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Introduction

I introduce the basic principles of control theory in a

concise self-study guide. I wrote this guide because

I could not find a simple, brief introduction to the

foundational concepts. I needed to understand those

key concepts before I could read the standard intro-

ductory texts on control or read the more advanced

literature. Ultimately, I wanted to develop sufficient

understanding so that I could develop my own line

of research on control in biological systems.

This tutorial does not replicate the many excel-

lent introductory texts on control theory. Instead,

I present each key principle in a simple and natural

progression through the subject.

The principles build on each other to fill out the

basic foundation. I leave all the detail to those excel-

lent texts, and instead focus on how to think clearly

about control. I emphasize why the key principles

are important, and how to make them your own to

provide a basis on which to develop your own under-

standing.

I illustrate each principle with examples and graph-

ics that highlight key aspects. I include, in a freely

available file, all of the Wolfram Mathematica soft-

ware code that I used to develop the examples and

graphics. The code provides the starting point for

your own exploration of the concepts and the subse-

quent development of your own theoretical studies

and applications.

Control systems and design

An incoming gust of wind tips a plane. The plane’s

sensors measure orientation. The measured orien-

tation feeds into the plane’s control systems, which

send signals to the plane’s mechanical components.

The mechanics reorient the plane.

An organism’s sensors transform light and tem-

perature into chemical signals. Those chemical sig-

nals become inputs for further chemical reactions.

The chain of chemical reactions feed into physical

systems that regulate motion.

How should components be designed to modu-

late system response? Different goals lead to de-

sign tradeoffs. For example, a system that responds

rapidly to changing input signals may be prone to

overshooting design targets. The tradeoff between

performance and stability forms one key dimension

of design.

Control theory provides rich insights into the in-

evitable tradeoffs in design. Biologists have long rec-

ognized the analogies between engineering design

and the analysis of biological systems. Biology is,

in essence, the science of reverse engineering the de-

sign of organisms.

Overview

I emphasize the broad themes of feedback, robust-

ness, design tradeoffs and optimization. I weave

those themes through the three parts of the presen-

tation.

Part I

The first part develops the basic principles of dy-

namics and control. This part begins with alternative

ways in which to study dynamics. A system changes

over time, the standard description of dynamics. One

can often describe changes over time as a combi-

nation of the different frequencies at which those

changes occur. The duality between temporal and

frequency perspectives sets the classical perspective

in the study of control.

The first part continues by applying the tools of

temporal and frequency analysis to basic control

structures. Open loop control directly alters how a

system transforms inputs to outputs. Prior knowl-

edge of the system’s intrinsic dynamics allows one

to design a control process that modulates the input-

output relation to meet one’s goals.

By contrast, closed loop feedback control allows

a system to correct for lack of complete knowl-

edge about intrinsic system dynamics and for unpre-

dictable perturbations to the system. Feedback alters

the input to be the error difference between the sys-

tem’s output and the system’s desired target output.

By feeding the error into the system, one can mod-

ulate the process to move in the direction that re-

duces error. Such self correction by feedback is the

single greatest principle of design in both human-

engineered systems and naturally evolved biological

systems.

I present a full example of feedback control. I em-

phasize the classic proportional, integral, derivative
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(PID) controller. A controller is a designed compo-

nent of the system that modulates the system’s in-

trinsic input-output response dynamics.

In a PID controller, the proportional component re-

duces or amplifies an input signal to improve the way

in which feedback drives a system toward its target.

The integral component strengthens error correction

when moving toward a fixed target value. The deriva-

tive component anticipates how the target moves,

providing a more rapid system response to changing

conditions.

The PID example illustrates how to use the basic

tools of control analysis and design, including the

frequency interpretation of dynamics. PID control

also introduces key tradeoffs in design. For exam-

ple, a more rapid response toward the target setpoint

often makes a system more susceptible to perturba-

tions and more likely to become unstable.

This first part concludes by introducing essential

measures of performance and robustness. Perfor-

mance can be measured by how quickly a system

moves toward its target or, over time, how far the

system tends to be from its target. The cost of driv-

ing a system toward its target is also a measurable

aspect of performance. Robustness can be measured

by how likely it is that a system becomes unstable or

how sensitive a system is to perturbations. With ex-

plicit measures for performance and robustness, one

can choose designs that optimally balance tradeoffs.

Part II

The second part applies measures of performance

and robustness to analyze tradeoffs in various de-

sign scenarios.

Regulation concerns how quickly a system moves

toward a fixed setpoint. I present techniques that op-

timize controllers for regulation. Optimal means the

best balance between design tradeoffs. One finds an

optimum by minimizing a cost function that com-

bines the various quantitative measures of perfor-

mance and robustness.

Stabilization considers controller design with re-

spect to robust stability. A robust system maintains

its stability even when the intrinsic system dynamics

differ significantly from that assumed during anal-

ysis. Equivalently, the system maintains stability if

the intrinsic dynamics change or if the system experi-

ences various unpredictable perturbations. Changes

in system dynamics or unpredicted perturbations

can be thought of as uncertainties in intrinsic dynam-

ics.

The stabilization section presents a measure of

system stability when a controller modulates intrin-

sic system dynamics. The stability measure provides

insight into the set of uncertainties for which the sys-

tem will remain stable. The stability analysis is based

on a measure of the distance between dynamical sys-

tems, a powerful way in which to compare perfor-

mance and robustness between systems.

Tracking concerns the ability of a system to follow

a changing environmental setpoint. For example, a

system may benefit by altering its response as the en-

vironmental temperature changes. How closely can

the system track the optimal response to the chang-

ing environmental input? Once again, the analysis of

performance and robustness may be developed by

considering explicit measures of system character-

istics. With explicit measures, one can analyze the

tradeoffs between competing goals and how alterna-

tive assumptions lead to alternative optimal designs.

All of these topics build on the essential benefits

of feedback control. The particular information that

can be measured and used for feedback plays a key

role in control design.

Part III

The third part presents challenges in control design.

Challenges include nonlinearity and uncertainty of

system dynamics.

Classic control theory assumes linear dynamics,

whereas essentially all processes are nonlinear. One

defense of linear theory is that it often works for real

problems. Feedback provides powerful error correc-

tion, often compensating for unknown nonlineari-

ties. Robust linear design methods gracefully handle

uncertainties in system dynamics, including nonlin-

earities.

One can also consider the nonlinearity explicitly.

With assumptions about the form of nonlinearity,

one can develop designs for nonlinear control.

Other general design approaches work well for un-

certainties in intrinsic system dynamics, including

nonlinearity. Adaptive control adjusts estimates for

the unknown parameters of intrinsic system dynam-
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ics. Feedback gives a measure of error in the current

parameter estimates. That error is used to learn bet-

ter parameter values. Adaptive control can often be

used to adjust a controller with respect to nonlinear

intrinsic dynamics.

Model predictive control uses the current system

state and extrinsic inputs to calculate an optimal se-

quence of future control steps. Those future control

steps ideally move the system toward the desired tra-

jectory at the lowest possible cost. At each control

point in time, the first control step in the ideal se-

quence is applied. Then, at the next update, the ideal

control steps are recalculated, and the first new step

is applied.

By using multiple lines of information and recal-

culating the optimal response, the system corrects

for perturbations and for uncertainties in system dy-

namics. Those uncertainties can include nonlinear-

ities, providing another strong approach for nonlin-

ear control.

PART I: BASIC PRINCIPLES

Control theory dynamics

The mathematics of classic control theory depends

on linear ordinary differential equations, which are

commonly used in all scientific disciplines. Control

theory emphasizes a powerful Laplace transform ex-

pression of linear differential equations. The Laplace

expression may be less familiar in certain disciplines,

such as theoretical biology.

Transfer functions and state space

Here, I show how and why control applications use

the Laplace form. I recommend an introductory

text on control theory for additional background and

many example applications (e.g., Åström & Murray,

2008; Ogata, 2009; Dorf & Bishop, 2016).

Suppose we have a process, P , that transforms a

command input, u, into an output, y . Figure 1a

shows the input-output flow. Typically, we write the

process as a differential equation, for example

ẍ + a1ẋ + a2x = u̇+ bu, (1)

in which x(t) is an internal state variable of the pro-

cess that depends on time, u(t) is the forcing com-

mand input signal, and overdots denote derivatives

with respect to time. Here, for simplicity, we let the

output be equivalent to the internal state, y ≡ x.

The dynamics of the input signal, u, may be de-

scribed by another differential equation, driven by

reference input, r (Fig. 1b). Mathematically, there is

no problem cascading sequences of differential equa-

tions in this manner. However, the rapid growth

of various symbols and interactions make such cas-

cades of differential equations difficult to analyze

and impossible to understand intuitively.

We can use a much simpler way to trace input-

output pathways through a system. If the dynamics

of P follow eqn 1, we can transform P from an ex-

pression of temporal dynamics in the variable t to

an expression in the complex Laplace variable s as

P(s) = Y(s)
U(s)

= s + b
s2 + a1s + a2

. (2)

The numerator simply uses the coefficients of the dif-

ferential equation in u from the right side of eqn 1 to

make a polynomial in s. Similarly, the denominator

uses the coefficients of the differential equation in x
from the left side of eqn 1 to make a polynomial in

s. The eigenvalues for the process, P , are the roots

of s for the polynomial in the denominator. Control

theory refers to the eigenvalues as the poles of the

system.

From this equation and the matching picture in

Figure 1, we may write Y(s) = U(s)P(s). In words,

the output signal, Y(s), is the input signal, U(s), mul-

tiplied by the transformation of the signal by the pro-

cess, P(s). Because P(s) multiplies the signal, we

may think of P(s) as the signal gain, the ratio of out-

put to input, Y/U . The signal gain is zero at the roots

of the numerator’s polynomial in s. Control theory

refers to those numerator roots as the zeros of the

system.

The simple multiplication of the signal by a pro-

cess means that we can easily cascade multiple input-

output processes. For example, Figure 1b shows a

system with extended input processing. The cascade

begins with an initial reference input, r , which is

transformed into the command input, u, by a prepro-

cessing controller, C , and then finally into the out-

put, y , by the intrinsic process, P . The input-output

calculation for the entire cascade follows easily by

5
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–1

e

(a)
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Figure 1: Basic process and control flow. (a) The input-output flow in eqn 2. The input, U(s), is itself a transfer function.

However, for convenience in diagramming, lower case letters are typically used along pathways to denote inputs and

outputs. For example, in (a), u can be used in place of U(s). In (b), only lower case letters are used for inputs and

outputs. Panel (b) illustrates the input-output flow of eqn 3. These diagrams represent open loop pathways, because

there is no closed loop feedback pathway that sends a downstream output back as an input to an earlier step. (c) A basic

closed loop process and control flow with negative feedback. The circle between r and e denotes addition of the inputs

to produce the output. In this figure, e = r −y .

noting that C(s) = U(s)/R(s), yielding

Y(s) = R(s)C(s)P(s) = R(s)U(s)
R(s)

Y(s)
U(s)

. (3)

These functions of s are called transfer functions.

Each transfer function in a cascade can express any

general system of ordinary linear differential equa-

tions for vectors of state variables, x, and inputs, u,

with dynamics given by

x(n) + a1x(n−1) + · · · + an−1x(1) + anx
= b0u(m) + b1u(m−1) + · · · + bm−1u(1) + bmu,

(4)

in which parenthetical superscripts denote the order

of differentiation. By analogy with eqn 2, the associ-

ated general expression for transfer functions is

P(s) = b0sm + b1sm−1 + · · · + bm−1s + bm
sn + a1sn−1 + · · · + an−1s + an

. (5)

The actual biological or physical process does not

have to include higher order derivatives. Instead, the

dynamics of eqn 4 and its associated transfer func-

tion can always be expressed by a system of first-

order processes of the form

ẋi =
∑
j
aijxj +

∑
j
bijuj , (6)

which allows for multiple inputs, uj . This system

describes the first-order rate of change in the state

variables, ẋi, in terms of the current states and in-

puts. This state space description for the dynamics

is usually written in vector notation as

ẋ = Ax+ Bu

y = Cx+Du,

which potentially has multiple inputs and outputs, u

and y.

For example, the single input-output dynamics in

eqn 1 translate into the state space model

ẋ1 = −a2x2 + bu
ẋ2 = x1 − a1x2 +u
y = x2,

in which the rates of change in the states depend

only on the current states and the current input.
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Nonlinearity and other problems

Classic control theory focuses on transfer functions.

Those functions apply only to linear, time invariant

dynamics. By contrast, state space models can be

extended to any type of nonlinear, time varying pro-

cess.

Real systems are typically nonlinear. Nonetheless,

four reasons justify study of linear theory.

First, linear analysis clarifies fundamental princi-

ples of dynamics and control. For example, feed-

back often leads to complex, nonintuitive pathways

of causation. Linear analysis has clarified the costs

and benefits of feedback in terms of tradeoffs be-

tween performance, stability, and robustness. Those

principles carry over to nonlinear systems, although

the quantitative details may differ.

Second, many insights into nonlinear aspects of

control come from linear theory (Isidori, 1995; Khalil,

2002; Astolfi et al., 2008). In addition to feedback,

other principles include how to filter out distur-

bances at particular frequencies, how time delays al-

ter dynamics and the potential for control, how to

track external setpoints, and how to evaluate the

costs and benefits of adding sensors to monitor state

and adjust dynamics.

Third, linear theory includes methods to analyze

departures from model assumptions. Those linear

methods of robustness often apply to nonlinear de-

partures from assumed linearity. One can often ana-

lyze the bounds on a system’s performance, stability,

and robustness to specific types of nonlinear dynam-

ics.

Fourth, analysis of particular nonlinear systems of-

ten comes down to studying an approximately lin-

earized version of the system. If the system state re-

mains near an equilibrium or other fixed point, then

the system will be nearly linear near that point. If the

system varies more widely, one can sometimes con-

sider a series of changing linear models that char-

acterize the system in each region. Alternatively, a

rescaling of a nonlinear system may transform the

dynamics into a nearly linear system.

Given a particular nonlinear system, one can al-

ways simulate the dynamics explicitly. The methods

one uses to understand and to control a simulated

system arise mostly from the core linear theory and

from the ways that particular nonlinearities depart

from that core theory.

Exponential decay and oscillations

Two simple examples illustrate the match between

standard models of dynamics and the transfer func-

tion expressions. First, the simplest first-order dif-

ferential equation in x(t) forced by the input u(t),
with initial condition x(0) = 0, is given by

ẋ + ax = u, (7)

which has the solution

x(t) =
∫ t

0
e−aτu(t − τ)dτ. (8)

This process describes how x accumulates over time,

as inputs arrive at each time point with intensity u
and then decay at rate a.

If the input into this system is the impulse or Dirac

delta function, u(t)dt = 1 at t = 0 and u(t) = 0 for

all other times, then

x(t) = e−at .

If the input is the unit step function, u(t) = 1 for

t ≥ 0 and u(t) = 0 for t < 0, then

x(t) = 1
a

(
1− e−at

)
.

Many processes follow the basic exponential decay

in eqn 8. For example, a quantity u of a molecule

may arrive in a compartment at each point in time,

and then decay at rate a within the compartment.

At any time, the total amount of the molecule in the

compartment is the sum of the amounts that arrived

at each time in the past, u(t − τ), weighted by the

fraction that remains after decay, e−aτ .

The process in eqn 7 corresponds exactly to the

transfer function

P(s) = 1
s + a, (9)

in which the output is equivalent to the internal state,

y ≡ x.

In the second example, an intrinsic process may

oscillate at a particular frequency, ω0, described by

ẍ +ω2
0x = u.

This system produces output x = sin(ω0t) for u = 0

7
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and an initial condition along the sine curve. The

corresponding transfer function is

P(s) = ω0

s2 +ω2
0

.

We can combine processes by simply multiplying

the transfer functions. For example, suppose we

have an intrinsic exponential decay process, P(s),
that is driven by oscillating inputs, U(s). That com-

bination produces an output

Y(s) = U(s)P(s) = ω0

(s + a)(s2 +ω2
0)
, (10)

which describes a third-order differential equation,

because the polynomial of s in the denominator has

a highest power of three.

We could have easily obtained that third order pro-

cess by combining the two systems of differential

equations given above. However, when systems in-

clude many processes in cascades, including feed-

back loops, it becomes difficult to combine the differ-

ential equations into very high order systems. Multi-

plying the transfer functions through the system cas-

cade remains easy. That advantage was nicely sum-

marized by Hans Bode (1964), one of the founders of

classic control theory

The typical regulator system can frequently be

described, in essentials, by differential equations

of no more than perhaps the second, third or

fourth order. . . . In contrast, the order of the set

of differential equations describing the typical

negative feedback amplifier used in telephony is

likely to be very much greater. As a matter of

idle curiosity, I once counted to find out what

the order of the set of equations in an ampli-

fier I had just designed would have been, if I had

worked with the differential equations directly.

It turned out to be 55.

Frequency, gain and phase

How do systems perform when parameters vary

or when there are external environmental pertur-

bations? We can analyze robustness by using the

differential equations to calculate the dynamics for

many combinations of parameters and perturba-

tions. However, such calculations are tedious and

difficult to evaluate for more than a couple of pa-

rameters. Using transfer functions, we can study a

wide range of conditions by evaluating a function’s

output response to various inputs.

This article uses the Bode plot method. That

method provides a very easy and rapid way in which

to analyze a system over various inputs. We can ap-

ply this method to individual transfer functions or

to cascades of transfer functions that comprise en-

tire systems.

This section illustrates the method with an exam-

ple. The following section describes the general con-

cepts and benefits.

Consider the transfer function

G(s) = a
s + a, (11)

which matches the function for exponential decay in

eqn 9. Here, I multiplied the function by a so that

the value would be one when s = 0.

We can learn about a system by studying how it re-

sponds to different kinds of fluctuating environmen-

tal inputs. In particular, how does a system respond

to different frequencies of sine wave inputs?

Figure 2 shows the response of the transfer func-

tion in eqn 11 to sine wave inputs of frequency, ω.

The left column of panels illustrates the fluctuating

output in response to the green sine wave input. The

blue (slow) and gold (fast) responses correspond to

parameter values in eqn 11 of a = 1 and a = 10.

All calculations and plots in this article are available

in the accompanying Mathematica code (Wolfram Re-

search, 2017) at the site listed on the cover page.

In the top-left panel, at input frequency ω = 1,

the fast (gold) response output closely tracks the in-

put. The slow (blue) response reduces the input by√
2 ≈ 0.7. This output-input ratio is called the trans-

fer function’s gain. The slow response output also

lags the input by approximately 0.11 of one complete

sine wave cycle of 2π = 6.28 radians, thus the shift

to the right of 0.11 × 6.28 ≈ 0.7 radians along the

x-axis.

