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Abstract— Human action recognition is an important yet 
challenging task. This paper presents a low-cost descriptor called 
3D histograms of texture (3DHoTs) to extract discriminant 
features from a sequence of depth maps. 3DHoTs are derived 
from projecting depth frames onto three orthogonal Cartesian 
planes, i.e., the frontal, side, and top planes, and thus  com-  
pactly characterize  the salient information of a specific action,  
on which texture features are calculated to represent the action. 
Besides this fast feature descriptor, a new multi-class boosting 
classifier (MBC) is also proposed to efficiently exploit different 
kinds of features in a unified framework for action classification. 
Compared with the existing boosting frameworks, we  add  a  
new multi-class constraint into the objective function, which 
helps to maintain a better margin  distribution by  maximizing 
the mean of margin, whereas still minimizing the variance of 
margin. Experiments on the MSRAction3D, MSRGesture3D, 
MSRActivity3D, and UTD-MHAD data sets  demonstrate  that 
the proposed system  combining 3DHoTs  and MBC is superior  
to the state of the   art. 

Index Terms— Action recognition, multi-class classification, 
boosting classifier, depth image, texture  feature. 

 

I. INTRODUCTION 

UMAN action recognition has been an active research 

topic in computer vision in the past 15 years. It can facil- 

itate a variety of applications, ranging from human computer 

interaction [1]–[3], motion sensing based gaming, intelligent 

surveillance to assisted living [4]. Early research mainly 

focuses on identifying human actions from video sequences 

captured by RGB video cameras. In [5], binary motion- 

energy images (MEI) and motion-history images (MHI) are 

used to represent where motion has occurred and  characterize 
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human actions. In [6], a low computational-cost volumetric 

action representation from different view  angles  is  utilized  

to obtain high recognition rates. In [7], the notion of spatial 

interest points is extended to the spatio-temporal domain  

based on the idea of the Harris interest point operator. The 

results show  its  robustness  to  occlusion  and  noise.  In  [8], 

a motion descriptor built upon the spatio-temporal  optical 

flow measurement is introduced to deal with low resolution 

images. 

Despite the great progress in the past decades, recognizing 

actions in the real world environment is still problematic. With 

the development of RGB-D cameras, especially Microsoft 

Kinect, more recent research works focus on action recognition 

using depth images [9], [10] due to the fact that depth infor- 

mation is much more robust to changes in lighting conditions, 

compared with the  conventional RGB  data.  In  [11],  a  bag 

of 3D points corresponding to the nodes in an action graph is 

generated to recognize human actions from depth sequences. 

Alternatively, an actionlet ensemble model is proposed in [12] 

and the developed local occupancy patterns are shown to be 

immune to noise and  invariant to  translational and  tempo-  

ral misalignments. In [13], Histograms of  Oriented  Gradi- 

ents (HOG) computed from Depth  Motion  Maps  (DMMs) 

are generated, capturing body shape and motion information 

from depth images. In [14], Chen et al. combine Local Binary 

Pattern (LBP) and the Extreme Learning Machine (ELM), 

achieving the best performance on their own datasets. In sum- 

mary, although depth based methods have been popular, they 

cannot perform reliably in practical applications where large 

intra-class variations, e.g., the action-speed difference, exist. 

Such a drawback is mainly caused by two algorithm designing 

faults. First, the visual features fed into the classifier are  

unable to obtain different kinds of discriminating information, 

the diversity of which is required in building a robust classifier. 

Second, few works take the theoretical bounds into account 

when combining different learning models for classification. 

We perceive that most existing works empirically stack up 

different learning models without any theoretical guidance, 

even though the results are acceptable in some   situations. 

To improve the robustness of the system, especially for 

practical application usage, we propose  a  feature  descrip-  

tor, namely 3D Histograms of Texture (3DHoTs), which is  

able to extract discriminative features from depth images. 

More specifically, 3DHoT is an extension of our previous 

DMM-LBP descriptor in the sense that the complete local 

binary pattern (CLBP) proposed in [15] for texture classifi- 

cation is employed to capture more texture features, thereby 

enhancing the feature representation capacity. This new feature 
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is able to describe the motion information from various per- 

spectives such as sign, magnitude and local difference based on 

the global center. Besides, we also improve the classification 

by combining the extreme learning machine  (ELM)  and  a 

new multi-class boosting classifier (MBC). This paper is an 

extension of [60] in the sense  that we provide the theoreti-   

cal derivation of our objective which aims to minimize the 

variance of margin samples following the Gaussian Mixture 

Model (GMM) distribution. From the theoretical perspective, 

our classification technique is an ensemble of base classifiers 

on different types of features, making it possible to tackle 

extremely challenging action recognition tasks. In summary, 

our work differs from the existing work in two   aspects. 

1. The primary contribution lies in a multi-class boosting 

classifier, which enables to exploit different kinds of features 

in a unified framework. Compared to the existing boosting 

frameworks, we add a new multi-class constraint into the 

objective function, which helps to maintain a better margin 

distribution by maximizing the mean margin while controlling 

the margin variance even if the margin samples follow a 

complicated distribution, i.e., GMM. 

2. We enhance our previous DMM-LBP descriptor [9] by 

using a more advanced texture extraction model CLBP [15]. 

This new 3DHoTs feature combining DMM and CLBP 

encodes motion information across depth frames and local 

texture variation simultaneously. Using this representation can 

improve the performance of depth-based action recognition, 

especially for realistic applications. 

