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Muscarinic Attenuation of Mnemonic Rule Representation
in Macaque Dorsolateral Prefrontal Cortex during a Pro- and
Anti-Saccade Task

Alex J. Major,'* Susheel Vijayraghavan,”* and Stefan Everling'23
!Graduate Program in Neuroscience, 2Department of Physiology and Pharmacology, and *Robarts Research Institute, University of Western Ontario,
London, Ontario N6A 5B7, Canada

Maintenance of context is necessary for execution of appropriate responses to diverse environmental stimuli. The dorsolateral prefrontal
cortex (DLPFC) plays a pivotal role in executive function, including working memory and representation of abstract rules. DLPFC activity
is modulated by the ascending cholinergic system through nicotinic and muscarinic receptors. Although muscarinic receptors have been
implicated in executive performance and gating of synaptic signals, their effect on local primate DLPFC neuronal activity in vivo during
cognitive tasks remains poorly understood. Here, we examined the effects of muscarinic receptor blockade on rule-related activity in the
macaque prefrontal cortex by combining iontophoretic application of the general muscarinic receptor antagonist scopolamine with
single-cell recordings while monkeys performed a mnemonic rule-guided saccade task. We found that scopolamine reduced overall
neuronal firing rate and impaired rule discriminability of task-selective cells. Saccade and visual direction selectivity measures were also
reduced by muscarinic antagonism. These results demonstrate that blockade of muscarinic receptors in DLPFC creates deficits in
working memory representation of rules in primates.
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Acetylcholine plays a pivotal role in higher-order cognitive functions, including planning, reasoning, impulse-control, and mak-
ing decisions based on contingencies or rules. Disruption of acetylcholine function is central to many psychiatric disorders
manifesting cognitive impairments, including Alzheimer’s disease. Although much is known about the involvement of acetylcho-
line and its receptors in arousal and attention, its involvement in working memory, an essential short-term memory component
of cognition dependent on the integrity of prefrontal cortex, remains poorly understood. Herein, we explored the impact of
suppressing acetylcholine signaling on neurons encoding memorized rules while macaque monkeys made responses based on
those rules. Our findings provide insights into the neural mechanisms by which a disruption in acetylcholine function impairs
working memory in the prefrontal cortex. j

ignificance Statement

Introduction

Flexible response to sensory stimuli is a hallmark of intelligent
behavior. Appreciation of rules and context, and other executive
functions, including working memory (WM), attention, and rea-
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soning, are dependent on prefrontal cortex (PFC) (Miller and
Cohen, 2001).

Through reciprocal connectivity with sensory, parietal, pre-
motor, subcortical, and other prefrontal regions (Miller and Co-
hen, 2001), and extensive local connectivity that can generate
recurrent activity (Levitt et al., 1993; Pucak et al., 1996), the dor-
solateral PFC (DLPFC) is a suitable substrate for holding repre-
sentations in WM (Goldman-Rakic, 1995) and facilitating
contextually appropriate responses. DLPFC exhibits robust post-
sensory behaviorally relevant activity (Fuster and Alexander,
1971, Funahashi et al., 1989) with distractor resistance (Miller et
al., 1996, Everling et al., 2002, Suzuki and Gottlieb, 2013, Jacob
and Nieder, 2014), forming a “mental sketchpad,” a component
of formal models of executive function (Baddeley and Hitch,
1974). This sustained activity is considered the cellular basis of
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WM (Goldman-Rakic, 1995). DLPFC neurons represent
information on task-set (Sakai, 2008) and display discriminable
rule-contingent activity in context-dependent tasks (White and
Wise, 1999; Asaad et al., 2000; Wallis et al., 2001; Everling and
DeSouza, 2005, Mian et al., 2014). Lesion studies in macaques
and humans (Milner, 1963; Guitton et al., 1985; Funahashi et al.,
1993) suggest that intact DLPFC is necessary for cognitive con-
trol. Buckley et al. (2009) found that focal principal sulcal lesions,
but not orbitofrontal or anterior cingulate cortical lesions, af-
fected performance in a rule-guided analog of the Wisconsin
Card Sorting Test. DLPFC dysfunction contributes to cognitive
deficits observed in psychiatric disorders, such as schizophrenia
and Alzheimer’s disease (Perlstein et al., 2001; Bussiére et al.,
2003; Schroeter et al., 2012; Konopaske et al., 2014).

The DLPFC receives substantial input from ascending mono-
aminergic and cholinergic systems (Robbins, 2005). The cholin-
ergic system acts upon cortical nicotinic and muscarinic
receptors (Mash et al., 1988; Han et al., 2000) and releases acetyl-
choline (ACh) based on attentional effort (Kozak et al., 2006) and
arousal (Phillis, 1968). Numerous studies have found that mus-
carinic antagonist scopolamine attenuates various behavioral
measures (Taffe et al., 1999; for review, see Klinkenberg and
Blokland, 2010), including WM (Green et al., 2005) and repre-
sentation of task rules (Saar et al., 2001; Thomas et al., 2008;
Snyder et al., 2014). Using a cholinergic-selective immunotoxin,
Croxson et al. (2011) found that cholinergic deafferentation of
DLPEC selectively affects spatial WM performance while sparing
other cognitively demanding tasks involving strategy implemen-
tation and episodic memory.