We may also consider the lagging shift in angular

units, in which 2π radians is equivalent to 360◦. The

lag in angular units is called the phase. In this case,

the phase is written as −0.11×360◦ ≈ −40◦, in which

the negative sign refers to a lagging response.

A transfer function always transforms a sine wave

input into a sine wave output modulated by the gain

and phase. Thus, the values of gain and phase com-

pletely describe the transfer function response.

8
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Figure 2: Dynamics, gain and phase of the low pass filter in eqn 11 in response to sine wave inputs at varying frequencies,

ω. Details provided in the text. (a-c) Dynamics given by a multiplied by the transfer function on the right-hand side of

eqn 10. (d) Response of eqn 11 to unit step input. (e) The scaling of the Bode gain plot is 20 log10(gain). That scaling

arises from the relation between the magnitude, M =
∣∣G(jω)∣∣, and power, P = M2, of a signal at a particular frequency,

ω, or equivalently M =
√
P . If we consider gain as the magnitude of the output signal, then the scale for the gain is given

as 20 log10(
√
P) = 10 log10(P), the standard decibel scaling for the relative power of a signal. (f) Bode phase plot.

Figure 2b shows the same process but driven at a

higher input frequency ofω = 10. The fast response

is equivalent to the slow response of the upper panel.

The slow response has been reduced to a gain of ap-

proximately 0.1, with a phase of approximately −80◦.

At the higher frequency of ω = 100 in the bottom

panel, the fast response again matches the slow re-

sponse of the panel above, and the slow response’s

gain is reduced to approximately 0.01.

Both the slow and fast transfer functions pass low

frequency inputs into nearly unchanged outputs. At

higher frequencies, they filter the inputs to produce

greatly reduced, phase-shifted outputs. The transfer

function form of eqn 11 is therefore called a low pass

filter, passing low frequencies and blocking high fre-

quencies. The two filters in this example differ in the

frequencies at which they switch from passing low

frequency inputs to blocking high frequency inputs.

Bode plots of gain and phase

A Bode plot shows a transfer function’s gain and

phase at various input frequencies. The Bode gain

plot in Fig. 2e presents the gain on a log scale, so

that a value of zero corresponds to a gain of one,

log(1) = 0.

For the system with slower response, a = 1 in blue,

the gain is nearly one for frequencies less than a,

and then drops off quickly for frequencies greater

than a. Similarly, the system with faster response,

a = 10, transitions from a system that passes low

frequencies to one that blocks high frequencies at a

point near its a value. Figure 2f shows the phase

changes for these two low pass filters. The slower

blue system begins to lag at lower input frequencies.

9
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Low pass filters are very important, because low

frequency inputs are often external signals that the

system benefits by tracking, whereas high frequency

inputs are often noisy disturbances that the system

benefits by ignoring.

In engineering, a designer can attach a low pass

filter with a particular transition parameter a to ob-

tain the benefits of filtering an input signal. In bi-

ology, natural selection must often favor appending

biochemical processes or physical responses that act

as low pass filters. In this example, the low pass filter

is simply a basic exponential decay process.

Figure 2d shows a key tradeoff between the fast

and slow responses. In that panel, the system input

is increased in a step from zero to one at time zero.

The fast system responds quickly by increasing its

state to a matching value of one, whereas the slow

system takes much longer to increase to a match-

ing value. Thus, the fast system may benefit by its

quick response to environmental changes, but it may

lose by its greater sensitivity to high frequency noise.

That tradeoff between responsiveness and noise re-

jection forms a common theme in the overall perfor-

mance of systems.

To make the Bode plot, we must calculate the gain

and phase of a transfer function’s response to a si-

nusoidal input of frequency ω. Most control theory

textbooks show the details (e.g., Ogata, 2009). Here,

I briefly describe the calculations, which will be help-

ful later.

Transfer functions express linear dynamical sys-

tems in terms of the complex Laplace variable s =
σ + jω. I use j for the imaginary number to match

the control theory literature.

The gain of a transfer function describes how

much the function multiplies its input to produce its

output. The gain of a transfer function G(s) varies

with the input value, s. For complex-valued num-

bers, we use magnitudes to analyze gain, in which

magnitude of a complex value is |s| =
√
σ 2 +ω2.

In turns out that the gain of a transfer function in

response to a sinusoidal input at frequencyω is sim-

ply
∣∣G(jω)∣∣, the magnitude of the transfer function

at s = jω. The phase angle is the arctangent of the

ratio of the imaginary to the real parts of G(jω).
For the exponential decay dynamics that form the

low pass filter of eqn 11, the gain magnitude, M , and

phase angle, φ, are

M =
∣∣G(jω)∣∣ = a√

ω2 + a2

φ = ∠G(jω) = − tan−1 ω
a
.

Any stable transfer function’s long-term steady state

response to a sine wave input at frequency ω is a

sine wave output at the same frequency, multiplied

by the gain magnitude, M , and shifted by the phase

angle, φ, as

sin(ωt) G
----------------------------------------------------------→ M sin(ωt +φ), (12)

in which the angle is given in radians. For example,

if the phase lags by one-half of a cycle, φ = −π ≡
−180◦, then M sin(ωt +φ) = −M sin(ωt).

Basic control architecture

Open loop control

Suppose a system benefits by tracking relatively slow

oscillatory environmental fluctuations at frequency

ωe and ignoring much faster noisy environmental

fluctuations at frequency ωn. Assume that the sys-

tem has an intrinsic daily oscillator at frequency

ω0 = 1, with time measured in days. How can a sys-

tem build a control circuit that uses its intrinsic daily

oscillator to track slower environmental signals and

ignore faster noisy signals?

We can begin by considering circuit designs that

follow the cascade in Fig. 1b. That cascade is a single

direct path from input to output, matching the cas-

cade in eqn 3. That path is an open loop, because

there is no closed loop feedback.

Using the components in Fig. 1b, the internal oscil-

lator is given by

P(s) = ω0

s2 +ω2
0

,

and the external reference signal is given by

R(s) = ωe
s2 +ω2

e
+ ωn
s2 +ω2

n
,

the sum of one low and one high frequency sine

wave. From Fig. 1b, the design goal seeks to cre-

ate a preprocess controlling filter, C(s), that com-

bines with the intrinsic internal oscillator, P(s), to

10



git • master @ VERSION-0.1.0-0::4562998-2017-11-10 (2017-11-10 19:12Z) • safrank

0.1 1 10

-75

-50

-25

0

25

50

G
ai
n

0.1 1 10

-200

-100

0

Frequency

P
ha
se

Figure 3: Bode plot of an intrinsic oscillator, P(s), modulated by a controller, C(s), in an open loop L(s) = C(s)P(s).
The gold curves follow eqn 15, in which the actual frequency of the internal oscillator is ω̃0 = 1.2 rather than the value

ω0 = 1 that set the design of the controller. The underlying blue curves show the outcome when the internal oscillator

frequency matches the design frequency, ω̃0 =ω0 = 1.

transform the reference input, R(s), into an output,

Y(s) ≈ ωe/(s2 +ω2
e), that fluctuates at ωe and ig-

nores ωn.

In this case, we know exactly the intrinsic dynam-

ics, P(s). Thus, we can use the open loop path in

Fig. 1b to find a controller, C(s), such that the trans-

fer function C(s)P(s) gives approximately the input-

output relation that we seek between R(s) and Y(s).
For example, by using the controller

C(s) =
(
ω0

s +ω0

)3
(
s2 +ω2

0

ω0

)
, (13)

the open loop system becomes

L(s) = C(s)P(s) =
(
ω0

s +ω0

)3

, (14)

because the second term in C(s) cancels P(s). The

system L(s) is the low pass filter in eqn 11 raised the

third power. With ω0 = 1, this system has a Bode

plot similar to the blue curve in Fig. 2e,f, but because

of the exponent in L(s), the gain falls more quickly

at high frequencies and the phase lag is greater.

As with the low pass filter illustrated in Fig. 2, this

open loop system, L(s), tracks environmental signals

at frequency ωe � ω0 and suppresses noisy signals

at frequency ωn � ω0. However, even if we could

create this controller over the required range of fre-

quencies, it might turn out that this system is fragile

to variations in the parameters.

We could study robustness by using the differen-

tial equations to calculate the dynamics for many

combinations of parameters. However, such calcu-

lations are tedious, and the analysis can be difficult

to evaluate for more than a couple of parameters. Us-

ing Bode plots provides a much easier way to analyze

system response under various conditions.

Suppose, for example, that in the absence of in-

puts, the internal oscillator, P(s), actually fluctuates

at the frequency ω̃0 6= ω0. Then the open loop sys-

tem becomes

L(s) = ω̃0

ω0

(
ω0

s +ω0

)3
(
s2 +ω2

0

ω0

)(
ω̃0

s2 + ω̃2
0

)
, (15)

in which the first term adjusts the gain to be one at

s = 0.

The gold curves in Fig. 3 show the Bode plot for

this open loop, using ω0 = 1 and ω̃0 = 1.2. Note

the resonant peak in the upper magnitude plot. That

peak occurs when the input frequency matches the

natural frequency of the intrinsic oscillator, ω̃0. Near

that resonant frequency, the system “blows up,” be-

cause the denominator in the last term, s2+ω̃2
0, goes

to zero as s = jω→ jω̃0 and s2 → −ω̃2
0.

In summary, open loop control works well when

one has accurate information. Successful open loop

11
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control is simple and has relatively low cost. How-

ever, small variations in the intrinsic process or the

modulating controller can cause poor performance

or instabilities, leading to system failure.

Feedback control

Feedback and feedforward have different prop-

erties. Feedforward action is obtained by match-

ing two transfer functions, requiring precise

knowledge of the process dynamics, while feed-

back attempts to make the error small by divid-

ing it by a large quantity.

—Åström & Murray (2008, p. 320)

Feedback often solves problems of uncertainty or

noise. Human designed systems and natural biologi-

cal systems frequently use feedback control.

Figure 1c shows a common form of negative feed-

back. The output, y , is returned to the input. The

output is then subtracted from the environmental

reference signal, r . The new system input becomes

the error between the reference signal and the out-

put, e = r −y .

In closed loop feedback, the system tracks its tar-

get reference signal by reducing the error. Any per-

turbations or uncertainties can often be corrected by

system dynamics that tend to move the error toward

zero. By contrast, a feedforward open loop has no

opportunity for correction. Feedforward perturba-

tions or uncertainties lead to uncorrected errors.

In the simple negative feedback of Fig. 1c, the

key relation between the open loop system, L(s) =
C(s)P(s), and the full closed loop system, G(s), is

G(s) = L(s)
1+ L(s) . (16)

This relation can be derived from Fig. 1c by noting

that, from the error input, E(s), to the output, Y(s),
we have Y = LE, and that E = R−Y . Substituting the

second equation into the first yields Y = L (R − Y).
Solving for the output Y relative to the input R,

which is G = Y/R, yields eqn 16.

The error, E, in response to the environmental ref-

erence input, R, can be obtain by a similar approach,

yielding

E(s) = 1
1+ L(s)R(s). (17)

If the open loop, L(s), has a large gain, that gain will

divide the error by a large number and cause the sys-

tem to track closely to the reference signal. A large

gain for L = CP can be achieved by multiplying the

controller, C , by a large constant, k. The large gain

causes the system to respond rapidly to deviations

from the reference signal.

Feedback, with its powerful error correction, typi-

cally provides good performance even when the ac-

tual system process, P , or controller, C , differ from

the assumed dynamics. Feedback also tends to cor-

rect for various types of disturbances and noise, and

can stabilize an unstable open loop system.

Feedback has two potential drawbacks. First, im-

plementing feedback may require significant costs

for the sensors to detect the output and for the pro-

cesses that effectively subtract the output value from

the reference signal. In electronics, the implemen-

tation may be relatively simple. In biology, feed-

back may require various additional molecules and

biochemical reactions to implement sensors and the

flow of information through the system. Simple open

loop feedforward systems may be more efficient for

some problems.

Second, feedback can create instabilities. For ex-

ample, when L(s) → −1, the denominator of the

closed loop system in eqn 16 approaches zero, and

the system blows up. For a sinusoidal input, if there

is a frequency, ω, at which the magnitude,
∣∣L(jω)∣∣,

is one, and the phase is shifted by one-half of a cycle,

φ = ±π = ±180◦, then L(jω) = −1.

The problem of phase arises from the time lag (or

lead) between input and feedback. When the sinu-

soidal input is at a peak value of one, the output is

shifted to a sinusoidal trough value of minus one.

The difference between input and output combines

in an additive, expansionary way rather than provid-

ing an error signal that can shrink toward an accurate

tracking process. In general, time delays in feedback

can create instabilities.

Instabilities do not require an exact half cycle

phase shift. Suppose, for example, that the open loop

is

L(s) = k
(s + 1)3

.

This system is stable, because its eigenvalues are the

roots of the polynomial in the denominator, in this

case s = −1, corresponding to a strongly stable sys-

12
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Figure 4: Closed loop feedback. (a) An extended feedback loop with inputs for disturbance, d, and noise, n. The function

F(s) may be used to filter the reference input, providing a second degree of freedom in addition to the main controller,

C(s). The system can be divided into intrinsic processes that cannot be adjusted directly and designed processes of

control that can be adjusted. Note the inputs for each block: r and y for the controller, and u, d, and n for the process.

(b) In this panel, the blocks P and C represent the multicomponent process and control blocks from the upper panel. The

reference signal is assumed to be zero, allowing one to focus on the roles of disturbance and noise in relation to system

stability. (c) An abstraction of the feedback process, in which the vector y includes all the signals from the process to

the controller, u includes all the control input signals to the process, w includes all the extrinsic inputs, and z includes

any additional signal outputs from the process. Redrawn from Åström & Murray (2008).

tem. The closed loop has the transfer function

G(s) = L(s)
1+ L(s) =

k
k+ (s + 1)3

,

which has an eigenvalue with real part greater than

zero for k > 8, causing the system to be unstable.

An unstable system tends to explode in magnitude,

leading to system failure or death.

Proportional, integral and derivative control

Open loop systems cannot use information about the

error difference between the target reference input

and the actual output. Controllers must be designed

based on information about the intrinsic process and

about the likely inputs.

By contrast, feedback provides information about

errors. Controller design changes to focus primar-

ily on using the error input. Given the error, the

controller outputs a new command reference input

to the intrinsic system process. Precise knowledge

about the intrinsic system dynamics is much less

important with feedback, because the feedback loop

can self-correct.

This section discusses controller design for feed-

back systems. A controller is a process that mod-

ulates system dynamics. For the simplest feedback

shown in Fig. 1c, we start with an intrinsic process,

P(s), and end up with feedback system dynamics

G(s) = C(s)P(s)
1+ C(s)P(s) =

L(s)
1+ L(s) ,

in which C(s) is the controller. The problem is how

to choose a process, C(s), that balances the trade-

offs between various measures of success, such as

tracking the reference input and robustness to per-

turbations and uncertainties.

Fig. 4a includes two kinds of perturbations. The

input d describes the load disturbance, representing

uncertainties about the internal process, P(s), and

13
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disturbances to that internal process. Traditionally,

one thinks of d as a relatively low frequency pertur-

bation that alters the intrinsic process. The input n
describes perturbations that add noise to the sensor

that measures the process output, η, to yield the fi-

nal output, y . That measured output, y , is used for

feedback into the system.

To analyze alternative controller designs, it is use-

ful to consider how different controllers alter the

open loop dynamics, L(s) = C(s)P(s). How does

a particular change in the controller, C(s) modulate

the intrinsic dynamics, P(s)?
First, we can simply increase the gain by letting

C(s) = kp > 1, a method called proportional control.

The system becomes G = kpP/(1 + kpP). For large

kp and positive P(s), the system transfer function is

G(s)→ 1, which means that the system output tracks

very closely to the system input. Proportional control

can greatly improve tracking at all frequencies. How-

ever, best performance often requires tracking low

frequency environmental inputs and ignoring noisy

high frequency inputs from the reference signal. In

addition, large kp values can cause instabilities, and

it may be that P(s) < 0 for some inputs.

Second, we can add integral control by including

the term ki/s to the controller. We can understand

why this term is an integator by considering a few

steps of analysis that extend earlier equations. Mul-

tiplying eqn 5 by 1/s increases the denominator’s or-

der of its polynomial in s. That increase in the expo-

nents of s corresponds to an increase in the order of

differentiation for each term on the left side eqn 4,

which is equivalent to integrating each term on the

right side of that equation. For example, if we start

with ẋ = u and then increase the order of differen-

tiation on the left side, ẍ = u, this new expression

corresponds to the original expression with integra-

tion of the input signal, ẋ =
∫
udt.

Integrating the input smooths out high frequency

fluctuations, acting as a filter that passes low fre-

quency inputs and blocks high frequency inputs. In-

tegration causes a slower, smoother, and often more

accurate adjustment to the input signal. A term

such as a/(s + a) is an integrator for large s and a

pass through transfer function with value approach-

ing one for small s.
Perfect tracking of a constant reference signal re-

quires a pure integrator term, 1/s. A constant signal

has zero frequency, s = 0. To track a signal per-

fectly, the system transfer function’s gain must be

one so that the output equals the input. For the sim-

ple closed loop in eqn 16, at zero frequency, G(0)
must be one. The tracking error is 1−G = 1/(1+ L).
The error goes to zero as the gain of the open loop

goes to infinity, L(0) → ∞. A transfer function re-

quires a term 1/s to approach infinity as s goes to

zero. In general, high open loop gain leads to low

tracking error.

Third, we can add derivative control by including

the term kds. We can understand why this term

differentiates the input term by following the same

steps as for the analysis of integration. Multiplying

eqn 5 by s increases the numerator’s order of its

polynomial in s. That increase in the exponents of

s corresponds to an increase in the order of differen-

tiation for each term on the right side eqn 4. Thus,

the original input term, u(t), becomes the derivative

with respect to time, u̇(t).
Differentiating the input causes the system to re-

spond to the current rate of change in the input.

Thus, the system responds to a prediction of the fu-

ture input, based on a linear extrapolation of the re-

cent trend.

This leading, predictive response enhances sensi-

tivity to short term, high frequency fluctuations, and

tends to block slow, low frequency input signals.

Thus, differentiation acts as a high pass filter of the

input signal. A term such as s + a multiplies signals

by a for low frequency inputs and multiplies signals

by the increasing value of s + a for increasingly high

frequency inputs. Differentiators make systems very

responsive, but also enhance sensitivity to noisy high

frequency perturbations and increase the tendency

for instability.

