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HIGHLIGHTS

We model the customer redial and reconnect behaviors in call centers.

We approximate the service levels and abandonment percentages of such a model.
A fluid model is proposed, and the corresponding fluid limit is derived.

The performance of our approximation is evaluated numerically.
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Available oniine 20 July 2015 decisions, while not distinguishing them from the total calls will inevitably lead to under-

or overestimation of call volumes, which results in improper and hence costly staffing de-

cisions.
Ié:ﬁvzzlrﬁ:rs Motivated by this, in this paper we study call centers where customers can abandon, and
Fluid model abandoned customers may redial, and when a customer finishes his conversation with an
Redial agent, he may reconnect. We use a fluid model to derive first order approximations for the
Reconnect number of customers in the redial and reconnect orbits in the heavy traffic. We show that
Erlang A the fluid limit of such a model is the unique solution to a system of three differential equa-

tions. Furthermore, we use the fluid limit to calculate the expected total arrival rate, which
is then given as an input to the Erlang A formula for the purpose of calculating the service
levels and abandonment probabilities. The performance of such a procedure is validated
numerically in the case of both single intervals with constant parameters and multiple in-
tervals with time-dependent parameters. The results demonstrate that this approximation
method leads to accurate estimations for the service levels and the abandonment proba-
bilities.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, call centers are important means of communication with customers. Therefore, the response-time perfor-
mance of call centers is crucial for the customer satisfaction. It is essential to the costs and the performances of call centers
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that managers make the right staffing decisions (i.e., determine the right number of agents). Various models have been de-
veloped in order to support such decision processes. One of the most widely used models is the Erlang C model and there
is a lot of literature on it (see [ 1] and the references therein). The square-root staffing rule is a simplified and approximated
staffing rule for the Erlang C model, which is proposed by Halfin and Whitt [2]. However, the Erlang C model does not include
customer abandonments, while the Erlang A model does. Garnett et al. [3] show that the square-root staffing rule remains
valid for the Erlang A model. However, both the Erlang C and the Erlang A model ignore customer redial (a re-attempt after
an abandoned call) behaviors in call centers, while this behavior can be quite significant (see [ 1] and reference therein). Aguir
et al. [4] discover that ignoring redials can lead to under-staffing or over-staffing, depending on the forecasting assumption
being made. This model with reneging is also studied in [5], and later extended by Phung-Duc and Kawanishi [6] and Phung-
Duc and Kawanishi [7] with an extra feature of after-call work. Sze [8] studies a queueing model where abandonments and
redials are included, focusing on the heavily loaded systems. We refer to Falin and Templeton [9] for more references in
retrial queues.

Besides redials, there also exists another important feature, which is called reconnect (a re-attempt after a connected call).
The reconnect customer behavior is first mentioned in [ 1] as revisit. Motivated by the application in healthcare staffing with
reentrant patients, Liu and Whitt [ 10]; Yom-Tov and Mandelbaum [ 11] develop methods to set staffing levels for models with
and without Markovian routing. Such methods remain valid for time-varying demand. In [12], the authors use real call center
data to show that an inbound call can either be a fresh call (an initial attempt), a redial or a reconnect. Also, as argued in [12],
redials and reconnects should be considered and modeled, since without distinguishing them from the fresh calls can lead to
significantly over- or underestimation of the total inbound volume. As a consequence, neglecting the impact of redials and
reconnects will lead to either overstaffing or understaffing. In case of overstaffing the performance of the call center will be
good, but at unnecessarily high costs. In case of understaffing, the performance of the call center will be degraded, which may
lead to customer dissatisfaction and possibly customer churn. Despite the economic relevance of including both features in
staffing models, to the best of the authors’ knowledge no papers have appeared on staffing of call centers where both redials
and reconnects are included. This paper aims to fill this gap, that is, we investigate the staffing problem in call centers with
the features of both redials and reconnects. We focus on the case of large call centers that operate under heavy load.

In the Erlang C model, if the system is heavily loaded, the expected queueing length will go to infinity in stationarity, and
arriving customers will on average experience infinity long waiting. However, for large call centers with customer abandon-
ments, especially during the busy hours when the inbound volume is quite large such that the system operates under heavy
load, it is possible that most customers will experience relatively short waiting times while having only a small customer
abandonment percentage. Further discussions of this effect can be found in [3].

In this paper, we aim to answer the following question: “In large call centers, for given number of agents, what are the
service level (SL) and the abandonment percentage (AP) if both redialing and reconnection of customers are taken into
account?” In this paper, the SL is defined as the probability that customers get served and wait less than certain given ac-
ceptable waiting time, and the AP is defined as the probability that customers abandon. To answer this question, one must
first estimate the total number of arrivals into the call center. This is not trivial, since the number of total arrivals depends
on the number of agents (see [12]). This dependency becomes more complicated in real life, due to the fact that the rate
of fresh calls arriving and the number of agents are often time-dependent. If the number of arrivals cannot be determined,
it is impossible to calculate the SL. Therefore, in this paper, we take a two-step approach to calculate the SL and AP. First,
we numerically calculate the expected total arrival rate at any instant time by using a fluid limit approximation. We also
show that the fluid limit of this model is a unique solution to a system of three deterministic differential equations. In the
second step, under the assumption of the total arrival process being Poisson, we apply the Erlang A formula to obtain the SL
and the AP. This approximation turns out to be quite accurate. In this paper, we consider only the expected SL and AP, for
discussions about the SL variability, we refer to the work by Roubos et al. [13].

