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Methods for battery state and parameter estimation have been widely investigated, while the achievable accuracy of the estimation
remains a critical but somehow overlooked topic. In this paper, the analytic bounds on the accuracy of battery state and parameter
estimation accounting for voltage measurement noises are derived based on the Fisher information matrix and Cramer-Rao bound
analysis. The state and parameters under discussion include the state of charge, capacity and (ohmic) resistance. The estimation
accuracy is influenced by the information contained in the data set used for estimation. It is found that the main contributing factors to
the accuracy of SOC estimation are the slope of the OCV curve and number of data points, while the accuracy of capacity estimation
is affected by both OCV slope and SOC variation, and that of resistance estimation depends heavily on the current magnitude. The
analytic bounds are derived for both standalone estimation, where only one state/parameter is estimated, and combined estimation
where they are estimated together. The loss of accuracy in combined estimation compared to standalone estimation is usually
expected. However, when the current excitation satisfies certain patterns, such loss can be avoided. The conclusions can be used as
guidelines for offline experiment design as well as online evaluation of the accuracy of adaptive state and parameter estimation.
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Battery state and parameter estimation has been studied extensively
in literature. Critical battery states include state of charge (SOC), tem-
perature, state of power (SOP) and state of health (SOH) among others.
As for the parameters, some of them are commonly seen in almost
all types of models, such as the (ohmic) internal resistance, capacity,
and open circuit voltage (OCV). Others are model-specific, especially
those relating to the transient battery dynamics, e.g. R-C circuits in
the equivalent circuit model, or diffusion coefficient/electrical con-
ductivity in the electrochemical model. In this paper, the discussion
will be limited to SOC, resistance and capacity, but the methodology
can be extended to other states and parameters. It is noted that state es-
timation and parameter estimation are greatly interconnected for two
reasons. For one thing, some of the states are in fact defined based on
certain parameters. For example, it is well known that as battery ages,
its capacity decreases1–3 while resistance grows.4–6 Therefore, SOH is
often defined as the ratio of the remaining capacity and the nominal ca-
pacity, or the ratio of the actual (degraded) resistance and the nominal
resistance.7 For another, it has been shown that the accuracy of state
estimation will be greatly affected by the precision of parameters.8

Various methods have been proposed in literature for battery state
and parameter estimation. For SOC estimation, the basic method is
coulomb counting,9–10 where the current is integrated over time to
calculate the change in stored energy. Since this method is suscep-
tible to inaccurate initial SOC and current measurement bias/noise,
corrections based on OCV under rest is often applied to improve
estimation accuracy.11 When the battery is under load, however,
due to the unavailability of OCV, model-based methods are typ-
ically used, which combine model, and current and voltage mea-
surement. The commonly used models include the OCV-R model,9

equivalent circuit model,12–13 neural network model,16,17 electrochem-
ical models18,19 and the simplified versions20–23 among others. As for
the estimation algorithm, the most widely used one is the extended
Kalman filtering (EKF) originally reported in Ref. 24. Others in-
clude but are not limited to unscented Kalman filtering (UKF),25 slid-
ing mode observer,26 H∞ observer,27 and Partial Differential Equa-
tion (PDE)-based observer.28 The topic has also been studied un-
der reduced voltage sensing, where only the total voltage of two
(or more) cells connected in series is measured.29,30 Nonlinear ob-
servers, such as the Newton observer and sliding mode observer,
are designed to solve the SOC estimation problem. As for bat-
tery capacity and resistance estimation, it can be performed sep-
arately from SOC estimation, and the explored methods in litera-
ture include least-squares based algorithm,31,32 particle filtering,33
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Lyapunov-based adaptation34 among others. There have also seen sub-
stantial efforts addressing combined estimation of SOC and capacity/
resistance, mostly based on EKF. For example, dual extended Kalman
filtering (DEKF)35 has been used to estimate the battery SOC and
capacity/resistance in a sequential way, which further includes the
synchronized (standard) DEKF36–38 and the multi-time-scale DEFK
where the SOC and capacity are updated at different rates.39,40 Joint
extended Kalman filter (JEKF) has also been studied, which updates
the SOC and capacity estimation simultaneously.41,42

Another important aspect of the estimation problem, the achiev-
able accuracy of estimation from available data, has not been equally
emphasized in the previous study though. Related topics include anal-
ysis on sensitivity, confidence interval and error bound among others.
There have seen increasing interests in the field recently. In Ref. 43, the
sensitivity of the output voltage to the parameters of an electrochem-
ical model is quantified based on simulation under parameter pertur-
bation. Similarly, in Ref. 44, the sensitivity of capacity estimation is
studied by calculating the deviation of estimates under perturbation
of other parameters. In Ref. 45, the confidence interval of parameter
estimation is obtained through Monte Carlos simulation. Other works
are mainly based on Fisher information analysis,46 which measures
the sufficiency of data for state/parameter estimation. For example, in
Ref. 47 the eigenvalues of the Fisher information matrix are used to
determine and group the strongly identifiable parameters. In Ref. 48,
the Fisher-Information-based Cramer-Rao bounds, which quantifies
the theoretical lower bound of the variance of estimates, are numeri-
cally calculated for parameters of an electrochemical battery model.
In Ref. 49, the confidence intervals of the estimates are obtained based
on Analysis of Variance (ANOVA). In Refs. 50 and 51, the relationship
between the estimation accuracy and the characteristics of the data set,
such as the SOC range, number of data points and current magnitude,
is studied based on Cramer-Rao bound analysis. The expression of the
Fisher information matrix of the OCV-R model under periodic current
excitation is also derived in Ref. 50. In Ref. 52, the attempt is made
to enhance the identifiability by choosing the current excitation that
maximizes the determinant of the Fisher information matrix.