A basic proportional, integral, derivative (PID) con-

troller has the form

C(s) = kp +
ki
s
+ kds =

kds2 + kps + ki
s

. (18)

PID controllers are widely used across all engineering

applications. They work reasonably well for many

cases, they are relatively easy to understand, and

their parameters are relatively easy to tune for var-

ious tradeoffs in performance.
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Sensitivities and design tradeoffs

Figure 4a shows a basic feedback loop with three in-

puts: the reference signal, r , the load disturbance, d,

and the sensor noise, n. How do these different sig-

nals influence the error between the reference signal

and the system output? In other words, how sensi-

tive is the system to these various inputs?

To derive the sensitivities, define the error in

Fig. 4a as r −η, the difference between the reference

input, r , and the process output, η (Åström & Mur-

ray, 2008, Section 11.1). To obtain the transfer func-

tion between each input and output, we use the rule

for negative feedback: the transfer function between

the input and output is the open loop directly from

the input to the output, L, divided by one plus the

pathway around the feedback loop, 1+ L.

If we assume in Fig. 4a that there is no feedforward

filter, so that F = 1, and we define the main open

loop as L = CP , then the output η in response to the

three inputs is

η = L
1+ Lr +

P
1+ Ld−

L
1+ Ln, (19)

in which each term is the open loop between the in-

put signal and the output, η, divided by one plus the

pathway around the full loop, L. If we define

S = 1
1+ L T = L

1+ L S + T = 1, (20)

with S as the sensitivity function and T as the com-

plementary sensitivity function, then the error is

r − η = Sr − PSd+ Tn. (21)

This expression highlights the fundamental design

tradeoffs in control that arise because S + T = 1. If

we reduce T and the sensitivity to noise, we increase

S. An increase in S raises the error in relation to

the reference signal, r , and the error in relation to

the load disturbance, d. If we reduce S, we increase

T and the sensitivity to noise, n. These sensitivity

tradeoffs suggest two approaches to design.

First, the sensitivities S(s) and T(s) depend on the

input, s. Thus, we may adjust the tradeoff at differ-

ent inputs. For example, we may consider inputs, s =
jω, at various frequencies, ω. Sensor noise, n, of-

ten arises as a high frequency disturbance, whereas

the reference input, r , and the load disturbance, d,

often follow a low frequency signal. If so, then we

can adjust the sensitivity tradeoff to match the com-

mon input frequencies of the signals. In particular, at

low frequency for which r and d dominate, we may

choose low S values, whereas at high frequency for

which n dominates, we may choose low T values.

Second, we may add an additional control process

that alters the sensitivity tradeoff. For example, we

may use the feedforward filter, F , in Fig. 4a, to mod-

ulate the reference input signal. With that filter, the

transfer function from the input, r , to the error out-

put, r −η becomes 1− FT . If we know the form of T
with sufficient precision, we can choose FT ≈ 1, and

thus we can remove the sensitivity of the error to the

reference input.

Note that adjusting the tradeoff between S and

T only requires an adjustment to the loop gain, L,

which usually does not require precise knowledge

about the system processes. By contrast, choosing

F to cancel the reference input requires precise in-

formation about the form of T and the associated

system processes. In other words, feedback is rela-

tively easy and robust because it depends primarily

on adjusting gain magnitude, whereas feedforward

requires precise knowledge and is not robust to mis-

information or perturbation.

PID design example

I illustrate the principles of feedback control with an

example. We start with an intrinsic process

P(s) =
(
a
s + a

)(
b
s + b

)
= ab
(s + a)(s + b).

This process cascades two exponential decay sys-

tems, each with dynamics as in eqn 8 and associated

transfer function as in eqn 9. For example, if the in-

put into this system is a unit impulse at time zero,

then the system output is

y(t) = ab
b − a

(
e−at − e−bt

)
,

expressing the cascade of two exponentially decaying

processes.

For this example, we use

P(s) = 1
(s + 0.1)(s + 10)

(22)

as the process. We also consider an alternative pro-
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Figure 5: Response of the system output, η = y , to a sudden unit step increase in the reference input, r , in the absence of

disturbance and noise inputs, d and n. The x-axis shows the time, and the y-axis shows the system output. (a) Response

of the original process, P(s), in eqn 22 (blue curve) and of the process with altered parameters, P̃ (s) in eqn 23 (gold

curve). (b) System with the PID controller embedded in a negative feedback loop, with no feedforward filter, F(s) = 1, as

in Fig. 4a. (c) PID feedback loop with feedforward filter, F , in eqn 25.

cess

P̃ (s) = 1
(s + 0.01)(s + 100)

. (23)

We assume during system analysis and design that

eqn 22 describes the process, but in fact eqn 23 is

actually the true process. Put another way, the dif-

ference between the two processes may reflect un-

certain information about the true process or un-

known disturbances that alter the process. Thus, we

may consider how a system performs when it was de-

signed, or evolved, in response to a process, P , when

the underlying system becomes P̃ .

In this example, the problem concerns the design

of a negative feedback loop, as in Fig. 4a, that uses a

controller with proportional, integral, and derivative

(PID) action. Many methods derive PID controllers

by tuning the various sensitivity and performance

tradeoffs (Åström & Hägglund, 2006; Garpinger et al.,

2014).

I obtained the parameters for the PID controller in

eqn 18 by using the Ziegler-Nichols method in Math-

ematica, yielding

C(s) = 6s2 + 121s + 606
s

. (24)

I also used Mathematica to calculate the feedforward

filter in Fig. 4a, yielding

F(s) = s
2 + 10.4s + 101
s2 + 20.2s + 101

. (25)

Output response to step input

Figure 5 illustrates various system responses to a

unit step increase from zero to one in the reference

input signal, r . Panel (a) shows the response of the

base process, P , by itself. The blue curve is the dou-

ble exponential decay process of eqn 22. That pro-

cess responds slowly because of the first exponential

process with time decay a = 0.1, which averages in-

puts over a time horizon with decay time 1/a = 10,

as in eqn 8. The gold curve based on eqn 23 rises

even more slowly, because that alternative process,

P̃ , has an even longer time horizon for averaging in-

puts of 1/a = 100.

Panel (b) shows the response of the full feedback

loop of Fig. 4a with the PID controller in eqn 24 and

no feedforward filter, F = 1. Note that the system re-

sponds much more rapidly, with a much shorter time

span over the x-axis than in (a). The rapid response

follows from the very high gain of the PID controller,

which strongly amplifies low frequency inputs.

The PID controller was designed to match the base

process P in eqn 22, with response in blue. When

the actual base process deviates as in P̃ of eqn 23,

the response is still reasonably good, although the

system has a greater overshoot upon first response

and takes longer to settle down and match the ref-

erence input. The reasonably good response in the

gold curve shows the robustness of the PID feedback

loop to variations in the underlying process.

Panel (c) shows the response of the system with

a feedforward filter, F , from eqn 25. Note that the

system in blue with the base process, P , improves

significantly, with lower overshoot and less oscilla-

tion when settling to match the reference input. By

contrast, the system in gold with the alternative base

process, P̃ , changes its response very little with the

additional feedforward filter. This difference reflects

the fact that feedforward works well only when one
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Figure 6: Error response, r −η, of the PID feedback loop to sensor noise, n, or process disturbance, d, from eqn 21. Blue

curve for the process, P , in eqn 22 and gold curve for the altered process, P̃ , in eqn 23. (a) Error response to sensor noise

input, n, for a unit step input and (b) for an impulse input. (c) Error response to process disturbance input, d, for a unit

step input and (d) for an impulse input. An impulse is u(t)dt = 1 at t = 0 and u(t) = 0 at all other times. The system

responses in gold curves reflect the slower dynamics of the altered process. If the altered process had faster intrinsic

dynamics, then the altered process would likely be more sensitive to noise and disturbance.

has very good knowledge of the underlying process,

whereas feedback works broadly and robustly with

respect to many kinds of perturbations.

Error response to noise and disturbance

Figure 6 illustrates the system error in response to

sensor noise, n, and process disturbance, d. Panel

(a) shows the error in response to a unit step change

in n, the input noise to the sensor. That step input

to the sensor creates a biased measurement, y , of

the system output, η. The biased measured value of

y is fed back into the control loop. A biased sensor

produces an error response that is equivalent to the

output response for a reference signal. Thus, Fig. 6a

matches Fig. 5b.

Panel (b) shows the error response to an impulse

input at the sensor. An impulse causes a brief jolt to

the system. The system briefly responds by a large

deviation from its setpoint, but then returns quickly

to stable zero error, at which the output matches the

reference input. An impulse to the reference signal

produces an equivalent deviation in the system out-

put but with opposite sign.

The error response to process disturbance in pan-

els (c) and (d) demonstrates that the system strongly

rejects disturbances or uncertainties to the intrinsic

system process.

Output response to fluctuating input

Figure 7 illustrates the system output in response

to fluctuating input (green). The top row shows the

output of the system process, either P (blue) or P̃
(gold), alone in an open loop. The system process is

a cascade of two low pass filters, which pass low fre-

quency inputs and do not respond to high frequency

inputs.

The upper left panel shows the response to the

(green) low frequency input, ω = 0.1, in which the
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Figure 7: System response output, η = y , to sine wave reference signal inputs, r . Each column shows a different

frequency, ω. The rows are (Pr) for reference inputs into the original process, P or P̃ , without a modifying controller or

feedback loop, and (Rf) for reference inputs into the closed loop feedback system with the PID controller in eqn 24. The

green curve shows the sine wave input. The blue curve shows systems with the base process, P , from eqn 22. The gold

curve shows systems with the altered process, P̃ , from eqn 23. In the lower left panel, all curves overlap. In the lower

panel at ω = 1, the green and blue curves overlap. In the two upper right panels, the blue and gold curves overlap near

zero.

base system P (blue) passes through the input with a

slight reduction in amplitude and lag in phase. The

altered system P̃ (gold) responds only weakly to the

low frequency ofω = 0.1, because the altered system

has slower response characteristics than the base

system. At a reduced input frequency of ω = 0.01

(not shown), the gold curve would match the blue

curve at ω = 0.1. As frequency increases along the

top row, the processes P and P̃ block the higher fre-

quency inputs.

The lower row shows the response of the full PID

feedback loop system. At a low frequency ofω ≤ 0.1,

the output tracks the input nearly perfectly. That

close tracking arises because of the very high gain

amplification of the PID controller at low frequency,

which reduces the system tracking error to zero, as

in eqn 17.

At a higher frequency of ω = 10, the system with

the base process P responds with a resonant increase

in amplitude and a lag in phase. The slower altered

process, P̃ , responds only weakly to input at this fre-

quency. As frequency continues to increase, both

systems respond weakly or not at all.

The system response to sensor noise would be

of equal magnitude but altered sign and phase, as

shown in eqn 19.

Low frequency tracking and high frequency re-

jection typically provide the greatest performance

benefit. The environmental references that it pays

to track often change relatively slowly, whereas the

noisy inputs in both the reference signal and in the

sensors often fluctuate relatively rapidly.

Insights from Bode gain and phase plots

Figure 8 provides more general insight into the ways

in which PID control, feedback, and input filtering

alter system response.

Panels (a) and (b) show the Bode gain and phase

responses for the intrinsic system process, P (blue),

and the altered process, P̃ (gold). Low frequency in-

puts pass through. High frequency inputs cause little

response. The phase plot shows that these processes

respond slowly, lagging the input. The lag increases

with frequency.

Panels (c) and (d) show the responses for the open

loop with the PID controller, C , combined with the

process, P or P̃ , as in Fig. 1b. Note the very high gain

in panel (c) at lower frequencies, and the low gain at

high frequencies.

PID controllers are typically designed to be used in

closed loop feedback systems, as in Fig. 1c. Panels

(e) and (f) illustrate the closed loop response. The

high open loop gain of the PID controller at low fre-

quency causes the feedback system to track the ref-

erence input closely. That close tracking matches
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Figure 8: Bode gain (top) and phase (bottom) plots for system output, η = y , in response to reference input, r , in the

absence of load disturbance and sensor noise. Blue curves for systems with the base process, P , in eqn 22. Gold curves

for systems with the altered process, P̃ , in eqn 23. (a, b) The original unmodified process, P or P̃ , with no controller or

feedback. (c, d) The open loop with no feedback, CP or CP̃ , with the PID controller, C , in eqn 24. (e, f) The closed loop

with no feedforward filter, F = 1. (g, h) The closed loop with the feedforward filter, F , in eqn 25.
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Figure 9: Bode gain plots for the error output, r − η, in response to reference input, r (blue), sensor noise, n (green),

and load disturbance, d (red), from eqn 21. The systems are the full PID controlled feedback loops as in Fig. 4a, with no

feedforward filter. The PID controller is given in eqn 24. (a) System with the base process, P , from eqn 22. (b) System

with the altered process, P̃ , from eqn 23.

the log(0) = 1 gain at low frequency in panel (e).

Note also the low frequency phase matching, or zero

phase lag, shown in panel (f), further demonstrating

the close tracking of reference inputs. At high fre-

quency, the low gain of the open loop PID controller

shown in panel (c) results in the closed loop rejec-

tion of high frequency inputs, shown as the low gain

at high frequency in panel (e).

Note the resonant peak of the closed loop system

in panel (e) near ω = 10 for the blue curve, and at

a lower frequency for the altered process in the gold

curve. Note also that the altered process, P̃ , in gold,

retains the excellent low frequency tracking and high

frequency input rejection, even though the controller

was designed for the base process, P , shown in blue.

The PID feedback loop is robust to differences in the

underlying process that vary from the assumed form

of P .

Panels (g) and (h) show the PID closed loop system

with a feedforward filter, F , as in Fig. 4a. The feed-

forward filter smooths out the resonant peak for the

blue curve, so that system does not amplify inputs

at resonant frequencies. Amplified resonant inputs

may lead to instabilities or poor system performance.

Note that the feedforward filter does not have much

effect on the altered process in gold. Feedforward

modifiers of a process typically work well only for

a specific process. They often do not work robustly

over a variant range of processes.

Sensitivities in Bode gain plots

Figure 9 illustrates the sensitivities of the system er-

ror output, r − η, to inputs from the reference, r ,
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sensor noise, n, and load disturbance, d, signals, cal-

culated from eqn 21. Figure 4a shows the inputs and

loop structure.

The blue curve of panel (a) shows the error sensi-

tivity to the reference input. That sensitivity is ap-

proximately the mirror image of the system output

response to the reference input, as shown in Fig. 8e

(note the different scale). The duality of the error re-

sponse and the system response arises from the fact

that the error is r − η, and the system response is η.

Perfect tracking means that the output matches

the input, r = η. Thus, a small error corresponds

to a low gain of the error in response to input, as oc-

curs at low frequency for the blue curve of Fig. 9a. In

the same way, a small error corresponds to a gain of

one for the relation between the reference input, r ,

and the system output, η, as occurs at low frequency

for the blue curve of Fig. 8e.

The noise sensitivity in the green curve of Fig. 9a

shows that the system error is sensitive to low fre-

quency bias in the sensor measurements, y , of the

system output, η. When the sensor produces a low

frequency bias, that bias feeds back into the system

and creates a bias in the error estimate, thus caus-

ing an error mismatch between the reference input

and the system output. In other words, the system

is sensitive to errors when the sensor suffers low fre-

quency perturbations. The PID system rejects high

frequency sensor noise, leading to the reduced gain

at high frequency illustrated by the green curve.

The disturbance load sensitivity in the red curve of

Fig. 9a shows the low sensitivity of this PID feedback

system to process variations.

This PID feedback system is very robust to an al-

tered underlying process, as shown in earlier figures.

Here, Fig. 9b illustrates that robustness by showing

the relatively minor changes in system sensitivities

when the underlying process changes from P to P̃ .

However, other types of change to the underlying

process may cause greater changes in system perfor-

mance. Robustness depends on both the amount of

change and the kinds of change to a system.

Performance and robustness mea-

sures

A theory of design tradeoffs requires broadly appli-

cable measures of cost, performance, stability and

robustness. For example, the PID controller in the

previous example performs reasonably well, but we

ignored costs. That PID controller achieved good

tracking performance by using high gain amplifica-

tion of low frequency input signals. High gain in a

negative feedback loop quickly drives the error to

zero.

High gain has two potential problems. First, high

signal amplification may require excessive energy in

physical or biological systems. We must consider

those costs for a high gain controller.

Second, high gain can cause system instability,

with potential for system failure. We must consider

the tradeoff between the benefits of high gain and

the the loss of robustness against perturbations or

uncertainties in system dynamics.

Beyond the simple PID example, we must consider

a variety of tradeoffs in performance and robustness

(Zhou & Doyle, 1998; Qiu & Zhou, 2010). Earlier, I

discussed tradeoffs in system sensitivities to distur-

bance and noise. I also presented qualitative descrip-

tions of system performance in terms of response

time and tracking performance.

To advance the theory, we need specific measures

of cost, performance, stability and robustness. We

also need techniques to find optimal designs in re-

lation to those conflicting measures of system at-

tributes.

We will never find a perfect universal approach.

There are too many dimensions of costs and benefits,

and too many alternative ways to measure system

attributes. Nonetheless, basic measures and sim-

ple optimization methods provide considerable in-

sight into the nature of design. Those insights apply

both to the building of human designed systems to

achieve engineering goals and to the interpretation

and understanding of naturally designed biological

systems built by evolutionary processes.
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Performance and cost: J

To analyze performance, we must measure the costs

and benefits associated with a particular system. We

often measure those costs and benefits by the dis-

tance between a system’s trajectory and some ide-

alized trajectory with zero cost and perfect perfor-

mance.

Squared deviations provide a distance measure be-

tween the actual trajectory and the idealized trajec-

tory. Consider, for example, the control signal, u(t),
which the controller produces to feed into the sys-

tem process, as in Fig. 1c.

The value of |u(t)|2 = u2 measures the magnitude

of the signal as a squared distance from zero. We

can think of u2 as the instantaneous power of the

control signal. Typically, the power requirements for

control are a cost to be minimized.

The square of the error output signal, |e(t)|2 = e2,

measures the distance of the system from the ideal

performance of e = 0. Minimizing the squared error

maximizes performance. Thus, we may think of per-

formance at any particular instant, t, in terms of the

cost function

J(t) = u2 + ρ2e2,

for which minimum cost corresponds to maximum

performance. Here, ρ is a weighting factor that de-

termines the relative value of minimizing the control

signal power, u2, versus minimizing the tracking er-

ror, e2.

Typically, we measure the cost function over a time

interval. Summing up J(t) continuously from t = 0

to T yields

J =
∫ T

0
(u2 + ρ2e2)dt. (26)

Essentially all squared distance or quadratic perfor-

mance analyses arise from extensions of this basic

equation. Given this measure, optimal design trades

off minimizing the energy cost to drive the system

versus maximizing the benefit of tracking a target

goal.

Performance metrics: energy andH2

The cost measure in eqn 26 analyzes signals with re-

spect to time. It is natural to think of inputs and out-

puts as changing over time. With temporal dynamics,

we can easily incorporate multivariate signals and

nonlinearities. In spite of those advantages, we of-

ten obtain greater insight by switching to a frequency

analysis of signals, as in the previous sections.

