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Abstract: This paper presents a model and analysis for a flexible link with non-collocations of sensors and actuators. It shows the 
changes in the system dynamics and the appearance of zeroes in the right-plan complex, turning the system a non-minimum phase 
system. The performance of the PID (proportional-integral-derivative) and LQR (linear quadratic regulator) controller are discussed 
considering the zero dynamics of the system in three points of special interest: (1) the collocated case, when the sensor is in the base 
of the link; (2) the critical case, where the system starts to present zeroes in the right-plan complex and (3) the limit case, when the 
sensors are in the end point of the flexible link. Investigation for a simple rigid-flexible model with one mode, in the three cases, the 
PID and LQR controller performance are damage. To deal with this kind of problem, new control techniques should be developed.  
 
Key words: Satellite control, flexible system, non-collocated sensor and actuator. 
 

1. Introduction 

The artificial satellites are space structures 

composed by a central body with actuators, sensors, 

equipment’s and flexible links as the solar panels. 

Two important construction parameter that directly 

influences the system dynamics are the panel 

flexibility and the distance between the attitude 

sensors and actuators which are collocated over the 

satellite body. Sensors and actuators are known as 

non-collocation system while they are not located at 

the same place [1, 2]. The non-collocation of 

sensors/actuators has great influence in the satellite 

ACS (attitude control system) performance, since it 

can induce zeroes on the right complex plan, 

configuring a non-minimum phase system. Wang [3] 

presented the effect of non-collocation of sensors and 

actuators on flexible structures and concluded that 

LQR (linear quadratic regulator) is not sufficient to 

stabilize the system, being necessary to project a 
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LQG/LTR (linear quadratic gaussian/loop transfer 

recovery). Many others authors discussed the theme 

and design other controllers for this problem. A 

different approach, also based on an optimization of 

weight matrix was applied in Refs. [4, 5] to design a 

control system of flexible satellites that has presented 

sensor/actuator location problem. Another problem 

related to stability of rigid-flexible satellite is 

associated with fuel tanks inside the satellite when it is 

subject to large angle manoeuvre [6]. The flexibility 

motion and/or liquid vibration can introduce a 

tracking error resulting in a minimum attitude 

acquisition time [7]. A detailed investigation of the 

influence of the panel’s flexibility into the ACS 

design has been done by Ref. [8]. An experimental 

controller robustness investigation associated with 

parameters variation was done by Ref. [9], where the 

estimation of the platform inertia parameters was 

introduced as part of the platform ACS design. The 

problem of designing satellite non-linear controller for 

rigid satellite has been done by Ref. [9] using the 

SDRE (state dependent Riccati equation) method 
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which is able to deal with high non-linear plants. Due 

to the complexity of modelling the fluid and/or flexible 

dynamic of the system, it is common to use mechanical 

systems analogies that describe this dynamic. Besides, 

if one needs to know some physical parameters related 

with the slosh or the flexibility dynamics, it is common 

to obtain then by experimental apparatus or some kind 

of estimating method such as Kalman filter developed 

a control law to improve performance to drive rotary 

system. The optimal placement of the sensors/actuators 

of these systems analysed by Ref. [10] has projected 

H-infinity controller for non-collocated flexible 

structures. An extension of that concept with optimal 

sensor/actuator placement using a modified H-infinity 

control technique with a genetic algorithm was 

applied by Ref. [11]. This paper presents a preliminary 

investigation about the sensor/actuator location 

problem. One considers a simple rigid-flexible 

satellite and analyse the behaviours of the zeroes when 

the system chance from minimum phase to 

non-minimum phase situation. In the sequel, one 

design a PID (proportional-integral-derivative) and 

LQR controllers in order to show that traditional 

control techniques can have its performance damage 

when the system are non-minimum phase. These 

result, indicates that new control techniques need to be 

investigate to improve control system performance. 

The paper is organized as follows: Section 2 formulates 

the mathematical model using the Lagrangian 

formalism; Section 3 performs the zero dynamics 

analysis of the system; Section 4 investigates the 

design and the performance of the PID and LQR 

controllers; Section 5 gives conclusions.  