In this paper, the analytic bounds on estimation accuracy of SOC,
capacity and resistance will be derived under various circumstances.
The unique contributions of the paper include the following three as-
pects. First, the lower bound of the variance of the estimation is analyt-
ically derived based on the equivalent circuit model, which shows the
contributing factors to estimation accuracy in an explicit way. Most of
the existing works focus on computing the numerical bounds. Second,
the analytic bound is studied for standalone estimation as well as com-
bined state and parameter estimation. Standalone estimation refers to
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the case that only one state or parameter is being estimated, assuming
all others are known, e.g. estimating SOC based on known capacity.
In reality, however, multiple states and/or parameters may need to
be estimated. For example, battery capacity degrades over lifetime,1–3

making the SOC estimation based on the nominal capacity inaccurate.
Estimation of multiple state/parameters, which includes both the dual
estimation and joint estimation as mentioned in the literature review,
is referred to as combined estimation here. The accuracy of combined
estimation will usually deteriorate as compared to that of standalone
estimation. The loss of accuracy is quantified through comparison in
this paper. More importantly, it is also found that the loss of accuracy
can be avoided when the current input is designed to satisfy certain
patterns, which enlightens the experiment design. Third, the analytic
bound will be evaluated under some commonly used/seen current
inputs, such as the constant and square-wave currents, revealing prac-
tical and easily perceptible insights. The conclusions can be used
as guidelines for designing offline experiments for identification as
well as evaluating the accuracy of online state/parameter estimation.
The analysis is conducted based on control-oriented battery electrical
models, but it could provide insight for generic battery models.

Methodology: Fisher Information Matrix and
Cramer-Rao Bound

The basics about the Fisher information matrix and the Cramer-
Rao bound are introduced in this section. Consider the following

nonlinear discrete-time plant model,

xk+1 = f (xk, θk, uk), x ∈ Rn, θ ∈ Rm, u ∈ R
[1]

yk = h(xk, θk, uk), y ∈ R

where x is the state, θ is the parameter, u is the input, k is the time
step, y is the output, and f and h are the nonlinear state and output
equations. The model is herein considered as single input and single
output, since for most battery electrical models the only input is current
and the only output is voltage. The number of states and parameters
could be larger than 1. It is noted here that the parameter θ include
only those that remain to be determined. The known parameters are
treated as implicit parts of the state and output equations.

In control practice, the unknown states and parameters are typically
estimated based on output measurement. It is easy to conceive that
the information contained in the output will determine the quality
of estimation. The Fisher information matrix, which is based on the
sensitivity (or derivative) of the output to each state/parameter, is a way
to quantify this relationship.46 Given a series of output measurements
over time instants t1, t2, . . . tN ,

Y = [
y1 y2 . . . yN

]T
, [2]

the Fisher information matrix can be practically calculated as47,50

Finfo = 1

σ2
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(
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is the sensitivity matrix consisting of the partial derivatives of the output to each state/parameter at each time instant. The final form of Finfo can
be obtained as

Finfo = 1
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[5]

where ∗ denotes the symmetric entry. It is seen that the Fisher infor-
mation matrix evaluates the quality of estimation by considering the
noise level of the output measurements and the information contained
in the data (featured by sensitivity of the output to the state/parameter).
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The Fisher information matrix can be used to evaluate the iden-
tifiability of the state/parameter from the data in various ways. For
example, in Ref. 47, the minimum eigenvalue of Finfo is compared to a
threshold to determine identifiability, and in Ref. 52, the determinant
of Finfo is used as the criterion. However, it is difficult to demonstrate
the identifiability intuitively by using the Fisher information matrix
directly, as neither its eigenvalue nor determinant has clear physical in-
sight. An alternative is the Cramer-Rao bound,53 which establishes that
the covariance of the estimation by an unbiased estimator is bounded
from below by the inverse of Finfo evaluated at the actual values x
and θ,

covest ≥ F−1
info(x, θ). [6]

Specifically, the diagonal element of F−1
info prescribes the lower

bound of the variance for each state/parameter estimate, σ2(x̂ j ), j =
1, 2, . . . n, or σ2(θ̂ j ), j = 1, 2, . . . m. The normalized standard devi-
ation (SD), σ̄(x̂ j ) or σ̄(θ̂ j ), which represents the ratio of the expected
error SD to the true value, can be obtained by dividing σ(x̂ j ) or σ(θ̂ j )
with x j or θ j .

The Cramer-Rao bound is capable of predicting the best-case vari-
ance of the state/parameter estimation based on the knowledge of the
variance of the output measurement σ2

y and the correlation between
the output and the state/parameter specified by the partial derivatives.
The Cramer-Rao bound was derived independent of any specific form
of observers, and it specifies the minimum achievable variance by any
unbiased estimator. It needs to be acknowledged that impacts of the
unmodeled system dynamics, which are inevitable for most modeling
approaches, have not been considered in this framework. Indeed, un-
modeled system dynamics will increase the error on top of the bounds
analytically derived in this paper.

Derivation of the Cramer-Rao Bound for Battery SOC, Capacity
and Resistance Estimation

In this section, the analytic expression of the Cramer-Rao bound on
the battery state and parameter estimation will be derived based on the
equivalent circuit model,12–15 which is the most widely used in control
practice and whose structural identifiability has been established in
Ref. 58. The considered state is the battery SOC, and the parameters
are the capacity Q and (ohmic) resistance R. The sensitivity of the
measured voltage to the state/parameter will first be derived. The
Cramer-Rao bound will then be derived for three different estimation
schemes, namely

1) standalone estimation, i.e. only one state/parameter is being
estimated.

2) combined estimation of two state/parameters simultaneously,
and

3) combined estimation of three state/parameters simultane-
ously.

In standalone estimation, the assumption is that all the other state/
parameters are perfectly known, and the data is used to identify the
one state/parameter solely. When multiple state/parameters are un-
known, they all need to be identified and such case will be discussed
in the combined estimation. It will also be shown how large the estima-
tion error will be if one parameter is identified by assuming erroneous
values for other state/parameters as comparison. The conclusions will
demonstrate how the estimation accuracy is affected by the charac-
teristics of the data such as the SOC variation, number of data points,
slope of OCV and current magnitude among others.