In this section, I present alternative measures of

cost and performance in terms of transfer functions

and complex signals. Those alternative measures

emphasize frequencies of fluctuations rather than

changes through time. Frequency and complex anal-

ysis allow us to take advantage of transfer functions,

Bode plots, and other powerful analytical tools that

arise when we assume linear dynamics.

The assumption of linearity does not mean that we

think the actual dynamics of physical and biological

processes are linear. Instead, starting with the linear

case provides a powerful way in which to gain insight

about dynamics.

In the previous section, we considered how to mea-

sure the magnitude of fluctuating control and error

signals. A magnitude that summarizes some key

measure is often called a norm. In the prior section,

we chose the sum of squared deviations from zero,

which is related to the 2–norm of a signal

‖u(t)‖2 =
(∫∞

0
|u(t)|2dt

)1/2

. (27)

The energy of the signal is the square of the 2–norm,

‖u(t)‖2
2. When the time period in the cost function

of eqn 26 goes to infinity, T → ∞, we can write the

cost function as

J = ‖u(t)‖2
2 + ρ2‖e(t)‖2

2. (28)

The signal u(t) is a function of time. The associated

transfer function U(s) describes exactly the same

signal, but as a function of the complex number, s,
rather than of time, t.

It is often much easier to work with the transfer

function for analysis, noting that we can go back and

forth between time and transfer function descrip-

tions. For the analysis of squared distance metrics,

the 2–norm of the transfer function expression is

‖U(s)‖2 =
(

1
2π

∫∞
−∞

∣∣U(jω)∣∣2
dω

)1/2

. (29)

This transfer function 2–norm is often referred to as

the H2 norm. The term
∣∣U(jω)∣∣2

is the square of

the Bode gain or magnitude, as in Fig. 2e. That gain

describes the amplification of a sinusoidal input at
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frequency ω. The H2 norm expresses the average

amplification of input signals over all input frequen-

cies.

If the goal is to minimize the control input sig-

nal, u, or the error deviation from zero, e, then the

greater the amplification of a signal, the greater the

cost. Thus, we can use the H2 norm to define an

alternative cost function as

J = ‖U(s)‖2
2 + ρ2‖E(s)‖2

2, (30)

which leads to methods that are often called H2

analysis. This cost describes the amplification of in-

put signals with respect to control and error outputs

when averaged over all input frequencies. Minimiz-

ing this cost reduces the average amplification of in-

put signals.

If the energy 2–norm in eqn 27 is finite, then the

energy 2–norm and the H2 norm are equivalent,

‖u(t)‖2 = ‖U(s)‖2, and we can use eqn 28 and

eqn 30 interchangeably. Often, it is more convenient

to work with the transfer function form of the H2

norm.

We can use any combination of signals in the cost

functions. And we can use different weightings for

the relative importance of various signals. Thus, the

cost functions provide a method to analyze a variety

of tradeoffs.

Technical aspects of energy andH2 norms

I have given three different cost functions. The first

in eqn 26 analyzes temporal changes in signals, such

as u(t), over a finite time interval. That cost function

is the most general, in the sense that we can apply it

to any finite signals. We do not require assumptions

about linearity or other special attributes of the pro-

cesses that create the signals.

The second function in eqn 28 measures cost over

an infinite time interval and is otherwise identical to

the first measure. Why consider the unrealistic case

of infinite time?

Often, analysis focuses on a perturbation that

moves a stable system away from its equilibrium

state. As the system returns to equilibrium, the er-

ror and control signals go to zero. Thus, the signals

have positive magnitude only over a finite time pe-

riod, and the signal energy remains finite. As noted

above, if the energy 2–norm is finite, then the en-

ergy 2–norm and the H2 norm are equivalent, and

the third cost function in eqn 30 is equivalent to the

second cost function in eqn 28.

If the signal energy of the second cost function in

eqn 28 is infinite, then that cost function is not use-

ful. In an unstable system, the error often grows with

time, leading to infinite energy of the error signal.

For example, the transfer function 1/(s−1) has tem-

poral dynamics given by y(t) = y(0)et , growing ex-

ponentially with time. The system continuously am-

plifies an input signal, creating an instability and an

output signal with infinite energy.

When the energy is infinite, the H2 norm may re-

main finite. For the transfer function 1/(s − 1), the

H2 norm is 1/
√

2. The average amplification of sig-

nals remains finite. In general, for a transfer func-

tion, G(s), the H2 norm remains finite as long as

G(jω) does not go to infinity for any value ofω, and

G(jω) → 0 as ω → ±∞. Thus, the H2 norm cost in

eqn 30 can be used in a wider range of applications.

The H2 norm is related to many common aspects

of signal processing and time series analysis, such

as Fourier analysis, spectral density, and autocorre-

lation.

Robustness and stability: H∞

A transfer function for a system, G(s), defines the

system’s amplification of input signals. For a sinu-

soidal input at frequency ω, the amplification, or

gain, is the absolute value of the transfer function

at that frequency,
∣∣G(jω)∣∣.

Often, the smaller a system’s amplification of in-

puts, the more robust the system is against pertur-

bations. Thus, one common optimization method

for designing controllers seeks to minimize a sys-

tem’s greatest amplification of inputs. Minimizing

the greatest amplification guarantees a certain level

of protection against the worst case perturbation. In

some situations, one can also guarantee that a sys-

tem is stable if its maximum signal amplification is

held below a key threshold.

A system’s maximum amplification of sinusoidal

inputs over all input frequencies, ω, is called itsH∞
norm. For a system G(s), the H∞ norm is written

as ‖G(s)‖∞. The norm describes the maximum of∣∣G(jω)∣∣ over all ω. The maximum is also the peak

gain on a Bode magnitude plot, which is equivalent
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to the resonance peak.

System stability and protection against perturba-

tions set two fundamental criteria for system design.

Thus, H∞ methods are widely used in the engineer-

ing design of controllers and system architectures

(Zhou & Doyle, 1998).

PART II: DESIGN TRADEOFFS

Many performance tradeoffs occur. A system that re-

sponds quickly to control signals often suffers from

sensitivity to perturbations. A more rapid response

also associates with a greater tendency toward insta-

bility.

Design of a control system by an engineer must

balance the competing dimensions of performance.

Similarly, design of biological systems by evolution-

ary processes implicitly balances the different di-

mensions of success. In engineering, we can specify

performance criteria. In biology, we must figure out

how natural processes set the relative importance of

different performance measures.

Once we have a set of performance criteria, how

do we find the control architectures and parameters

that perform well? If we do not have formal design

methods, then we end up with ad hoc solutions. Such

solutions may perform well. But we do not have any

way to know if there are better solutions, or better

ways to formulate the design criteria.

Ideally, we would have an optimization method

that provided a best solution for a given problem

and a given set of performance criteria. Optimiza-

tion forces us to specify the problem with clarity.

We must write down exactly the performance crite-

ria, the nature of the problem, and all associated as-

sumptions. We then get an answer about whether

there is a best design for the given assumptions, or a

set of comparable alternative designs.

Optimization is, of course, only as good as the as-

sumptions that we make. In engineering, we may be

able to specify design criteria clearly. Or, at least, we

can experiment with various criteria and examine the

alternative optimal designs.

In biology, figuring out the appropriate assump-

tions and constraints that express natural evolution-

ary processes can be very difficult. We may make

some progress by trying different assumptions as hy-

potheses about the natural design process. We can

then test the match between the optimal solutions

and what we actually see in nature (Parker & May-

nard Smith, 1990).

Design by optimization must begin with perfor-

mance criteria. Three kinds of performance criteria

dominate in typical engineering applications.

Regulation, or homeostasis, concerns aspects of

design that return a system to its setpoint. Good

regulation requires insensitivity to perturbations. If

the system does get pushed away from its setpoint,

a well regulated system rapidly returns to its equilib-

rium. Tradeoffs arise between the response to differ-

ent kinds of perturbations.

Stabilization concerns aspects of design that pro-

tect against instability. An unstable system may lead

to failure or death. Often, the primary design goal is

to protect against instability.

Tracking concerns how well the system follows

changes in environmental or reference input signals.

A system that rapidly adjusts to changes may track

closely to reference inputs but may suffer from sen-

sitivity to perturbations or instability.

The next sections briefly illustrate these concepts.

I use modified examples from the excellent article by

Qiu & Zhou (2013).

Regulation

The regulation problem analyzes how quickly a per-

turbed system returns to its equilibrium setpoint.

For this problem, we assume that the setpoint does

not change. We can, without loss of generality, as-

sume that the external reference signal is r = 0.

With no external reference signal, we can express

the general form of the regulation problem as in

Fig. 10. We take the process, P , as given, subject to

uncertainties or disturbances represented by the in-

put, d. We seek an optimal controller, C , with respect

to particular design tradeoffs.

Cost function

The cost function summarizes the design tradeoffs.

We use a cost function based on the H2 norm, sim-

ilar to eqn 30. The H2 norm describes the response

of the system to perturbations when averaged over
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Figure 10: Classic regulation problem illustrated by closed loop feedback with a constant reference input signal, r = 0.

The disturbance input, d, perturbs the system process. Such perturbations can be considered as stochasticity in the

process, or as uncertainty with regard to the true process dynamics relative to the assumed dynamics. The noise input,

n, perturbs the sensor that produces the output measurement, y , based on the actual process output, η. See Fig. 4 for

context.

all input frequencies. Minimizing the H2 norm min-

imizes the extent to which the system responds to

perturbations. Recall that the H2 norm is often

equivalent to the signal energy, which is the total

squared deviation of a signal from zero when mea-

sured from the time of an initial perturbation until

the time when the signal returns to zero.

From Fig. 10, the two inputs are the load distur-

bance, d, and the sensor noise, n. The two outputs

are the process output, η, and the control signal, u.

We can write the outputs as transfer functions, η(s)
and U(s), and the cost function in eqn 30 as

J = ‖U(s)‖2
2 + ρ2‖η(s)‖2

2.

In this case, we need to relate each of the two outputs

to each of the two inputs. We require four transfer

functions to describe all of the input-output connec-

tions. For the transfer function between the input d
and the output η, we write Gηd(s), for which we as-

sume that the other input, n, is zero. Using our usual

rule for the transfer functions of a closed loop, the

four functions are

Gud =
−PC

1+ PC Gηd =
P

1+ PC

Gun =
−C

1+ PC Gηn =
−PC

1+ PC . (31)

We can express these transfer functions in terms of

the sensitivities in eqn 20 by defining the open loop

as L = PC , the sensitivity as S = 1/(1 + L), and the

complementary sensitivity as T = L/(1+ L), yielding

Gud = −T Gηd = PS

Gun = −CS Gηn = −T . (32)

Because S+T = 1 at any input, s, these transfer func-

tions highlight the intrinsic design tradeoffs.

We can now consider the total cost as the sum of

the response with respect to the input d, holding n
at zero, plus the response with respect to the input

n, holding d at zero

J =‖Gud(s)‖2
2 + ρ2

∥∥Gηd(s)∥∥2
2

+‖Gun(s)‖2
2 + ρ2

∥∥Gηn(s)∥∥2
2. (33)

For this example, we use impulse function inputs,

δ(t), which provide a strong instantaneous shock to

the system, as defined in the caption of Fig. 6. We

can design the system to be relatively more or less

sensitive to disturbance inputs relative to noise in-

puts by weighting the disturbance input by µ, so that

d(t) = µδ(t) and n(t) = δ(t). Larger µ causes de-

sign by optimization to yield better disturbance reg-

ulation at the expense of worse noise regulation.

The transfer function for an impulse is equal to

one. Thus, the transfer functions for disturbance

and noise inputs are, respectively, D(s) = µ and

N(s) = 1. A system’s response to an input is sim-

ply the product of the input and the system transfer

function. For example, the first term in eqn 33 be-

comes

‖D(s)Gud(s)‖2
2 = µ2‖Gud(s)‖2

2,
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and the full cost function becomes

J = µ2‖Gud(s)‖2
2 + µ2ρ2

∥∥Gηd(s)∥∥2
2

+‖Gun(s)‖2
2 + ρ2

∥∥Gηn(s)∥∥2
2. (34)

Using the sensitivity expressions in eqn 32, we can

write this expression more simply as

J = ‖CS‖2
2 + (µ2 + ρ2)‖T‖2

2 + µ2ρ2‖PS‖2
2. (35)

Optimization method

This section follows Qiu & Zhou’s (2013) optimiza-

tion algorithm. Their cost function in the final equa-

tion on page 31 of their book is equivalent to my cost

function in eqn 34.

Optimization finds the controller, C(s), that min-

imizes the cost function. We search for optimal

controllers subject to the constraint that all transfer

functions in eqn 31 are stable. Stability requires that

the real component be negative for all eigenvalues of

each transfer function.

A transfer function’s eigenvalues are the roots of

the denominator’s polynomial in s. For each transfer

function in eqn 31, the eigenvalues, s, are obtained

by solution of 1+ P(s)C(s) = 0.

We assume a fixed process, P , and weighting coef-

ficients, µ and ρ. To find the optimal controller, we

begin with a general form for the controller, such as

C(s) = q1s + q2

p0s2 + p1s + p2
. (36)

We seek the coefficients p and q that minimize the

cost function.

Qiu & Zhou (2013) solve the example in which

P(s) = 1/s2, for arbitrary values of µ and ρ. The ac-

companying Mathematica code describes the steps in

the solution algorithm. Here, I simply state the solu-

tion. Check the article by Qiu & Zhou (2013) and my

Mathematica code for the details and for a starting

point to apply the optimization algorithm to other

problems. The following section applies this method

to another example and illustrates the optimized sys-

tem’s response to various inputs.

For P = 1/s2, Qiu & Zhou (2013) give the optimal

controller

C(s) =
√

2ρµ
(√ρ +√µ)s + ρµ

s2 +
√

2
(√ρ +√µ)s + (√ρ +√µ)2 ,

with associated minimized cost,

J∗ =
√

2
[
µ2√ρ + ρ2√µ + 2ρµ(

√
µ +√ρ)

]
.

For ρ = 1, the controller becomes

C(s) =
√

2µ
(
1+√µ

)
s + µ

s2 +
√

2
(
1+√µ

)
s +

(
1+√µ

)2 , (37)

with associated minimized cost,

J∗ =
√

2
[
µ2 +√µ + 2µ(

√
µ + 1)

]
.

We can see the tradeoffs in design most clearly from

the controller with ρ = 1. When µ is small, load dis-

turbance inputs are smaller than sensor noise inputs.

An optimal system should therefore tolerate greater

sensitivity to load disturbances in return for reduced

sensitivity to sensor noise.

In the optimal controller described by eqn 37, a

small value of µ produces low gain, because C(s) be-

comes smaller as µ declines. We can see from eqn 31

that a small gain for the controller, C , reduces the

sensitivity to noise inputs by lowering Gun and Gηn.

Similarly, a small gain for C raises sensitivity of the

system output, η, to disturbance inputs by raising

Gηd.

The optimal system achieves the prescribed rise in

sensitivity to disturbance in order to achieve lower

sensitivity to noise.

Resonance peak example

This section applies the previous section’s H2 opti-

mization method to the process

P(s) = 1
s2 + 0.1s + 1

. (38)

This process has a resonance peak near ω = 1.

My supplemental Mathematica code derives the

optimal controller of the form in eqn 36. The optimal

controller is expressed in terms of the cost weight-

ings µ and ρ. The solution has many terms, so there

is no benefit of showing it here.

The general solution in terms of µ and ρ provides a

simple way in which to obtain the optimal controller

for particular values of µ and ρ. For example, when

µ = ρ = 1, the optimal controller is

C(s) ≈ 0.609(s − 0.81)
s2 + 1.73s + 2.49

.
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Figure 11: RelativeH2 values for the transfer functions in eqn 31, with Gud = Gηn in red, Gηd in gold, and Gun in green.

TheH2 value for each transfer function is divided by the totalH2 values over all four functions. The transfer functions

were derived from the process in eqn 38 and the associated optimal controller. The weighting parameters in the cost

function of eqn 34 are µ = 1 and ρ varying along the x-axis of the plot. Swapping values of µ and ρ gives identical

results, because of the symmetries in eqn 31 and eqn 34.

Similar controller expressions arise for other values

of µ and ρ. Those controllers may be used in the

closed loop of Fig. 10 to form a complete system.

Figure 11 shows the relativeH2 values of the four

input-output transfer functions in eqn 31. The H2

values express sensitivity over all frequencies.

To interpret this figure, look at eqn 34. As the

product of the weightings, µρ, increases, the output

of Gηd (gold curve) plays an increasingly important

role in the total cost relative to the output of Gun
(green curve).

As the relative cost weighting of Gηd increases,

its H2 value declines. Similarly, as the relative cost

weighting of Gun decreases, its H2 value increases.

Once again, we see the sensitivity tradeoffs in re-

sponse to the relative importance of different per-

turbations.

The top row of Fig. 12 compares the Bode plots for

the process, P , and the input-output transfer func-

tions in eqn 31. As ρ increases in the columns from

left to right, the rise in the green curve for Gun is the

strongest change. We can understand that change

by examining the cost function in eqn 34. Because

Gud = Gηn, a rise in ρ reduces the weighting of Gun
relative to all other terms.

The strongest increase in relative weighting as ρ
rises occurs for Gηd, shown in gold. The mild decline

in the gold curve with increasing ρ is consistent with

the increased relative cost weighting of that signal.

The bottom row shows the impulse responses. As

with the Bode plots, an increase in ρ favors reduced

response of Gηd, in gold, causing a smaller impulse

response in the right plot with high ρ relative to

the left plot with low ρ. Similarly, an increase in ρ
weakens the pressure on the Gun transfer function

in green, causing a larger impulse response with in-

creasing ρ.

Frequency weighting

The H2 norm sums a system’s gain over all input

frequencies, as in eqn 29. That sum weights all input

frequencies equally.

Often, we wish to protect against perturbations

that occur primarily in a limited band of frequencies.

For example, disturbance loads, d, typically occur at

low frequency, reflecting long-term fluctuations or

misspecifications in the system’s intrinsic processes.

In that case, our optimization method should em-

phasize reducing a system’s gain at low frequency

with respect to disturbance load inputs and accept-

ing a tradeoff that allows a greater gain at high fre-

quency. By reducing the gain at low frequency, we

protect against the common frequencies for load dis-

turbances.

Tradeoffs between low and high frequency bands

are common. If we start with a process transfer func-

tion

G(s) = 10(s + 1)
s + 10

,

then at zero frequency, s = jω = 0, the gain is one.
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Figure 12: Response of the process in eqn 38 in blue and the transfer functions in eqn 31, with Gud = Gηn in red, Gηd in

gold, and Gun in green. Top row shows Bode magnitude plots. Bottom row shows impulse responses. The input signal

weights in eqn 34 are µ = 1 and, for the three columns from left to right, ρ = 0.25,1,4. Swapping values of µ and ρ gives

identical results, because of the symmetries in eqn 31 and eqn 34.