The rest of the paper is organized as follows. Section II 

briefly reviews related work on depth feature representations. 

Section III describes the details of 3DHoT features. Section IV 

introduces the multi-class boosting method as well as its theo- 

retical discussions. Experimental results are given in Section V. 

Some concluding remarks are drawn in Section  VI. 

 
II. RELATED WORK 

Recently, depth based action recognition methods have 

gained much attention due to their robustness to changes in 

lighting conditions [16]. Researchers have made great efforts 

to obtain a distinctive action recognition system based on 

depth or skeleton models.  This  section  presents  a  review  

on related work with focuses on feature representations for 

depth maps and classifier fusion, which are in line with our 

two contributions. 

 
A. Feature Representation for Action  Recognition 

Two commonly used visual features for  action  recogni- 

tion are handcrafted feature and learned feature. The former 

captures certain motion, shape or texture attributes of the 

action using statistical approaches while the latter automati- 

cally obtains intrinsic representations from a large volume of 

training samples in a data-driven manner  [17]. 

Skeleton joints from depth images are typical handcrafted 

features for use  in  action recognition, because they provide   

a more intuitive way to perceive human actions. In [18],  

robust features based on the probability distribution of skeleton 

data were extracted and followed by a multivariate   statistical 

method for encoding the relationship between the extracted 

features. In [19], Ofli et al. proposed a Sequence of Most 

Informative Joints (SMIJ) based on the measurements, such   

as the mean and variance of joint angles and the maximum 

angular velocity of body joints. A descriptor named Histogram 

of Oriented Displacements (HOD) was introduced in [20], 

where each displacement in the trajectory voted with its length 

in a histogram of orientation angles. In [21], a HMM-based 

methodology for action recognition was developed using star 

skeleton as a representative descriptor of human postures. 

Here, a star-like five-dimensional vector based on the skele- 

ton features was employed to represent local human body 

extremes, such as head and four limbs. In [22], Luo et al. 

utilized the pairwise relative positions between joints as the 

visual features and  adopted a dictionary learning algorithm   

to realize the quantization of such features. Both the group 

sparsity and geometry  constraints  are  incorporated in  order 

to improve the discriminative power of the learned dictio- 

nary. This approach has achieved the best results on two 

benchmark datasets, thereby representing the current state- of-

the-art. Despite the fact that skeleton-based human action 

recognition has achieved surprising performance, large storage 

requirement and high dimensionality of the feature descriptor 

make it impractical, if not impossible, to be deployed in real 

scenarios, where low-cost and fast algorithm is  demanded. 

Alternatively, another stream of research tried to capture 

motion, shape and texture handcrafted features directly from 

the depth maps. In  [23], Fanello  et  al. extracted two  types  

of features from each image, namely Global Histograms of 

Oriented Gradients (GHOGs) and 3D Histograms of Flow. 

The former was designed to model the shape of the silhouette 

while the latter was to describe the motion information. These 

features were then  fed  into  a  sparse  coding  stage,  leading 

to a compact and stable representation of the image content.  

In [24], Tran and Nguyen introduced an action recognition 

method with the aid of depth motion maps and a gradient 

kernel descriptor which was then evaluated using different 

configurations of machine learning techniques such as Support 

Vector Machine (SVM) and kernel based Extreme Learning 

Machine (KELM) on each projection view of the  motion  

map. In [25], Zhang et al. proposed an effective descriptor, 

called Histogram of 3D Facets (H3DF), to explicitly encode 

the 3D shape and structures of various depth images by  

coding and pooling 3D Facets from  depth images. In  [66],  

the kernel technique is used to improve the performance for 

processing nonlinear quaternion signals; in addition, both RGB 

information and depth information are deployed to improve 

representation ability. 

Different from the above methods that rely on handcraft 

features, deep models learn the feature representation from 

raw depth data and appropriately generate the high level 

semantic representation. In our previous work [26], Wang et al. 

proposed a new deep learning framework, which only required 

small-scale CNNs but achieved higher performance with less 

computational costs. In [27], DMM-Pyramid architecture that 

can partially keep the temporal ordinal information was pro- 

posed to preprocess the depth sequences. In their  system, 

Yang  et  al.  advocated  the  use  of  the convolution operation 



 

 

to extract spatial and temporal features from raw video data 

automatically and extended DMM to DMM-Pyramid. Subse- 

quently, the raw depth sequences can be accepted by both 2D 

and 3D convolutional networks. 

From the extensive work on depth map based action recog- 

nition, we have observed that depth maps actually contain rich 

discriminating texture information. However,  most  methods 

do not take it into account when generating their feature 

representations. 

B. Classifier Fusion 

In a practical action recognition system, the classifier plays 

an important role in determining the performance of the 

system, thereby gaining much attention. Most existing systems 

just adapted the single classifier, such as SVM [28], ELM [29] 

and HMM [21], into the action recognition field, and are 

sufficiently accurate when recognizing simple actions like 

sitting, walking and running. However, for more complicated 

human actions, such as hammering a nail, existing works have 

proved that combining multiple classifiers especially weak 

classifiers usually improves the recognition rate. Apparently, 

how to combine basic classifiers becomes  crucial. 