Fluid models for call centers have been extensively studied. Whitt [ 14] develops a deterministic fluid limit which they use
to provide first-order performance descriptions for the G/GI /s + GI queueing model under heavy traffic, where the second
GI stands for the i.i.d. patience distribution. In [ 14], the redial behavior is not considered, though. The existence and unique-
ness of the fluid limit are given as conjectures. Mandelbaum et al. [15] use the fluid and diffusion approximation for the
multi-server system with abandonments and redials. He obtains first order approximations of queue length and expected
waiting time as well as their confidence bounds. In [16], the authors use a fluid and a diffusion approximation for the time
varying multiserver queue with abandonments and retrials. They show that both approximations can be obtained by solving
sets of non-linear differential equations, where the diffusion process can provide confidence bounds for the fluid approxi-
mation. The work by Mandelbaum et al. [17] gives more general theoretical results for fluid and diffusion approximations
for Markovian service networks. Aguir et al. [ 18] extend the model by allowing customer balking behavior, but no formal
proof of the fluid limit is given. Besides the applications in staffing call centers, fluid models have also been applied in delay
announcement of customers in call centers (see [19,20]). Besides the fluid or the diffusion limits, there are other methods
that can be used to approximate queueing models, such as the Gaussian Variance Approximation (GVA) method developed
by Massey and Pender [21]. Such a GVA approach is generalized by Pender and Massey [22] to Jackson networks with aban-
donment, which leads to better approximations comparing to approximation results obtained by the corresponding fluid
and diffusion limits.

The rest of the paper is structured as follows. In Section 2, we describe the queueing model with the features of the redial
and reconnect. In Section 3, we propose a fluid model, which is a deterministic analogue of the stochastic model. We prove
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that the original stochastic model converges to the fluid model under a proper scaling. We numerically compute the fluid
approximations to the number of customers in the queue as well as those in two orbits, and simulate the original model, and
compare them in the case of single intervals and multiple intervals, where the parameters are time-dependent but remain
piece-wise constants within each interval. The Erlang A formula is then used to approximate the waiting time distributions
in Section 5.

2. Model description

Consider the queueing model illustrated in Fig. 1. We assume that calls arrive according to a Poisson process. We refer to
these calls as fresh calls. There are s agents who handle inbound calls. An arriving call is handled by an available agent, if there
is any; otherwise, it waits in an infinite buffer queue. The calls are handled in the order of arrival. After an exponentially
distributed amount of time ¥, a waiting customer who did not get connected to an agent will lose his patience and abandon.
We assume E¥ = 1/0 < oo, where 6 is the abandonment rate. With probability p, an abandoned customer will enter the
redial orbit, and he will redial after an exponentially distributed amount of time I'zp, with EIxp = 1/8gp < 00. We refer to
these calls as redials. With probability 1 — p, this customer will not call back, and this call is considered as a “lost” call. We
assume that the holding time B of a call has an exponential distribution with mean EB = 1/ < oo, regardless whether this
call is a fresh call, a redial or a reconnect. After the call has been answered, its corresponding customer will enter the recon-
nect orbit with probability g, and he will reconnect after an exponentially distributed time I'zc, with Efgc = 1/8gc < o0.
We refer to such calls as reconnects. We assume that p and q do not depend on customers’ experiences in the system. These
experiences include holding times, waiting times and the numbers of times that customers have already called. We use this
queueing model to represent the situation of a single-skill call center. In this paper, we consider independent service times;
for the study of dependent service times, please see [23].

The inclusion of reconnect supplemented with the exponential assumption of I'p and Iy is motivated by the fact that
in practice the volume of reconnect is significant and I'yp and I'yc are approximately exponential. To demonstrate these, we
conduct data analysis of real call center data. The data are collected by a Dutch call center over a half-year period, which is
also used in [12]. This data set consists of call records of different types. Each type of calls represents one type of questions of
callers. The callers identity information is recorded in the data. Thus, we can compute the reconnect probability by following
the call records of each distinct caller. Different types of calls have different reconnect probabilities, and for simplicity, we
only select one type of calls, which accounts for nearly 40% of all call records. The redial and reconnect probabilities of this
type of calls are 0.40 and 0.15, respectively. Then, in such a case, if all the customers are connected to agents and 15% of
the connected customers reconnect exactly once, then more than 13% of the total number of arrivals are reconnects. This
further confirms the necessity to include the reconnect customer behavior in call center models. Besides calculating p and q
from the data, we also plot the histograms of I'yp and I'kc in Figs. 2 and 3. When generating these two figures, if a customer
tries to redial or reconnect after one day, we consider that call back as a fresh call. We make this consideration because most
of the customers call back in the same day as their corresponding fresh calls [12]. The sample averages of I'zp and I'yc are
1/8gp = 41.46 min and 1/8gc = 53.49 min, respectively. As one can see from the shapes in Figs. 2 and 3 that the histograms
have longer tails than the exponential distributions. Besides the longer tails, the exponential distributions seem to be good
approximations for I'zp and I'kc. This can be demonstrated by the two Q-Q plots in Fig. 4(a) and (b). In these two Q-Q plots,
we ignore all the samples that are larger than 3 h for I'yp and that are larger 4 h for I'gc, which account for less than 8% of
total sample size. Therefore, we keep the assumption that I'gp and I'c are exponentially distributed.
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In our model, we assume that there is no difference between the handling times of the fresh calls and those of the
reconnects. To validate this assumption, we calculate the average holding times for the fresh calls and the reconnects,
e.g., EB = 5.14 min, for the fresh calls, and EB = 5.35 min, for the reconnects. Thus, the fresh calls have slightly lower

average handling time. We think that a possible cause for this is that reconnects might represent more difficult questions of

customers than the fresh calls, which means it requires longer efforts to handle the reconnects. However, if we differentiate
between the handling times of the fresh calls and the reconnects, this would complicate the model significantly, since instead
of knowing the total number of customers in the queue, one would need to know both the number of the reconnects and
the number of the fresh calls in the queue, as well as their orders in the queue. Therefore, considering the added complexity
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and the fact that the difference between them is relatively small, in this paper, we keep our assumption that the fresh calls
are statistically the same as the reconnects in terms of service durations.