Sensitivity of voltage measurement to battery state/parameters.—
Typically, the equivalent circuit model uses an open circuit voltage, a
series resistance, and resistance-capacitor (R-C) pair(s) to capture the
voltage dynamics of a battery cell, as shown in Figure 1. The open
circuit voltage represents the potential difference between the cathode
and the anode of the cell, which is a function of battery SOC. The

Figure 1. Schematic of the Equivalent Circuit Model.

series resistance R captures the lumped ohmic resistance of both the
solid and liquid phases of the cell material. The R-C pairs are used
to approximate the voltage transient behaviors such as the dynamics
of the SEI film, dynamics of the charge-transfer resistance and the
double layer capacitance, and lithium ion diffusion.13 The accuracy of
the approximation typically improves with the number of R-C pairs at
the cost of computational complexity, and the optimal number varies
among battery chemistries. To preserve generality, a general number n
is considered in this paper. The governing equations of the equivalent
circuit model usually take the form

d SOC(t)

dt
= I (t)

Q

dVcj (t)

dt
= − Vcj (t)

Rcj Ccj
− I (t)

Ccj
, [7]

V (t) = g (SOC) +
n∑

j=1

Vcj (t) + I (t)R

where I is the current, Q is the battery capacity (could be lumped
with the charging/discharging efficiency), and Rcj and Ccj are the
coefficients of the R-C pairs. The ohmic resistance R is assumed to
be a constant for simplicity although it may change with SOC for
some batteries. Parameter values are usually different for different
battery chemistries, and no specific numbers are assumed through-
out derivation for generality. It is noted that not all battery models
have an explicit form as that in Equation 7, e.g. the electrochemi-
cal model18,19 consisting of four partial differential equations captur-
ing solid and liquid phase lithium concentration and potential, and
an algebraic constraint (Butler-Volmer equation). Nevertheless, the
conclusions obtained based on the equivalent circuit model are still
enlightening for the analysis of electrochemical model since the two
are closely related. On one hand, it has been shown in Refs. 21 and
22 that the electrochemical model can be reduced to a “single par-
ticle” model which is in an explicit form essentially the same as
that of the equivalent circuit model. The state of charge calculated
by coulomb counting in the equivalent circuit model represents the
bulk/surface concentration of the lithium ion stored in the particle.
The series resistance R is the sum of the resistance of the electrolyte,
electrode film and current collectors. The capacity is associated with
the amount of active materials that could store lithium ion. The con-
clusions later derived in the paper, such as the contributing factors of
the data set to the estimation accuracy, can be used to guide the exper-
iment design for estimating those parameters in the electrochemical
model. On the other hand, although phenomenological as it appears,
the equivalent circuit model is often derived based on electrochemi-
cal measurement directly. For example, constant phase elements have
been widely used to model battery electrochemical behavior by using
electrochemical impedance spectroscopy (EIS) data.13 The final form
of such model in time domain is realized as the equivalent circuit
model.
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The state/parameter estimation problem is defined as determining
some or all of SOC , Q and R based on measurements of current I (t)
and voltage V (t) over a period of time [t0, t f ]. In practice, however, the
measurements can only be obtained as sampled signals at discrete time
instants. Hence it is necessary to transform the continuous differential
Equation 7 to discrete time equation57 as

⎡
⎢⎢⎢⎣

SOCk+1

Vc1,k+1

. . .

Vcn,k+1

⎤
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Ik,

Vk = g (SOCk) +
n∑

j=1

Vcj + Ik R

[8]

where the subscript k denotes the time step, and �t is the sampling
period. The sampling period �t is determined by the specifications
of the voltage and current sensors and the requirement on estimation
accuracy, which is typically 10 ms in the battery management systems.
Shorter sampling time will yield higher estimation accuracy at the
cost of increased hardware and computational overhead. Number of
data points collected for estimation will also affect the estimation
accuracy. It will be shown later in the derivation that as the number of
data points increases, the variance the estimation error will decrease,
showing improved estimation accuracy.

Suppose that the initial battery SOC is SOC0, the SOC at time
instant tk can be obtained based on Eq. 8 as,

SOCk = SOC0 +
k−1∑
i=1

Ii�t

Q
[9]

and hence Vk will be

Vk = g

(
SOC0 +

k−1∑
i=1

Ii�t

Q

)
+ Ik R +
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Rcj Ii (1 − e
−�t

Rcj Ccj ).

[10]
The sensitivity of the voltage to each state/parameter at each time
instant, i.e. the partial derivatives ∂V

∂SOC |tk , ∂V
∂ Q |tk , and ∂V

∂ R |tk can be
obtained as

∂V

∂SOC0
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tk

= α, [11a]
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tk
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where α is the slope of the function g (mainly OCV). It is noted
that the slope of OCV is constant for most battery chemistries within
the normal operation range and hence α is treated as a fixed value
here. For example, the OCV of two lithium ion battery chemistries,
LiNiMnCo (NMC) and LiFePO4 (LFP), are plotted in Figure 2. It
can be seen that both OCVs can be approximated very well by piece-
wise linear segments, and the slope of OCV is nearly constant in
the normal operation range of 10%-90% SOC, i.e. 0.65 V/100% for
NMC and 0.17 V/100% for LFP. These two battery chemistries will
be used as examples to analyze the results later. The equivalent circuit
model of them have been parameterized and validated in Refs. 12
and 56 respectively, and their model parameters under 25◦C ambient
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Figure 2. Open Circuit Voltage of LFP and NMC battery.

are listed in Table I. The subsequent derivation only requires slight
modification even if α is considered as SOC-dependent.

Cramer-Rao bound for standalone estimation.— The state/
parameter is estimated given a series of voltage and current measure-
ments, V = [ V1 V2 . . . VN ]T and I = [I1 I2 . . . IN ]T , collected
over time instants t1, t2, . . . tN .