As frequency increases, the gain approaches ten.

If we weight this process transfer function by

W(s) = 1/(s + 1), then the new system becomes

WG = 10/(s + 10). Now the gain declines with

increasing frequency, from a maximum of one at

zero frequency to a minimum of zero at infinite fre-

quency.

By weighting the original system, G, by the weight-

ing function, W , we cause the H2 norm of the com-

bined system, WG, to be relatively more sensitive to

low frequency disturbances. When we design a con-

troller by minimizing the H2 norm associated with

WG, we will typically find a system that is better

at rejecting low frequency load disturbances than a

design minimizing the H2 norm associated with G.

For the weighted system, optimization will avoid con-

trollers that reject high frequency load disturbances,

because the weighted system already rejects those

high frequency inputs.

Roughly speaking, a weighting function instructs

the optimization method to reduce the gain and sen-

sitivity for certain frequencies and to ignore the gain

for other frequencies. The weighting functions do

not alter the actual system. The weighting functions

are only used to alter the cost function and optimiza-

tion method that determine the optimal controller.

Figure 13 shows the regulation feedback system

of Fig. 10 with additional weightings for the distur-

bance and noise inputs. The weightings modify the

four system transfer functions and associated sensi-

tivities in eqn 32 to be WdGud, WdGηd, WnGun, and

WnGηn. The cost function in eqn 35 becomes

J = µ2‖WdT‖2
2 + µ2ρ2‖WdPS‖2

2

+‖WnCS‖2
2 + ρ2‖WnT‖2

2. (39)

Consider an example in which we begin with the

process, P , in eqn 38. To emphasize low frequency

load disturbances, set Wd = 1/(s + 0.1) to be a low

pass filter. That weighting filters out disturbances

that are significantly greater than ω = 0.1. To

emphasize high frequency sensor noise, set Wn =
s/(s + 10). That weighting filters out noise that

is significantly less than ω = 10. By using these

two filters, the optimization method puts very low

weight on any disturbances in midrange frequencies

of ω = (0.1,10).
By minimizing the weightedH2 cost in eqn 39, we
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Figure 13: The basic regulation feedback loop in Fig. 10 with additional weightings for disturbance and noise inputs.

The weightings alter the cost function to emphasize particular frequency bands for disturbance and noise, yielding a

modified optimal controller.
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Figure 14: Role of frequency weighted inputs in the design of optimalH2 controllers for system regulation, illustrated by

Bode magnitude plots. (a) Plot for the unweighted case, matching the plot in Fig. 12c. (b) Plot for the frequency weighted

example in the text, which emphasizes the regulation of low frequency load disturbances, d, and high frequency sensor

noise, n.

obtain the optimal controller

C(s) = 2.02(s + 1.52)
s2 + 1.17s + 6.3

.

I calculated the values for this controller by using the

numerical minimization function in Mathematica to

minimize the H2 cost, subject to the constraint that

all transfer functions in eqn 31 are stable. See the

supplemental Mathematica code.

Figure 14 compares the optimized system re-

sponse for the unweighted and weighted cases. Panel

(a) shows the Bode magnitude response of the opti-

mized system for the unweighted case, equivalent to

the plot in Fig. 12c. Panel (b) shows the response of

the optimized system for the weighted case in this

section.

The weighted case emphasizes low frequency load

disturbances and high frequency sensor noise, with

low weight on midrange frequencies. Comparing the

unweighted case in (a) with the weighted case in (b),

we see two key differences.

First, the weighted case allows a large rise in mag-

nitudes and associated sensitivity to perturbations

for midrange frequencies. That rise occurs because

the particular weighting functions in this example

discount midrange perturbations.

Second, the gold curve shows that the weighted

case significantly reduces the low frequency sensi-

tivity of system outputs, η, to load disturbances, d.

The gold curve describes the response of the transfer

function, Gηd. Note that, because of the log scaling

for magnitude, almost all of the costs arise in the up-

per part of the plot. The low relative magnitude for

the lower part contributes little to overall cost.

Stabilization

The previous section assumed that the intrinsic pro-

cess, P , has a given, unvarying form. The actual pro-

cess may differ from the given form or may fluctuate

over time. If a system is designed with respect to a

particular form of P , then variation in P away from

the assumed form may cause the system to become

unstable.

We can take into account the potential variation in
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Figure 15: System uncertainty represented by a feedback loop. The transfer function, ∆, describes an upper bound on

the extent to which the actual system, G̃ = G/(1 − G∆), deviates from the nominal system, G. Here, G may represent a

process, a controller, or an entire feedback system.

P by altering the optimal design problem. The new

design problem includes enhanced stability guaran-

tees against certain kinds of variation in P .

Variation in an intrinsic process is an inevitable as-

pect of design problems. In engineering, the process

may differ from the assumed form because of limited

information, variability in manufacturing, or fluctu-

ating aspects of the environment.

In biology, a particular set of chemical reactions

within an individual may vary stochastically over

short time periods. That reaction set may also vary

between individuals because of genetic and environ-

mental fluctuations. In all cases, actual processes

typically follow nonlinear, time varying dynamics

that often differ from the assumed form.

We may also have variation in the controller or

other system processes. In general, how much vari-

ability can be tolerated before a stable system be-

comes unstable? In other words, how robust is a

given system’s stability to perturbations?

We cannot answer those question for all types of

systems and all types of perturbations. However,

the H∞ norm introduced earlier provides some in-

sight for many problems. Recall that the H∞ norm

is the peak gain in a Bode plot, which is a transfer

function’s maximum gain over all frequencies of si-

nusoidal inputs. The small gain theorem provides an

example application of theH∞ norm.

Small gain theorem

Suppose we have a stable system transfer function,

G. That system may represent a process, a controller,

or a complex cascade with various feedback loops.

To express the mathematical form of G, we must

know exactly the dynamical processes of the system.

How much may the system deviate from our as-

sumptions about dynamics and still remain stable?

For example, if the uncertainties may be expressed

by a positive feedback loop, as in Fig. 15, then we

can analyze whether a particular given system, G, is

stably robust against those uncertainties.

In Fig. 15, the stable transfer function, ∆, may rep-

resent the upper bound on our uncertainty. The feed-

back loop shows how the nominal unperturbed sys-

tem, G, responds to an input and becomes a new sys-

tem, G̃, that accounts for the perturbations. The sys-

tem, G̃, represents the entire loop shown in Fig. 15.

The small gain theorem states that the new system,

G̃, is stable if the product of the H∞ norms of the

original system, G, and the perturbations, ∆, is less

than one

‖G‖∞‖∆‖∞ < 1. (40)

Here, we interpret G as a given system with a known

H∞ norm. By contrast, we assume that ∆ represents

the set of all stable systems that have an H∞ norm

below some upper bound, ‖∆‖∞. For the perturbed

system, G̃, to be stable, the upper bound for theH∞
norm of ∆ must satisfy

‖∆‖∞ <
1

‖G‖∞
. (41)

If G is a system that we can design or control, then

the smaller we can make ‖G‖∞, the greater the upper

bound on uncertainty, ‖∆‖∞, that can be tolerated

by the perturbed system. Put another way, smaller

‖G‖∞ corresponds to greater robust stability.

A full discussion of the small gain theorem can be
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found in textbooks (e.g., Zhou & Doyle, 1998; Liu &

Yao, 2016). I present a brief intuitive summary.

The positive feedback loop in Fig. 15 has transfer

function

G̃ = G
1−G∆ . (42)

We derive that result by the following steps. Assume

that the input to G is w + ν , the external input, w,

plus the feedback input, ν . Thus, the system output

is η = G(w + ν).
We can write the feedback input as the output of

the uncertainty process, ν = ∆η. Substituting into

the system output expression, we have

η = G(w + ν) = Gw +G∆η.

The new system transfer function is the ratio of its

output to its external input, G̃ = η/w, which we can

solve for to obtain eqn 42.

The new system, G̃, is unstable if any eigenvalue

has real part greater than or equal to zero, in which

the eigenvalues are the roots of s of the denominator,

1−G(s)∆(s) = 0.

Intuitively, we can see that G̃(s) blows up unsta-

bly if the denominator becomes zero at some input

frequency, ω, for s = jω. The denominator will

be greater than zero as long as the product of the

maximum values of G(jω) and ∆(jω) are less than

one, as in eqn 40. That condition expresses the key

idea. The mathematical presentations in the text-

books show that eqn 40 is necessary and sufficient

for stability.

Reducing the H∞ norm of G increases its robust-

ness with respect to stability. In eqn 41, a smaller

‖G‖∞ corresponds to a larger upper bound on the

perturbations that can be tolerated.

A lower maximum gain also associates with a

smaller response to perturbations, improving the ro-

bust performance of the system with respect to dis-

turbances and noise. Thus, robust design methods

often consider reduction of theH∞ norm.

Uncertainty: distance between systems

Suppose we assume a nominal form for a process,

P . We can design a controller, C , in a feedback loop

to improve system stability and performance. If we

design our controller for the process, P , then how

robust is the feedback system to alternative forms of

P?

The real process, P ′, may differ from P because of

inherent stochasticity, or because our simple model

for P misspecified the true underlying process.

What is the appropriate set of alternative forms to

describe uncertainty with respect to P? Suppose we

defined a distance between P and an alternative pro-

cess, P ′. Then a set of alternatives could be specified

as all processes, P ′, for which the distance from the

nominal process, P , is less than some upper bound.

We will write the distance between two processes

when measured at input frequency ω as

δ
[
P(jω), P ′(jω)

]
= distance at frequency ω, (43)

for which δ is defined below. The maximum distance

between processes over all frequencies is

δν
(
P, P ′

)
=max

ω
δ
[
P(jω), P ′(jω)

]
, (44)

subject to conditions that define whether P and

P ′ are comparable (Vinnicombe, 2001; Qiu & Zhou,

2013). This distance has values 0 ≤ δν ≤ 1, provid-

ing a standardized measure of separation.

To develop measures of distance, we focus on how

perturbations may alter system stability. Suppose we

start with a process, P , and controller, C , in a feed-

back system. How far can an alternative process, P ′,
be from P and still maintain stability in the feedback

loop with C? In other words, what is the stability

margin of safety for a feedback system with P and

C?

Robust control theory provides an extensive analy-

sis of the distances between systems with respect to

stability margins (Vinnicombe, 2001; Zhou & Doyle,

1998; Qiu & Zhou, 2010, 2013). Here, I present a

rough intuitive description of the key ideas.

For a negative feedback loop with P and C , the var-

ious input-output pathways all have transfer func-

tions with denominator 1 + PC , as in eqn 31. These

systems become unstable when the denominator

goes to zero, which happens if P = −1/C . Thus, the

stability margin is the distance between P and −1/C .

The values of these transfer functions, P(jω) and

C(jω), vary with frequency, ω. The worst case

with regard to stability occurs when P and −1/C
are closest, that is, when the distance between these

functions is a minimum with respect to varying fre-

quency. Thus, we may define the stability margin as
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the minimum distance over frequency

bP,C =min
ω
δ
[
P(jω),−1/C(jω)

]
. (45)

Here is the key idea. Start with a nominal process,

P1, and a controller, C . If an alternative or perturbed

process, P2, is close to P1, then the stability margin

for P2 should not be much worse than for P1.

In other words, a controller that stabilizes P1

should also stabilize all processes that are reason-

ably close to P1. Thus, by designing a good stability

margin for P1, we guarantee robust stabilization for

all processes sufficiently near P1.

We can express these ideas quantitatively, allowing

the potential to design for a targeted level of robust-

ness. For example,

bP2,C ≥ bP1,C − δν(P1, P2).

Read this as the guaranteed stability margin for the

alternative process is at least as good as the stability

margin for nominal process minus the distance be-

tween the nominal and alternative processes. A small

distance between processes, δν , guarantees that the

alternative process is nearly as robustly stable as the

original process.

The definitions in this section depend on the dis-

tance measure, expressed as

δ(c1, c2) =
|c1 − c2|√

1+ |c1|2
√

1+ |c2|2
.

Here, c1 and c2 are complex numbers. Transfer func-

tions return complex numbers. Thus, we can use this

function to evaluate δ
[
P1(jω), P2(jω)

]
.

Robust stability and robust performance

The stability margin bP,C measures the amount by

which P may be altered and still allow the system to

remain stable. Note that bP,C in eqn 45 expresses a

minimum value of δ over all frequencies. Thus, we

may also think of bP,C as the maximum value of 1/δ
over all frequencies.

The maximum value of magnitude over all frequen-

cies matches the definition of theH∞ norm, suggest-

ing that maximizing the stability margin corresponds

to minimizing some expression for anH∞ norm. In-

deed, there is such anH∞ norm expression for bP,C .

However, the particular form is beyond our scope.

The point here is that robust stability via maximiza-

tion of bP,C falls within the H∞ norm theory, as in

the small gain theorem.

Stability is just one aspect of design. Typically, a

stable system must also meet other objectives, such

as rejection of disturbance and noise perturbations.

This section shows that increasing the stability mar-

gin has the associated benefit of improving a sys-

tem’s rejection of disturbance and noise. Often, a

design that targets reduction of the H∞ norm gains

the benefits of an increased stability margin and bet-

ter regulation through rejection of disturbance and

noise.

The previous section on regulation showed that a

feedback loop reduces its response to perturbations

by lowering its various sensitivities, as in eqn 32

and eqn 35. A feedback loop’s sensitivity is S =
1/(1+ PC) and its complementary sensitivity is T =
PC/(1+ PC).

Increasing the stability margin, bP,C , reduces a sys-

tem’s overall sensitivity. We can see the relation be-

tween stability and sensitivity by rewriting the ex-

pression for bP,C as

bP,C =
[

max
ω

√
|S|2 + |CS|2 + |PS|2 + |T |2

]−1

This expression shows that increasing bP,C reduces

the total magnitude of the four key sensitivity mea-

sures for negative feedback loops.

Examples of distance and stability

The measure, δν(P1, P2), describes the distance be-

tween processes with respect to their response char-

acteristics in a negative feedback loop. The idea is

that P1 and P2 may have different response charac-

teristics when by themselves in an open loop, yet

have very similar responses in a feedback loop. Or

P1 and P2 may have similar response characteris-

tics when by themselves, yet have very different re-

sponses in a feedback loop.

Thus, we cannot simply use the response charac-

teristics among a set of alternative systems to under-

stand how variations in a process influence stability

or performance. Instead, we must use a measure,

such as δν , that expresses how variations in a pro-

cess affect feedback loop characteristics.

This section presents two examples from Section
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Figure 16: Comparison between the responses of two systems to a unit step input, r = 1. The blue curves show P1 and

the gold curves show P2. (a,b) Systems in eqn 46, with k = 100 and T = 0.025. The top plot shows the open loop response

for each system. The bottom plot shows the closed loop feedback response with unit feedback, P/(1 + P), in which the

error signal into the system, P , is 1−y for system output, y . (c,d) Open (top) and closed (bottom) loop responses for the

systems in eqn 47, with k = 100. Redrawn from Fig. 12.3 of Åström & Murray (2008).

12.1 of Åström & Murray (2008). In the first case,

the following two systems have very similar response

characteristics by themselves in an open loop, yet

have very different responses in a closed feedback

loop

P1 =
k
s + 1

P2 =
k

(s + 1)(Ts + 1)2
, (46)

when evaluated at k = 100 and T = 0.025, as shown

in Fig. 16a,b. The distance between these systems is

δν(P1, P2) = 0.89. That large distance corresponds to

the very different response characteristics of the two

systems when in a closed feedback loop. (Åström

& Murray (2008) report a value of δν = 0.98. The

reason for the discrepancy is not clear. See the sup-

plementary Mathematica code for my calculation.)

In the second case, the following two systems have

very different response characteristics by themselves

in an open loop, yet have very similar responses in a

closed feedback loop

P1 =
k
s + 1

P2 =
k
s − 1

, (47)

when evaluated at k = 100, as shown in Fig. 16c,d.

The distance between these systems is δν(P1, P2) =
0.02. That small distance corresponds to the very

similar response characteristics of the two systems

when in a closed feedback loop.

Controller design for robust stabilization

The measure bP,C describes the stability margin for

a feedback loop with process P and controller C .

A larger margin means that the system remains ro-

bustly stable to variant processes, P ′, with greater

distance from the nominal process, P . In other

words, a larger margin corresponds to robust stabil-

ity against a broader range of uncertainty.

For a given process, we can often calculate the

controller that provides the greatest stability margin.

That optimal controller minimizes an H∞ norm, so

in this case we may consider controller design to be

anH∞ optimization method.

Often, we also wish to keep the H2 norm small.

Minimizing that norm improves a system’s regula-

tion by reducing response to perturbations. Jointly

optimizing the stability margin and rejection of dis-

turbances leads to mixedH∞ andH2 design.

Mixed H∞ and H2 optimization is an active area

of research (Chen & Zhou, 2001; Chang, 2017). Here,

I briefly summarize an example presented in Qiu &

Zhou (2013). That article provides an algorithm for
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Figure 17: System with basic feedback loop in response to a reference input, r .

mixed optimization that can be applied to other sys-

tems.

Qiu & Zhou (2013) start with the process, P = 1/s2.

They consider three cases. First, what controller pro-

vides the minimum H∞ norm and associated max-

imum stability margin, b, while ignoring the H2

norm? Second, what controller provides the mini-

mum H2 norm, while ignoring the stability margin

and H∞ norm? Third, what controller optimizes a

combination of theH∞ andH2 norms?

For the first case, the controller

C(s) =

(
1+
√

2
)
s + 1

s + 1+
√

2

has the maximum stability margin

b∗P,C =
(
4+ 2

√
2
)−1/2

= 0.38.

The cost associated with the H2 norm from eqn 35

is J = ∞, because the sensitivity function CS has

nonzero gain at infinite frequency.

For the second case, the controller

C(s) = 2
√

2s + 1

s2 + 2
√

2s + 4

has the minimumH2 cost, J∗ = 6
√

2 = 8.49, with as-

sociated stability margin bP,C = 0.24. This controller

and associated cost match the earlier example ofH2

norm minimization in eqn 37 with µ = 1.

For the third case, we constrain the minimum sta-

bility margin to be at least bP,C > 1/
√

10 = 0.316,

and then find the controller that minimizes the H2

norm cost subject to the minimum stability margin

constraint, yielding the controller

C(s) = 2.5456s + 1
0.28s2 + 1.5274s + 2.88

,

which has the cost J = 13.9 and stability margin

bP,C = 0.327.