Muscarinic antagonism can elicit psychotic states reminiscent
of schizophrenia, which has been termed anti-muscarinic syn-
drome (Barak and Weiner, 2009). Schizophrenics homozygous
for an M1 receptor (M1R) polymorphism have deficits in Wis-
consin Card Sorting Test performance (Liao et al., 2003; Scarr et
al., 2012), and muscarinic enhancers are being explored inten-
sively for amelioration of cognitive deficits in schizophrenia and
Alzheimer’s disease (Shekhar et al., 2008).

Although behavioral outcomes of systemic muscarinic antag-
onism have been extensively explored, there are fewer studies
examining effects of scopolamine on DLPFC neuronal physiol-
ogy. Zhou et al. (2011) reported marked suppression of DLPFC
neurons in the memory period with concomitant behavioral deg-
radation upon systemic scopolamine administration. However,
because scopolamine was systemically administered, it is unclear
whether the DLPFC neuronal suppression involved local musca-
rinic modulation or was a consequence of dysregulation of inputs
to DLPFC circuitry. Here, we performed concurrent in vivo
single-cell electrophysiology and iontophoresis of scopolamine
in DLPFC of monkeys performing a rule-guided WM task to
investigate the role of muscarinic receptors in the maintenance of
task rules. The task required subjects to execute a pro- or anti-
saccade based upon a previously remembered rule (prompted by
an initial visual cue). DLPFC neuronal activity shows mnemonic
representations of rules used to direct saccade outcome (Everling
and DeSouza, 2005; Johnston and Everling, 2006; Johnston et al.,
2009), and deactivation of the DLPFC impairs performance of
this task (Koval et al., 2011; Hussein et al., 2014).

Materials and Methods

Experimental procedures were performed on two adult male rhesus ma-
caque monkeys (Macaca mulatta) in accordance with the Canadian
Council of Animal Care policy and a protocol approved by the Animal
Use Subcommittee of the University of Western Ontario Council on
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Animal Care. Both animals had a plastic head restraint and plastic re-
cording chambers implanted above their right lateral PFC as described
previously (Skoblenick and Everling, 2012).

Behavioral task. Both animals were trained on the gap variant of a pro-
and anti-saccade task (Fig. 1A). Monkeys were seated in a primate chair
in a shielded chamber with their heads restrained and faced a 21 inch
CRT monitor 51 cm in front of them. Horizontal and vertical eye move-
ments were recorded at 1 kHz with an EyeLink 1000 infrared eye tracker
and software package (SR Research). The task, behavior monitoring, and
reward delivery were controlled using CORTEX (National Institutes of
Mental Health). Trials began with presentation of a central gray filled
fixation circle (0.5° diameter). After an initial 300 ms fixation period, the
fixation stimulus briefly changed color to red or green for 100 ms, indi-
cating the task rule (pro- or anti-saccade) of the current trial. Rule colors
were counterbalanced between subjects. The subjects were required to
remember the rule through a delay period (800—-1300 ms) during which
the fixation spot reverted to gray. The fixation spot was extinguished for
150-300 ms (gap period), and a peripheral stimulus (17.5° from center,
0.5° diameter) was then presented. The gap was introduced to increase
task difficulty (Everling et al., 1998). The subjects were required to make
the appropriate saccade toward (pro-saccade) or away from (anti-
saccade) the stimulus, depending on the current trial’s rule. Rule and
stimulus combinations were presented in pseudorandom order. To ob-
tain a liquid reward, the subjects had to maintain fixation during the
fixation, cue, and delay periods, make the appropriate saccade within 500
ms, and maintain fixation on the stimulus (or blank space in the case of
anti-saccade trials) for 120 ms. Trials were separated by a 1700-2200 ms
intertrial interval (ITT). Performance was defined as the proportion of
completed trials (i.e., animal did not break central fixation until stimulus
period) that resulted in a correct saccade. Saccade onset was defined as
the moment eye velocity surpassed 30°/s, and saccadic reaction time
(SRT) was defined as the time from the peripheral stimulus onset to
saccade onset.

One of the confounds of this color-cued task is that differential activity
related to the rule during the presentation of the colored cue and the
subsequent delay epoch may merely reflect a WM representation for the
color of the rule-cue rather than being a WM representation of the ab-
stract rule. We think this is unlikely based on previous work in our
laboratory examining the activity of neurons in this area during a variant
of the pro- and anti-saccade task that does not involve explicit rule in-
struction (Everling and DeSouza, 2005; Johnston et al., 2007). In this task
variant, monkeys were trained to perform alternating blocks of pro- and
anti-saccade trials without any explicit color cue instructing them on the
appropriate response. Instead, when the block changes to the other rule,
the monkeys would initially make an incorrect response based on the
previous rule, but upon receiving no reward must switch to the updated
block rule and appropriate response (pro- or anti-saccade) contingent on
reward feedback. In this uncued version of the task (Everling and DeS-
ouza, 2005; same DLPFC loci as the present study), DLPFC neurons
consistently displayed differential activity for pro- and anti-saccades,
which cannot be a consequence of WM for rule-cue color attributes
because the fixation spot remains the same color (white) throughout the
trial and rule representations are internally generated based on reward
feedback.

