Non-Power-of-Two FFTSs:

Exploring the Flexibility

of the MONTIUM

Pascal T. Wolkotte, Marcel D. van de Burgwal and Gerard J.M. Smit
University of Twente, Department of EEMCS
P.O. Box 217, 7500 AE Enschede, The Netherlands
E-mail:{P.T.Wolkotte, M.D.vandeBurgwal, G.J.M.Smit} @utwente.nl

Abstract— Coarse-grained reconfigurable architectures, like
the MoONTIUM, have proven to be a successful approach for
low-power and high-performance computation of regular DSP
algorithms. The main research question posed in this paper is:
Can such architectures also take over less regular algorithms
from general purpose processors? This paper presents the imple-
mentation of non-power-of-two Fast Fourier Transforms (FFT)
to discover the limitations and flexibility of the MONTIUM. The
results of the implementation show a order of magnitude reduc-
tion of the processing time and energy consumption compared
to an ARM processor. Furthermore, we show the accuracy and
flexibility of the implementation.

I. INTRODUCTION

Implementations of FFTs are mainly focussed on the power-
of-two FFTs that use the radix-2 FFT approach. Those are
widely used to compare implementations and for benchmark-
ing processor architectures. The algorithms for non-power-
of-two FFTs are mainly described at the algorithm level to
reduce the number of multiplications and additions as for
example discussed by Good [1] and Winograd [2]. More
recently a special class of non-power-of-two FFTs are even
further optimized to reduce the number of operations [3] [4].

Despite the reduction of operations, the non-power-of-two
algorithms are not efficiently executed on processors. A fre-
quently used method to overcome this problem is padding,
which adds zeros to the input vector and increases its length to
a power-of-two FFT. However, this changes the filter response
of the FFT and it will lose its orthogonal characteristic. This
orthogonality is required in Orthogonal Frequency Division
Multiplexing (OFDM) systems and, therefore, efficient non-
power-of-two FFT implementations are required. Rivaton et
al. [5] present a comparison of non-power-of-two FFTs on
two coarse-grained reconfigurable architectures and a general
purpose processor. A high-speed FFT-1872 implementation on
an FPGA is presented in [6].

In the Smart chipS for Smart Surroundings (4S) project [7]
we propose a heterogeneous tiled architecture with run-time
software and tools. This architecture contains small processing
tiles interconnected by a Network-on-Chip. The architecture
is an energy-efficient solution for flexible and computational
intensive applications. The general purpose processing tiles,
like an ARM, can offload their computational intensive tasks
to coarse-grained reconfigurable processing tiles, like the
MoNTIUM. This reduces both processing time and energy
consumption of the architecture.

1-4244-0622-6/06/$20.00 ©2006 IEEE.

The main driver application used to validate this architecture
is Digital Radio Mondiale (DRM) [8]. The DRM standard
proposes the digitization of radio broadcasting in frequency
bands below 30 MHz. DRM will be the upcoming successor of
AM radio and it is based on OFDM and MPEG-4 audio source
coding. In the baseband processing of a DRM receiver several
demodulation schemes have to be supported. All schemes
heavily rely on several non-power-of-two FFTSs.

This paper proceeds on the results of Rivaton et al. [5], in
which the implementation of the FFT-1920' on the coarse-
grained reconfigurable MoONTIUM architecture was discussed
(see [9] for more information about the MONTIUM). The algo-
rithm implementation is extended such that it now supports a
wide range of non-power-of-two FFTs and iFFTs on the same
architecture, including all required in the DRM application.
The extended implementation showed to be an ideal test-case
to explore and validate the flexibility of the coarse-grained
architecture. Furthermore, we validated new possibilities in
the MoNTIUM tooling to enable partial reconfiguration of the
algorithm.

The paper is organized as follows. Section Il introduces the
non-power-of-two FFTs and their decomposition, such that
they can be mapped on the MONTIUM architecture. More
details on the decomposition and the mapping itself are given
in section Ill. The results, by means of processing time,
accuracy, and power consumption, are presented in section
IV. Consequently, in section V we discuss why executing this
less regular type of algorithms can be done on the MONTIUM
very well. Section VI concludes the paper.