In these examples, a larger stability margin cor-

responds to a greater H2 cost. That relation illus-

trates the tradeoff between robust stability and per-

formance measured by rejection of disturbance and

noise perturbations.

Tracking

The previous sections on regulation and stabiliza-

tion ignored the reference input, r . In those cases,

we focused on a system’s ability to reject pertur-

bations and to remain stable with respect to uncer-

tainties. However, a system’s performance often de-

pends strongly on its ability to track external envi-

ronmental or reference signals.

To study tracking of a reference input, let us re-

turn to the basic feedback loop structure in Fig. 1c,

shown again in Fig. 17. Good tracking performance

means minimizing the error, e = r−y , the difference

between the reference input and the system output.

Typically, we can reduce tracking error by increas-

ing the control signal, u, which increases the speed

at which the system changes its output to be closer

to the input. However, in a real system, a larger con-

trol signal requires more energy. Thus, we must con-

sider the tradeoff between minimizing the error and

reducing the cost of control.

I previously introduced a cost function that com-

bines the control and error signals in eqn 26 as

J =
∫ T

0
(u2 + ρ2e2)dt, (48)

in which u(t) and e(t) are functions of time, and ρ is

a weighting for the relative importance of the error

signal relative to the control signal.

I noted in eqn 27 that the square of the H2 norm
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is equal to the energy of a signal, for example

‖e(t)‖2
2 =

∫∞
0
|e(t)|2dt.

However, in this section, we will consider reference

signals that may continue to change over time. A sys-

tem will typically not track a changing reference per-

fectly. Thus, the error will not go to zero over time,

and the energy will be infinite. For infinite energy,

we typically cannot use the H2 norm. Instead, we

may consider the average of the squared signal per

unit time, which is the power. Or we may analyze the

error over a finite time period, as in eqn 26.

To analyze particular problems, we begin by ex-

pressing the transfer function for the error from

eqn 17 as

E(s) = R(s)− Y(s) = 1
1+ C(s)P(s)R(s).

For the control signal

U(s) = C(s)E(s) = C(s)
1+ C(s)P(s)R(s).

These equations express the key tradeoff between

the error signal and the control signal. A controller,

C , that outputs a large control signal reduces the er-

ror, E, and increases the control signal, U . The fol-

lowing example illustrates this tradeoff and the po-

tential consequences for instability.

Varying input frequencies

To analyze the cost over a particular time period, as

in eqn 48, we must express the transfer functions as

differential equations that describe change over time.

We can use the basic relation between transfer func-

tions in eqn 5 and differential equations in eqn 6.

In this example, I use the process in eqn 22 that I

analyzed in earlier sections

P(s) = 1
(s + 0.1)(s + 10)

.

I use the controller

C(s) = q0s2 + q1s + q2

p0s2 + p1s + p2
. (49)

Our goal is to find a controller of this form that min-

imizes the cost function in eqn 48.

I use a reference signal that is the sum of three sine

waves with frequencies ωi =
(
ψ−1,1,ψ

)
. I weight

each frequency by κi = (1,1,0.2), such that the high

frequency may be considered a rapid, relatively low

amplitude disturbance. Thus

R(s) =
∑
i

κiωi
s2 +ω2

i
, (50)

in which each of the three terms in the sum expresses

a sine wave with frequency ωi. Here, I use ψ = 10.

Often, low frequency signals represent true

changes in the external environment. By contrast,

high frequency inputs represent noise or signals that

change too rapidly to track effectively. Thus, we may

wish to optimize the system with respect to low fre-

quency inputs and to ignore high frequency inputs.

We can accomplish frequency weighting by using

a filtered error signal in the cost function, EW (s) =
R(s)W(s) − Y(s), for a weighting function W that

passes low frequencies and reduces the gain of high

frequencies. The weighted error signal as a function

of time is ew(t).
In our example, the function

W(s) =
( √

ψ
s +√ψ

)3

(51)

will reduce the relative weighting of the high fre-

quency input at frequency ψ. I use the filtered error

signal, ew , for the cost function in eqn 48, yielding

J =
∫ T

0
(u2 + ρ2e2

w)dt. (52)

The gold curve in Fig. 18 shows in the environmental

reference signal, r , for the associated transfer func-

tion, R(s). The blue curve shows the filtered refer-

ence signal, rw , for the filtered system, R(s)W(s).
The filtered curve removes the high frequency noise

of the reference signal and closely matches the fluc-

tuations from the two lower frequency sine wave in-

puts.

Figure 19 illustrates the tradeoff between the

tracking performance and the cost of the control sig-

nal energy to drive the system. The cost function

in eqn 52 describes the tradeoff between tracking,

measured by the squared error between the filtered

reference signal and the system output, e2
w , and the

control signal energy, u2.

The parameter ρ sets the relative balance between

these opposing costs. A higher ρ value favors closer
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Figure 18: The reference signal, r , in gold, from eqn 50, and the filtered signal, rw , in blue, from the filter in eqn 51

applied to the reference signal. The blue curves in Fig. 19 show the filtered signal more clearly.

tracking and smaller error, because a high value of

ρ puts less weight on the cost of the control signal.

With a lower cost for control, the controller can out-

put a stronger signal to drive the system toward a

closer match with the target reference signal.

Stability margins

Minimizing a quadratic cost function or anH2 norm

may lead to a poor stability margin. For example,

close tracking of a reference signal may require a

large control signal from the controller. Such high

gain feedback creates rapidly responding system dy-

namics, which can be sensitive to uncertainties.

In Fig. 19, the stability margins for the three

rows associated with ρ = (1,10,100) are bP,C =
(0.285,0.023,0.038). A robust stability margin typi-

cally requires a value greater than approximately 1/3
or perhaps 1/4.

In this case, the system associated with ρ = 1

has a reasonable stability margin, whereas the sys-

tems associated with higher ρ have very poor stabil-

ity margins. The poor stability margins suggest that

those systems could easily be destabilized by pertur-

bations of the underlying process or controller dy-

namics.

We could minimize the cost function subject to a

constraint on the lower bound of the stability mar-

gin. However, numerical minimization for that prob-

lem can be challenging. See the supplemental Math-

ematica code for an example.

State feedback

A transfer function corresponds to a time invariant,

linear system of ordinary differential equations. In

an earlier section, I showed the general form of a

transfer function in eqn 5 and the underlying differ-

ential equations in eqn 6.

For example, the transfer function P(s) = 1/(s +
a) with input u and output y corresponds to the

differential equation ẋ = −ax + u, with output y =
x. Here, x is the internal state of the process. Models

that work directly with internal states are called state

space models.

Transfer functions provide significant conceptual

and analytical advantages. For example, the multi-

plication of transfer functions and the simple rules

for creating feedback loops allow easy creation of

complex process cascades. With regard to system

response, a Bode plot summarizes many aspects in a

simple, visual way.

However, it often makes sense to analyze the un-

derlying states directly. Consider, for example, the

regulation of an organism’s body temperature. We

could model performance and cost in terms of body

temperature. Alternatively, the underlying states

may include the burning of stored energy, the rise

and fall of various signaling molecules, the dilation

of blood vessels, and so on.

Direct analysis of those internal states provides ad-

vantages. The individual states may have associated

costs, which we could study directly in our cost func-

tion. We could consider the regulatory control of the
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Figure 19: Optimization of the cost function in eqn 52 for the controller in eqn 49. The left column shows the tracking

performance. The blue curve traces the filtered reference signal, rw , associated with R(s)W(s). The gold curve traces the

system output, y , associated with Y(s). The difference between the curves is the error, ew = rw − y . The right column

shows the error, ew , in red, and the control signal, u for U(s), in green. The rows show, from top to bottom, an increased

weighting of the error versus the control signal in the cost, J , in eqn 52, with ρ = (1,10,100). The optimized controllers

may represent local rather than global optima. See the supplemental Mathematica code.

individual states rather than temperature, because

temperature is an aggregate outcome of the under-

lying states. For example, each state could be regu-

lated through feedback, in which the feedback into

one state may depend on the values of the all of the

states. Thus, we could obtain a much more refined

control of costs and performance.

When we use a state space analysis, we do not have

to give up all of the tools of frequency analysis that

we developed for transfer functions. For example,

we can consider the response of a system to different

input frequencies.

State space models can also describe time varying,

nonlinear dynamics. The response of a nonlinear sys-

tem will change with its underlying state, whereas

transfer function systems have a constant frequency

response.

Regulation example

In the prior section on regulation, I analyzed the pro-

cess in eqn 38 as

P(s) = 1
s2 +αs + β, (53)

with α = 0.1 and β = 1. This process has a resonance

peak near ω = 1. The state space model for this

process is

ẋ1 = x2

ẋ2 = −βx1 −αx2 +u (54)

y = x1,
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Figure 20: State feedback model of regulation. The process and output describe the state equations in eqn 6. The

control input signal, u∗ = Kx, is obtained by minimizing the cost function in eqn 55 to derive the optimal state gains. A

disturbance, d, is added to the input signal.

in which the dynamics are equivalent to a second

order differential equation, ẍ + αẋ + βx = u, with

y = x.

For a state space regulation problem, the design

seeks to keep the states close to their equilibrium

values. We can use equilibrium values of zero with-

out loss of generality. When the states are perturbed

away from their equilibrium, we adjust the input con-

trol signal, u, to drive the states back to their equi-

librium.

The cost function combines the distance from

equilibrium with regard to the state vector, x, and

the energy required for the control signal, u. Dis-

tances and energies are squared deviations from

zero, which we can write in a general way in vector

notation as

J =
∫ T

0

(
u′Ru+ x′Qx

)
dt, (55)

in which R and Q are matrices that give the cost

weightings for components of the state vector, x =
x1, x2, . . . , and components of the input vector, u =
u1, u2, . . . . In the example here, there is only one in-

put. However, state space models easily extend to

handle multiple inputs.

For the regulation problem in Fig. 20, the goal is

to find the feedback gains for the states given in the

matrix K that minimize the cost function. The full

specification of the problem requires the state equa-

tion matrices for use in eqn 6, which we have from

eqn 54 as

A =
(

0 1

−β −α

)
B =

(
0

1

)
C =

(
1 0

)
, (56)

and the cost matrices, R and Q. In this case, we have

a single input, so the cost matrix for inputs, R, can

be set to one, yielding an input cost term, u2.

For the state costs, we could ignore the second

state, x2, leaving only x1 = y , so that the state

cost would be proportional to the squared output,

y2 = e2. Here, y is equivalent to the error, e = y−r ,

because the reference input is r = 0. A cost based on

u2 and e2 matches the earlier cost function in eqn 48.

In this case, I weight the costs for each state

equally by letting Q = ρ2I2, in which In is the identity

matrix of dimension n, and ρ is the cost weighting

for states relative to inputs. With those definitions,

the cost becomes

J =
∫ T

0

[
u2 + ρ2

(
x2

1 + x2
2

)]
dt,

in which x2
1 + x2

2 measures the distance of the state

vector from the target equilibrium of zero.

We obtain the gain matrix for state feedback mod-

els, K, by solving a matrix Riccati equation. Introduc-

tory texts on control theory derive the Riccati equa-

tion. For our purposes, we can simply use a software

package, such as Mathematica, to obtain the solution

for particular problems. See the supplemental soft-

ware code for an example.

Figure 21 shows the response of the state feed-

back system in Fig. 20 with the Riccati solution for

the feedback gain values, K. Within each panel, the

different curves show different values of ρ, the ratio

of the state costs for x relative to the input costs for

u. In the figure, the blue curves show ρ = 1/4, which

penalizes the input costs four times more than the

state costs. In that case, the control inputs tend to

be costly and weaker, allowing the state values to be

larger.

At the other extreme, the green curves show ρ = 4.

That value penalizes states more heavily and allows
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Figure 21: Response to impulse perturbations of systems with state feedback, as in Fig. 20. (a) Response of the state

space system in eqn 54. Curves show x1 = y for cost ratio ρ = (0.25,1,4) in blue, gold, and green, respectively. In this

case, the impulse perturbation enters the system through u in eqn 54, affecting ẋ2. (b) Modified state space model that

has two inputs, one each into ẋ1 and ẋ2, associated with the state matrix B = I2. Impulse perturbation comes into ẋ2 as

in the original model. In this case, there are two control inputs for feedback via the gain matrix, K. The optimization uses

both inputs, allowing the feedback to control each state separately. That extension of control to all states directly allows

the feedback system to bring the state responses back to zero more quickly than in the original system with only one

state feedback. (c and d) Response of the second state, x2. Systems for each panel match to the corresponding panels

above. Note in (d) that the second input for feedback drives the state to zero more quickly than in (c), which has only one

input.

greater control input values. The larger input con-

trols drive the states back toward zero much more

quickly. The figure caption provides details about

each panel.

In this example, the underlying equations for the

dynamics do not vary with time. Time invariant dy-

namics correspond to constant values in the state

matrices, A, B, and C. A time invariant system typi-

cally leads to constant values in the optimal gain ma-

trix, K, obtained by solving the Riccati equation.

The Riccati solution also works when those coef-

ficient matrices have time varying values, leading to

time varying control inputs in the optimal gain ma-

trix, K. The general approach can also be extended

to nonlinear systems. However, the Riccati equation

is not sufficient to solve nonlinear problems.

Methods that minimize quadratic costs or H2

norms can produce systems with poor stability mar-

gins. To obtain guaranteed stability margins, one can

minimize costs subject to a constraint on the mini-

mum stability margin.

Tracking example

Consider the tracking example from the previous

section. That example began with the process in

eqn 22 as

P(s) = 1
(s + a)(s + b) =

1
s2 +αs + β,

with α = a + b = 10.1 and β = ab = 1. The state

space model is given in eqn 54, expressed in matrix

form in eqn 56. The state space model describes the

process output over time, y(t), which we abbreviate

as y .

Here, I describe a state space design of tracking

control for this process. For this example, I use the

tracking reference signal in eqn 50, ignoring high fre-

quency noise (ω2 = 0). The reference signal is the
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Figure 22: Tracking a reference input signal with state feedback. The blue curve shows the input signal, r(t), which is

the sum of two sine waves with frequencies ω0 = 0.1 and ω1 = 1. The system responds to the input by producing an

output, y(t). The output is determined by the process, P(s), and the optimal state feedback, K, as presented in the text.

The gold curves show the system error, which is e = y − r , the difference between the output and the reference signal.

(a) Squared input values are weighted by R = wIn, with w = 0.1 and n as the number of inputs to the process. In this

case, we fix the input to the embedded reference signal in the state space model to zero, and have one input into the

process given by B in eqn 56. The error curve shows that this system closely tracks the low frequency reference sine

wave but does not track the high frequency reference component. (b) This case allows feedback inputs into both states

of the process, augmenting ẋ1 in eqn 54 with a separate input and letting B = I2. Other aspects as in the prior panel.

(c) As in panel (a), with w = 0.01. The weaker cost for inputs allows stronger feedback inputs and closer tracking of the

high frequency component of the reference signal, thus shrinking the tracking error in the gold curve. (d) Nearly perfect

tracking with w = 0.01 and inputs directly into both process states. See supplemental Mathematica code for details

about assumptions and calculations.

sum of low frequency (ω0 = 0.1) and mid-frequency

(ω1 = 1) sine waves. The transfer function for the

reference signal is

R(s) = ω0

s2 +ω2
0

+ ω1

s2 +ω2
1

.

In state space form, the reference signal, r(t), is

Ar =


0 1 0 0

0 0 1 0

0 0 0 1

−ω2
0ω

2
1 0 −ω2

0 −ω2
1 0


Br =

(
0 0 0 1

)T

Cr =
(
ω2

0ω1 +ω0ω2
1 0 ω0 +ω1 0

)
.

We can transform a tracking problem into a reg-

ulator problem and then use the methods from the

previous section (Anderson & Moore, 1989). In the

regulator problem, we minimized a combination of

the squared inputs and states. For a tracking prob-

lem, we use the error, e = y − r instead of the state

values, and express the cost as

J =
∫ T

0

(
u′Ru+ e2

)
dt. (57)

We can combine the state space expressions for y
and r into a single state space model with output e.
That combined model allows us to apply the regula-

tor theory to solve the tracking problem with state

feedback.
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The combined model for the tracking problem is

At =
(

A 0

0 Ar

)

Bt =
(

B 0

0 Br

)

Ct =
(
C −Cr

)
,

which has output determined by Ct as e = y − r (An-

derson & Moore, 1989). In this form, we can apply the

regulator theory to find the optimal state feedback

matrix, K, that minimizes the costs, J , in eqn 57.

Figure 22 presents an example and mentions some

technical issues in the caption.

The example illustrates two key points. First, as

the relative cost weighting of the inputs declines,

the system applies stronger feedback inputs and im-

proves tracking performance.

Second, the state equations for the intrinsic pro-

cess, P(s), in eqn 56 provide input only into the sec-

ond state of the process, as can be seen in the equa-

tion for ẋ2 in eqn 54. When we allow a second input

into the intrinsic process, P(s), by allowing feedback

directly into both ẋ1 and ẋ2, we obtain much better

tracking performance, as shown in Fig. 22.

PART III: COMMON CHALLENGES

Parts I and II presented the fundamental principles

of linear control theory. Part III extends the core the-

ory. The extensions introduce common problems in

application and potential solutions. These problems

are active topics in current research.

Nonlinearity

Real systems are nonlinear. Before discussing non-

linear theory, I review three reasons why the core

theory of control focuses on linear analysis.

First, feedback compensates for model uncer-

tainty. Suppose we analyze a feedback system based

on a linear model of dynamics, and the true model

is nonlinear. If the linear model captures essential

aspects of the dynamics sufficiently, the true nonlin-

ear feedback system will often have the same quali-

tative response characteristics as the modeled linear

system. As Vinnicombe (2001, p. xvii) emphasized:

“One of the key aims of using feedback is to mini-

mize the effects of lack of knowledge about a system

which is to be controlled.”

Second, the fundamental principles of control sys-

tems apply to both linear and nonlinear dynamics.

The comprehensive theory for linear systems pro-

vides insight into nonlinear systems. For example,

strong feedback signals often help to minimize error

but can create instabilities. Controllers can be added

at different points in a system to filter signals or

modulate inputs that drive processes. Primary goals

of analysis and design often emphasize stability, dis-

turbance rejection, regulation, or tracking. Certain

tradeoffs inevitably arise. Integral control smooths

response toward a long-term target. Derivative con-

trol improves the speed of response by using a sim-

ple prediction.

Third, the main tools for the analysis and design

of nonlinear systems typically extend the tools devel-

oped for linear systems. For example, nonlinear sys-

tems are approximately linear near a particular oper-

ating point. One can study the linear approximation

around that point, and then switch to the alternative

linear approximation as the system moves to another

operating domain. By piecing together the differ-

ent linear approximations in neighboring domains,

one develops a sequence of linear systems that to-

gether capture much of the nonlinear characteristics.