In [9], Chen et al. employed three types of visual features, 

each being fed into a KELM classifier. At the decision level,   

a soft decision fusion scheme, namely logarithmic  opinion 

pool (LOGP) rule, merged the probability outputs and assigned 

the final class label. Instead of using specific fusion rules, most 

algorithms adopted the boosting schemes, which iteratively 

weigh different single classifiers by manipulating the training 

dataset, and on top of it, selectively combine them depending 

on the weight of each classifier. For example, a boosted exem- 

plar learning (BEL) approach [30] was proposed to recognize 

various actions, where several exemplar-based classifiers were 

learned via multiple instance learning, given a certain number 

of class-specific candidate exemplars. Afterwards, they applied 

AdaBoost to integrate the further selection of representative 

exemplars and action modeling. 

Recently, considerable research has been devoted to multi- 

class boosting classification as it is able to facilitate a broad 

range of applications including action recognition [31]–[33]. 

Flowing [32], [39] and many other publications, we generally 

divide the existing works into two categories depending on 

how they solved the M-ary (M>2) problems. In the first 

category, the proposed approaches decompose the desired 

multi-class problem into a collection of multiple independent 

binary classification problems, basically treating an M class 

problem as an estimation of a two-class classifier on the 

training set M times. Representatives include ECOC [31], 

AdaBoost.MH [34], binary GentleBoost algorithm [35], and 

AdaBoost.M2 [36]. In general, this type of multi-class boost- 

ing methods can be easily implemented based on the con- 

ventional binary AdaBoost, however, the system performance 

is not satisfactory due to the fact that binary boosting scores 

do not represent true class probabilities. Additionally, such a 

two-step scheme inevitably creates resource problems by 

increasing the training time and memory consumption, espe- 

cially when dealing with a large number of   classes. 

To overcome this drawback, the second approach directly 

boosts an M-ary classifier via optimizing a multi-class expo- 

nential loss function. One of the first attempts was the 

AdaBoost.M1 algorithm [36]. Similar to the binary AdaBoost 

method, this algorithm allowed for any weak classifier that  

has an error rate of less than 0.5. In [38], a new variation of 

the AdaBoost.M1 algorithm, named ConfAdaBoost.M1, was 

presented, which used the information about how confident 

the weak learners are to predict the class of the instances. 

Many researches boosted M-ary classifier by redefining the 

objective functions. For example, in [37] Zou et al. extended 

the binary Fisher-consistency result to multi-class classifica- 

tion problems, where the smooth convex  Fisher-consistent 

loss function is minimized by employing gradient decent. 

Alternatively, Shen et al. [32] presented an extension of the 

binary totally-corrective boosting framework to the multi-class 

case by generalizing the concept of  separation  hyperplane 

and margin derived from the famous SVM classification. 

Moreover, the class label representation problem is discussed 

in [33], which exploited different vector encodings for rep- 

resenting class labels and classifier responses to model the 

uncertainty caused by each weak-learner. From the perspective 

of margin theory as shown in [39], researchers defined a proper 

margin loss function for M-ary classification and identified an 

optimal codebook. And they further derived two boosting algo- 

rithms for the minimization of the classification risk. In [40], 

Shen et al. assumed a Gaussian distribution of margin and 

obtained a new objective, which is one of the most well-known 

theoretical results in the field. 

To sum up, most of existing works, especially the multi- 

class ones focused on solving weak classifier selection and  

the imbalance problem by introducing more robust loss func- 

tions. From the margin theory perspective  [40],  they  are  

only able to maximize the hard-margin or the minimum  

margin when the data follows a simple distribution (Gaussian). 

According to the theoretical evidences in [40], a good 

boosting framework should aim for maximizing the average 

margin. Such problems were addressed in other learning 

methods, e.g., SVM, by employing the soft-margins, which 

actually inspired our work. Unlike [40] and other existing 

works [31], [32], and [39], we assume a more reasonable 

multiple Gaussian distribution of margin. When dealing with   

a multiple-class (one versus all) problem, evidently it is hard 

to assume that the margin follows a  single Gaussian. Based  

on our GMM assumption, we design an objective function, 

intending to minimize the variance of margin samples that 

follow the GMM distribution. 

III. 3-D HISTOGRAMS OF TEXTURE 

On a depth image, the pixel values indicate the distances 

between the surface of an object and a depth camera location, 

therefore providing 3D structure information of a scene. Com- 

monly, researchers utilize the 3D information in the original 

3D space, but we project each depth frame of a depth sequence 

onto three orthogonal Cartesian planes so as to make use of 

both the 3D structure and shape information [13]. Basically, 

our  3DHoTs  feature  extraction  and  description  consists  of 
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Fig. 2. Sign  and magnitude  components  extracted  from a sample  block. 

(a) 3×3 sample block; (b) the local differences; (c) the sign component of 
block; and (d) the magnitude component of   block. 

 

 

 

Fig. 1. Salient Information (SI) maps. From the left to the right:  front (f)  
view,  side (s) view and top (t)  view. 

 

 

two steps: salient information map generation and CLBP based 

in Eq. (2), the SI map for v = 1 contains more salient 

information than that of v =  2: 
N −2 

2(| p2 − p1| + 
. 

| pi+1 − pi | + | pN − pN −1|) 

i=2 

feature description, each being elaborated  below. 

 

A. Salient Information (SI) Map  Generation 

≥ | p2 − p1| + 2 

N −2 
. 