3. Fluid limit approximations

In this section, we first show that the problem of calculating the expected total arrival rate comes down to the problem of
calculating EZ, (t), EZgp(t) and EZgc (t), where Z, (t) is the number of customers in the queue plus the number of customers
in service at time t, Zzp(t) is the number of customers in the redial orbit at time t, and Zgc(t) is the number of customers
in the reconnect orbit at time t, and Zy (t), Zgp(t) and Zgc (t) are random processes. Because an arrival can be a fresh call, a
redial or a reconnect, then the following equation holds for any ¢,

EA(t) = A(t) + EAgp(t) + EAge(t)
= A(t) + SrpEZpp(t) + SpcEZgc (1), (1)

where A(t) stands for the total arrival rate at time t, which is a stochastic process, A(t) stands for the fresh arrival rate
at time t, Agp(t) and Agc (t) stand for the arrival rate due to redials and reconnects at time t, respectively. Therefore, once
EZq (t), EZgp(t) and EZgc(t) are known, EA(t) can be obtained by Eq. (1). Note that Z, (t) does not appear in Eq. (1), but we
will see later that Zgp (t) and Zgc (t) depend on Zg (t).

In fact, the stochastic process {Z(t), t > 0}, which is defined by

Z(6) = (Zo (), Zro(0), Zec (D))", 2)

is a 3-dimensional Markov process, because the inter-arrival time, service duration and other durations are assumed to be
exponentially distributed. The state space of this Markov process is Z3 .. To save space, we will not show the transition dia-
gram here. Since it is a Markov process, we can truncate the system at certain large state, and numerically obtain the steady
state distribution of Z(t) by solving global balance equations. Theoretically, this method offers almost exact results, in the
sense that one can control the error by truncating at some sufficiently large state. However, for the model we consider, it is
very difficult to formulate and solve the global balance equations, especially for large systems. Therefore, for the convenience
of practical usage, we will not consider solving this Markov process, but some approximation methods.

3.1. Fluid limit

In this subsection, we present a fluid model, which we show to arise as the limit under a proper scaling of the stochastic
model in Fig. 1.

Often, the fresh arrival rates are time-dependent in real call centers. The operational hours of call centers are divided into
several intervals for the convenience of staffing and making schedules, and it is conventional to assume that the fresh arrival
rate differs per interval but remains piece-wise constant within each single interval. Thus, we start our analysis by consid-
ering the single interval case, where the fresh arrival rate is assumed to be constant for any t (e.g., A(t) = A, t > 0). The
cases with time-dependent arrival rates will be discussed later. For the single interval case, the following flow conservation
equations hold for this stochastic model:

Zo (t) = Zq (0) + I, () + Dip (¢) + Dgc (t) — D5 (t) — Dq (t) , (3)
Dq(t)

Zoo (6) = Zoo (0) + ) Bj (p) — Dao (1), (4)
j=1
Ds(t)

Zre (8) = Zgc (0) + Z B; (@) — Dgc (t), (5)

j=1

where [T, (t) is the number of fresh arrivals during time interval [0, t), and IT, (-) is a Poisson process of rate A. In addition,
Dgp (t) , Drc (t), Ds (t) , Dg (t) are the number of redials during [0, t), number of reconnects during [0, t), number of served
customers during [0, t) and number of abandoned customers during [0, t), respectively. B; (p) is a Bernoulli random vari-
able with success probability p, j = 1,2, ..., D, (¢). That is, B; (p) = 1, if the jth abandoned customer enters the redial

orbit; B; (p) = 0, otherwise. Therefore, for given D, (t) , ij:”it) Bj (p) ~ Bin(Dq (t), p). By the same argument, we have

Z?:S(lt) B; (q) ~ Bin(Ds (t) , q), for given D (t).

Let IT;(), i = 1, 2, 3, 4, be independent Poisson processes of rate 1, then we claim the following:

t
Ds(t) = IT, (f /L min{s, ZQ(u)}du> ,
0

t
Du(t) = IT, (f 0 (Zo ) —s)" du) ,
0
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t
Dgp (t) = 113 (/ SroZrp (1) du) ,
0

Dgc (t) = 114 </ SrcZrc (U) du) .
0

Rigorous proof of these four statements can be given along the lines of Pang et al. [24], see Lemma 2.1.

To introduce the fluid limit, we consider a sequence of models as in Fig. 1 such that, in the nth model, the fresh arrival
rate is An and the number of servers is ns. We add the superscript “(n)” to all notations in the nth model. Similarly to (3)-(5),
we then have for the nth model:

z (t) = 23" (0) + I, (t) + Dy (t) + Dy () — D (t) — D™ (1) , (6)
b (1)
Zw () =2y O+ Y B (p) — Dip (t) . )
j=1
b ()
Zed () =7y 0) + > Bi(q) — Dy (1) ®)
j=1

Now we define the fluid scaled process

Z0(t) == (zg> ©). 2% (t), Z (t))

where

T
)

_ B Z(n) (l’) _ Z(”) (t)
7 0= Zy =T (= T

Let D([0, 00), R?) be the space of right continuous functions with left limits in R* having the domain [0, co). We endow
D([0, c0), R?) with the usual Skorokhod J; topology. Suppose {X“”}ﬁ‘;1 is a sequence of stochastic processes, then notation

d .
X™ = x means that X™ converges weakly to stochastic process x.