Other tools of nonlinear analysis typically leverage

the deep insights and methods of linear analysis (Slo-

tine & Li, 1991; Isidori, 1995; Khalil, 2002).

This section presents a few brief illustrations of

nonlinear control systems.

Linear approximation

In cellular biology, the concentration of a molecule,

m, often responds an input signal, φ, by the Hill

equation

m = k
(
φn

1+φn

)
,

with parameters k and n. In this example, I let k = 1.

The nonlinear reaction system

ẋ1 = 1− x1 +u
(58)

ẋ2 =
xn1

1+ xn1
− γx2
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Figure 23: Response to an impulse perturbation by a nonlinear system and a linearized approximation, shown as the

deviation from equilibrium. The nonlinear response in blue arises from the system in eqn 58. The linearized response

in gold arises from the system in eqn 59. The panels from left to right show increasing magnitudes of the Dirac delta

impulse perturbation at time zero, with the impulse weighted by 0.1,0.1
√

10,1, respectively. Larger impulses cause

greater deviations from the equilibrium point. The greater the deviation from the equilibrium, the less accurate the

linearized approximation of the dynamics.

describes the change in the output, y = x2, as driven

by a Hill equation response to x1 and an intrinsic de-

cay of x2 at a rate γ. In the absence of external input,

u, the internal dynamics hold the concentration of

x1 at the equilibrium value of x∗1 = 1, which in turn

sets the equilibrium of the output at x∗2 = 1/2γ. The

system responds to external control signals or per-

turbations through u, which drives the concentration

of x1, which in turn drives the concentration of x2.

We can study the dynamics and control of this sys-

tem by linearizing the dynamics near a particular op-

erating point, (x̂1, x̂2). In this example, we use as the

operating point the equilibrium,
(
x∗1 , x

∗
2

)
, in the ab-

sence of external input, u = 0. The linearized system

expresses the deviations from the equilibrium point

as

ẋ1 = −x1 +u
(59)

ẋ2 = nx1/4− γx2.

Figure 23 shows the response to an impulse per-

turbation by the nonlinear system and the linear ap-

proximation. In the left panel, with a weak impulse

and small deviation from the equilibrium, the nonlin-

ear and linear dynamics are nearly identical. As the

impulse becomes stronger in the right panels, the de-

viation from equilibrium increases and the dynamics

of the linear approximation diverge from the original

linear system.

Regulation

We can analyze the benefits of feedback for regu-

lating nonlinear dynamics. One approach analyzes

feedback for the linear approximation near the target

equilibrium. The feedback for the linear approxima-

tion should provide good regulation when applied to

the nonlinear system near the equilibrium.

This section applies the linear state feedback reg-

ulation approach. I used that approach in a previ-

ous section, in which the cost function in eqn 55,

repeated here,

J =
∫ T

0

(
u′Ru+ x′Qx

)
dt,

balances the tradeoff between the cost of control in-

puts and the cost of state deviation from equilibrium.

The model is written so that the equilibrium states

are x∗ = 0. We obtain the optimal state feedback by

applying the methods described in the earlier section

(see also the supplemental Mathematica code).

Consider the linear approximation in eqn 59. That

system has one input, for which we let R = 1 and

scale the state costs accordingly. For each state, as-

sume that the cost is ρ2, so that the integrand of the

cost becomes u2 + ρ2
(
x2

1 + x2
2

)
.

We can calculate the feedback input that mini-

mizes the cost for the linearized approximation. Us-

ing the optimal feedback, we can form a closed loop

system for both the linearized system and the origi-

nal nonlinear system.

Figure 24 shows the response to an impulse per-

turbation for the closed loop systems. In each panel,

the nonlinear (blue) and linear (gold) responses are

similar, showing that the design for the linear sys-

tem works well for the nonlinear system.

The panels from left to right show a decreasing

cost weighting on the inputs relative to the states. As
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Figure 24: State feedback increases the rate of return to equilibrium for the original nonlinear system (blue) and a linear

approximation (gold). The optimal state feedback was calculated from the linearized system in eqn 59. Each panel shows

the closed loop response to perturbation using state feedback. The perturbation is an impulse function with weighting

of one, corresponding to the right panel of Fig. 23. The weightings of the state deviations in the cost function are, from

left to right, ρ2 = 1,10,100.

the relative input costs become less heavily weighted,

the optimal feedback uses stronger inputs to regu-

late the response, driving the system back to equilib-

rium more quickly.

Minimizing a cost function by state feedback may

lead to systems that become unstable with respect to

variations in the model dynamics. Previous sections

discussed alternative robust techniques, including

integral control and combinations of H2 and H∞
methods. We may apply those alternative methods

to the linearized approximation in eqn 59. The lin-

earized system corresponds to the transfer function

P(s) = n/4
s2 + (1+ γ)s + γ .

Robust feedback based on this transfer function may

be applied to the original nonlinear system.

Piecewise linear analysis and gain scheduling

Linear approximations at a particular operating point

provide nearly exact descriptions of nonlinear dy-

namics near the operating point. As the system

moves further from the operating point, the linear

approximation becomes less accurate.

In some cases, significant divergence from the op-

erating point causes the qualitative nature of the

nonlinear dynamics to differ from the linear approxi-

mation. In other cases, such as in Fig. 23, the qualita-

tive dynamics remain the same, but the quantitative

responses differ.

The distance from an operating point at which the

linear approximation breaks down depends on the

particular nonlinear system. By considering the re-

gion over which the linear approximation holds, one

can approximate a nonlinear system by a sequence

of linear approximations.

Starting from an initial operating point, the first

linear approximation holds near that point. Then, as

the approximation breaks down away from the initial

operating point, one can use a new approximation

around a second operating point.

By repeatedly updating the approximation as

needed for new regions, the series of linear approx-

imations describes the nonlinear system. Each lin-

ear approximation holds in its own region or “piece.”

That approach leads to the piecewise linear approxi-

mation method (Rantzer & Johansson, 2000).

For each piece, linear methods specify the design

of feedback control. The overall control becomes a

sequence of individual controllers based on linear

analysis, with each particular control regime applied

when the system is in the associated operating re-

gion. Alternative control in different operating re-

gions is often called gain scheduling.

Feedback linearization

Consider the simple nonlinear system with an input

ẋ = x2 +u,

in which the output is equal to the single state, y = x
(Khalil, 2002, p. 473). The equilibrium x∗ = 0 is

unstable, because any perturbation from the equilib-

rium leads to uncontrolled growth.

The error deviation from equilibrium is x. Classi-

cal negative linear feedback would apply the control

input u = −kx, in which the feedback is weighted by
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the gain, k. The closed loop system becomes

ẋ = −kx + x2.

This system has a locally stable equilibrium at zero

and an unstable equilibrium at k. For a perturbation

that leaves x < k, the system returns to its stable

equilibrium. For a perturbation that pushes x be-

yond k, the system grows without bound. Thus, lin-

ear feedback provides local stability. The stronger

the feedback, with larger k, the broader the local re-

gion of stability.

In this case, linear feedback transforms an unsta-

ble open loop system into a locally stable closed loop

system. However, the closed loop system remains

nonlinear and prone to instability.

If we choose feedback to cancel the nonlinearity,

u = −kx − x2, then we obtain the linearly stable

closed loop system, ẋ = −kx.

Once we have a linear closed loop system, we can

treat that system as a linear open loop subsystem,

and use linear techniques to design controllers and

feedback to achieve performance goals.

For example, we could consider the feedback lin-

earized dynamics as ẋ = −kx + v , in which v is an

input into this new linearized subsystem. We could

then design feedback control through the input v to

achieve various performance goals, such as improved

regulation to disturbance or improved tracking of an

input signal.

A nonlinear system can be linearized by feedback

if the states can be written in the form

ẋ = f(x)+ g(x)u. (60)

Such systems are called input linear, because the dy-

namics are linear in the input, u. These systems are

also called affine in input, because a transformation

of the form a+bu is an affine transformation of the

input, u. Here, f and g may be nonlinear functions

of x, but do not depend on u.

In the example ẋ = x2 +u, we easily found the re-

quired feedback to cancel the nonlinearity. For more

complex nonlinearities, geometric techniques have

been developed to find the linearizing feedback (Slo-

tine & Li, 1991; Isidori, 1995; Khalil, 2002). Once the

linearized system is obtained, one may apply linear

design and analysis techniques to study or to alter

the system dynamics.

Feedback linearization depends on an accurate

model of the dynamics. For example, if the actual

model is

ẋ = ax2 +u,

and the feedback linearization is taken as u = −kx−
x2 under the assumption that a = 1, then the closed

loop system is

ẋ = −kx + (a− 1)x2.

If the true value of the parameter is a = 2, then the

feedback system has dynamics ẋ = −kx + x2, which

is unstable for x > k.

This example shows that feedback linearization is

not robust to model uncertainties. The following sec-

tion discusses an alternative method that can pro-

vide robust feedback control for nonlinear systems.

Adaptive control

The parameters of a process may be unknown or may

change slowly over time. How can one control a pro-

cess with unknown parameters?

Earlier sections discussed robust methods. Those

methods provide good response to a broad set of al-

ternative process dynamics.

This section presents adaptive control, in which

the control system adjusts itself by using measure-

ments of the system’s response. I follow the example

from Section 6.2.4 of Ioannou & Sun (2012).

In adaptive control, the system repeatedly updates

the controller parameters to reduce the error be-

tween the system’s actual output and the output of

an ideal target response model. Figure 25 shows the

structure of a common approach known as model ref-

erence adaptive control.

Suppose the process dynamics are given by the

affine form in eqn 60 as

ẏ = af(y)+ bg(y)u, (61)

which describes linear systems and also a wide vari-

ety of nonlinear systems. In this example, we know

the functions f and g, but do not know the parame-

ter values for a and b. The goal is to design a control

input, u, that causes the system output, y , to match

the output of a specified model.
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Figure 25: Model reference adaptive control. The goal is to construct a controller so that the system output, y , matches

the output of a specified model, ym. To achieve that goal, the lower feedback loop with controller and process must

together form a system that has the same dynamics as the model. If parameters of the process are unknown, one can

use measurement of the error, e = y −ym, to adaptively adjust the parameters of the controller in response to the error.

Ideally, the system learns controller parameters such that the output, y , converges to match the target model output,

ym. Redrawn from Fig 5.1 of Åström & Wittenmark (2008).

General model

Typically, one chooses a simple linear model for the

design target. In this example, we use

ẏm = −amym + bmr . (62)

Here, the parameters am and bm are known aspects

of the target model specification, and r is the refer-

ence or external environmental input. For a constant

reference input, this model converges to the refer-

ence exponentially at rate am, with amplitude of the

response relative to the input of bm/am. Figure 26

illustrates the design target response for a sinusoidal

input, r .

For given values of a and b, the control input

u = 1
g(y)

[
k∗1 f(y)+ k∗2y +w∗r

]
(63)

k∗1 = −
a
b

k∗2 = −
am
b

w∗ = bm
b

transforms the process model in eqn 61 into the tar-

get model in eqn 62.

If the parameters a and b are unknown, then the

input, u, must be based on the estimates for k1(t),
k2(t), and w(t). The estimates are updated by an

adaptive process in response to the error difference

between system and model output, e = y − ym. The

dynamics of the error are ė = ẏ − ẏm.

To obtain an expression for ė, we need a modified

form of ẏ that contains only the known parameters

am and bm and the estimates k1, k2, and w. The

first step expresses the process dynamics in eqn 61

by adding and subtracting b
[
k∗1 f(y)+ k∗2y +w∗r

]
and using the identities bk∗1 = −a and bk∗2 = −am
and bw∗ = bm, yielding

ẏ = −amy + bmr
+ b

[
−k∗1 f(y)− k∗2y −w∗r +ug(y)

]
.

Write the tracking errors as k̃1 = k1 − k∗1 and k̃2 =
k2 − k∗2 and w̃ = w −w∗. Then the error dynamics

can be written as

ė = −ame+ b
[
k̃1f(y)+ k̃2y + w̃r

]
.

To analyze the error dynamics, we need expressions

for the processes used to update the parameter esti-

mates. A common choice is

k̇1 = −γ1ef(y)

k̇2 = −γ2ey

ẇ = −γ3er ,
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Figure 26: Illustrations of the model response (gold curve) in eqn 62 for reference input (blue curve) given by r(t) =
sin(t/10) + sin(t). The speed of the tracking response increases with the parameter am, and the amplitude of the

response increases with bm/am. (a) A slow, lagging response with am = 0.3 and a two-fold amplitude enhancement with

bm/am = 2. (b) A fast tracking response with am = 3 and a two-fold amplitude enhancement with bm/am = 2. (c) A fast

tracking response with am = 3 and a two-fold amplitude reduction with bm/am = 1/2.

in which I have assumed that b > 0.

Example of nonlinear process dynamics

The general results of the prior section can be ap-

plied to any linear process or to any nonlinear pro-

cess that can be approximated by the affine form of

eqn 61. For this nonlinear example, let

ẏ = ay2 + bu, (64)

with f(y) = y2 and g(y) = 1.

Figure 27 illustrates the rate of adaptation for var-

ious parameters. As the adaptation parameters, γ,

increase, the system output converges increasingly

rapidly to the target model output.

Unknown process dynamics

The previous section assumed a particular form for

the process dynamics in eqn 64, with unknown pa-

rameters a and b. How could we handle a process

with unknown dynamics?

One simple approach is to assume a very general

form for the process dynamics, such as a polynomial

ẏ = a0 + a1y + a2y2 + · · · + anyn + bu,

and then run the adaptation process on the parame-

ters (a0, a1, . . . , an, b). One could use other generic

forms for the dynamics and estimate the parame-

ters accordingly. This approach provides a way for

the system output to mimic the model output, with-

out the system necessarily converging to use the

same mathematical description of dynamics as in the

model.

Model predictive control

Control design often seeks the best trajectory along

which to move a system from its current state to a

target state. Most control methods approximate this

goal by using the current inputs and system state

to calculate the next input control signal. That stan-

dard approach considers only the first step of the full

trajectory toward the target state. The idea is that

estimating a good first step in the right direction is

sufficient, without consideration of the full trajectory

from the current location to the final target.

Model predictive control considers the full se-

quence of input steps required to move the sys-

tem optimally from its current state to a future tar-

get. The control system then applies the first in-

puts to start the system along that optimal trajec-

tory (Rossiter, 2004; Camacho & Bordons, 2007; Ellis

et al., 2014; Rawlings & Mayne, 2015).

After applying the initial inputs, the system does

not use the additional sequence of calculated inputs

to continue along the planned trajectory. Instead,

the system takes updated measures of the external

target and the internal state. The new information

is used to recalculate an updated optimal trajectory.

Using the updated trajectory, the newly calculated

first inputs are then applied to the system. The pro-

cess repeats with each new round of updated exter-

nal and internal signals.

This approach considers a receding future hori-

zon. At each point in time, the system calculates the

optimal trajectory to a particular time point in the

future—the horizon. Then, after a small amount of
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Figure 27: Rate of adaptation for the parameters that set u, the control input into the system process, as given in eqn 63.

The controller parameters adapt so that the system output tracks the output of a reference model that expresses the

design goal. The equations in the text describe the system and adaptation dynamics. The top row shows the system’s

output in blue and the target model’s output in gold. The middle row is the system’s error, which is the difference between

the system and model responses in the upper row. The bottom row shows the adaptation of the control parameters k1,

k2, and w, in blue, gold, and green, respectively. This figure uses the reference model parameters am = 3, bm = 6, and

the true underlying system process parameters, a = 4, and b = 2. The controller parameters that adapt are k1, k2, and

w, which are the system’s estimates for the underlying process parameters in relation to the model parameters. The rate

of adaptation is set by γ1 = γ2 = γ3, which are, for the columns from left to right, 0.01,0.1,1, respectively. The faster the

rate of adaptation, the more quickly the system converges to the reference model.

time passes relative to the future horizon, the system

recalculates by taking current inputs and advancing

the future horizon by the time elapsed.

Intuitively, this approach seems similar to many

decisions made by humans. We estimate how we will

get to a goal, start off in the best direction, then up-

date our future planning as new information arrives.

Our estimate of how we will get to a goal depends

on an internal model of our dynamics and on the

modulating control signals that we will use to alter

our dynamics. The self-correcting process of recalcu-

lating the planned trajectory means that we do need

an accurate model of our internal dynamics to per-

form well. An approximate or misspecified model of

dynamics often works well, even for nonlinear pro-

cesses.

Model predictive control may be enhanced by

adaptive feedback that modifies the parameters or

the form for the model of internal dynamics. The

general approaches of model predictive control and

adaptive control provide benefits of robustness with

respect to the model of internal dynamics.

Tracking a chaotic reference

Figure 28 shows the performance of a simple model

predictive control system when tracking a chaotic

reference signal. The figure caption describes the

calculation of the chaotic input signal (blue curve).

In this example, the model predictive control system

begins with an internal process given by

ẍ = u (65)
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Figure 28: Tracking an environmental reference signal by model predictive control. The blue curves show the environ-

mental signal, a chaotic form of Duffing’s equation, r̈ + 0.15ṙ − r + r 3 = 0.3 cos(t), with initial conditions ṙ = 1.001

and r = −1. The gold curves show the tracking performance for different values for the cost, ρ, of control input signals

relative to the tracking error. A higher control input cost favors weaker control inputs and greater tracking error.

for control input, u. The input can be thought of as a

force that alters the acceleration of the system state.

In this example, the cost function is summed over

a series of discrete time points from the present until

a future horizon at time T , yielding

J =
T∑
t=0

[x(t)− r(t)]2 + ρu(t)2.

The first term is the squared tracking error. The

second term is the squared control input signal,

weighted by ρ, which is the relative cost of the input

signal to the tracking error. The sum includes a se-

ries of input controls and tracking deviations over a

finite period from the present to the future horizon,

T . As time passes, the time window (0, T ) moves so

that t = 0 is always the present time.

The system has sensors to measure the current lo-

cations and time derivatives (velocities) for the sys-

tem state and for the reference signal, given as x0,

ẋ0, r0, and ṙ0. From those measurements, and from

the projected set of inputs, u(t), over the interval

t = 0,1, . . . , T , the system can project the values of

x(t) and r(t), and thus estimate the tracking errors

and the total cost, J . In particular,

x(t) = x0 + ẋ0t +
t−1∑
α=0

(t −α)u(α)

r(t) = r0 + ṙ0t.

Here, u(α) is interpreted as an impulse that acts at

the continuous time offset, α, relative to the current

time. Because the system has dynamics ẍ = u, an

impulse at α causes an instantaneous increase in ve-

locity by u(α), which then acts to change the future

predicted value at time t by (t −α)u(α).
These predicted values for x and r allow calcula-

tion of the sequence of control inputs u(t) over the

interval t = 0,1, . . . , T that minimize the cost, J .