In vivo extracellular recordings and iontophoresis. Scopolamine was
iontophoretically administered using custom seven-barreled glass ionto-
phoretic electrodes. The design and fabrication of the electrodes were
similar to Vijayraghavan et al. (2007). A 50-um-pitch tungsten wire, 110
mm in length (Midwest Tungsten Service), was electrochemically etched
(model EE-ID, Bak Electronics) using a sodium nitrite and potassium
hydroxide solution as described previously (Thiele et al., 2006), creating
a fine wire tip. This wire was inserted into the central barrel of a multi-
barreled pipette (Friedrich and Dimmock), and the assembly was pulled
using a PMP107L-e Multipipette Puller (MicroData Instrument), result-
ing in a 10.5-cm-long electrode shaft and a thin glass tip on the order of
15-30 wm. Typical impedances were between 0.5 and 1 M{) (measured at
1 kHz; IMP-1, Bak Electronics). Neuronal signals were amplified, digi-
tized, and filtered (300 Hz—6 kHz, four-pole Bessel) with an OmniPlex
Neural Data Acquisition System (Plexon).
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Anti-saccade

Experimental paradigm and recording technique. A, Schematic of representative pro- and anti-saccade trials. Animals were required to perform correct responses toward (pro-saccade)

oraway from (anti-saccade) a peripheral stimulus to receive liquid reward. Dashed circles represent gaze of the animal. Arrows indicate direction of saccade. Each trial is followed by a 1700 2200
ms ITI. B, Single-unit extracellular recordings were performed in macaque DLPFC using glass iontophoretic electrodes. Beige area represents recording locus. Muscarinic antagonist scopolamine

(represented in blue) is shown. AC, Arcuate sulcus; PS, principal sulcus.

Scopolamine hydrobromide (Tocris Bioscience; 100 mM in pH 3 de-
ionized water) was stored in 30 ul aliquots at —20°C. Before use, scopol-
amine was thawed and inserted into peripheral glass capillaries of the
iontophoretic electrode, then pushed to the tip of the electrode using com-
pressed air. Tungsten wires (FHC) were inserted into each peripheral capil-
lary and connected to a Neuro Phore BH-2 iontophoretic ejection system
(Harvard Apparatus). DC impedances of drug barrels varied, typically be-
tween 50 and 300 m{). The electrode was mounted on a hydraulic microma-
nipulator (MO-95, Narishige) and lowered into cortex through a 23-gauge
dura-penetrating stainless steel guide tube. A plastic recording grid (I mm
spacing; Crist Instruments) was used to guide chamber placement. A sche-
matic of the approximate recording locus around the principal sulcus in
DLPFC s shown in Figure 1B. Constant ejection currents ranging from 10 to
100 nA were manually set by the experimenter during the course of scopol-
amine conditions. Because we had no a priori predictions regarding the
strength of potential scopolamine modulation of PFC neurons, we tested a
broad range of scopolamine doses in this study. The median current strength
of scopolamine ejection used in this study was 40 nA (25th percentile, 20 nA;
75th percentile, 60 nA). A retention current of —8 nA was passed over each
drug barrel during control periods. Current balancing was not required at
ejection currents of this magnitude (Vijayraghavan et al., 2007). At these
currents, drug ejection did not create noise in the system or affect unit phys-
iology (Vijayraghavan et al., 2007). After control periods of at least 10 min, a
drug condition followed with comparable duration. Multiple scopolamine
doses and post-scopolamine recovery conditions were occasionally tested on

the same neuron to observe dose-dependent effects on neuronal activity and
drug specificity, respectively. Cells were rejected if a sufficient number of
correct trials were not obtained (at least 8 per rule-saccade direction combi-
nation) or if control condition activity was <1 spikes/s.

Data analysis. Neuron waveforms were sorted using principal compo-
nent cluster space segregation (Offline Sorter; Plexon). Data analysis was
performed with custom-written programs in MATLAB (The Math-
Works). Spike density functions were constructed by convolving spike
trains with a 50 ms Gaussian activation function. Trialwise rasters and
spike density functions were aligned to peripheral stimulus onset. The
delay epoch was defined as time from cue offset to stimulus onset +70 ms
(i.e., to allow time for visual information to reach DLPFC; Johnston et al.,
2009). Rule selectivities for control and drug conditions were evaluated
using area under the receiver operating characteristic (AUROC), a non-
parametric measure of discriminability between two distributions
(Green and Swets, 1966). AUROCs (1000 steps) were computed using
mean firing rate (FR) from pro-saccade rule trials and anti-saccade rule
trials during the entire delay epoch. AUROC values range from 0 to 1,
with completely overlapping distributions having an AUROC of 0.5, and
distributions with greater FR for either pro-saccade or anti-saccade trials
approaching values of 1 or 0, respectively. The significance of the
AUROC metric obtained was estimated using a bootstrapping proce-
dure, whereby control trial FRs were randomly assigned to pro- or anti-
saccade rule trials and the AUROC for shuffled trial FR distributions was
computed (Everling and DeSouza, 2005). A neuron’s firing profile was
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Figure 2.