When only SOC is being estimated, the Fisher information matrix
can be derived based on Eq. 5 and Eq. 11a as

Finfo = 1

σ2
V

N∑
i=1

(
∂V

∂SOC0

∣∣∣∣
tk

)2

= Nα2

σ2
V

, [12]

where σ2
V is the variance of the voltage measurement noises. The

Cramer-Rao bound for SOC estimation is then

σ
(
SÔC0

) ≥ F
− 1

2
info = σV

α
√

N
. [13]

Note 1: As expected, the SD of estimation error is proportional to
that of the measurement noise.

Note 2: The accuracy will improve under larger slope of the OCV
and more data points used for estimation. For SOC estimation, most
online recursive algorithms use one voltage measurement each time
for SOC estimation (N = 1), and σ̄(SÔC0) will hence be 1.54% for
NMC battery (using α = 0.65V/100% in the middle SOC range as
listed in Table I) and 5.88% for LFP battery (using α = 0.17V/100%
in the middle SOC range in Table I) assuming σV = 10mV . This
agrees with the intuition that steeper OCV is conducive to high SOC
estimation accuracy.

Table I. Model Parameters of LiFePO4 (LFP) and LiNiMnCo
Batteries (25◦C ambient).

LiFePO4 LiNiMnCo
OCV Figure 2a Figure 2b

α (OCV slope, middle SOC range) 1.7 mV/1% SOC 6.5 mV/1% SOC

Q 2.3 Ah 5 Ah
R 10 m� 2 m�

Rc1 15 m� 0.8 m�

Cc1 2.4 kF 6 kF
Rc2 20 m� 1 m�

Cc2 70 kF 4 kF
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When only the capacity Q is being estimated, the Fisher informa-
tion matrix can be derived based on Eq. 5 and Eq. 11b as

Finfo = 1

σ2
V

N∑
k=1

(
∂V

∂ Q

∣∣∣∣
tk

)2

= 1

σ2
V

α2

Q4

N∑
k=1

(
k−1∑
i=1

(Ii�t)

)2

= α2

σ2
V Q2

N∑
k=1

(�SOCk)2, [14]

where �SOCk =
∑k−1

i Ii�t

Q
= SOCk −SOC0 denotes the variation

of SOCk from the initial value. The normalized Cramer-Rao bound
for Q estimation is then

σ̄
(
Q̂

) ≥ F
− 1

2
info /Q = σV

α

√
N∑

k=1
(�SOCk)2

. [15]

Note 1: The noise level in voltage measurement has a proportional
effect on the estimation accuracy.

Note 2: The accuracy of capacity estimation will improve un-
der higher OCV slope α and larger SOC variation in the data set√

N∑
k=1

(�SOCk)2. Assume two voltage measurements are used for ca-

pacity estimation, one at 10% SOC and the other at 90% SOC (amount
to SOC variation of 80%), σ̄(Q̂) will be 1.92% for NMC battery and
7.35% for LFP battery when σV = 10 mV . If the SOC variation is
down to 40%, σ̄(Q̂) will increase to 3.85% and 14.71% for NMC and
LFP respectively.

When only the resistance R is being estimated, the Fisher infor-
mation matrix can be derived based on Eq. 5 and Eq. 11c as

Finfo = 1

σ2
V

N∑
k=1

(
∂V

∂ R

∣∣∣∣
tk

)2

= 1

σ2
V

N∑
k=1

(Ik)2. [16]

The normalized Cramer-Rao bound for R estimation is then

σ̄
(
R̂
) ≥ F

− 1
2

info /R = σV

R

√
N∑

k=1
(Ik)2

. [17]

Note 1: Similar to the previous cases, SD of the estimation error is
proportional to the noise level in voltage measurement.

Note 2: The accuracy of resistance estimation will improve under

high current

√
N∑

k=1
(Ik)2, which is easy to understand as higher current

will result in larger voltage change from OCV. The normalized error
SD will also be smaller for battery with larger nominal resistance. Take
the NMC and LFP batteries as examples, whose nominal resistances
are 2 m� and 10 m� respectively, when a single measurement is used
for estimation under I = 20A, σ̄(R̂) will be 25% for NMC battery
and 5% for LFP battery assuming σV = 10 mV .

In summary, for all three state/parameters, the SD of the estimation
will improve under smaller measurement noise σV . Other contribut-
ing factors to estimation accuracy includes the slope of OCV curve α,

number of data points N , current variation
N∑

k=1
(Ik)2, and SOC variation

N∑
k=1

(�SOCk)2. Specifically, SOC estimation improves under larger α

and N , capacity estimation favors larger α and
N∑

k=1
(�SOCk)2, and re-

sistance estimation prefers larger
N∑

k=1
(Ik)2. Large N will also improve

the estimation accuracy of Q and R as
N∑

k=1
(�SOCk)2 and

N∑
k=1

(Ik)2 will

increase accordingly. Ideally, the SD of the estimation error could be
arbitrarily small if N is large sufficiently. However, the computa-
tional load to process the data will also increase drastically and hence
impose a practical limit. These conclusions confirm the long existing
intuition on the factors affecting estimation accuracy, and more impor-
tantly, also provide theoretical and quantifiable correlations between
the variance of the estimate and these factors.

Cramer-Rao bound for combined estimation of two state/
parameters.— In this subsection, three cases of combined estimation
will be discussed, including combined SOC/Q estimation, combined
SOC/R estimation, and combined Q/R estimation. The significance
of exploring the accuracy of combined estimation is explained as
follows. When one state/parameter, e.g. SOC, needs to be estimated
with some others also unknown, e.g. capacity, there are typically two
ways of conducting the estimation. The first one is to estimate all the
unknown state/parameters with the data obtained (combined estima-
tion), and the other one is to only estimate the interested one while
assuming nominal values for the other unknown ones (standalone esti-
mation with imperfect parameters). The second way will usually lead
to large estimation error as to be shown, which inspires the extensive
research on combined estimation documented in literature. For com-
bined estimation, it will be shown that under common current inputs,
the accuracy of combined estimation usually degrades as compared
to that of standalone estimation. However, when the current input
is designed to satisfy certain patterns, such loss of accuracy can be
avoided.

