute Table 2. Neurostudio achieves the best
average performance for the metric Precision, indicating that
Neurostudio produces fewer incorrect branches. However, our
approach has better results for the metrics Recall and MES, thus
indicating that the centerline traced from our algorithm is more
similar to the ground truth than the methods of Neurostudio,
APP2, Neutube, [3] and [4]. Our results are identical to our
previous approach [12], indicating that both algorithms per-
form equally well. However, an advantage over our previous
approach is that given the scales for segmentation, our algo-
rithm generates only one reconstruction (tracing of the neuron)
since all the scales are incorporated in our multi-scale frame-
work, while [12] produces one reconstruction for each scale.
Hence, the method of [12] requires visual inspection of the
traced reconstruction for each scale and selection of the re-
construction with the best result, which is highly subjective.
Specifically, [12] has an average Precision, Recall and MES
of {0.95, 0.95, 0.89}, {0.96, 0.95, 0.90}, and {0.97, 0.92, 0.89} for
σ = 1.5, 2, and 2.5, respectively. Our multi-scale framework
outperforms any of these results.

OP - DIADEM dataset: Table 3 summarizes the perfor-
mance results of each algorithm on the OP dataset. The scales
used for our segmentation approach are σr = {1.0, 1.2, 1.4,
. . . , 2.0}. The computational time to trace the 8 stacks was 8min
26s where the average size of the stacks was 512 × 512 × 77.
Our method achieves the best average performance for the met-
rics Recall and MES, hence our approach is able to detect more
parts of the dendrites and creates fewer erroneous branches.
Hence, our method produces more accurate tracings than state-
of-the-art neuron reconstruction methods. The results from our
method and [4] are very similar, indicating that both algorithms
perform equally well. This is mainly because there is not large
radii variation in the dendrites of this dataset, hence the seg-
mentation method of [4] produces good segmentation results
and therefore tracings. However, [4] has difficulty segmenting
dendrites where there are large radii variations such as the NP
dataset, as can be seen from Table 2. The quantitative results
show that our algorithm clearly outperforms our previous ap-
proach since our previous approach produces incomplete trac-
ings due to gaps in the 3D image stack. Our method is able to
correct this error and then produce complete tracings.

6. Discussion

We have presented a novel, one-class classification approach
to automatically segment the neurons from a 3D image stack
that uses a multi-scale approach to detect a training set consist-
ing of samples belonging to the background. Then, it learns
a decision function for each scale and dendrites are detected
as outliers (points that are rejected as background by the deci-
sion function). Our approach allows segmentation of thin and
low contrast dendrites that are usually difficult to segment. In
addition, the morphology of the dendrite is traced from the seg-
mentation using a state-of-the-art centerline algorithm [4].

Our approach was evaluated in all the datasets from the pub-
licly available DIADEM dataset. The qualitative and quantita-
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Table 1: Performance evaluation NP dataset - single scale against multi-scale (A1-A6 [12] σ = 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0, respectively and D: Our method.)
Precision Recall MES

Stack\method A1 A2 A3 A4 A5 A6 D A1 A2 A3 A4 A5 A6 D A1 A2 A3 A4 A5 A6 D
Average 0.95 0.95 0.97 0.98 0.98 0.98 0.98 0.99 0.98 0.97 0.94 0.90 0.84 0.98 0.91 0.92 0.94 0.93 0.89 0.85 0.96

Table 2: Performance evaluation on 30 volumes from the NP dataset (A: [22], B: [9], C: [23] ,D: [3], E: [4], F: [12], G: Our method.)
Precision Recall MES

Stack\method A B C D E F G A B C D E F G A B C D E F G
Average 1.00 0.99 0.98 0.98 0.97 0.98 0.98 0.89 0.88 0.93 0.95 0.92 0.98 0.98 0.93 0.86 0.92 0.94 0.90 0.96 0.96

Table 3: Performance evaluation on the OP dataset (A: [22], B: [9], C: [23], D: [3], E: [4], F: [12], G: Our method.)
Precision Recall MES