Definition 1. If there exists a limit in distribution for the scaled process {Z™(-)}° ,, i.e. Z™(-) Y z(+), then z(-) is called
the fluid limit of the original stochastic model.

3.1.1. Fluid limit for a single interval
To obtain the fluid limit of the system (i.e., a sequence of stochastic processes specified by Egs. (6)-(8)), we divide both
sides of Egs. (6)-(8) by n, then let n — o0.
Lemma 1. The sequence of scaled processes {Z™ ()152 4 is relatively compact and all weak limits are a.s. continuous.
Proof. See AppendixB. O

Theorem 1. If for given deterministic values (zq (0), zgp(0), zrc (0)), we assume (Z((l") (0), 2 (0), Z (0)) L (20(0), zrp(0),
ZRe (0)) asn — oo, then the fluid limit of the original stochastic model is the unique solution to the following system of equations

t

t t t
Zo(t) =29 (0) + At + aRDf zro(u)du +3RC/ Zre (W) du — u/ min{s, zq (u)}du — 9/ (zq (W) —s)+ du, (9)
0 0 0 0
t t
zgp(t) = zrp(0) +p0/ (zo W) —s) " du — SRD/ zgp (u)du, (10)
0 0

t t
Zpe (t) = zgc(0) + qu / min(s, zq (u)}du — drc / Zre (Wdu. (11)
0 0

Proof. See AppendixC. O

Remark. Mandelbaum et al. [17] suggests an alternative proof of this fluid limit result for a more general model. The ap-
proach of Mandelbaum et al. [17] is based on a Brownian motion approximation of a Poisson process, thus, a second order
approximation, which they simultaneously use to derive both the fluid and diffusion limits. Our derivation of the fluid limit
is more straightforward and does not use second order approximations. More precisely, we use the recipe of Ethier and
Kurtz [25] which can be considered classic for proving fluid limit results. For us the fluid limit alone is sufficient to obtain
an approximation to the waiting time distribution (see the Erlang A approximation in Section 5).

We could not obtain analytic expressions of zq (t), zgp(t) and zgc(t) from Egs. (9)-(11). However, solving them numeri-
cally can be done via a standard approach for solving differential equations, and it is relatively fast.
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3.1.2. Fluid limit for multiple intervals

We have just shown the fluid limit for a single interval, where the parameters A and s remain the same within the interval.
However, in real call centers, parameters can vary during the day, especially the arrival rate A(t). As shown by Shen and
Huang [26] and Ibrahim and L’Ecuyer [27], call volumes normally follow certain intraday patterns. Observing the intraday
arrival pattern from the historical data set, managers would schedule different number of agents for each interval to meet
the SL requirement or time-stable performance (see for example [28,29]). Therefore, we now show the fluid limit for the
case of multiple intervals, where A and s vary from interval to interval. We assume that other parameters remain constant.

We divide the operational hours of call centers into m intervals. Each interval starts att;_; andends att;, i= 1,2, ..., m.
The fresh arrival rate of interval i is denoted by 1;, and the number of agents in interval i is denoted by s;, i = 1,2, ..., m.
In the ith interval, i.e,, ti_1 <t < t;, the fluid limit then becomes

t t
zo(t) = zo(tioq) + A (t —tio1) + 5RD[ Zrp(u)du + 5Rc/ Zpc (W)du
i1 tiq

t t
— /,L/ min{s;, zq (u)}du — 0[ (zq(w) — s,-)+ du, (12)
tiq i1
t n t
Zgp(t) = zgp(ti-1) +P9f (zq) —si) " du — 3RD/ Zgp(u)du, (13)
ti—q ti1
t t
2rc(t) = 26 +an [ mintss zo ) — e | zac(udu (14)
ti_q i1

Numerically solving Eqs. (12)-(14) is similar to solving Eqs. (9)-(11), thus, we do not elaborate on the procedure here.

In reality, parameters such as u, 8, dgp and 8gc can also be time-dependent, and vary per interval. For example, §gp may
be bigger in the late afternoon than in the morning, since abandoned customers want to have responses by the end of the
day. It is possible to extend the model in Egs. (12)-(14) to adapt such situation by simply replacing the parameters. In this
paper, for the simplicity of validation, we will not consider such cases.

3.2. Model under stationarity

We have just shown that one can numerically solve differential equations (9)-(11) to obtain the fluid limit z(t). We now
derive the stationary fluid limit, i.e., we develop conditions under which z(t) is constant.
By taking the derivative of Eqs. (9)-(11) and assuming that %z(t) = 0 has a constant solution, we can obtain

0 = A + 8rozro(00) + Srezre (00) — mins, 2 (00)} — 6 (2q(00) —5) ", (15)
0 = pb (20(00) — )" — Srozrn(00), (16)
0 = qu min{s, zo (00)} — Srczrc (00), (17)

where zg (00) = lim¢_ o Zg () , Zrp(00) = liM¢_ 00 Zrp (t) , Zre (00) = lim;_, o Zgc (£).
Egs. (15)-(17) can be easily solved with respect to zg (00), zgp (00) and zgc (00), yielding

A
—, ifp<(1—9q)
_Ja=-9n
79 (00) = k+qu5—us+s s o) (18)
oa—p o PEUE
0, (ifp<(1—)q)
Zgp(00) = { PO (zq(00) —s . (19)
T e ifp>(1-gq
WD ity <(1-g
2rc(00) = 01 (20)
—, ifp=>=(0-gq).
SRC

The results above would offer some insights. p := ﬁ is the load of the system due to the fresh arrivals. However, the total
load into the system is at least p := ﬁ since l%q portion of p will reconnect. In the case of p < 1, we have zg (00) < s

and zgp(00) = 0.This means there is no abandonment at all in the stationary fluid limit when p < 1, and the stationary fluid
limit do not depend on &gp at all. In reality, due to the variabilities in the arrival process, service duration and the patience,
abandonments would not be 0 though, but very small numbers. One would expect that the fluid approximation has high
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approximation errors in such a case. If p > 1, by Eq. (18), zg(c0) > s. Therefore, in this case, the stationary fluid limit
indicates that there will be (z (0c0) — s) amount of customers waiting in the queue, each abandons the system with rate 6,
thus, the total abandonment rate is then pf(zq (00) — s).