N −2 
. 
 

i=2 

| pi+1 − pi | + | pN − pN −1| 

The idea of SI is derived from DMM [13], which is 

generated by stacking motion energy of depth maps projected 

onto three orthogonal Cartesian planes. After obtaining each 

projected map, its motion energy is computed by thresholding 

the difference between consecutive maps. The binary map of 

motion energy provides a strong clue of the action category 

being performed and indicates motion regions or where move- 

ment happens in each temporal  interval. 

More specifically, each 3D depth frame generates three 2D 

projected maps aligning with front (f), side (s), and top (t) 

views, i.e., p f , ps and  pt ,  respectively.  The  summation  of 

the absolute differences of  consecutive projected maps  can  

be used to imply the  motion  within  a  region.  The  larger  

the summation value, the more likely the motion frequently 

occurs in that region. Considering both the discriminability and 

robustness of feature descriptors, authors used the  L1-norm  

of the absolute difference between two projected maps to 

define salient information (SI) in  [14].  On  the  one  hand,  

the summation of L1-norm is invariant to the length  of  a 

depth sequence. That is to  say,  we will  be  less  influenced  

by mismatched speeds of performing the same action by 

different people. On  the  other hand, L1-norm contains  more 

salient information than other norms (i.e., L2) and it is fast to 

compute. Consequently, the SI maps of a depth sequence   are 

≥ | pi+2 − pi |. (2) 
i=1 

The scale in the above expression affects little on the local 

pattern histogram. The result is evident, considering the fact 

that: 

| pi+2 − pi+1| + | pi+1 − pi | ≥ | pi+2 − pi | . (3) 

Instead of accumulating binary maps result from comparing 

with the threshold, SI obtains more detailed feature than 

original DMM does, based on which we further introduce a 

powerful texture descriptor inspired by CLBP [15]  method. 

 
B. CLBP Based Descriptor 

Our CLBP based descriptors represent SI maps from three 

aspects, which are: 

1) Sign based descriptor for Salient Information: Given a 

center pixel tc in the SI image, its neighboring pixels are 

equally scattered on a circle with radius r  (r  > 0). If the coor- 

dinates of tc are (0, 0) and m neighbors {ti }
m−1 

are considered, 

the  coordinates  of  ti   are(−r sin   (2πi/m), r cos    (2πi/m)). 
The sign descriptor is computed by thresholding the neighbors 

{ti }m−1 with the center pixel tc to generate an m-bit binary 
number, so that it can be formulated   as: 

computed as: m−1 m−1 

Signm,r(tc) = 
. 

s(ti − tc)2i = 
. 

s(di)2i, (4) 
B−v SI ∗ = 
. . 

p∗  − p∗., (1) i=0 i=0 
. 

i+v i 

.
 where d (t t ).s(d ) 1 if d 0 and s(d  ) 0 if 

i  = i − c i   = i  ≥ i   = 
i=1 

where ∗ denotes f, s or t. The parameter v stands for  the 
frame interval, i represents the frame index, and B is the total 
number of frames in a depth sequence. An example of the   SI 

maps of a depth action sequence is shown in Fig. 1. In the  

case that the sum operation in Eq. (1) is only used given a 

threshold satisfied, it is similar to the idea of   [13]. 

Instead of selecting frames as in original DMM [13], 

however, in [60], the authors proposed that all frames should 

be  deployed  to   calculate  motion  information.  As    shown 

di  < 0. After obtaining the sign based encoding for pixels in  

an SI image, a block-wise statistic histogram named HoT_S is 

computed over an image or a region to represent the texture 

information. 

2) Magnitude based descriptor for Salient Information: The 

magnitude is complementary to sign information in the sense 

that the difference di can be  reconstructed  based  on  them. 

Fig. 2 shows an example of the sign and magnitude compo- 

nents extracted from a sample block. The local differences are 

decomposed into  two  complementary components: the  signs 
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Fig. 3.    Pipeline of 3DHoTs feature  extraction. 
 

 

and magnitudes (absolute values of di , i.e. |di |). Note that “0” 
is coded as “-1” in the encoding process (see Fig. 2 (c)). The 
magnitude operator is defined as follows: 

m−1 

Magnitudem,r = 
. 

ϕ (|di | , c)2
i
, 

i=0 .
1,   σ  ≥ c 

IV. DECISION-LEVEL CLASSIFIER FUSION BASED 

ON MULTI-CLASS BOOSTING SCHEME 

As can be seen, we use multi-view features in order to 

capture the diversity of the depth image. Normally, the dissim- 

ilarity among features from different views is large. To solve 

this multi-view data classification problem, the majority of the 

research in this field advocates the use of the boosting method. 

The basic idea of a boosting method is to optimally incorporate 

multiple weak classifiers into a single strong classifier. Here, 

one view of features can be fed into one weak   classifier. 

As an outstanding boosting representative, AdaBoost [40] 

incrementally builds an ensemble by training each new model 

instance to emphasize the training instances that are mis- 

classified previously. In this paper, we concentrate on this 

framework, based on which we introduce a new multi-class 

boosting method. 

Supposed we have n weak/base classifiers and hi(x) denotes 

the i th base classifier, a boosting algorithm actually seeks for  
a convex linear combination: 

n 

F(α, x) = 
. 

αihi(x), (7) 

ϕ (σ, c) = , (5) 
0,   σ < c i=1 

where c is a  threshold  setting  to  the  mean  value  of  |di | 
on the whole image. A block-wise statistic histogram named 
HoT_Magnitude (HoT_M) is subsequently computed over an 
image or a  region. 