Scopolamine Recovery

Effect of scopolamine on neuronal firing. A, Mean FRs from 135 PFC neurons (dark gray bars represent control; light
dark gray bars represent scopolamine) in the delay, stimulus, and ITl epochs of the task. Scopolamine significantly decreased FRs of
recorded neurons in both pro-saccade and anti-saccade trials in the delay, stimulus, and ITl epochs. The indicated significance value

tical significance. However, these effects
were miniscule, and values did not signifi-
cantly return to control levels when recov-
ery conditions were tested (pro-saccade
SRT: p = 0.43; anti-saccade performance:
p = 0.56).

applies to all comparisons. B, Decreases to normalized FRs for neurons onto which various doses of scopolamine were tested: 5 nA,

p = 0.042; 620 nA, p = 0.00081; 21—-40 nA, p = 0.00021; 41-100 nA, p << 0.0001. C, Recovery of FR upon cessation of
scopolamine ejection. Although recovery condition FR was significantly greater than scopolamine condition (p = 0.00024), it did
not reach control levels. This includes all cells given a recovery condition and a control mean FR >1 spikes/s. Error bars indicate
SEM. *p < 0.05, **p << 0.01, ***p < 0.0001 (Wilcoxon signed rank test with Holm-Bonferroni correction). FRs were normalized

as described (see Materials and Methods).

deemed significantly selective if the original AUROC was <5th percentile
or >95th percentile of the shuffled AUROCs from 10,000 iterations. For
all neurons with a significantly selective AUROC, the rule eliciting greater
FR during the delay epoch of the control condition was set as the pre-
ferred rule. The AUROC: of neurons with the preferred rule set as anti-
saccade were inverted (1 — AUROC), such that their AUROC: in the
control condition were now also between 0.5 and 1 (i.e., AUROC values
now represented selectivity for the preferred vs nonpreferred rule). The
same analysis was performed during the stimulus epoch (stimulus onset
+70 ms to saccade onset +120 ms) for preferred and nonpreferred rule,
saccade direction, and visual stimulus direction to evaluate selectivity
and significance. As a decrease in AUROC can be explained by either
decreased mean FR difference or increased trial-to-trial FR variance, the
Fano factor was calculated to inspect changes to neuronal reliability. This
was calculated as trialwise FR variance divided by the mean for control
and drug epochs. Normalized population spike density functions across
all rule-selective neurons were constructed in the delay epoch for the
preferred and nonpreferred rule using the following:

Scopolamine decreases overall FRs in
DLPFC neurons

The most conspicuous effect of scopol-
amine was strong and significant atten-
uation of neuronal FR in all task epochs.
Figure 2A shows the mean FRs of all re-
corded neurons during the delay, stim-
ulus, and ITI epochs. Scopolamine application attenuated
population FR in all epochs (Fig. 24; p < 0.0001, Wilcoxon
signed rank test with Holm-Bonferroni correction). This in-
hibitory effect was dose-dependent (Fig. 2B). Figure 2B shows
decreases in normalized mean activity for neurons subject to
various doses of scopolamine. Four doses were defined to ex-
emplify the progressive effect of scopolamine dosage. To de-
termine whether the effects of scopolamine were selectively
physiological in nature, and not a consequence of loss of iso-
lation or other unrelated effects, we examined recovery after
cessation of drug application in 44 neurons. Figure 2C shows
the normalized mean FRs for scopolamine application fol-
lowed by recovery for 44 neurons. During recovery after
scopolamine-induced suppression, population activity was
significantly greater than during the scopolamine conditions
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(p = 0.00024, Wilcoxon signed rank test with Holm-
Bonferroni correction).

Scopolamine reduces rule selectivity in the delay epoch of
DLPFC neurons

We examined the rule selectivity of DLPFC neuronal firing before
and after scopolamine application. Figure 3A shows an example
of scopolamine administration on a single rule-selective neuron.
Rasters and spike density functions for pro-saccade (blue traces)
and anti-saccade (orange traces) trials are shown in control and
scopolamine conditions. Rule selectivity was quantified in the
delay epoch using the AUROC metric (see Materials and Meth-
ods). Tontophoretic administration of scopolamine resulted in a
decrease in rule selectivity for this neuron, as determined by
AUROC. Importantly, the effect of scopolamine was dose-
dependent. Incremental doses led to attenuation of FR and rule
selectivity in the delay epoch (e.g., FR: control 15.8 = 0.6 spikes/s
vs 60 nA scopolamine 10.2 = 0.4 spikes/s, p < 0.0001, Wilcoxon
rank sum test; AUROC: control 0.91 vs 60 nA scopolamine 0.84).
This dose-dependent effect on FR is seen consistently in DLPFC
neurons, as seen in Figure 3B, which shows 11 neurons given this
dosing regimen. Of these 11 neurons, seven were significantly
rule-selective based on AUROC analysis. Figure 3C displays how
normalized FRs for the preferred and nonpreferred rules in these
seven cells changed over the course of the four scopolamine
doses. Scopolamine decreased normalized FR for both preferred
and nonpreferred rules, with slightly greater decreases for the
preferred rule. The difference in effect of scopolamine for pre-
ferred versus nonpreferred rules became significant at the 60
nA dose of scopolamine (p = 0.016, Wilcoxon signed rank
test), when there was substantial suppression of neuronal ac-
tivity. Thus, scopolamine monotonically decreased firing for
both preferred and nonpreferred rules. Figure 3D illustrates
the concomitant decrease in rule selectivity over the course of
these four doses. Consistent with the effect on preferred and
nonpreferred rules, there was a decrease in AUROC that
reached significance at 60 nA of scopolamine (p = 0.047,
Wilcoxon signed rank test).