As we mentioned before, we could not obtain an analytical expression for the steady state probability of the original
system, thus, the stability condition of the original system is then also difficult to derive. Our fluid limit is not for stability but
for approximation of a many-arrivals many-servers system, thus, it does not provide the exact stability condition. However,
Egs. (18)-(20) could give some insight. If we consider z4 (00), zgp(00) and zgc (00) being less than oo as the fluid limit being
stable, then following conditions are necessary for the stability of the original system: in the case of p/(1 — q) < 1, one
requires dgc > 0; and in the case of p/(1 — q) > 1, onerequiresq < 1,0 > 0,p < 1,gp > 0and gc > 0.

4. Validation of the fluid limit

In this section, we validate the fluid model via simulation both for a single interval and for multiple intervals. We simulate
the system for 480 min of time, i.e., 8 h, which correspond to the busy hours in some call centers. The results obtained via
the fluid limit are compared with the simulation results. Since Z(t) is a stochastic process, it has variability. To remove those
variabilities, we do the simulation for 100 times, and then take the average.

4.1. Validation of a single interval

We start with the simple case of a single interval, where A(t) = A, forall t > 0, and we assume that s, u as well as other
parameters are constants over time. We compare z(t) (computed via Eqs. (9)-(11)) with Z(t) (simulation results), and with

z2(0) = (zQ(oo), Zrp(00), ch(oo))T (computed via Egs. (18)-(20)) for different values of p and A. For each value of p, s
changes, while 1/ = 4,p = 0.5,q = 0.1, 8 = 0.5 remain the same. We consider two scenarios; in the first scenario, we
let 1/8gp = 40 min and 1/8gc = 50 min, which correspond to the real values from the data; in the second scenario, we let
1/8gp = 5 min and 1/8gc = 10 min, which represents the case with “impatient” customers, in the sense that they spend
little time in the redial and reconnect orbits. We also consider two different values for A, i.e., A = 10 for relatively small call
centers and A = 40 for relatively large call centers. Two examples of z(t) and Z(t), where A = 40, p = 1.1and p = 1.2, are
shown in Figs. 5 and 6, respectively.

One can see from Figs. 5 and 6 that the systems start with zero customers, and as time passes by, Zq (t), Zgp(t) and
Zgc (t) gradually build up and reach stationarity. These stationarity are well approximated by z(co). Furthermore, in both
parameter settings, the fluid limits offer close approximations to the original processes, especially for Z, (t) and Zg¢(t). The
approximation error is larger for Zgp (t), especially when p = 1.1. We now explain why. The fluid limits ignore the variabil-
ity in the number of customers in the queue; when the queue length is not large, such as the period when Zgp(t) does not
reach stationarity, ignoring variability can lead to relatively large errors.

Obtaining an approximation to Z(t) is the intermediate step for calculating Agp(t) and Agc (t). Therefore, for the purpose
of testing the errors of the fluid model in number of redials and reconnects, we introduce the error measurements egp and
erc, Which are defined by

o o B @) — Ay @ldu ) [EZwo () — zwo(w)|du
RD -— -
) Exrp(u)du [ EZpp(u)du

o o 1Bhc @) —dc@ldu [ BZc () — zre ()]du
RC = =
3 Ege (u)du [ EZze (u)du
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(a) 1/égp = 40 and 1/8gc = 50. (b) 1/8gp = 5 and 1/8gc = 10.

Fig. 6. Simulation results (black solid curve), fluid approximations (red dashed curve) and stationary fluid limit (blue dot-dashed curve), A = 40, p = 1.2.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1

Approximation errors in a single interval, 1/8gp = 40, 1/8gc = 50.
o A=10 A =40

€rp €Rc €RD €Rrc

1.01 91.1% 5.4% 82.9% 2.4%
1.05 45.8% 2.3% 27.0% 1.2%
1.1 19.6% 1.9% 7.8% 0.8%
1.2 7.2% 2.1% 1.3% 0.7%
13 1.8% 1.2% 0.8% 0.5%
14 1.4% 1.6% 0.4% 0.5%
15 1.5% 1.9% 0.6% 0.8%

Table 2

Approximation errors in a single interval, 1/8gp = 5, 1/8gc = 10.
o A=10 A =40

€rD €rc €rD €rc

1.01 85.7% 5.6% 74.3% 1.9%
1.05 39.9% 4.0% 21.2% 1.1%
1.1 16.3% 3.1% 5.4% 1.4%
1.2 5.6% 3.0% 2.8% 1.3%
13 4.4% 3.6% 1.8% 1.2%
14 2.7% 2.5% 1.6% 1.3%
15 2.6% 2.6% 1.3% 1.5%

where )”ﬁn (t) and kﬂc (t) are the arrival rate due to redial and reconnect in the fluid approximation, respectively, and
T = 480, as the same length of the simulation time. The parameters and results are shown in Table 1.