Il. NON-POWER-OF-TWO FFTs

The Discrete Fourier Transform (DFT) transforms a digital
signal from the time domain to the frequency domain. It is
defined by the following relation between N complex input
samples 2 and N complex output samples X:

X[k =) wn] Wik (€

where WRF = e=727nk/N gre primitive roots of the unit circle
also called twiddle factors. Each of the NV outputs is the sum
of N terms, so a straight-forward evaluation of this formula
requires O (N'2) operations.

LIn this paper, FFT-N means an FFT of length N

TABLE
FFTS THAT CAN BE GENERATED WITH THE PFA MAPPING

q
4 5 6 7

2| 80 160 320 640
3| 112 224 448 896
4 | 144 288 576 1152
P 5| 176 352 704 1408
6 | 208 416 832 1664
7 | 240 480 960 1920

The Fast Fourier Transform (FFT) is a set of algorithms
that improves the efficiency of the DFT. A well known FFT
algorithm is the divide and conquer approach reintroduced by
Cooley and Tukey [10]. This radix-xz FFT algorithm recur-
sively re-expresses a DFT of length N = Nj - Ny into Np
DFTs of size N;. For an FFT with a length that is a power
of x the recursion can be done in *log (N) stages using a
x-inputs butterfly.

For lengths that are not a power of x other optimized
algorithms exist. Several algorithms have been proposed to
optimize these DFTs to mixed-radix FFTs. Another mapping
introduced by Good [1], optimized for the number of multipli-
cations and additions, is known as the Prime Factor Algorithm
(PFA). This algorithm uses special ordering of input and output
vectors to reduce the number of multiplications and additions.
This ordering is not so regular as for example the bit-reversed
order used in the the radix-2 FFT.

A. FFTs used in DRM

For the DRM receiver, a large number of FFTs is required.
DRM can be used in several modes, each requiring a different
set of FFTs. The OFDM processing requires a number of
radix-2 FFTs (512, 256) and a set of non-power-of-two FFTs
(1920, 576, 352, 288, 224, 176 and 112). These non-power-
of-two FFTs can be generalized to a a group of 2-dimensional
PFA decompositions that satisfy the following constraints:

N=N -Ny=(2p+1)-29 @)

where 2 <p <7, ¢g>4and N < 2048.

We developed a generic source-code that covers all cases of
the equation above. This makes it possible to quickly generate
a large number of configurations. A selection of the cases is
given in Table I. In this paper we use the FFT-1920 as an
example. Section 11 gives more details on the implementation,
where we use FFT-1920 as an example.

I1l. IMPLEMENTATION

In this section we take the FFT-1920 to describe the
implementation of any non-power-of-two FFT. As explained
in section 1l, any FFT can be decomposed in several smaller
FFTs. For the FFT-1920, the parameters are Ny = 2-7+1 = 15
and N, = 27 = 128. According to the PFA approach,
the FFT is decomposed into 128 times FFT-15 followed by
15 times FFT-128. The FFT-128 is implemented using a
radix-2 approach [9]. The FFT-15 uses the symmetry in the
twiddle factors that results in a reduction of the number of

multiplications by a factor of 4. Using this symmetry results
in a regular DFT-15, which consists of a chain of additions:

Nj-—1

TrlK =z[0]+) (¢[n] +2 [N —n])- R (WK

Tr k] = Z (x[n]—x [Ny —n]) - (Wﬁf)
Nt

X[0]= Z x [n])
n=0

X[k = Tr [k +Tr [K], 1<k< L

——

TR[Nl—kJ]—T][Nl—k‘], %<k‘<N1

For each addition, the operands are multiplied with a twiddle
factor. Two inputs are added before a multiplication and the
butterfly structure of the MONTIUM is used to calculate X [k]
and X [15 — k] concurrently. The execution of this optimized
implementation for the MONTIUM requires 56 clock cycles.
For other odd-number FFTs the number of clock cycles equals
(%)2 + &=L The FFT-15 could have been computed more
efficiently by again applying the PFA with FFT-3 and FFT-
5, but this requires reordering of the intermediate results
which cannot be implemented efficiently on the MONTIUM
architecture.

As 128 is a power of two, the FFT-128 can be performed
using radix-2 algorithms that require (% +2) - logy (N2)
clock cycles on the MONTIUM.