3) Center based descriptor for Salient Information: The 

center part of each block which encodes the values of the 

center pixels also provides discriminant information. It is 

denoted as: 

Centerm,r = ϕ (tc, c1) , (6) 

where  ϕ  is  defined  in  Eq.  (5)  and  the  threshold  c1   is   

set as the average gray level of the whole image. Subse- 

quently, we obtain the histograms of center based texture 

feature (HoT_C) over a SI image or a   region. 

To summarize, in our feature extraction method, each depth 

frame from a depth sequence are first projected onto three 

orthogonal Cartesian planes to form three projected maps. 

Under each projection plane, the absolute differences between 

the consecutive projected maps are accumulated over an entire 

sequence to generate a corresponding SI image. Then each SI 

image is divided into overlapped blocks. Each component of 

the texture descriptors is applied to the blocks and the resulted 

local histograms of all blocks are concatenated to form  a 

single feature vector. Therefore, each  SI  image creates  three 

histogram feature vectors denoted by HoT _∗S, HoT _∗M  and 

HoT _∗C , respectively. Since there are three SI images cor- 
responding to three projection views (i.e., front, side and    top 

views), three feature vectors are generated as final feature vec- 

tors as follows. The feature extraction procedure is illustrated 

in Fig. 3. 

where αi is a weight coefficient corresponding to the i th weak 

classifier. Apparently, AdaBoost method can be decomposed 

into two modules: base classifier construction and classifier 

weight calculate, given training samples. 

 
A. Base Classifier: Extreme Learning Machine 

In principle, the base classifiers in AdaBoost can be any 

existing classifiers performing better than random guessing. 

But the better a base classifier is, the greater the overall deci- 

sion system performs. Therefore, we use the ELM method [29] 

in our work, which is an efficient learning algorithm for single- 

hidden-layer  feed-forward  neural  networks  (SLFNs).  More 

specifically, let y = [y1, ..., yk, ..., yC ]T ∈ RC  be the class to 

which a sample belongs, where yk ∈ {1, −1}(1 ≤ k ≤ C) and  
C  is  the  number of  classes.  Given  N  training samples 

{xi, yi }N , where xi ∈ RM and yi ∈ RC , a single hidden layer 
neural network having L  hidden nodes can be expressed  as 

L 
. 

βjh(w j · xi + e j ) = yi, i = 1, . . .  , N, (8) 

j =1 

where  h(·)  is  a  nonlinear  activation  function  (e.g.,  Sigmoid 
function), β j  ∈ RC  denotes the weight vector connecting the 

j th hidden node to the output nodes, w j ∈ RM denotes the 
weight  vector  connecting  the  j th  hidden  node  to  the input 

nodes, and e j  is  the bias of the  j th  hidden node. The  above 

N  equations can be written compactly  as: 

Hβ = Y, (9) 

where  β  = [β T ; ... ; βT ] ∈ RL×C, Y  = [yT ; ... ; yT ] ∈ 
1 L 1 N 

3DHoT _S = [HoTf  _S, HoTs_S, HoTt _S] 

3DHoT _M = [HoTf  _M, HoTs_M, HoTt _M] 

3DHoT _C = [HoTf  _C, HoTs_C, HoTt _C] 

RN ×C , and H is the hidden layer output matrix. A least- 
squares solution β̂  of (8) is found to be 

β̂ = H†Y, (10) 



 

i 

α 

α 

C 

j 

− 

x i × j 
   

θ
 

 

where H† is  the  Moore-Penrose  generalized  inverse  of 

matrix H. The output function of the ELM classifier   is 

The effect of λ on the system performance is investigated in 

the experimental results part. x 
j  

denotes the i th sample in the 

fL(xi) = h(xi)β = h(xi)H
T

 

. 
I
 

HHT
 

ρ 

.−1  

Y, (11) 
j th class with Nj samples. We make use of the interior point 
method to  solve  our  objective. Here,  we  further discuss the 
theoretical advantage behind the new objective  function. 

where 1/ρ is a regularization term and ρ is set to be 1000.  The 

label of a test sample is assigned to the index of the output 

nodes with the largest value. In our experiments, we use a 

kernel-based ELM (KELM) with a radial basis function (RBF) 

kernel (the parameter gamma in RBF is set to be    10.5). 
 

B. Multi-Class Boosting Classifier 

Having specified the base classifier, the next step is to intro- 

duce our new multi-class boosting classifier. Our investigation 

is carried out from the perspective of margin sample distribu- 

tion, in contrast to the traditional methods that focus on solving 

the weak classifier selection and the imbalance problem. One 

of the obvious advantages lies in the alleviation of the over- 

fitting problem through weighing the samples. As another 

intuition, inspired by [40], we investigate AdaBoost based on 

a more reasonable hypothesis on the margin distribution and 

obtain a new theoretical result. 