One can see from Tables 1 and 2 that for the number of reconnects, the fluid model offers good approximations for both
scenarios with all values of p. However, for the number of redials, the fluid model performs badly when p < 1.1. This corre-
sponds to the lingering condition pointed out by Mandelbaum et al. [ 15], which states that the fluid limit leads to significant
inaccuracy when the system stays critically loaded (i.e., o close to 1 in our case) for a long time. In the next section, we will
show that the consequences of these bad performances are not severe in terms of SL and AP. In addition, by comparing two
different fresh arrival rates from Tables 1 and 2, we could see that the fluid approximation performs better for bigger call
centers.

4.2. Validation of multiple intervals

Similar to the validation procedure in the case of a single interval, now we validate the performance of the fluid model
for multiple intervals. We divide 480 min of simulation time into 16 intervals with duration 30 min. The fresh arrival rate };
is assumed to be piece-wise constants within each interval, but it varies from interval to interval. The fresh arrival pattern is
shown in Fig. 7. This arrival pattern mimics the situation in reality, where there is a morning peak hour and an afternoon peak
hour. We validate our approximation for different values of p, and for given value of p, s; = %{‘q) fori =1,2,...,16.
Other parameters are taken to be same as in the case of a single interval.

We omit the figure for Z(t), since they are similar to the graph in Fig. 6. The results for ezp and egc are shown in Table 3.

Similar to Tables 1 and 2, one can see from Table 3 that the fluid model gives close approximations for the number of
reconnects for all values of p, and the approximations for the number of redials gets more accurate when p > 1.1.
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Fig. 7. Fresh arrival rate per interval.

Table 3

Approximation errors in multiple intervals.
0 €rD €rc €rD €rc
1.01 55.5% 1.8% 57.3% 2.1%
1.05 25.8% 1.4% 23.0% 2.0%
1.1 9.8% 1.2% 9.8% 1.2%
1.2 1.3% 0.8% 4.0% 1.6%
13 1.1% 0.9% 1.6% 1.5%
14 0.7% 0.8% 1.9% 1.7%
15 0.7% 0.9% 1.6% 1.6%

5. Erlang A approximation

The fluid model gives first order approximations for Z, (t), Zgp(t) and Zgc(t). Based on them, we can approximate the
expected total arrival rate and expected number of customers in the queue for any time t, from which the expected waiting
time can be obtained. However, this is not the eventual goal, since it gives no information about the waiting time distribution
of random customers, which is one of the most used call center performance indicators. Therefore, to this end, we will apply
the Erlang A formula to approximate the waiting time distribution. We assume A(t) to be the arrival rate of the Erlang A
model, whose mean can be obtained via Eq. (1).

The reason to use the Erlang A model is intuitively clear, since the redial and reconnect behaviors have only direct
influence on the total arrival rate, it has no direct influence on the service, such as the service durations. Therefore, once
the total arrival rate A(t) is given, Zgp(t) and Zzc(t) become irrelevant to what happens in the queue, thus, we can treat
the system as an Erlang A system by ignoring the redial and reconnect orbits. Note that this is only an approximation of the
Erlang A system, since the arrival process is generally not Poisson.

The analytical expressions for the waiting time distribution and the expected AP of the Erlang A model are known. We
refer to Deslauriers et al. [30] and Roubos [31] for the Erlang A formula and the calculation details.

Now, we evaluate the performance of the Erlang A approximation. To save space, we only evaluate the performances in
the case of multiple intervals. The arrival pattern is the same as shown in Fig. 7. Given all parameters, we compute z(t) via
Eqs. (12)-(14). After that, A(t) can be obtained via Eq. (1). A(t) will be the input as the arrival rate of the Erlang A formula,
from which the SL and AP can be obtained. We conduct such a procedure for different values of 0, 8rp and Sgc.

We denote SL™™ and SL? as the SL from simulation and from Erlang A approximation, respectively. We let the accept-
able waiting time to be 0.5 min. The AP from simulation and from the Erlang A approximation are denoted as AP*™ and
AP, respectively. Besides the SL and AP, we also compare the probability of waiting from simulation, i.e., Pflfm, with that
from the Erlang A approximation, i.e., PS. The results are shown in Tables 4 and 5. In Table 4, we let 1/6gp = 40 min
and 1/8gc = 50 min, which are taken from a real call center data. In Table 5, we set §gp = 5 min and §gc = 10 min,
which represents situations where customers spend short times in the redial and reconnect orbits. In both scenarios, we fix
nw=1/4,6 =0.5,p=0.5andq =0.1.

Based on the results in Tables 4 and 5, we can see that the Erlang A model offers close approximations both for the SL and
AP in all values of p. The approximation errors in probability of waiting is larger, but they are bounded by 5% in all scenarios.
The Erlang A approximation performs better when 1/8gp and 1/8g¢ are larger, i.e., with error less than 2% in SL, and 1.2% in
the AP in Table 4. However, even for small values of 1/8gp and 1/8gc, the errors are bounded by 5% in SL and 2% in AP, as
shown in Table 5. The approximation results in Table 4 are of special interests, since the parameters are taken to mimic real
call centers. One might notice that even though we have large errors in egp when p < 1.1in Tables 1 and 2, the errors in SL
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Table 4

Approximation errors of the Erlang A approximation, 1/8gp = 40 and 1/8gc = 50.
/A) SLsim SLa Apsim AP¢ Psim pa

w w

1.01 89.2% 92.3% 6.1% 4.9% 50.7% 46.5%
1.05 81.3% 84.6% 9.4% 8.4% 66.3% 65.2%
1.1 67.7% 69.8% 14.2% 13.7% 81.1% 82.9%
1.2 38.1% 37.4% 23.7% 23.8% 93.9% 96.3%
13 17.1% 15.2% 32.2% 32.2% 97.3% 99.1%
14 7.6% 5.6% 38.9% 39.1% 98.9% 99.7%
15 3.8% 2.2% 44.5% 44.6% 99.1% 99.9%