When both SOC and capacity Q need to be estimated, the Fisher
information matrix can be derived based on Eq. 5, Eq. 11a and
Eq. 11b as

Finfo = 1

σ2
V

⎡
⎢⎢⎢⎢⎢⎢⎣

N∑
k=1

(
∂V

∂SOC0

∣∣∣∣
tk

)2
N∑

k=1

⎛
⎝ ∂V

∂SOC0

∣∣∣∣
tk

∂V

∂ Q

∣∣∣∣∣
tk

⎞
⎠

N∑
k=1

⎛
⎝ ∂V

∂SOC0

∣∣∣∣
tk

∂V

∂ Q

∣∣∣∣∣
tk

⎞
⎠ N∑

k=1

(
∂V

∂ Q

∣∣∣∣
tk

)2

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1

σ2
V

⎡
⎢⎢⎢⎢⎢⎣

Nα2 −α2

Q

N∑
k=1

(�SOCk)

−α2

Q

N∑
k=1

(�SOCk)
α2

Q2

N∑
k=1

(�SOCk)2

⎤
⎥⎥⎥⎥⎥⎦ . [18]

The normalized Cramer-Rao bounds for combined SOC and capacity
estimation are then

σ̄SOC,Q

(
SÔC0

) ≥ σV

α
√

N

1√√√√√√√√1 −

(
N∑

k=1
�SOCk

)2

N
N∑

k=1
(�SOCk)2

σ̄SOC,Q

(
Q̂

) ≥ σV

α

√
N∑

k=1
(�SOCk)2

1√√√√√√√√1 −

(
N∑

k=1
�SOCk

)2

N
N∑

k=1
(�SOCk)2

.

[19]
where the subscript SOC, Q denotes the combined SOC and Q
estimation.

Interestingly, it is noticed that the SDs of the estimates are amplified
by a factor of 1√√√√√√√√1−

(
N∑

k=1
�SOCk

)2

N
N∑

k=1
(�SOCk )2

as compared to those in standalone
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Figure 3. Examples of Current Input Profile.

estimation shown in Eq. 13 and Eq. 15, which is in the range of

1 ≤ 1√√√√√√√√1 −

(
N∑

k=1
�SOCk

)2

N
N∑

k=1
(�SOCk)2

≤ ∞. [20]

The amplification factor will be equal to 1, meaning no loss of ac-
curacy, when the SOC variation �SOCk is a zero-sum sequence, for
example, under the SOC-symmetric square-wave current shown in

Figure 3a. The amplification factor will be infinite, indicating no iden-
tifiability, when �SOCk is constant, e.g. under a single pulse shown in
Figure 3b. It can be concluded that

� the accuracy of the combined SOC/Q estimation will never
exceed that of the standalone estimation;

� SOC variation is required for combined SOC/Q estimation as
the variance of the estimate will be infinite under zero SOC variation,
and larger SOC variation will reduce the loss of accuracy;

� it is possible to avoid loss of accuracy under combined SOC/Q
estimation if the current profile is designed such that the SOC variation
is zero-sum over time.

In order to illustrate the derived results numerically, the SOC esti-
mation errors of different estimation schemes for NMC and LFP bat-
teries under square-wave current (plotted in Figure 3c) are calculated
and shown in Figure 4. The example data sets contain 8 measurement
points (N = 8); current I = ±1C , which is 5 A for NMC whose
capacity is 5 Ah, and 2.3 A for LFP whose capacity is 2.3 Ah; SOC
varies from 10% to around 90%; and the OCV slope in the middle
SOC range (α = 6.5 mV/1% for NMC and α = 1.7 mV/1% for LFP)
are used. It is seen that under combined SOC and Q estimation, the
error SD σ̄soc is 0.94% for NMC and 3.56% for LFP (second group
in Figure 4), increasing from 0.59% for NMC and 2.22% for LFP
under standalone estimation with perfect knowledge of capacity Q
(first group in Figure 4). The estimation errors of standalone SOC
estimation with erroneous Q (biased by 10%) is also calculated based
on Monte Carlos simulation and shown in Figure 4 (the fifth group).
It is seen that imperfect knowledge of capacity will lead to larger
errors in SOC estimation, i.e. 3.37% mean (bias) error and 0.58%
error SD (random) for NMC and 3.37% mean error and 2.23% error
SD for LFP. The overall estimation error is larger than the combined
SOC and Q estimation, which does not suffer from mean error (bias).
The capacity estimation errors for different estimation schemes are
shown in Figure 5. Similar to SOC estimation, it can be seen that
under square-wave current, the capacity estimation accuracy of the
combined SOC and Q estimation (the second group) will deteriorate
compared to that of standalone estimation with perfect knowledge of
SOC (the first group), but still better than that of standalone estimation
when SOC is not accurately known (the fifth group).
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Figure 4. SOC estimation errors of different estimation schemes under square-wave current.

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 207.241.231.80Downloaded on 2018-07-19 to IP 

http://ecsdl.org/site/terms_use


Journal of The Electrochemical Society, 162 (9) A1879-A1891 (2015) A1885

Q
 e

st
im

at
io

n
 e

rr
o

r 
(%

)

(SOC biased by 5%) (R biased by 10%)
alone SOC&Q Q&R SOC&Q&R alone alone

0

2

4

6

8

10

12

14

16

18

mean error

standard deviation error

LFP

LFP

LFP

LFP

LFP

LFP

NMC

NMC

NMC

NMC

NMC

NMC

Figure 5. Capacity estimation errors of different estimation schemes under square-wave current.