Figure 4A shows another example of a rule-selective neuron.
This neuron had greater activity during pro-saccade trials than
anti-saccade trials in the delay epoch (pro-saccade: 30.0 * 0.84
spikes/s vs anti-saccade: 20.8 * 0.90 spikes/s, p < 0.0001, Wil-
coxon rank sum test). Scopolamine decreased rule selectivity for
this neuron, as determined by AUROC (control 0.85 vs scopol-
amine 0.68). Of our sample of 135 DLPFC neurons, 30 (17 from
Monkey O, 13 from Monkey T; 19 pro-saccade-preferring, 11
anti-saccade-preferring) were found to be significantly rule-
selective. Population-normalized spike density functions were
constructed for these 30 neurons, which are shown in Figure 4B.
Scopolamine substantially reduced the population firing and
abolished selectivity in the delay epoch. Figure 4C shows a scatter
plot of AUROC values (preferred vs nonpreferred rule) in the
control condition versus the scopolamine condition. A total of 27
of 30 recorded neurons showed lower AUROC values in the sco-
polamine condition compared with the control condition.
AUROC values were significantly reduced in the scopolamine
condition (control: 0.65 = 0.018 vs scopolamine: 0.55 % 0.018,
p = 0.00014, Wilcoxon signed rank test). Next, we examined
whether rule selectivity reduction induced by scopolamine was
due to changes in preferred or nonpreferred rule firing. Reduc-
tion in FR was found to be greater for the preferred rule than for
the nonpreferred rule (Fig. 4D; preferred: —9.9 * 2.6 spikes/s vs
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nonpreferred: —7.5 = 2.2 spikes/s, p = 0.00015, Wilcoxon signed
rank test).

Scopolamine reduces rule selectivity in the stimulus epoch of
DLPEC neurons

We further examined rule selectivity in the stimulus epoch.
Figure 5A shows a DLPFC neuron with rule selectivity in the
stimulus epoch, with greater stimulus epoch activity during anti-
saccade trials (pro-saccade: 9.0 = 0.71 spikes/s vs anti-saccade:
12.1 £ 0.72 spikes/s, p = 0.0018, Wilcoxon rank sum test). Sco-
polamine suppressed neuronal activity, leading to a reduction in
rule-related activity in the stimulus epoch (control: 10.7 = 0.52
spikes/s vs scopolamine: 4.5 = 0.30 spikes/s, p < 0.0001, Wil-
coxon rank sum test). A total of 38 neurons (22 from Monkey O,
16 from Monkey T; 14 pro-saccade-preferring, 24 anti-saccade-
preferring) were determined to be significantly rule-selective in
the stimulus epoch based on AUROC analysis. The average nor-
malized population spike density functions for these 38 neurons
(Fig. 5B) show decrement in selectivity upon scopolamine appli-
cation. AUROC values decreased after scopolamine application
in 32 of 38 neurons (Fig. 5C) with a significant reduction in
overall stimulus rule selectivity (control: 0.65 = 0.011 vs scopol-
amine: 0.54 * 0.012, p < 0.0001, Wilcoxon signed rank test).
Again, scopolamine decreased rule selectivity by decreasing the
FR for the preferred rule more than the nonpreferred rule (Fig.
5D; preferred: —12.6 * 2.3 spikes/s vs nonpreferred: —7.6 = 1.6
spikes/s; p < 0.0001, Wilcoxon signed rank test).

Scopolamine reduces saccadic and visual selectivity of

DLPFC neurons

Next, we characterized the effects of scopolamine application on
DLPFC neurons displaying motor-related perisaccadic activity
and sensory visual activity related to the peripheral stimulus.

Figure 6A is an example of a saccade direction-selective
DLPEC neuron. Trials are separated based on the direction of
saccades (green trace represents contralateral; purple trace repre-
sents ipsilateral). This neuron showed greater perisaccadic activ-
ity for the contralateral direction (23.0 * 1.7 spikes/s) than the
ipsilateral direction (18.9 * 2.1 spikes/s, p = 0.027, Wilcoxon
rank sum test). Of 135 total neurons, 52 (28 from Monkey O, 24
from Monkey T; 37 contralateral saccade-preferring, 15 ipsilat-
eral saccade-preferring) demonstrated significant saccade direc-
tion tuning, based on AUROC analysis. Normalized spike density
functions, constructed based on preferred and nonpreferred sac-
cade direction, show a marked reduction in saccade-related firing
in the stimulus epoch (Fig. 6B). Scopolamine application signif-
icantly decreased saccade direction selectivity in these neurons as
shown by the shift in AUROC values (Fig. 6C; control: 0.69 *
0.011 vs scopolamine: 0.58 = 0.014, p < 0.0001, Wilcoxon signed
rank test). Loss of selectivity was caused by preferentially greater
inhibition to the preferred saccade direction (Fig. 6D; preferred:
—13.4 = 2.0 spikes/s vs nonpreferred: —8.5 = 1.7 spikes/s, p <
0.0001, Wilcoxon signed rank test).