Following Eq. (7), AdaBoost is equivalent to minimizing 

the exponential loss function  [42]: 
N 

min 
. 

exp(−yi F(α, xi)), s.t.α ≥ 0. (12) 

i=1 

The logarithmic function log  (·) is a strictly monotonically 
increasing function and it is easy to calculate the minimum 
value of a non-exponential function. Therefore, after a loga- 
rithmic processing, AdaBoost equals to solve  [42]: 

N 

min log(
. 

exp(−yi F(α, x i))), s.t .α ≥ 0, "α"1 = δ.    (13) 

i=1 

The constraint "α"1 = δ avoids enlarging the solution α by 

an arbitrary large factor to make the cost function approach 
zero in the case of separable training data. In [43], Crammer 
and  Singer propose to  construct  multiclass  predictors with a 

piecewise linear bound. Considering the simplicity and the 

efficiency of a linear function, we use the following rule for 

this C-class classification, 

arg max{θ T, j · x }, (14) 
j =1 

where θ j is a vector. And then we heuristically propose the 

following linear objective function: 

max(θ T, j · x − θ T,m · x), (15) 

where m /=  j . Next, we  incorporate this linear objective  
and a multiple-class constraint into a  simple  form  of 
AdaBoost described   in   Eq.   (13).   Eventually,   a multi-
class boosting method to calculate the weight vector 
separately for each class 

can be achieved through minimizing the following objective: 

min(log (
. 

ωi exp(   yi F(θ j , x i))) j 

The margin theory used in SVM is the state-of-the-art 

learning principle. The so-called dual form of AdaBoost is 

another significant work related to the margin theory. The latter 

one is quite close to our work, which is briefly introduced  

with the focus on explaining their difference. In [40], authors 

assume a Gaussian distribution of margin, and based on  it, 

they theoretically explain the state-of-the-art margin method 

(AdaBoost). However, for a multiple-class (one versus all) 

problem, it is hard, if not impossible, to assume that the 

margin follows a single Gaussian. Instead, we presume that 

the margin follows the multiple Gaussian models. It is believed 

that assuming multiple Gaussian distribution models in a more 

complicated situation like our problem here is sensible, as a 

single Gaussian model is widely accepted in the theoretical 

analysis for a simple  situation. 

After settling the data distribution, the next question 

becomes whether our objective function maximizes the mean 

of margin and at the same time minimizes the variance of 

margin that follows Gaussian mixture  models. It  was  stated 

in [40] that the success of a boosting algorithm can be 

understood in terms of maintaining a better margin distrib- 

ution by maximizing margins and meanwhile controlling the 

margin variance. In order words, it can be a sort of criterion   

to measure the proposed boosting algorithm. In our case, 

proving it is not easy, since we have assumed that samples 

from different classes might follow GMM but not a single 

Gaussian. As another motivation in [40], the boosting method 

can be used to solve various complex problems, but few 

researchers explain it  from a  theoretical aspect.  We  present  

a theorem to answer  the  question mentioned above. Based  

on Lemmas 1 and 2 in Appendix, we obtain new theoretical 

results for our boosting methods,  and  significantly  extend  

the original one in [36]. Here we describe our algorithm as 

follows: 

 
V. EXPERIMENTAL RESULTS 

Our proposed  system  is  implemented  in  MATLAB  on  

an  Intel  i5  Quadcore  3.2  GHz  desktop   computer  with 

8GB of RAM. Separate algorithmic parts  corresponding to 

our contributions as well as the entire action recognition 

system are evaluated and compared with state-of-the-art 

algorithms based on four public datasets including MSRAc- 

tion3D [44], MSRGesture3D [44], MSRActivity3D [44] and 

UTD-MHAD [45]. Moreover, we conduct the experiments  to 

investigate the effects of a few important parameters. For all 

the experiments, we fix m = 4 and r = 1 based on our 
empirical studies in [10], [14], and the region size is set to 

4×2 with 15 histogram bins when extracting  3DHoTs. 
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A. Datasets 

The MSRAction3D dataset [44] is a  popular depth dataset 

for   action   recognition,   containing   20   actions  performed 
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Algorithm 1 We Solve Our Objective Based on the MATLAB 

Toolbox. Our Method Utilizes the Information Derived From 

Depth Motion Maps and Texture Operators and Improves the 

Performance of the KELM Base  Classifiers. 

 
 

 
 

 
 

 
 

     
 

 
 

 
 

     
 

 
 
 

by 10 subjects. Each subject performs one action 2 or 3 times 

when facing the  depth camera. The  resolution of  each  depth 

image is 240 × 320. It is a challenging dataset due to the 
similarity of actions and large speed variations in   actions. 

The MSRGesture3D dataset [44] is a benchmark dataset for 

depth-based hand gesture recognition, consisting of 12 ges- 

tures defined by American Sign Language (ASL). Each action 

is performed 2 or 3 times by each subject, thereby resulting    

in 333 depth sequences. 

The MSRActivity3D dataset [44] contains 16 daily activities 

acquired by a Microsoft Kinect device. In this dataset, there 

are 10 subjects, each being asked to perform the same action 

twice in standing position and sitting position, respectively. 

There are in total 320 samples with both depth maps and RGB 

sequences. 

The UTD-MHAD dataset [45] employed four temporally 

synchronized data modalities for data acquisition. It provides 

RGB videos, depth videos, skeleton positions, and inertial 

signals (captured by a Kinect camera and a wearable inertial 

sensor) of a comprehensive set of 27 human actions. Some 

example frames of the datasets are shown in Fig.   4. 

 

B. Contribution Verification 

We have claimed two  contributions  in  Section  I,  which 

are a new multi-class boosting classifier and an improved 

feature  descriptor.  Here,  we  design  an  experiment to verify 

 
 

Fig. 4. An example of basketball-shoot action  from UTD-MHAD dataset.  
The first row shows the color images, the second row shows the depth images. 