The plots in Fig. 28 show the system trajectory that

reflects the minimization of J . At each time step,

the system calculates the sequence u to minimize J ,

then applies u(0) as the control input. The remain-

ing u values for t = 1,2, . . . , T are ignored. In the

next time step, the same procedure gives the new

control input for that time period, and the future in-

puts for the optimal trajectory are again ignored. The

process continues for each time period as the future

horizon recedes.

Quick calculation heuristics

The solution for the input u(0) typically depends on

the full sequence of inputs over t = 0,1, . . . , T . In

some cases, a relatively simple explicit solution for

u(0) can be obtained that requires only the current

measured inputs for x0, ẋ0, r0, and ṙ0.

If a system applies only the first input, u(0), before

recalculating in the next time step, then that system

only needs the explicit solution for u(0) to update

the control inputs in each time step.

For example, with T = 2, the exact solution for the

above case is

u(0) = ∆+ ρ[3∆+ 2(ṙ0 − ẋ0)]
1+ 6ρ + ρ2

,

with ∆ = (r0 + ṙ0)− (x0 + ẋ0). With larger T , the so-

lution has more terms as powers of ρ, but nonethe-

less remains a relatively simple ratio of polynomials

in ρ that could be approximated by a quick heuristic
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calculation.

Mixed feedforward and feedback

In some cases, the sensor and calculation costs of

updating in each time step may not provide sufficient

benefit. Instead, the system could apply the first few

control inputs of the sequence, u(0),u(1), . . . , u(τ),
and then update the sequence at time τ < T .

A system that uses feedback inputs at one time

point to calculate and then apply a future sequence

of control inputs is running in partial feedforward

mode. The feedback inputs arrive, and then the

system runs forward from those inputs without

the feedback correction obtained by comparing the

changing system output to the potentially changing

target reference signal.

After a while, the system may take new input read-

ings and update the projected sequence of future

control signals. Each measurement and recalculation

acts as a feedback correction process. Thus, systems

may combine the simplicity and relatively low cost of

feedforward control with the correction and robust-

ness benefits of feedback.

Nonlinearity or unknown parameters

This section’s example used a simple model of in-

ternal dynamics, ẍ = u, given in eqn 65. That ex-

pression, equating acceleration and force, provided a

simple way in which to analyze trajectories. That in-

ternal model may often perform well even if the true

model is nonlinear, because the first move along the

calculated trajectory often depends on how the force

of the applied input alters the acceleration of the sys-

tem.

Alternatively, one could use a more general expres-

sion for the internal model dynamics, with a set of

unknown parameters. One could then add an adap-

tive control layer to the system to provide updated

parameter estimates. In some cases, this combina-

tion of model predictive control and adaptive control

may perform well.

Time delays

You suddenly notice a ball flying toward your head.

Your first reaction happens after a delay. To avoid

the ball, you must consider where your head will be

after its delayed response in relation to where the

ball will be.

This section presents models for delay dynamics

and discusses a control method that compensates

for delays.

Background

Delays often occur in the signals that flow between

components of a control system. An uncompensated

delay may reduce system performance. Suppose, for

example, that the sensor measuring the system out-

put, y , requires δ time units to process and pass on

its measured value as a feedback signal.

The delayed feedback signal reports the system

output δ time units before the current time, which

we write as y(t − δ). The calculated error between

the current reference input and the delayed feed-

back, r(t) − y(t − δ), may not accurately reflect the

true error between the target value and the current

system output value, r(t)−y(t).
Delays may destabilize a system. If the calcu-

lated error overestimates the true error, then the sys-

tem may overcompensate, pushing the system out-

put away from the target reference value rather than

toward it.

The robust control methods discussed in earlier

sections can reduce the instabilities created by de-

lays. Robust control creates a significant stability

margin. A large stability margin means that factors

not directly included in the design, such as unknown

delays, will usually not destabilize the system.

In addition to general robust approaches, many

specific design methods deal explicitly with delays.

The delays are often called dead time or transport lag

(Åström & Hägglund, 2006; Normey-Rico & Camacho,

2007; Visioli & Zhong, 2011).

The design methods typically use a prediction

model. A prediction allows the system to use mea-

sured signal values at time t−δ to estimate the signal

values at time t.

Sensor delay

Figure 29a shows a standard feedback loop with a

sensor delay. The sensor that measures the process

output, y , delays passing on the measured value by
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Figure 29: Time delays in feedback loops. (a) Sensor delay. The sensor that measures system output and passes that

value as feedback has a delay of δ time units between the system input and the measured output. The transfer function

e−δs passes its input unmodified but with a delay of δ time units. (b) Process delay. The system process, Pe−δs , has a lag

of δ time units between the time at which a control input signal, u, is received and the associated system output signal,

y , is produced.
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Figure 30: Feedback delay destabilizes a simple integrator process. (a) Temporal dynamics from eqn 69, with gain k = 5

and unit step input r(t) = 1. The feedback delays are δ = 0,0.25,0.33 shown in the blue, gold, and green curves,

respectively. (b) Bode gain plot of the associated transfer function in eqn 68. Greater feedback lag increases the resonant

peak. (c) Bode phase plot. Note how the destabilizing feedback lag (green curve) creates a large phase lag in the frequency

response.

δ time units.

In Fig. 29a, the transfer function e−δs describes the

delay. That transfer function passes its input un-

modified, but with a delay of δ. Thus, the measured

output that is passed by the sensor as feedback is

given by the transfer function Ye−δs , which trans-

forms inputs, y(t), into the time-delayed outputs,

y(t − δ).
We can derive how the delay influences the closed

loop system response in Fig. 29a. Define the open

loop of the system as L = CP , as in eqn 16. Then

we can write the system output as Y = LE, the error

input, E, multiplied by the open loop system process,

L.

The error is the difference between the reference

input and the feedback output from the sensor, E =
R − Ye−δs . Substituting this expression for the error

into Y = LE, we obtain the transfer function expres-

sion for the closed loop system response, G = Y/R,

as

G(s) = L(s)
1+ L(s)e−δs . (66)

Process delay

Figure 29b illustrates a feedback system with a pro-

cess delay. The full process, Pe−δs , requires δ time

units to transform its input to its output. Thus, the

process output lags behind the associated control in-

put to the process by δ time units.

The open loop in Fig. 29b is Le−δs = CPe−δs . We

can derive the closed loop system response by the

method used to derive eqn 16 and eqn 66, yielding

G(s) = L(s)e−δs

1+ L(s)e−δs . (67)

The simple transfer function description for signal
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delays allows one to trace the consequences of de-

lays through a system with many components that

are each approximately linear.

Delays destabilize simple exponential decay

This section illustrates how delays can destabilize

a system. I analyze a simple open loop integrator,

L(s) = k/s. That transfer function corresponds to

dynamics given by ẋ(t) = kr(t), for reference input

r , which has solution x(t) = k
∫ t
0 r(τ)dτ for initial

condition x0 = 0. Thus, the output of L is the inte-

gral of its input multiplied by the gain, k. I assume

throughout this section that the output equals the

system state, y(t) = x(t).
A standard negative feedback system has transfer

function G = L/(1+ L), which for L = k/s is

G(s) = k
k+ s ,

which has dynamics

ẋ(t) = −kx(t)+ kr(t) = k[r(t)− x(t)].

The error signal is r(t) − x(t). The solution is the

integral of the error signal.

For constant input, r̂ = r(t), the solution is a con-

stant exponential decay toward the equilibrium set-

point at rate k. Without loss of generality, we can

take the setpoint as r̂ = 0, and write the solution as

x(t) = x0e−kt .

We can apply the same approach for the sensor

delay system in eqn 66. For L = k/s, the system

transfer function is

G(s) = k
ke−δs + s , (68)

in which the term e−δs expresses the delay by δ. The

differential equation for this system is

ẋ(t) = k[r(t)− x(t − δ)], (69)

which, for reference input r̂ = 0, is

ẋ(t) = −kx(t − δ).

This system expresses a delay differential process.

Although this delay differential system is very sim-

ple in structure, there is no general solution. A suf-

ficiently large delay, δ, destabilizes the system, be-

cause the rate of change toward the equilibrium set-

point remains too high when that rate depends on a

past value of the system state.

In particular, the dynamics in eqn 69 describe a

simple lagged feedback system. At each time, t, the

error between the target value and the system state

from δ time units ago is r̂ − x(t − δ). That lagged

error, multiplied by the feedback gain, k, sets the rate

at which the system moves toward the setpoint.

Because the system state used for the feedback cal-

culation comes from a lagged time period, the feed-

back may not accurately reflect the true system er-

ror at time t. That miscalculation can destabilize the

system.

Figure 30a shows how feedback lag can destabi-

lize simple exponential decay toward an equilibrium

setpoint. With no time lag, the blue curve moves

smoothly and exponentially toward the setpoint. The

gold curve illustrates how a relatively small feedback

lag causes this system to move toward the setpoint

with damped oscillations. The green curve shows

how a larger feedback lag destabilizes the system.

The Bode plots in Fig. 30b,c illustrate how feedback

delay alters the frequency and phase response of the

system in destabilizing ways.

In earlier sections, I showed that high gain feed-

back systems move rapidly toward their setpoint but

may suffer sensitivity to destabilizing perturbations

or uncertainties. Feedback lag may be thought of as

a kind of perturbation or uncertainty.

Figure 31 shows how the system gain, k, enhances

the destabilizing effect of feedback lag, δ. Combina-

tions of gain and lag below the curve are stable. Com-

binations above the line are unstable. Systems with

greater gain can be destabilized by smaller feedback

lag.

Process delays differ from feedback delays only in

the extra lag associated with the reference input. For

the process delay system given by the transfer func-

tion in eqn 67, the dynamics are

ẋ(t) = k[r(t − δ)− x(t − δ)],

which describe an error integrator lagged by t − δ.

For constant reference input, r(t) = r̂ , the process

delay dynamics are the same as for the feedback de-

lay dynamics in eqn 69.
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Figure 31: Greater process gain, k, can be destabilized by smaller feedback lag, δ. Combinations of gain and lag below

the curve are stable. Combinations above the curve are unstable. Stability is determined by the maximum real part of the

eigenvalues for eqn 69 with constant reference input.
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Figure 32: Smith predictor to compensate for time delay in the process output. Redrawn from Fig. 5.1 of Normey-Rico &

Camacho (2007).

Smith predictor

Compensating for a time delay requires prediction.

Suppose, for example, that there is a process delay

between input and output, as in Fig. 29b. The Smith

predictor provides one way to compensate for the

delay. To understand the Smith predictor, we first

review the process delay problem and how we might

solve it.

In Fig. 29b, the time delay transfer function in the

process, e−δs , maps an input signal at time t to an

output that is the input signal at t − δ. Thus, the

open loop CPe−δs transforms the current input, r(t),
to the output, y(t−δ). The measured error between

input and output, r(t)−y(t − δ), gives an incorrect

signal for the feedback required to push the tracking

error, r(t)−y(t), toward zero.

One way to obtain an accurate measure of the

tracking error is to predict the output, y(t), caused

by the current input, r(t). The true system process,

Pe−δs , has a lag, and the unlagged process, P , may

be unknown. If we could model the way in which the

process would act without a lag, P∗, then we could

generate an estimate, y∗(t), to predict the output,

y(t).
Figure 32 shows the feedback pathway through P∗.

If P∗ is an accurate model of P , then the feedback

through P∗ should provide a good estimate of the

tracking error. However, our goal is to control the

actual output, y , rather than to consider output esti-

mates and feedback accuracy. The Smith predictor

control design in Fig. 32 provides additional feed-

backs that correct for potential errors in our model

of the process, P∗, and in our model of the delay, δ∗.

In Fig. 32, the pathway through P∗ and then eδ∗s
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provides our model estimate, ym, of the actual out-

put, y . The error between the true output and the

model output, y − ym, is added to the estimated

output, y∗, to provide the value fed back into the

system to calculate the error. By using both the es-

timated output and the modeling error in the feed-

back, the system can potentially correct discrepan-

cies between the model and the actual process.

The system transfer function clarifies the compo-

nents of the Smith predictor system. The system

transfer function is, G = Y/R, from input, R, to out-

put, Y . We can write the system transfer function of

the Smith predictor in Fig. 32 as

G =
(

CP
1+ C(P∗ +∆M)

)
e−δs , (70)

in which the modeling error is

∆M = Pe−δs − P∗e−δ∗s .

The Derivation at the end of this section shows the

steps to eqn 70.

The stability of a transfer function system depends

on the form of the denominator. In the case of

eqn 70, the eigenvalues are the roots of s obtained

from 1+ C(P∗ +∆M) = 0. We know the process P∗,

because that is our model to estimate the unknown

system, P .

To obtain robust stability, we can design a con-

troller, C , under the assumption that the modeling

error is zero, ∆M = 0. For example, we can use the

methods from the earlier section Stabilization to ob-

tain a good stability margin for C relative to P∗. Then

we can explicitly analyze the set of modeling errors,

∆M , for which our robust controller will remain sta-

ble. A design with a good stability margin also typi-

cally provides good performance.

Derivation of the Smith predictor

The derivation of eqn 70 begins with the transfer

functions obtained directly from Fig. 32 for various

outputs

Y = ECPe−δs

Y∗ = ECP∗ = Y P∗

Pe−δs

Ym = ECP∗e−δ
∗s = Y P

∗e−δ∗s

Pe−δs

with error input

E = R − Y − Y∗ + Ym

= R − Y
(

1+ P∗

Pe−δs
− P

∗e−δ∗s

Pe−δs

)

= R − Y 1
Pe−δs

(
P∗ +∆M

)
with

∆M = Pe−δs − P∗e−δ∗s .

Substituting the expression for E into the expression

for Y yields

Y = CPe−δs
[
R − Y 1

Pe−δs
(
P∗ +∆M

)]
.

The system response, Y , to an input, R, is G = Y/R,

which we obtain by dividing both sides of the prior

equation by R, yielding

G = CPe−δs −GC
(
P∗ +∆M

)
,

from which we obtain

G =
(

CP
1+ C(P∗ +∆M)

)
e−δs ,

which matches eqn 70. When the model is accurate,

P = P∗ and ∆M = 0, the system reduces to

G =
(
CP∗

1+ CP∗
)
e−δs

for known model P∗. This transfer function has the

standard form of a negative feedback system with

open loop L = CP∗.

Summary

Many other control approaches and applications

have been developed (Baillieul & Samad, 2015). Those

extensions build on the foundational principles em-

phasized in this tutorial. Three key principles recur.

Feedback

There are two, and only two, reasons for us-

ing feedback. The first is to reduce the ef-

fect of any unmeasured disturbances acting

on the system. The second is to reduce the

effect of any uncertainty about systems dy-

namics.

—Vinnicombe (2001, p. xvii)
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Feedback is unnecessary if one has a complete, ac-

curate model of system dynamics. With an accurate

model, one can map any input to the desired output.

A direct feedforward open loop does the job.

However, unpredictable perturbations occur. Mod-

els of dynamics almost always incorrectly specify the

true underlying process.

Correcting errors by feedback provides the sin-

gle most powerful design method. Natural systems

that control biological function often use feedback.

Human engineered systems typically correct errors

through feedback.

Robust control

[H]ow much do we need to know about a sys-

tem in order to design a feedback compen-

sator that leaves the closed loop behaviour

insensitive to that which we don’t know?

—Vinnicombe (2001, p. xvii)

Robustness means reduced sensitivity to disturbance

or modeling error. Feedback improves robustness.

However, feedback only describes a broad approach.

Many specific methods refine the deployment of

feedback. For example, filters reduce the resonant

peaks in system response. Controllers modulate dy-

namics to improve stability margin.

A large stability margin means that the system can

maintain stability even if the true process dynam-

ics depart significantly from the simple linear model

used to describe the dynamics.

Design tradeoffs and optimization

A well-performing system moves rapidly toward a

desired setpoint. However, rapid response can re-

duce stability. For example, a strong response to er-

ror can cause a system to overshoot its setpoint. If

each overshoot increases the error, then the system

diverges from the target.

The fast response of a high-performing system

may destabilize the system or make it more sensitive

to disturbances. A tradeoff occurs between perfor-

mance and robustness.

Many other tradeoffs occur. For example, control

signals modulate system dynamics. The energy re-

quired to produce control signals may be expensive.

The costs of control signals trade off against the ben-

efits of modulating the system response.

The sensitivity of a system to perturbations varies

with the frequency at which the signal disturbs the

system. Often, a reduced sensitivity to one set of fre-

quencies raises sensitivity to another set of frequen-

cies.

Optimization provides a rigorous design approach

to tradeoffs. One may assign costs and benefits to

various aspects of performance and robustness or to

the response at different frequencies. One can then

consider how changes in system design alter the total

balance of the various costs and benefits. Ideally, one

finds the optimal balance.

Future directions

Control theory remains a very active subject (Baillieul

& Samad, 2015). Methods such as robust H∞ analy-

sis and model predictive control are recent develop-

ments.

Computational neural network approaches have

been discussed for several decades as a method for

the control of systems (Antsaklis, 1990). Computa-

tional networks are loosely modeled after biological

neural networks. A set of nodes takes inputs from

the environment. Each input node connects to an-

other set of nodes. Each of those intermediate nodes

combines its inputs to produce an output that con-

nects to yet another set of nodes, and so on. The final

nodes classify the environmental state, possibly tak-

ing action based on that classification (Nielsen, 2015;

Goodfellow et al., 2016).

For many years, neural networks seemed like a

promising approach for control design and for many

other applications. However, that approach typi-

cally faced various practical challenges in implemen-

tation. Until recently, the practical problems meant

that other methods often worked better in applica-

tions.

New methods and increased computational power

have made neural networks the most promising ap-

proach for major advances in control system design.

Spectacular examples include self-driving cars, real-

time computer translation between languages, and

the reshaping modern financial markets. At a sim-

pler level, we may soon see many of the control sys-

tems in basic daily devices driven by embedded neu-
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ral networks instead of the traditional kinds of con-

trollers.

The rise of neural networks also foreshadows a

potential convergence between our understanding of

human-designed engineering systems and naturally

designed biological systems (Frank, 2017).

In a human-designed system, an engineer may

build a controller to improve the total benefits that

arise from tradeoffs between cost, performance, and

robustness. In biology, natural selection tends to

build biochemical or physical systems that improve

the tradeoffs between various dimensions of biolog-

ical success. Those biological dimensions of suc-

cess often can be expressed in terms of cost, per-

formance, and robustness.

The similarities and differences between human-

designed systems and naturally designed systems

will provide many insights in the coming years. An

understanding of the basic concepts of control de-

sign will be required to follow future progress and to

contribute to that progress.
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