The total number of clock cycles to calculate a FFT of
length N = Ny - N, equals: Ny - ((£2 +2) -log, (N2)) +

N, - (%)2 + 2=1 plus a few clock cycles to initialize
some of the registers. For the FFT-1920 the exact numbers are

given in section IV-B.

A. Scaling

A fixed-point implementation of a DSP algorithm is liable to
overflow after an addition. To prevent overflow the amplitude
of the input signal can be limited or the intermediate values can
be scaled. Scaling the fixed-point numbers results in a shift of
the notation. Scaling a number in (1,15)-fixed-point notation
by 64 results in a number in (7,9)-fixed-point notation. For
an FFT the worst-case required scaling factor equals v/2N. In
normal operation, with a signal that contains several frequency
components, the scaling factor can be smaller, which results in
a more accurate output signal. Therefore, we implemented a
flexible solution, that supports scaling the signal at predefined
positions. Figure 1 depicts these positions in the algorithm
where scaling can be applied. The scaling factor consists of
the following factors:

S=5- ﬁ S 4)
i=1

where S is the input scaling factor, m is the total number of
stages in the radix-2 FFT and S; denotes the scaling factor

128-point radix-2 FFT

£s s g £ g s 2 g
=k 2|33 | 2|38 2|39 2|38
> B e s e & | B e & E N e 8| B e 8 [
© =3 S 3 -~ a ¥ 3
Fig. 1. Positions where scaling can be applied

during stage i of the radix-2 FFT (Sp € [1,2% —1], S, €
{1,2}).

The scaling can be positioned in the beginning (Sp = 5),
which results in a less accurate result and lower overflow
risk. Moving scaling to the end of the algorithm improves
the accuracy but increases the risk of overflow. Therefore, the
programmer has to do the adjustment of the scaling factors
depending on the expected input signal level. Section IV-D
shows the effect of changing the scaling. The implementation
of a dynamic scaling algorithm, based on the intermediate
signal level, would cost too much resources in the MONTIUM.

B. Run-Time FFT/iFFT reconfiguration

The FFT and inverse FFT (iFFT) equations are quite similar,
as can be seen in equations 1 and 5:

z(n) = 1. NE_IX (k) - Wxy™* (5)
= 5
k=0

The main differences between the FFT and the iFFT is the
% scaling factor that has to be applied to the results and
the usage of complex conjugated twiddle factors. The twiddle
factors can be updated easily, since they are located in the data
memory map of the MONTIUM. For the % scaling factor the
designer has to compensate for the scaling applied in the FFT.
If the designer has a scaling factor of S in the FFT then a
scaling factor of % has to be implemented in the iFFT. This
scaling factor can be spread of over the 8 scaling positions
Sp ... S7. The resulting output of the iFFT will then have the
same fixed-point notation as the input of the FFT.

1V. DRM AS A CASE-STUDY FOR PERFORMANCE
EVALUATION

This section describes the performance figures of the FFT-
1920, which is required in DRM next to a variety of other
FFTs. The smaller DRM FFTs have a shorter execution time
and a lower energy consumption.

A. Configuration

Suppose the MONTIUM needs to be reconfigured to run an
FFT-1920. This generic configuration requires three phases.
First, we configure the configuration registers (2982 bytes),
then we initialize some of the register files (44 bytes) and the
last step is to write the twiddle factors into the local memory
(904 bytes). These three steps have to be performed once
before the algorithm can be started. The configuration size
depends on the actual algorithm settings. However, to support

TABLE I
NUMBER OF BYTES REQUIRED FOR PARTIAL RECONFIGURATION OF THE

FFT-1920
Partial reconfiguration Size
Enabling / disabling input scaling 2
Adjustment of the input scaling factor (So) 8
Adjustment of the FFT-128 scaling factors (S1...7) 14
Change from FFT to iFFT (or visa-versa) 8

partial reconfiguration, a generic configuration is used that is
about 10% larger than a specific configurations.

The generic configuration can be tuned, for example, to
change from FFT to iFFT, or to change the scaling factor.
Table Il gives an estimation of the number of bytes needed
for tuning the configuration.

B. Performance

The execution of an FFT-1920 can be separated in several
phases. Table 11l gives an overview of the steps that have to be
taken in each phase (initialization, pre-processing, processing
and post-processing). The loading of the input and input
scaling is handled concurrently. The same holds for the output
ordering and retrieving of the output.