 

TABLE I 

RECOGNITION ACCURACY (%) OF DIFFERENT FEATURE AND 

CLASSIFIER COMBINATIONS ON MSRACTION3D DATASET 

 

 
 

TABLE II 

RECOGNITION ACCURACY (%) OF DIFFERENT FEATURE AND 

CLASSIFIER COMBINATIONS ON MSRGESTURE3D DATASET 

 

 
 

these two contributions simultaneously on the MSRAction3D 

dataset. More specifically, we have combined two different 

feature descriptors and four different classifier fusion meth- 

ods  for  the  action  recognition.  Feature  descriptors  include 

our 3DHoTs descriptor and the conventional DMM+LBP 
descriptor [9] while the four classifier fusion methods involve 

AdaBoost.M2 [36], LOGP [9], MCBoost [39] and our MBC. 

The idea is to feed two features into four classifiers respec- 

tively, and afterwards, the average recognition accuracy  of 

each combination is calculated accordingly. 

Table I shows the achieved results, for which we adopted the 

original settings suggested in [9]. If we look at each column 

vertically, we can find the accuracy comparisons when fixing 

the classifier but varying feature descriptors. As can be   seen, 

our 3DHoTs feature is consistently better than the DMM+LBP 
feature over four classifiers, indicating that applying the CLBP 

descriptor on DMM maps indeed helps to represent the action. 

On the contrary, if we look at each row horizontally, we can 

find the results achieved by different classifiers when the input 

feature is constant. It is clear that our MBC classifier performs 

better than the other three, regardless of the input features. 

Compared with AdaBoost.M2 [36], MBC achieves a much 

better performance due to the fact that our framework focuses 

on the margin samples that can be more robust when the size of 

the sample set is not large, which is the case in this application. 

As is shown in Table II and Table III, our 3DHoTs feature 

outperforms DMM+LBP feature over four classifiers, which 

indicates  that  the  CLBP  descriptor  on  DMM  maps  make 

a contribution to recognizing different actions. Furthermore, 

in each row respectively, it is demonstrated that our MBC 

classifier  achieves  comparable  results  with  other  classifier 

combination methods. 



 

 
TABLE III 

RECOGNITION ACCURACY (%) OF DIFFERENT FEATURE AND 

CLASSIFIER COMBINATIONS ON UTD-MHAD DATASET 

 

 
 

 

TABLE IV 

THREE SUBSETS OF ACTIONS USED FOR MSRACTION3D DATASET 

 
 

 
 

 
 

 
 

 

 

 

 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

In comparison with Adaboost.M2 and MCBoost, our MBC 

method performs better in both MSRGesture3D dataset and 

UTD-MHAD dataset. In fact, multiclass boosting method can- 

not be directly used in our problems. We addressed the issue 

by combining heterogeneous classification models, which is 

not a custom classification task. To compare  with  multi-  

class boosting methods, in a  different  way,  we  substituted 

our objective function with the loss function they defined for 

M-array classification. 

 

C. System Verification 

1) Results on the MSRAction3D Dataset: Similar to other 

publications, we establish two different experimental settings 

to evaluate our method. 

Setting 1: The experimental setting reported in [11] is 

adopted. Specifically, the actions are divided into three subsets 

as listed in Table IV. For each subset, three different tests are 

carried out. In the first test, 1/3 of the samples are used for 

training and the rest for testing; in the second test, 2/3 of the 

samples are used for training and the rest for testing; in the 

cross-subject test, one half of the subjects (1, 3, 5, 7, 9) are 

used for training and the rest for   testing. 

Setting 2: The experimental setup suggested by [46]  is 

used. A total of 20 actions are employed and one half of the 

subjects (1, 3, 5, 7, 9) are used for training and the remaining 

subjects are used for  testing. 

To facilitate a fair comparison, we set the same parameters 

of DMMs and blocks as noted in [9]. As illustrated in Table V, 

the results clearly validate the effectiveness of MBC. In the test 

one, our method achieves 100% recognition accuracy in AS3, 

and also comparable results in AS1 and AS2. In the second 

experiment, our method gets 100%  recognition accuracy on 

all three subsets. In the cross-subject test, the MBC method 

again gets the highest average recognition accuracy, in this 

very challenging setting with large inter-class variations of 

different training and testing subjects. 

The  comparison  results   of   setting   2   are   illustrated   

in Table VI,  showing  that  our  approach  performs  the  best 

in terms  of  the  recognition  accuracy.  More  specifically,  

the ensemble MBC classifier significantly improves the perfor- 

mance of single 3DHoT feature, i.e., 3DHoT_S, at least 3.3%. 

Compared to the state-of-the-art algorithm (DMM-LBP-DF) 

that is also based on the decision-level fusion scheme, we are 

2% higher in terms of the accuracy rate. With respect to the 

feature extraction, we compare ours with most of existing 

descriptors, i.e., DMM [9], Cuboid [47], and our method 

consistently shows its  advantages in  the  database. In  terms 

of classifier, MBC achieves a much better performance than 

SVM [13], [48] and ELM [9]. Note that all compared results 

are cited from reference  papers. 

2) Results on the MSRGesture3D Dataset: Table VII shows 

the recognition results of our method as well  as  compar-  

ative  methods  on  the  MSRGesture3D  dataset.  As  shown  

in this Table, the  proposed  method  achieves  a  much  bet-  

ter performance  than  DMM-HOG  with  an  increased  rate  

of 5.5%. The accuracy of the  decision  level  fusion appro-  

ach (DMM-LBP-DF) is  similar  to  ours,  and  both  meth-  

ods outperform the others. It should be noted that the 

AdaBoost.M2 [36] is not suitable for a small set of training 

samples, which are not used for the comparison in this 

experiment. 