When both SOC and resistance R need to be estimated, the
Fisher information matrix can be derived based on Eq. 5, Eq. 11a and
Eq. 11c as

Finfo = 1

σ2
V

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N∑
k=1

(
∂V

∂SOC0

∣∣∣∣
tk

)2
N∑

k=1

⎛
⎝ ∂V

∂SOC0

∣∣∣∣
tk

∂V

∂ R

∣∣∣∣∣
tk

⎞
⎠

N∑
k=1

⎛
⎝ ∂V

∂SOC0

∣∣∣∣
tk

∂V

∂ R

∣∣∣∣∣
tk

⎞
⎠ N∑

k=1

(
∂V

∂ R

∣∣∣∣
tk

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 1

σ2
V

⎡
⎢⎢⎢⎣

Nα2 α
N∑

k=1
(Ik)

α
N∑

k=1
(Ik)

N∑
k=1

(Ik)2

⎤
⎥⎥⎥⎦ . [21]

The normalized Cramer-Rao bounds for combined SOC and resistance
estimation are then

σ̄SOC,R

(
SÔC0

) ≥ σV

α
√

N

1√√√√√√√√1 −

(
N∑

k=1
Ik

)2

N
N∑

k=1
(Ik)2

σ̄SOC,R

(
R̂
) ≥ σV

R

√
N∑

k=1
(Ik)2

1√√√√√√√√1 −

(
N∑

k=1
Ik

)2

N
N∑

k=1
(Ik)2

,

[22]

the subscript SOC, R denotes the combined SOC and R estimation.

It is noticed that the standard deviations of the estimates are am-
plified by a factor of 1√√√√√√√√1−

(
N∑

k=1
Ik

)2

N
N∑

k=1
(Ik )2

as compared to those in standalone

estimation shown in Eq. 13 and Eq. 17. It can be easily shown that the
amplification factor is bounded by

1 ≤ 1√√√√√√√√1 −

(
N∑

k=1
Ik

)2

N
N∑

k=1
(Ik)2

≤ ∞. [23]

The amplification factor will be equal to 1, meaning no loss of ac-
curacy, when the current sequence Ik is zero-sum, for example, the
square-wave shown in Figure 3c. The amplification factor will be
infinite, indicating no identifiability, when Ik is constant, shown in
Figure 3d. It can be concluded that

� the accuracy of combined SOC and R estimation will never
exceed that of the standalone estimation;

� current variation is required for combined SOC and R estimation
as the variance of the estimate will be infinite under constant current,
and larger current variation will reduce the loss of accuracy;

� it is possible to avoid loss of accuracy under combined SOC
and R estimation if the current profile is designed to be zero-sum over
time.

For numerical illustration, the SOC estimation errors of the com-
bined SOC and R estimation using the previous data set are calculated
and shown in Figure 4 (the third group). It is seen that under the
square-wave current, the SOC error standard deviation is the same as
that of standalone SOC estimation (for both NMC and LFP), which
agrees with the above conclusion that loss of accuracy can be avoided
with square-wave current. The same observation can be made for re-
sistance estimation shown in Figure 6 (comparing first group with the
second group).

When both capacity Q and resistance R need to be estimated, the
Fisher information matrix can be derived based on Eq. 5, Eq. 11b and
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Eq. 11c as

Finfo = 1

σ2
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Q2

N∑
k=1

(�SOCk)2 − α

Q

N∑
k=1

(Ik�SOCk)

− α

Q

N∑
k=1

(Ik�SOCk)
N∑

k=1
(Ik)2

⎤
⎥⎥⎥⎥⎥⎦ . [24]

The normalized Cramer-Rao bounds for combined SOC and capacity
estimation are then

σ̄Q,R

(
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) ≥ σV

α
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(�SOCk)2
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(
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Ik�SOCk
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(�SOCk)2

,

[25]
where the subscript Q, R denotes the combined Q and R estimation.

It is noticed that the standard deviations of the estimates are am-
plified by a factor of 1√√√√√√√√1−

(
N∑

k=1
Ik �SOCk

)2

N∑
k=1

(Ik )2
N∑

k=1
(�SOCk )2

as compared to those in

standalone estimation shown in Eq. 15 and Eq. 17. It can be shown

that the amplification factor is bounded by

1 ≤ 1√√√√√√√√1 −

(
N∑

k=1
Ik�SOCk

)2

N∑
k=1

(Ik)2
N∑

k=1
(�SOCk)2

< ∞. [26]

The amplification factor will be equal to 1, meaning no loss of accu-
racy, when the product of Ik and �SOCk adds up to zero over time,
for example, under the square-wave current shown in Figure 3a or
Figure 3c. The amplification factor will never be infinite, since it re-
quires the sequence Ik and sequence �SOCk to be linearly dependent
according to the Cauchy-Schwarz Inequality. It can be concluded that

� the accuracy of combined Q/R estimation will never exceed that
of the standalone estimation;

� larger variation of the product of Ik and �SOCk will reduce the
loss of accuracy;

� it is possible to avoid loss of accuracy under combined Q/R
estimation if the current profile is designed such that the product ofIk

and �SOCk is zero-sum over time.

For numerical illustration, the capacity estimation errors of the
combined Q and R estimation using the previous data set are calculated
and shown in Figure 5 (the third group). It is seen that under the
square-wave current, the SOC error standard deviation is the same as
that of standalone SOC estimation (for both NMC and LFP), which
agrees with the above conclusion that loss of accuracy can be avoided
with square-wave current. The same observation can be made for
resistance estimation shown in Figure 6 (comparing first group with
the third group).

Cramer-rao bound for combined estimation of three state/
parameters.— When all three state/parameters, SOC0, capacity Q,
and resistance R, need to be estimated, the Fisher information matrix
can be derived based on Eq. 5, Eq. 11a, Eq. 11b and Eq. 11c as
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The normalized Cramer-Rao bounds for combined estimation are then
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�SOCk

)(
N∑
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Ik�SOCk

)

N
N∑

k=1
(Ik)2

N∑
k=1

(�SOCk)2 − N
N∑

k=1
(Ik�SOCk)2

[28a]
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α
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�SOCk

)2 N∑
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N∑
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Ik�SOCk

)2

− 2

(
N∑
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Ik

)(
N∑
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�SOCk

)(
N∑

k=1
Ik�SOCk

)

N
N∑

k=1
(Ik)2

N∑
k=1

(�SOCk)2 −
(

N∑
k=1

Ik

)2 N∑
k=1

(�SOCk)2

[28b]

σ̄SOC,Q,R

(
R̂
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R

√
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(Ik)2
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(
N∑
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Ik

)2 N∑
k=1

(�SOCk)2 + N

(
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k=1
Ik�SOCk

)2

− 2

(
N∑

k=1
Ik

) (
N∑

k=1
�SOCk

) (
N∑

k=1
Ik�SOCk

)

N
N∑

k=1
(Ik)2

N∑
k=1

(�SOCk)2 −
(

N∑
k=1

�SOCk

)2 N∑
k=1

(Ik)2

[28c]

where the subscript SOC, Q, R denotes the combined SOC, Q and R
estimation.