Figure 7A shows a neuron displaying stimulus epoch selectiv-
ity for the contralateral peripheral stimulus. This neuron showed
greater activity following contralateral stimulus onset than after
the ipsilateral stimulus (contralateral: 29.9 * 1.4 spikes/s vs ipsi-
lateral: 23.6 = 1.3 spikes/s, p = 0.0054, Wilcoxon rank sum test).
AUROC analysis of visual selectivity in the stimulus epoch re-
vealed 36 neurons with significant hemispheric discriminability
to stimulus presentation in the control condition (16 from Mon-
key O, 20 from Monkey T; 25 contralateral stimulus-preferring,
11 ipsilateral stimulus-preferring). Population-normalized spike
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density functions of these visual neurons,
shown in Figure 7B, demonstrate the pro-
nounced suppression induced by scopol-
amine. AUROC values for these neurons
were significantly decreased upon scopol-
amine administration (Fig. 7C; control:
0.66 = 0.010 vs scopolamine: 0.54 =
0.013, p < 0.0001, Wilcoxon signed rank
test). This deterioration of visual selectiv-
ity was again due to greater collapse in ex-
citation for the preferred stimulus
direction compared with the nonpre-
ferred stimulus direction (Fig. 7D; pre-
ferred: —109 =+ 2.0 spikes/s vs
nonpreferred: —6.8 * 1.6 spikes/s; p <
0.0001, Wilcoxon signed rank test).

Scopolamine effects on units showing
selectivity for multiple task aspects

PFC units generally display complex ac-
tivity related to task attributes during cog-
nitive performance, whereby single units
may display selective activity related to
different task aspects (Asaad et al., 2000).
After determining neuron selectivity in
our population for rule-related selectivity
in delay and stimulus epochs, saccade di-
rection selectivity, and visual stimulus di-
rection selectivity, we also examined
scopolamine effects on selectivity in neu-
ronal firing for multiple aspects of the
task. We identified units that showed sig-
nificant selectivity in the control period
for pairwise combinations of the afore-
mentioned task aspects. The objective was
to ascertain whether scopolamine had
stronger effects on selectivity for one aspect
of task-related firing over another. Table 1
shows the overall unit counts displaying se-
lectivity for the various task components
and dual selectivity for pairwise combina-
tions of these components. We examined
scopolamine-induced changes in AUROC-
based selectivity for constituent compo-
nents in these units showing compound
selectivity and compared them using the
Wilcoxon signed rank test (for example, in
units showing significant selectivity for both
rule and saccade direction, we compared
scopolamine-induced change in rule
AUROC and change in saccade direction
AUROC). Overall, we found no selective ef-
fects of scopolamine on selectivity for par-
ticular aspects of the task over other aspects
in such units with complex selectivity pro-

<«

below the equality line, indicating reduction in rule selectivity.
Population AUROC values were significantly reduced by sco-
polamine. D, Scopolamine elicited a stronger decrease in pop-
ulation FR for the preferred rule in the delay epoch, compared
with the nonpreferred rule. Error bars indicate SEM. Signifi-
cance was determined by Wilcoxon signed rank test.
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files. Thus, scopolamine appears to cause
general disruption of all task-related firing
attributes of DLPFC units.

Scopolamine does not change reliability
of neuronal firing

Because the AUROC is a nonparametric
measure accounting for changes both in
the mean and the variance of the distribu-
tions being compared, we wished to ascer-
tain whether AUROC reductions upon
scopolamine application were due to
changes in the FR mean or changes in
trial-to-trial variability. To exclude possi-
ble changes in reliability of neuronal
firing, delay epoch Fano factor was calcu-
lated, yielding no significant differences
between control and scopolamine condi-
tions (pro-saccade: control 2.7 = 0.28 vs
scopolamine 2.6 * 0.36, p = 0.17; anti-
saccade:3.0 £ 0.36vs 2.4 £ 0.22,p = 0.21,
Wilcoxon signed rank test).

Discussion

The PFC receives substantial inputs from
the ascending cholinergic system (Rob-
bins, 2005), which influences learning and
memory, attention, arousal, and sensory
discrimination (Luchicchi et al., 2014).
This study attempts to address a gap in
our knowledge of the physiological un-
derpinnings of cholinergic modulation of
DLPFC neurons underlying executive
functions. We found that local muscarinic
blockade of monkey DLPFC markedly
suppressed neuronal firing and reduced
selectivity for rule-mnemonic, saccade-
and sensory-related activity.

Cognitive domains influenced by the
cholinergic system are manifold (Kli-
nkenberg and Blokland, 2010; Bubser et
al., 2012) and cause a variety of well-
examined behavioral deficits, including
spatial (Rupniak et al., 1991; Green et al.,
2005) and nonspatial memory (Thienel et
al., 2009), attention (Spinelli et al., 2006;
Fredrickson et al., 2008; Furey et al,
2008), sensory discrimination (Evans,
1975; Bartus and Johnson, 1976), and rule
maintenance (Thomas et al., 2008; Snyder
etal., 2014).

The muscarinic system in PFC appears
to play a prominent role in WM function.
In rats, both microinfusion of scopol-
amine into medial PFC and ablation of
basal forebrain cholinergic projections
disrupt WM performance (Chudasama et

<«

decrease in population FR for the preferred rule in the stimulus
epoch, compared with the nonpreferred rule. Error bars indi-
cate SEM. Significance was determined by Wilcoxon signed
rank test.
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al., 2004). Cholinergic tone is also a pre-
requisite for intact WM function in
monkey PFC. Prefrontal cholinergic deaf-
ferentation using a cholinergic neuron-
specific immunotoxin selectively causes
delay-length-dependent deficits in WM
performance, but not in other cognitively
demanding tasks (Croxson et al., 2011).
These deficits are consistent with our ob-
served suppression of delay epoch selec-
tivity in rule neurons; and indeed, such
suppression may be the basis of the defi-
cits. In agreement with this, a human im-
aging study found scopolamine-induced
degradation in parahippocampal persis-
tent activity (Schon et al., 2005).