Table 5

Approximation errors of the Erlang A approximation, 1/8gp = 5 and 1/8gc = 10.
p spsim SL¢ Apsim AP® psim P
1.01 87.8% 91.7% 6.7% 5.3% 54.5% 50.6%
1.05 78.3% 82.7% 10.6% 9.4% 70.9% 71.3%
1.1 63.4% 65.6% 15.6% 15.3% 84.4% 88.3%
1.2 31.4% 29.6% 25.7% 25.8% 95.7% 95.6%
1.3 11.8% 9.0% 34.3% 34.4% 98.3% 99.9%
14 4.5% 2.4% 41.0% 41.3% 99.4% 99.9%
15 2.1% 0.7% 45.5% 46.8% 99.3% 99.9%

and AP are small in Tables 4 and 5. This is caused by the fact that when p < 1.1, the number of redials is small compared to
the number of reconnects, thus, the errors in number of redials do have big influence in A(t).

6. Conclusion

In this paper, we investigate staffing of call centers with redials and reconnects. We consider call centers that operate
under heavy load. The model can be described as a three-dimensional Markov process {Z(t), t > 0}, defined in (2). However,
to avoid the complexity of solving the Markov process, we use a fluid model to approximate Z(t). We show that the fluid limit
is the unique solution of a set of three differential equations. Under the same fluid scaling, we derive the fluid limit of the
queueing system in the non-stationary case to mimic the real situation in call centers, as the parameters can change before
the system reaches stationarity. We also performed simulation experiments to assess the accuracy of the approximations.
To apply the results to real call center applications, we take a further step by calculating the expected total arrival rate, and
use this as an input to the Erlang A formula to calculate the SL and AP. Simulation results show that our approximation to
SL is accurate with error less than 2%, and the approximation to AP has errors less than 1.5% when p < 1.05 and less than
0.5% when p > 1.05, when the parameters are taken from real data.

The results suggest a number of topics for further research. First, the current paper is focused on the derivation and usage
of fluid limits for staffing problems of large call centers featuring both redials and reconnects, with load per server greater
than 1. As a next step, it is interesting to supplement the results presented here with the development of staffing methods
for the case where the load is strictly less than 1. To this end, the results of the present paper and the results for staffing
large call centers without redials/reconnects [32,31,8] will serve as a good starting point. Second, with the presence of the
redial and reconnect behaviors, it would be interesting to explicitly quantify the reduction of staffing costs while still meet-
ing the target SL by more efficient planning of call center agents. Third, we use a first order approximation. It would also
be interesting to derive the diffusion limit of this model, which suggests a second order approximation. This may lead to
a more intuitive and simple staffing formula such as square-root staffing in the spirit of Halfin and Whitt [2]. Moreover, in
this paper, we neglect the slight difference between the holding times of the reconnects and those of the fresh calls. As an
extension to this, one could relax this assumption and study the correlation between the holding times of the fresh calls and
its corresponding reconnects. Last but not the least, besides the influences in call centers staffing, the analysis of reconnect
and redial behaviors can also offer insight to call center management. For example, by looking at the reconnect probability
of each agent, managers can have some overview information of the quality of service offered by each agent. Furthermore,
often the agents have some control on the holding time of each call, and by looking at the correlation between the reconnect
probability and the holding time of each call, manager may find the “right” amount of holding time of each call, such that
the holding time and the quality of service is well balanced.

Appendix A. Notations

Dividing by n on both sides of Egs. (6)-(8), we have

t
7 0 =28 0 + 6§ @) 0+ [ Ho @) w ()
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t
Zyp (0) = Zyp (0) + Gyp (Z™) (1) + / Hep (Z™) (u) du, (A2)
0

t
ZW () =22 (0) + G (Z™) (1) + f Hre (Z™) (u) du, (A3)
0

where

(n) t
Gy (Z™) (1) = (H""T(t) - At) - (Dﬁ”)(t) - /O umin{s,Z&”(u)}du)

t t
_ <Dg1>(t) - / 6 (Zé”) (1) — s)+ du) + (Df;}} (t) — / SroZ.1) (1) du)
0 0

t
+<15,2”8 (t) - / SreZye (u) du>, (A4)
0
ndg" (1) .
G (27) (0 = ( > B /n— / pe( Zg" (u) — ) du) ( Dy (t) — / SroZen (u1) du), (A5)
j=1
. nb(™ () ¢ ) ) _
Gee (Z7) (0 = ( > Bi(@/n— /O qu min{s, z(g”(u)}du) - (D,&’? (t) - fo SreZyg () du), (A6)
j=1
and
D (t) = T (n w min{s, Z(”)(u)}du> / (A7)
DM (t) = IT, (n Z(”) (u) — s>+ du) /n, (A.8)
Dy () = ITs (n SRDZ o (W) du) / (A9)
0
Dl () = My (n 8RcZ,§c) W du) / (A.10)
and

¢ _ ¢ _ _ 4
/ Ho (Z) (w) du = / A+ SroZyg) () + BrcZig) () — pmin(s, 20" )} =6 (75" @ —5) " du,
0 0
t _ t _ + _
/ Hp (Z™) (u) du = / p0 (28 @ —s) = droZy () du,
0 0

t t
/ Hre (Z™) (u) du = / qumin{s, 23" (W)} — SreZye (u) du.
0 0

For the convenience of notation, we rewrite Eqs. (A.1)-(A.3) in the vector form

t
Z () =Z2" (0) + 6™ (™) (1) + / H(Z™) (u) du, (A.11)

0
where

G (i(n)) t) = (G(n) (Z(n)) ), G(”) (Z(Tl)) ), G(”) (Z(H)) (t—))T ,

H(Z™) (u) == (Ho (Z™) (u) , Hep (Z™) (), Hre (Z™) )" .