2. Mathematical Model 

The mathematical model used in this paper was 

formulated using the Lagrangian formalism. The 

model adopted is a pseudo-pinned model, in that the 

base of the link is considered pinned and the link can 

vibrate in one axis. There is a concentrated mass Mp in 

the point of link with inertia Jp. 

 
Fig. 1  Flexible parameters and coordinates system. 
 

The kinetic energy of the all structure is given by 

Eq. (1):  
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(1) 
where, T is the kinetic energy, JH is the hub inertia, α 

is the vibration angle, r is the vector position, Mp is 

the concentrated mass in the end of the hub, Jp is the 

inertia associated with the mass Mp, L is the length of 

the flexible structure. 

The potential energy is given by Eq. (2): 
22
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The derivation of equations of motion has been 

done using the Lagrangian formalism. The elastic 

displacement can be written as a function of the time 

and space.  

( , ) ( ) ( )p p pt x q t x             (3) 

Substituting the previous equations in the Lagrange 

equations and after some manipulation the equation of 

motion is given by Eqs. (4) and (5). 
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The general solution of the system is: 

ሻݔሺ݌ߔ ൌ ሻݔߚsinሺܣ ൅ ሻݔߚcosሺܤ ൅  ሻݔߚsin݄ሺܥ 

൅ܦcos݄ሺݔߚሻ ൅  (7)              ܨ

q(t) = q(0)cos(ωt) + q(0)sin(ωt)        (8) 

Assuming that B = -D is possible to simplify to 

obtain the natural frequencies given by Eq. (9): 

2 , 1, 2..i i

EI
i 


            (9) 

These equations in the linear model form is:  
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In the space state form, one has:  

x Ax Bu                (11) 
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The state x represents the elastic displacement and 

its variation with time and u is the control law to be 

designed. If damping is considered in the model the 

matrices A and D are modified becoming: 
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3. Zero Dynamics Analysis 

In the zero dynamics analysis, three points have 

specially interest:  

(1) the collocated case, when the sensor is in the 

base of the link (x = 0);  

(2) the critical case, where the system starts to 

present zeroes in the right-plan complex (x = 0.7888 

L); 

(3) the limit case, when the sensors are in the end 

point of the flexible link (x = L). 

The zero dynamics are also related with the 

damping of the system, besides the position of the 

sensors along the structure.  

The parameters data used in the model are: L = 

1,000 m, h = 50 mm, b = 3 mm, ρ = 4 kg/m3, I = 1.2 

Kg m2. It is considered Jh = 0.01, Jp = 0, Mp = 0, ξ = 

0.01, bh = 0.05.  

It can be observed in Figs.1 and 2 that in the cases 

that the system is considered collocated and with 

small damping in the system, the Bode diagram do not 

present overshoots beyond resonance in natural 

frequencies and all the poles and zeroes stay in the 

left-plan complex. 

If the position of the sensor varies along the 

structure, it is possible to find the position where the 

system start to presented zeroes in the right-plan 

complex, in other words, it becomes to be a 

non-minimum phase system. For the structure 

considered, the transition point is located in 78.88% of 

the length, starting in the base of the flexible link. In 

this frequency, an anti-resonant frequency appears as 

illustrated in the previously Bode diagram of Fig. 4 

and the zeroes cross the imaginary axis of Fig. 5.  
 

 
Fig. 2  Bode diagram sensor located at x = 0. 
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Bode diagram (flexpin) : input=torque, output=tip angle 
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Fig. 3  Pole-Zero map sensor located at x = 0. 
 

 
Fig. 4  Bode diagram sensor located at x = 0.788 L. 
 

 
Fig. 5  Pole-Zero map sensor located at x = 0.7888 L. 
 

Finally, Figs. 6 and 7 shows the limit case, when 

the sensors are in the end point of the flexible link (x = 

L), which characterizes the non-collocated 

sensor/actuator with small damping in the system. One 

observes, that the Bode diagram present overshoots 

just in the resonance natural frequencies and that some 

the zeroes move and stay in the right-plan complex. 

From the investigation, one has observed that the 

zero dynamics of the system is too sensitive to the 

sensor/actuator location and damping. This is a very 

important point when designing the ACS for 

rigid-flexible satellite because the sensor/actuation 

problem can degrade the accuracy of the satellite 

pointing. And it will be shown in the next section. 