The observed scopolamine-induced
neuronal suppression herein is in accord
with activity in DLPFC after systemic sco-
polamine administration (Zhou et al.,
2011) and V1 after iontophoretic scopol-
amine application (Herrero et al., 2008).
However, Miller and Desimone (1993)
found paradoxical increases in stimulus-
responsive activity of macaque inferotem-
poral neurons after systemic scopolamine
administration during delayed match-
to-sample performance, although sponta-
neous activity remained unchanged,
suggesting that scopolamine-induced
suppression is not universal. Indeed, our
results suggest that suppression due to
systemic muscarinic blockade (Zhou et
al., 2011) can be a direct consequence of
PFC muscarinic antagonism and not due
to indirect network-effects on activity in
other brain areas with PFC connectivity.

ACh affects the physiology of macaque
MT neurons and their motion discrim-
inability (Thiele et al., 2012), suggesting a
role of cholinergic signaling in effective
filtering of information (Thiele, 2013).
This is also evident from the attenuation
of attentional modulation in primary vi-
sual cortex by iontophoretic application
of scopolamine (Herrero et al., 2008).
Here, we examined the effects of musca-
rinic modulation on neuronal selectivity
for mnemonic rule representation in
DLPFC. We find general scopolamine-
induced neuronal suppression at various
doses, in contrast to Herrero et al. (2008),
wherein scopolamine selectively attenu-
ated the attentional component of V1 fir-
ing. This difference could be due to

<«

AUROC values were significantly reduced by scopolamine. D,
Scopolamine elicited a stronger decrease in population FR for
the preferred saccade direction in the stimulus epoch, com-
pared with the nonpreferred saccade direction. Error bars indi-
cate SEM. Significance was determined by Wilcoxon signed
rank test.
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differential expression of M1Rs between
DLPFC and V1; MI1R expression in the
latter is higher in parvalbumin-positive
interneurons (Disney and Aoki, 2008).
Scopolamine-induced reduction in rule se-
lectivity found in this study is consistent
with results from Zhou et al. (2011),
wherein rule selectivity of DLPFC neurons
was degraded during the delay epoch of spa-
tiall WM and delayed match-to-sample
tasks. They also found scopolamine-
induced delay-dependent deficits in behav-
ioral performance, which were interestingly
unaffected by distractor load. In contrast to
rule selectivity, stimulus selectivity of
DLPFC neurons was found to be unaffected
by scopolamine (Zhou et al., 2011). Here,
we found that peripheral stimulus selectivity
was also reduced. We hypothesize that this
difference is explained by the different dos-
ing contexts of systemic administration and
the focal administration here. Furthermore,
suppression of visual-related activity found
herein could potentially shed light on the
lack of interaction of scopolamine modula-
tion and distractor load found in that study.
If visual activity is suppressed, then distrac-
tor salience may be comparably reduced,
which may contribute to the lack of inter-
action between distractor load and
scopolamine-induced behavioral degra-
dation found in spatial WM (Zhou et al.,
2011) and found in delayed match-to-
sample performance by Miller and Desi-
mone (1993), where scopolamine effects
were independent of the number of inter-
vening stimuli (analogous to distractors).
This is also in concord with Parikh et al.
(2007), who found transient increases in
ACh release in rat medial PFC after cue
presentation in a cue-detection task, and
lack thereof for undetected cues, indicat-
ing that salient visual stimuli (e.g., cue or
distractor) evoke ACh release, which
would then modulate neuronal visually
evoked transients. Cholinergic blockade
would disrupt this modulation of visual-
stimulus salience.

We also report that scopolamine
suppressed the selectivity of DLPFC neu-
rons possessing perisaccadic activity.
Funahashi et al. (1991) observed perisac-
cadically active neurons in DLPFC, which
may be a manifestation of influence on
saccade generation circuitry (Watanabe et

<«

selectivity. Population AUROC values were significantly re-
duced by scopolamine. D, Scopolamine elicited a stronger de-
crease in population FR for the preferred stimulus direction in
the stimulus epoch, compared with the nonpreferred stimulus
direction. Error bars indicate SEM. Significance was deter-
mined by Wilcoxon signed rank test.
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Table 1. Breakdown of neurons showing significant selectivity for multiple task
aspects”

Rule:delay  Rule:stimulus  Saccade Visual stimulus
Activity type epoch epoch direction  direction
Rule: delay epoch 30 — — —
Rule: stimulus epoch 14 38 — —
Saccade direction 16 20 52 —
Visual stimulus direction 11 18 23 36

“Shown are unit counts displaying significant AUROC-based selectivity for different task aspects. On the diagonal are
the overall numbers of significant units for each individual task aspect (see Figures 4-7). Counts of neurons with
significant dual selectivity for the respective activity types are shown. For example, 23 neurons displayed both
significant saccade direction selectivity and significant visual stimulus direction selectivity.

al., 2006), corollary discharge feedback about eye position (Som-
mer and Wurtz, 2008), or saccadic remapping, which updates
cortical maps before an impending saccade (Colby et al., 1995).