Appendix B. Proof of Lemma 1

In order to show that {Z®™ (1)}52 is relatively compact with continuous limits, it is sufficient to show the following two
properties (see Corollary 7.4 and Theorem 10.2 of [25]).
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1. Compact Containment: for any T > 0, € > 0, there exists a compact set I C R3 such that
P(Z™(t)eIt, t€[0,T]) > 1, asn— oo.

2. Oscillation Control: for any € > 0,and T > 0, there exists a § > 0, such that
limsupP (w (Z™,8,T) > €) <,

n—oo

(B.1)
where

w(X,8,T) = sup max|[x;(t) —xj(v)|,
v,tefo,T] J€J
[t—v|<d
and ] := {Q, RD, RC}.
Proof of Compact Containment property:

The following trivial upper bound holds for the total number of customers in the system (only arrivals are taken into
account and no departures): fort € [0, T],

Z9 () + Zgy (O + Zg2 (©) < Z5"(0) + Z3) (0) + Z42 (0) + 1% (T) /n.

Since HA(',:)C) is a Poisson process of rate An, by the Law of Large Numbers (LLN), we have
™ Ty/n S AT asn — oco.

By the assumption of Theorem 1, we have

= = = d
ZgP(0) + Zy) (0) + Ze (0) = 29 (0) + 2zn(0) + ke (0).
Hence

PEZ™(t) ey, t €[0,T]) — 1 asn — oo,

where I'T = {(x1, X2, X3) | X1 + X2 + %3 < 29 (0) 4+ Zgp(0) + zgc(0) + AT 4 1, X1, X2, X3 > 0}, and the compact containment
property indeed holds.
Proof of Oscillation Control property:
It follows from Egs. (6)-(8) that, forall v, t > 0,
12" () = 2" )| < [T (0 = I l/n+ >

Jj€{s,a,RD,RC}
Zgp () = 28" < Y D" (6) = DY w)l

D" (t) — D" ()]

je{a,RD}
Ze () — 28" = > DM (6) — D ()],
Jj€{s,RC}

where the processes [_)}”) () are defined by (A.8)-(A.10).

Also, from the Compact Containment property, we know that there exists a finite constant V such that

P|Z"(w), Zp (), Zy () <V, ue[0,T]| > 1 asn— oo.

=2y

On the event 2, the following inequalities hold for all v, t € [0, T] such that |t — v| < §:

t
/ 4 mins, Zé")(u)}du <8, ¢ = us,
v

£ +
f ] <Z((2")(u) — s) du <8, ¢ =6V,
v

t
f SrpZyp (u)du < 38, c3 = SppV,

v

t
/ (SRcZ,g? (u)du < C48, Cq == (SRCV.

v
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Employing formulas (A.7)-(A.9), we then get

P(w(Z™,8,T) =€) <P(82)) +P (a) (nf;’(-)/n, s, T) > e/5) + Y P (o (M(n)/n, 8, GT) > €/5),
j=1

where

o (A O/MsT) S8 o(mn/mes.ol) g8  1=j<4

by the LLN for the Poisson processes HA(Z)C)/n, IT;(n-)/n and by the continuity of the moduli of continuity w(x(-), §, T),
w(x(-), ¢;é, ¢;T) with respect to x(-).

By the last two displays, the oscillation control property (B.1) indeed holds with any 6 suchthatA§ < €/5,¢i6 < €/5, 1 <
ji<4

Appendix C. Proof of Theorem 1

In Lemma 1, we have shown that the sequence {Z"(-)},Zil is relatively compact with continuous limits, that is, from any
subsequence {Z"k(-)}72,, we can extract another subsequence {Z" (-)}2°, that converges weakly in D([0, c0), R?),saytoa
continuous process z*(t). We then call z*(t) a particular limit of the original sequence {Z"(-)}2 ;.

Consider an arbitrary particular limit z*(-) along a subsequence {Z”k(-)},‘ji]. If we can show that z*(-) satisfies
Egs. (9)-(11), and Egs. (9)-(11) have a unique solution, then, due to the arbitrariness of z*(-), there must be a unique fluid
limit defined by Eqgs. (9)-(11).

We have

240 - 240 - [ HE@)du =60, Q)

0
On one hand, since Z™(-) 4 z*(-) as k — oo and the limit z*(-) is continuous,
Z'(-) — Z™(0) — / H(Z) du L 2 —2(0) — / H (z*) du
0 0

by the continuous mapping theorem.
On the other hand, below we show that G™(-) i 0, and then (C.1) implies that

Z"() = Z™(0) — / H(Z") du 5 0.
0

As we combine the last two displays together, it follows that the particular limit z* a.s. satisfies Eqs. (9)-(11). Also, the
mapping H is Lipschitz continuous and then, by Lemma 1 in [33], Egs. (9)-(11) have a unique solution. Hence, all particular
fluid limits are the same, namely they coincide with the unique solution to Egs. (9)-(11).

It is left to show that G™(-) L 0.
By the LLN,

Mn)/m—-50 inD([0, 00). R),
and also, since Z™(-) 4 z*(-) and z* is continuous,
/. w min{s, Zé"") w)du 5 / wmin{s, z"*(u)}du in D([0, 00), R).
0 0
Then, by (A.7) and the Random time change theorem in [34],

t
DI (t) — / 4 minfs, Zg'") (u)}du % 0 inD([0, 00), R).
0

By the same argument, one can show that the other terms in Gg") (-) converge to 0, and that G,?C") ), Ggg‘) (-) converge to
0, too. Hence, the proof of Theorem 1 is finished.
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