Using the figures of Table 111, we can calculate the execution
time of an FFT-1920 on the MoNTIUM. When its runs at 50
MHz, the calculation of one single block of data requires 398
1S. The optimized implementation on a 32-bit ARM9 RISC
processor requires 4958 s with a clock frequency of 96 MHz
[5], which is a factor 12.5 slower compared to the MONTIUM.
Both implementations perform exact the same operation.

C. Energy consumption

From the number of clock cycles, we can derive the energy
consumption of the FFT-1920. For the MONTIUM the worst-
case energy consumption is estimated at 0.577 mW/MHz for
an synthesized design with a frequency of 100 MHz [9]. Based
on the number of clock cycles the energy consumption for a
single FFT-1920 equals 11.5 pJ where 3.4 1J is consumed by
the input and output ordering. This shows a energy saving of
a factor 10 compared to the ARM9 implementation [5], which
consumed 119 pJ excluding external RAM.

D. Accuracy

To test the accuracy of the algorithm we created a number
of FFT-1920 cases. In these cases (see Table 1V) we changed

TABLE Il
OVERVIEW OF REQUIRED CLOCK CYCLES OF THE PHASES
Phase Operation Clock cycles
Initialization Configuration 2113
_ Load input 1922

Pre-processing Input scaling

Input ordering 2114
Processing FFT execution 14098

] . Output ordering

Post-processing Retrieve output 1927
Total processing | \ 19911

TABLE IV
11 CASES TO TEST THE ACCURACY OF THE FFT-1920

Scaling factors
Sz S4

(@]
7]
@

EEO0No o RN e
Shooos N RS
NP RN RN N
NERNR RN RN NN
NENNERNER NN NN

PR NRPRNNNNN NN

I Y CN NN PSS CE RN RN B
[N NS O O SR N RN e
PR RE DN R NN

12

[Jinput 100% of full scale (average)|

[l input 63% of full scale (average)

10F Il input 31% of full scale (average)

—ARM implementation (average)
ARM implementation (max)

gl —* Maximum error per case

Alimiis

Fixed-point error [bits]

o
6
Case #

Fig. 2. Rounding errors for various scaling combinations

the scaling factors SyS7. In all cases, the overall scaling
factor S is 128.

As an input we used a typical DRM sample stream with
its maximum amplitude related to the maximum value of
full-scale. The MONTIUM output values are compared with a
floating-point FFT calculated in Matlab, scaled with the same
scaling factor of 128.

Figure 2 depicts the maximum and average absolute error
for all 11 cases and for 3 levels of the input signal. As a
reference, the error in the ARM implementation is included.
This figure shows that the accuracy is higher when scaling is
applied at the end of the FFT. However, if the input signal is
too strong, the risk of overflow is higher. Overflow is noticed if
the maximum error is above the 4.5 bits. In this figure, case 5
is the optimal trade-off between accuracy and risk of overflow.

V. DISCUSSION

The MONTIUM is very well suitable to execute algorithms
with a regular kernel operation. Looking at algorithms like the
FFT, it is clear that the kernel operation (a butterfly) is done
repeatedly. The memory bandwidth required for executing
several butterfly operations in parallel can be provided by the
MONTIUM.

The non-power-of-two FFT is a less regular algorithm. By

optimizing the algorithm for regularity and not for the number
of multiplications we managed to map an irregular algorithm

on the MoONTIUM. The possibility to use the data path while
generating addresses makes it possible to map almost any
algorithm with less regular operations and addressing patterns
to the MONTIUM.

V1. CONCLUSION

With the tooling currently available, it is relatively easy to
reshape an algorithm to its parameterizable counterpart, as we
showed with the non-power-of-two FFTs. Adding additional
functionality to an existing algorithm might not be trivial; with
only limited configuration resources available it can be hard to
fit in new functionality, while leaving the existing functionality
untouched. Again, tooling can be a good helper to find optimal
solutions.

After adding the input scaling, input ordering and output
ordering the MONTIUM is fully utilized. This implies both the
physical usage (e.g. the bandwidth provided by the memories,
interconnections and the ALUs) and the logical usage (e.g. the
amount of instructions stored in the configuration space).