Zhou et al. (2011) also reported marginal scopolamine-
induced changes in saccadic latency (~5 ms) and increased sac-
cadic dispersion in the delayed response task, but saccades to
visual stimuli with zero delay were unaffected. Because this was a
systemic study, it is uncertain whether scopolamine’s influence
on saccadic neurons contributed to these small effects. Subtle
changes in WM task saccadic latencies are consistent with effects
on DLPEC, which is not directly involved in saccade generation.
Similarly, dopamine D1 receptor agonist infusions in DLPFC
disrupted oculomotor delayed response while sparing visually
guided saccades (Gamo et al., 2015), whereas iontophoretic acti-
vation of D2 receptors selectively modulates perisaccadic activity
and not delay activity (Williams and Goldman-Rakic, 1995;
Wang et al., 2004). Thus, the contribution of neurons with peri-
saccadic activity to DLPFC circuitry and behavioral performance
is fraught with interest, and further elucidation of neuromodula-
tory influences on these cells is required. Our results suggest that,
in addition to other neurotransmitter systems, muscarinic recep-
tors also modulate perisaccadic DLPFC activity.

Slice physiology also supports a putative cholinergic role in
the physiology of recurrent activity (Egorov et al., 2002), which is
considered the basis of persistent activity in the delay period of
WM tasks (Goldman-Rakic, 1995).

Microiontophoretic and systemic injection studies of other
modulatory systems, such as catecholaminergic (Wang et al.,
2004; Vijayraghavan et al., 2007; Gamo et al., 2010), nicotinic
(Yang et al., 2013), serotonergic (Williams et al., 2002), and glu-
tamatergic receptors (Skoblenick and Everling, 2012; Wang et al.,
2013), have yielded valuable insights upon the physiological basis
of neuromodulation of cognitive circuitry. An emerging focus in
the study of cognitive neuromodulation is the dendritic spine of
PFC pyramidal cells, where a constellation of receptors, ion chan-
nels, and intracellular signaling molecules are found in proxim-
ity, acting by diverse mechanisms to augment or shunt spinal
synaptic input and its influence on excitability, leading to a form
of ongoing plasticity termed dynamic network connectivity
(Arnsten et al., 2012). Two main subtypes of muscarinic recep-
tors mediate cholinergic modulation in PFC: the Gg-coupled
M1- and G;,,-coupled M2-receptor families (Caulfield, 1993).
MI1Rs are prominently expressed in PFC postsynaptically (Mrzl-
jak et al., 1993; Medalla and Barbas, 2012) and have mostly de-
polarizing effects (Levey, 1996), whereas the M2 receptor mainly
functions as an autoreceptor influencing presynaptic ACh and
other neurotransmitter release (Zhang et al., 2002), although it is
also found postsynaptically on both PFC pyramids and interneu-
rons (Mrzljak et al., 1993; Medalla and Barbas, 2012). Thus,
scopolamine-induced general suppression found here is likely
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mediated by M1Rs. M1Rs are expressed in asymmetric synapses
on PFC spines (Mrzljak et al., 1993), well positioned to augment
synaptic inputs and increase neuronal excitability through clo-
sure of KCNQ potassium channels mediating the M-current
(Arnsten et al., 2012). Consistent with this hypothesis, iontopho-
retic KCNQ channel blockade augments persistent activity in
macaque DLPFC delay neurons (Wang et al., 2011).

There has been burgeoning interest in pharmacological tar-
geting of muscarinic receptors in the treatment of schizophrenia
and Alzheimer’s disease. Notably, allelic variants of genes encod-
ing several intracellular messengers, which have been localized to
PFC pyramidal spines, have been linked to psychiatric disorders
(Erdely et al., 2006; Kirkpatrick et al., 2006). Alleles of PIP5K2A,
a phosphoinositol pathway regulator of KCNQ channel function,
are linked with schizophrenia (Fedorenko et al., 2008). Thus,
MIR and its downstream mediators offer an attractive target for
pharmaceutical intervention in these disorders of cognition. Alz-
heimer’s disease is characterized by degeneration of ACh-
producing basal forebrain neurons, and postmortem histology
has revealed abnormal muscarinic receptor expression in PFC,
including decreased M1R protein (Flynn et al., 1995). Schizo-
phrenic patients also have decreased M1R expression in DLPFC
(Dean et al,, 2002). Additionally, some of the efficacy of
clozapine-like atypical antipsychotics can be attributed to mus-
carinic regulation of dopamine signaling (Bymaster et al., 2003;
Tzavara etal., 2004). The M1R agonist xanomeline (Bodick et al.,
1997; Shekhar et al., 2008) has been investigated for clinical effi-
cacy in treatment of schizophrenia and Alzheimer’s disease, and
the muscarinic allosteric modulator 1-((4-cyano-4-(pyri-dine-2-
yl)piperidin-1-yl)methyl-4-oxo0-4 H-quinolizine-3-carboxylic acid
(PQCA) ameliorates scopolamine-induced cognitive performance
deficits in multiple animal models (Uslaner et al., 2013). The present
results further support a role of muscarinic receptors in higher-order
cognitive processing in primates and encourage future examination
of subtype-specific contributions.
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