Stack\method A B C D E F G A B C D E F G A B C D E F G
1 0.99 0.97 0.96 0.99 0.98 0.99 0.99 0.95 0.94 0.96 0.94 0.96 0.96 0.97 0.94 0.92 0.92 0.93 0.94 0.94 0.96
3 0.95 0.95 0.94 0.98 0.96 0.96 0.96 0.89 0.87 0.97 0.74 0.98 0.92 0.97 0.86 0.84 0.90 0.74 0.94 0.88 0.93
4 0.93 0.85 0.94 0.92 0.92 0.87 0.94 0.86 0.85 0.87 0.88 0.90 0.92 0.93 0.81 0.74 0.84 0.82 0.83 0.80 0.87
5 0.98 0.95 0.96 0.97 0.97 0.93 0.93 0.92 0.91 0.93 0.74 0.97 0.84 0.95 0.91 0.87 0.90 0.71 0.94 0.78 0.88
6 0.98 0.99 0.98 0.99 0.95 0.98 0.98 0.95 0.91 0.91 0.95 0.96 0.98 0.97 0.94 0.90 0.90 0.94 0.91 0.96 0.95
7 0.99 0.97 0.99 1.00 0.97 1.00 0.99 0.98 0.93 0.93 0.94 0.97 0.95 0.98 0.98 0.91 0.93 0.94 0.93 0.94 0.97
8 0.99 0.97 0.99 1.00 1.00 0.98 1.00 0.96 0.93 0.94 0.98 0.96 0.99 0.97 0.96 0.91 0.93 0.97 0.96 0.97 0.97
9 0.96 0.93 0.93 0.95 0.92 0.91 0.97 0.86 0.74 0.72 0.82 0.86 0.91 0.90 0.84 0.72 0.69 0.78 0.80 0.81 0.87

Average 0.97 0.95 0.96 0.97 0.96 0.95 0.97 0.92 0.88 0.91 0.87 0.95 0.93 0.96 0.90 0.85 0.88 0.85 0.91 0.89 0.93

tive results demonstrate that our algorithm is able to correctly
trace and label neurons. In addition, the quantitative results in-
dicate that our approach results in more accurate segmentation
and centerline tracing of neurons compared with state-of-the-art
neuron tracing algorithms. We demonstrated that a multi-scale
approach to computing the Laplacian can be incorporated with
a one-class classification to segment neurons. The main ad-
vantages of our approach are: (i) it works for a wide range of
acquisition modalities without requiring tuning of the parame-
ter settings; (ii) it can detect thin dendrites as in the OP dataset
and thick dendrites as in the NP dataset; and (iii) it requires
little user intervention (the user only has to set the scales for
segmentation).

The ORION3 software and documentation can be requested
at http://cbl.uh.edu/ORION/research/software (no fee license).
Our software is written in Matlab R2015 and ITK. It is devel-
oped for Windows users; hence some routines have to be com-
piled for other OS.
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Appendix A Proof of Proposition 1

The Laplacian filter FL
n,σ is defined in R3. Since the linear

filter induced by FL
n,σ is a linear operator acting on L2(R3), the

operator norm of this operator is equal to ‖F̂L
n,σ‖∞. Since F̂L

n,σ is
radial, it is enough to find the maximum absolute value of F̂L

n,σ

on any of the positive half-axes. So,

‖F̂L
n,σ‖∞ = sup{|F̂L

n,σ(ξ)| : ξ ≥ 0}

= sup{−ξ2F̂L(c2
n,σξ

2) : ξ ≥ 0}.

To find this maximum value, we need to find the critical points
of F̂L

n,σ. We have,

dF̂L
n,σ(ξ)
dξ

=
−2ξ

ec2
n,σξ2

 (c2
n,σξ

2)n+1

n!
− pn(c2

n,σξ
2)


= 0.

Hence, ξ = 0 is the obvious critical point, where |F̂L
n,σ| takes its

minimum value. The remaining critical points given by

(c2
n,σξ

2)n+1

n!
− pn(c2

n,σξ
2) = 0 (16)

are the interesting ones, since at one of them |F̂L
n,σ| attains

its maximum value, because |F̂L
n,σ| is differentiable. Next, set

ω = c2
n,σξ

2. Since ω(ξ) = c2
n,σξ

2 and ξ > 0, the function ω is
increasing and its range covers all of R+, we conclude that the
non-zero critical points of |F̂L

n,σ| are determined by the roots of
the polynomial equation

ωn+1

n!
− pn(ω) = 0. (17)

Let r1 be the root of the polynomial in the right-hand side of Eq.
(16) corresponding to the maximum of |F̂L

n,σ|. Consequently,√
r1/c2

n,σ, is a value of ξ at which |F̂L
n,σ| attains its maximum,
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which is equal to

F̂L
n,σ(

√
r1

c2
n,σ

) =

(√
r1

c2
n,σ

)2

pn

c2
n,σ

(√
r1

c2
n,σ

)2 e
−c2

n,σ

√ r1
c2
n,σ

2

=
r1

c2
n,σ

(
pn(r1)e−r1

)
=

(2n + 1)
2σ2K2

(
r1 pn(r1)e−r1

)
=

1
σ2

(
(2n + 1)r1 pn(r1)e−r1

2K2

)
=

1
σ2 C,

(18)

where C := (2n+1)r1 pn(r1) exp−r1

2K2 is a fixed constant that depends
only on n, since r1 only depends on the degree of the polyno-
mial.
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