When looking at the performance by means of accuracy and
energy consumption, the MONTIUM outperforms the reference
ARM9 implementation by a factor of 10. This shows that
computational intensive and less regular algorithms can be
offloaded from the general purpose processing tiles to coarse-
grained reconfigurable processing tiles.

By choosing smart scaling factors Sy . . . S7 the intermediate
results are stored as accurate as possible, while the computa-
tions are still done with complex 16-bit floating point samples.
With partial reconfiguration the programmer can make the
trade-off between accuracy and the risk of overflow.

ACKNOWLEDGEMENT

This research is conducted within the Smart Chips for Smart
Surroundings project (IST-001908) supported by the Sixth
Framework Programme of the European Community.

REFERENCES

[1] I. J. Good, “The interaction algorithm and practical fourier series,”
Journal of the Royal Statistical Society. Series B (Methodological),
vol. 20, no. 2, pp. 361-372, 1958.

[2] S. Winograd, “On computing the discrete fourier transform,” Mathemat-
ics of Computations, vol. 32, pp. 175-199, January 1978.

[3] G.BiandY.Q. Chen, “Fast dft algorithms for length n = q * 2 IEEE
Transactions on Circuits and Systems Il, vol. 45, no. 6, pp. 685-690,
June 1998.

[4] S. Bouguezel, M. O. Ahmad, and M. N. S. Swamy, “A new radix-2/8 fft
algorithm for length-q x 2™ dfts,” IEEE Transactions on Circuits and
Systems |, vol. 51, no. 9, pp. 1723-1732, September 2004.

[5] A. Rivaton, J. Quevremont, Q. Zhang, P. T. Wolkotte, and G. J. M.
Smit, “Implementing non power-of-two ffts on coarse-grain reconfig-
urable architectures,” in Proceedings of the International Symposium on
System-on-Chip (SoC 2005). IEEE, November 2005, pp. 74-77.

[6] Mixed-Radix 'Dual Speed’ FFT Product Specification, RF Engines Ltd,
April 2004.

[7] “http://www.smart-chips.net.”

[8] Digital Radio Mondiale (DRM); System Specification, ETSI ES 201
980 ed., European Telecommunication Standard Institute (ETSI), Sophia
Antipolis, France, April 2003.

[9] P. M. Heysters, “Coarse-grained reconfigurable processors (flexibility
meets efficiency),” Ph.D. dissertation, University of Twente, Enschede,
The Netherlands, September 2004.

[10] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series,” Mathematics of Computations, vol. 19,
no. 90, pp. 297-301, April 1965.

	Index
	SOC 2006
	Conference Info
	Welcome Message
	Invited Presentations
	Committees
	Sponsors

	Sessions
	Tuesday, 14 November 2006
	TueAm2-Invited1
	TueAm3-Industry1 and Coffee
	TueAm4-Invited2
	TuePm1-SoC Applications
	TuePm2-Industry2 and Coffee

	Wednesday, 15 November 2006
	WedAm1-Reconfigurability
	WedAm4-TTA and Networks
	WedPm1-Invited5
	WedPm2-Industry4 and Coffee

	Thursday, 16 November 2006
	ThuAm2-Poster1 and Coffee
	ThuAm3-Network-on-Chip
	ThuPm2-Poster2 and Coffee
	ThuPm3-SoC Design and Analysis
	ThuPm4-MPSoC Issues

	Authors
	All Authors
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	V
	W
	Y

	Papers
	All Papers
	Papers by Session
	Papers by Topics

	Topics
	Alternative computing paradigms
	Analysis and early estimation techniques, technology ro ...
	Application-specific processors and architectures
	Configurable and reconfigurable architectures
	Design flow and methodology
	Embedded processor hardware
	Embedded software tools and techniques, e.g. retargetab ...
	Low-power techniques
	Multiprocessor SoC
	Network-on-Chip
	On-chip communication and interconnects
	Platform architectures
	Reuse techniques
	SoC applications
	System-level integration
	Tools and languages for SoC design
	Verification, debugging, testing and testability

	Search
	Help
	Browsing the Conference Content
	The Search Functionality
	Acrobat Query Language
	Using Acrobat Reader
	Configurations and Limitations

	About
	Current paper
	Presentation session
	Abstract
	Authors
	Pascal T. Wolkotte
	Marcel D. van de Burgwal
	Gerard J. M. Smit