Similar to the combined estimation of two state/parameters, the
standard deviation of each estimate can be expressed as the baseline
standard deviation under standalone estimation derived in Eq. 13,
Eq. 15 or Eq. 17 multiplied by an amplification factor. It can
be easily shown that all three amplification factors are bounded
between 1 and infinity. The amplification factor will be equal to

1, meaning no loss of accuracy, when
N∑

k=1
Ik = 0,

N∑
k=1

SOCk = 0,

and
N∑

k=1
Ik�SOCk = 0, for example, under the SOC-symmetric

square-wave current shown in Figure 3a. The amplification factor will
be infinity, indicating no identifiability, under the same conditions
as those in two-state/parameters combined estimation shown in the
previous section. It is concluded that

� the accuracy of combined SOC/Q/R estimation will never ex-
ceed that of the standalone estimation;

� current variation and SOC variation are both required for com-
bined SOC/Q/R estimation as the variance of the estimate will be
infinite otherwise, e.g. under single pulse or constant current, and
larger variation will reduce the loss of accuracy.

� it is possible to avoid loss of accuracy under combined SOC/Q/R
estimation if the current input is designed such that the current se-
quence Ik , SOC variation sequence �SOCk , and Ik�SOCk are all
zero-sum over time.

It is likely to hold but remains to be proven that the accuracy
of combined SOC/Q/R estimation will never exceed that of any
combined two-state/parameter estimation (need to show that the
amplification factors in Eq. 28a–28c are larger than those in Eq. 19,
Eq. 22 and Eq. 25).

The estimation errors of the combined SOC, Q and R estimation
are shown in Figure 4, Figure 5 and Figure 6 respectively (all in the
fourth group). It can be seen that the estimation accuracy deteriorates
as compared to that of standalone and combined estimation. The re-
sistance estimation does not suffer from obvious degradation though.
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Table II. Cramer-Rao Bounds for Battery SOC/capacity/resistance Estimation under Generic Current Input.

σ̄(SÔC) σ̄(Q̂) σ̄(R̂)

Standalone Estimation σV
α
√

N
σV

α

√
N∑

k=1
(�SOCk )2

σV

R

√
N∑

k=1
(Ik )2

Combined
2-state/

parameter
Estimation

SOC/Q σV
α
√

N
1√√√√√√√√1−

(
N∑

k=1
�SOCk )

2

N
N∑

k=1
(�SOCk )2

σV

α

√
N∑

k=1
(�SOCk )2

1√√√√√√√√1−
(

N∑
k=1

�SOCk )
2

N
N∑

k=1
(�SOCk )2

\

SOC/R σV
α
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N
1√√√√√√√√1−

(
N∑

k=1
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2

N
N∑

k=1
(Ik )2

\ σV

R

√
N∑

k=1
(Ik )2

1√√√√√√√√1−
(

N∑
k=1

Ik )
2

N
N∑

k=1
(Ik )2

Q/R \ σV

α

√
N∑

k=1
(�SOCk )2

1√√√√√√√√1−
(

N∑
k=1

Ik �SOCk )
2

N∑
k=1

(Ik )2
N∑

k=1
(�SOCk )2

σV

R

√
N∑

k=1
(Ik )2

1√√√√√√√√1−
(

N∑
k=1

Ik �SOCk )
2

N∑
k=1

(Ik )2
N∑

k=1
(�SOCk )2

Combined 3-state/parameter
Estimation

Eq. 28a Eq. 28b Eq. 28c

All the previously derived Cramer-Rao bounds have been summa-
rized in Table II.

Cramer-Rao Bounds for Battery SOC, Capacity and Resistance
Estimation under Featured Current Inputs

In this section, the derived Cramer-Rao bounds will be evaluated
under different featured current inputs, namely the constant current
and square-wave current. It will be shown what the bounds are under
these commonly seen currents, and how they degrade under combined
estimation as compared to standalone estimation. The bounds will also
be compared between different inputs.

The three considered inputs will take the form,

constant current: I (k) = I0, k = 1, 2, . . . N [29a]

square-wave: I (k) =

⎧⎪⎪⎨
⎪⎪⎩

I0, k = 1, 2, . . .
N

2

−I0, k = N

2
+ 1, . . . N

[29b]

SOC-symmetric square-wave:

I (k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I0, k = 1, 2, . . .
N

4

−I0, k = N

4
+ 1, . . .

3N

4

I0, k = 3N

4
+ 1, . . .

N

2

[29c]

as shown in Figure 7. The Cramer-Rao bounds have been calculated
and summarized in Table III for all three inputs (when the data points
N are large), where the SOC swing under the constant current is

denoted as

∇SOC
�= N I0�t

Q
. [30]

It is noted that the SOC swings under square-wave and SOC-
symmetric square-wave are ∇SOC

2 and ∇SOC
4 respectively.

It can be concluded from Table III that

1) under constant current

� SOC cannot be estimated together with resistance, but can
be estimated along with capacity at the cost of doubling the
estimation error;
� capacity can be estimated together with either SOC or resis-
tance, both at the cost of doubling the error;
� resistance cannot be estimated together with SOC, but can be
estimated along with capacity with doubled estimation error;
� the three cannot be estimated altogether;
� it is noted that the above conclusions are based on the as-
sumption of constant OCV slope α. Varying α could improve the
identifiability and reduce the errors. Indeed, it has been consid-
ered in Ref. 54 to improve the accuracy of SOC estimation by
introducing an abrupt change of slope on the OCV curve.