The transfer functions for the three cases are 

showed in Table 1, from which one can observe that 

the poles of the system do not chance. But, the great 

change of the zeroes position happens from the sensor 

position x = 0.788l to x = L, due to the change in the 

numerator signal of the transfer function. 

4. Controller Design 

The controller design is performed based on the 

linear space state system model, considering that the 

system has only one flexible mode. The LQR 

controller is designed, based on the optimal control 

theory [6] which objective is to minimize the 

functional given by Eq. (12):  

2 2

0

|| ( ) || || ( ) || dLQRJ z t u t t


      (12) 

where, z are the states, rho is the design tuning 

parameters and u is the control law is given by  

-u Kx                (13) 

where, the gain K is given by Eq. (14): 

' 1 ' '( ) ( )K H QH R B P H QG       (14) 

which is associated with the solution of the algebraic 

Riccati equation given by Eq. (15): 

்ܲܣ ൅ ܣܲ ൅ ܩܳ ்ܩ െ ሺܲܤ ൅ ሻܪ்ܳܩ   כ

ܪܳ ்ܪ ൅ ܲ ்ܤሻିଵ ሺܴߩ ൅ ሻܩܳܪ ൌ 0     (15) 

Let us consider as a performance specification that 

the controller must follow a reference position of 30° 
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Table 1  Transfer functions. 

Sensor position  
(% of length) 

Transfer function (1 mode) System type 

X = 0 
2
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X = 0.7888 
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  
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Fig. 6  Bode diagram sensor located in x = L. 
 

 
Fig. 7  Pole-Zero map sensor located in x = L. 
 

and that the initial condition of satellite position and 

velocity are zero. In order to compare the LQR 

controller performance, one has also designed a 

traditional PID controller. The PID gains Kp, Ti and Td 

and the LQR gains are showed in Table 2.  

The PID and LQR controllers performance are 

showed in Figs. 8-10 for the cases that the sensor is 

located in x = 0, x = 0.788l and x = L, respectively. 

Table 2  Controllers PID and LQR. 

PID Position Kp Td Ti 

 0 522 0.1233 0.0382 

 0.7888 168 0.2008 0.05021 

 1 75 0.2775 0.06937 
 

LQR Position K 

  0 |1.6903 0.0 |  

  | 2.1311 0.0 | 

  0.7888 |1.6903 0.0070| 

  |2.1318 0.0027| 

  1 |1.6903 0.0070| 

  |2.1348 0.0040|  

5. Conclusions 

This paper presents a preliminary investigation 

about the sensor/actuator location problem. One 

considers a simple rigid-flexible satellite and analyse 

the behaviours of the zeroes when the system chance 

from minimum phase to non-minimum phase situation. 

In the sequel, one design a PID and LQR controllers 

in order to show that traditional control techniques can 

have its performance damage when the system are 

non-minimum phase. These result, indicates that new 

control techniques need to be investigate to improve 

control system performance. Besides, from that 

investigation, considering that simple rigid-flexible 

link model, one can observe that the non-collocated 

sensor/actuator problem is very sensitive and that the 

sensor wrong position can result in the appearance of 

zeroes  in  the  right  half-plane. Therefore, when 

rigid-flexible satellite has a very demanding control 

system with a pointing accuracy, the ACS design must 

be  performed  very  carefully,  since  the  flexible 

structure can become unstable when control loop is 
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Fig. 8  PID and LQR, sensor at x = 0. 
 

 
Fig. 9  PID and LQR, sensor at x = 0.788 L. 

 
Fig. 10  PID and LQR, sensor at x = L. 
 

feedback with the wrong information about the real 

attitude and flexible displacement of the satellite. It is 

important to know where is the exact point where the 

sensor/actuator problem starts to damage the dynamics 

stability of the system. For the specific system 

investigated here the transition point, where the zeroes 

cross the imaginary axis limit, is located at 78.88% of 

the structure length. Finally, one has to stress that the 

investigation here has considers only one flexible 

mode, and that an investigation with more modes is 

necessary.  
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