2) under square-wave current

� SOC can be estimated together with either capacity at the cost
of doubling the error, or resistance without loss of accuracy;
� capacity can be estimated together with either SOC at the cost
of doubling the error, or resistance without loss of accuracy;
� resistance can be estimated together with either SOC or capac-
ity, both without loss of accuracy;
� the three can be estimated altogether, and the estimation errors
for SOC and capacity will be doubled while that for resistance
remains unchanged;

Figure 7. Featured Current Inputs.
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Table III. Cramer-Rao Bounds for Battery SOC/capacity/resistance Estimation under Featured Currents (under sufficiently large N).

σ̄(SÔC) σ̄(Q̂) σ̄(R̂)

Constant
Current Square Wave

SOC
symmetric
Square- Wave

Constant
Current Square Wave

SOC
symmetric
Square-Wave

Constant
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Square-
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√
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√
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\

SOC/R ∞ σV
α
√

N
σV

α
√

N
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√
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N∇SOC
2σV
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√
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√
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∞ 2σV
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√

N
σV

α
√

N
∞ 4

√
3σV

α
√

N∇SOC
4
√

3σV
α
√

N∇SOC
∞ σV

I0 R
√

N
σV

I0 R
√

N

3) under SOC-symmetric square-wave current

� all three state/parameters can be estimated in group of 2 or 3
with no loss of accuracy.

It is noted that the SOC-symmetric square-wave current is the best
current profile among the three for estimation as the accuracy will
not degrade for any state/parameter under combined estimation. The
SOC-symmetric square-wave also has the same baseline (standalone
estimation) accuracy as that under the other two profiles for SOC and
resistance. The only exception appears to be the capacity as the error
standard deviation is 4 times of that under constant current or twice of
that under square wave. The reason is the smaller SOC swing under
the SOC-symmetric square-wave given the same current magnitude
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Figure 8. SOC and Capacity Estimation Errors under Standalone and Com-
bined Estimation (using square wave current and NMC equivalent circuit
model).

I0. Higher current can be applied to increase the SOC swing and
improve the accuracy for capacity estimation.

Simulation has been performed based on the equivalent circuit
model of the NMC battery to verify the theoretical derivation. In the
simulation, the square-wave current was used, with I0 = 10 A, SOC0

= 10% and a total simulation time of 2700 seconds giving a maximum
SOC of 90%. The state and parameters were estimated based on the
least squares algorithm using 12 data points (N = 12) which were
equally distributed in time. Gaussian noise with a standard deviation
of 10 mV was added to the voltage signal, and the simulation was
repeated by 10000 times. The standard deviation of the estimation
errors were calculated over repeated simulation and compared with
that predicted by the derived Cramer-Rao bound. The results are sum-
marized in Figure 8–10. In all three figures, subplot (a) shows the
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Figure 9. SOC and Resistance Estimation Errors under Standalone and Com-
bined Estimation (using square wave current and NMC equivalent circuit
model).
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Figure 10. Capacity and Resistance Estimation Errors under Standalone and
Combined Estimation (using square wave current and NMC equivalent circuit
model).

standalone estimation errors of two state/parameters over the repeated
estimation. The errors, denoted by dots, spread over the x and y axis
of the eSOC-eQ plane. Subplot (b) presents the distribution of errors
under combined estimation over the eSOC-eQ plane, and the standard
deviation of the estimation errors is labeled by the red dash frame.
In subplot (c), the standard deviation of the estimation errors is com-
pared with that predicted by the derived Cramer-Rao bound. It is seen
that in all cases, the Cramer-Rao bound matches well with the actual
standard deviation, demonstrating the validity of the derivation. The
results also agree with the prediction listed in Table III for the square-
wave current input. Using the error standard deviation (SD) under
standalone estimation as the benchmark, the SOC estimation error SD
under combined SOC-Q estimation is twice as much, and the error
SD under combined SOC-R estimation remains unchanged. Similarly,
the capacity estimation error SD doubles under SOC-Q combined es-
timation and does not change under Q-R combined estimation. The
resistance estimation error SDs are the same in all cases.

Conclusions

The accuracy of battery state/parameter estimation is affected by
the characteristics of the battery as well as those of the data set.
The main contributing factors to the accuracy of SOC estimation
are the slope of the OCV curve and number of data points, while
the accuracy of capacity estimation is affected by both OCV slope
and SOC variation, and that of resistance estimation depends heav-
ily on the current magnitude. The derived error bounds not only
agree with the existing rule of thumb for battery state/parameter
estimation, but also quantify the effect of the contributing
factors.

When some of the state/parameters are being estimated in a com-
bined fashion, loss of accuracy (as compared to standalone estimation)
is usually expected. As an extreme example, under constant current

input, the error variances for SOC and resistance combined estimation
are infinity (assuming constant OCV slope), indicating no estimabil-
ity. Nevertheless, it is still possible to avoid or minimize this loss of
accuracy if the current profile satisfies certain patterns. For example,
if the current adds up to zero over the data set, e.g. under square-wave
current shown in Figure 3c, the combined SOC and R estimation will
not only become possible, but also be free from loss of accuracy. In
general, if the current profile is designed such that current sequence Ik ,
SOC variation sequence �SOCk , and the product sequence Ik�SOCk

are all zero-sum over the data set, the combined estimation will not
suffer from extra loss of accuracy compared with standalone estima-
tion. Such current pattern will maximize the information contained in
the data set for state/parameter estimation, and could be considered
as a guideline for experiment design.

The methods and results presented in this paper can be extended in
several directions in future work. First, the analytic bounds for other
critical battery state/parameters, such as the R-C pairs in the equivalent
circuit model, can also be derived by following the same methodology.
Second, it is also interesting and of practical use to derive the bounds
under other typical current inputs, e.g. the sinusoidal current, and to
eventually design a specific current optimizing the identifiability by
minimizing the bounds. In addition, the current noise has not been
considered in this work at present. It is possible to incorporate the
current noise by using the total least squares framework.31,55
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