3) Results on the UTD-MHAD Dataset: In the conducted 

experiments, we only utilize the depth data. Subsequently, the 

data from the subject numbers 1, 3, 5, 7 are used for training, 

and the data for the subject numbers 2, 4, 6, 8 are used for 

testing. Note that we slightly change the parameter m to 6 for 

3DHoTs feature extraction due to the better performance on 

this dataset. 

We have compared our method with the existing feature 

extraction methods [45] used for depth images and inertial 

sensors. It is remarkable that MBC obtains a much better 

performance than  the  combination  of  Kinect  and  Inertial  

as shown in Table VIII. Compared to the state-of-the-art 

DMM-HOG result, we obtain 2.9% higher recognition accu- 

racy. The results clearly demonstrate the superior perfor- 

mance of our method. Compared to the traditional multi-class 

AdaBoost, we again achieve a much better performance, which 

further validates the effectiveness of  MBC. 

4) Results on the MSRActivity3D Dataset: To further test 

the effectiveness of the proposed method, we  consider  a  

more complicated situation, i.e., human activity recognition. 

We conduct an experiment on the MSRActivity3D dataset, 

which is more challenging due to the large intra-class vari- 

ations occurring in the dataset. Experiments  performed  on 

this dataset is based on  a  cross-subject  test  by  following  

the same setting in [12], where 5 subjects are used  for  

training, and the remaining 5 subjects are used  for testing.  

The AdaBoost.M2 [36] is not used on this dataset, because the 

data set is not big enough to well train an ensemble classifier 

like it. 

Seen from the results reported in Table IX, our algorithm 

outperforms all the prior arts including several recent ones 

except for [22]. It reveals that our MBC framework indeed 

works  well  even  if  feeding  two  different types  of features. 



 

 
TABLE V 

COMPARISON OF RECOGNITION ACCURACIES (%) OF OUR METHOD AND EXISTING METHODS ON MSRACTION3D DATASET USING SETTING 1 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

   

  
 

  
 

   
 

   
 

  
 

  
 

  

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
TABLE VI 

RECOGNITION ACCURACY (%) COMPARED WITH EXISTING 

METHODS ON MSRACTION3D DATASET 

TABLE IX 

RECOGNITION ACCURACY (%) COMPARED WITH EXISTING 

METHODS ON MSRACTIVITY3D DATASET 

 
 

 
 

   

   

 
 

   
 

   
 

   
 

  
 

  

 
 

 

 

 

 
TABLE VII 

RECOGNITION ACCURACY (%) COMPARED WITH EXISTING 

METHODS ON MSRGESTURE3D DATASET 

 
 

  

 
 

    
 

   
 

   
 

   
 

   
 

    
 

  

 
TABLE VIII 

RECOGNITION ACCURACY (%) COMPARED WITH EXISTING 

METHODS ON UTD-MHAD DATASET 

 
 

  
 

   

   
 

   
 

   
 

    
 

  

 

 

The major  reason that  our performance is  worse  than  that  

of [22] lies in the fact that we are  mainly  based  on  the  

depth features extracted from the raw depth signal but the 

work in [22] employs more sophisticated skeleton-based fea- 

tures, which  can  better  interpret  the  human  actions  when  

a challenging dataset is  given. Though we  have integrated  

the  skeleton  information  here  in  order  to  verify     whether 

our multi-class boosting framework can handle two different 

types of features, our skeleton features encoding  only  the 

joint position differences are very simple, in contrast to [22] 

that uses group sparsity and geometry constrained dictionary 

learning to further enhance the skeleton feature representation. 

According to their results, the classification performance bene- 

fits from generalizing vector quantization (e.g., Bag-of-Words 

representation) to sparse coding [22]. It is believed that our 

performance can be improved further if we could combine the 

sophisticated skeleton features. 

5) Comparison With Deep Learning Based Methods: The 

baseline methods mentioned above deploy the traditional 

handcrafted features. Differently, the deep learning models 

learn the feature representation from  raw  data  and  gener- 

ate the high level semantic representation [26], [27] which 

represent the latest development in action recognition. Here, 

we compare our method with two  deep  models,  in  which 

one is SMF-BDL [26] and the other one is a DMM-Pyramid 

approach based on both traditional 2D CNN and 3D CNN for 

action recognition. Similar toMBC, the decision-level fusion 

method is  used  to  combine  different  deep  CNN  models.  

To validate the proposed 3DHoT-MBC method, we conduct the 

same experiment as those of the two methods. Note that the 

comparative results are all reported on their reference papers. 

The results in Table X and Table  XI show that 3DHoT-MBC  

is even superior to the two deep learning   methods 
 

D. Comparison With Other Boosting  Methods 

In  this  section,  we  create  a  large-scale   action   data- 

base by combining two action databases,  MSR  Action3D  

and UTD-MHAD, into a single one. We then compare per- 

formances of different boosting algorithms for two  kinds    of 

 

 
 

   

   
 

   
 

   
 

  
 

   
 

   
 

    
 

   
 

 
 

 

 
 

 



 

 

 
TABLE X 

RECOGNITION ACCURACIES (%) OF OUR METHOD AND DEEP LEARNING 

METHODS ON MSRACTION3D DATASET USING SETTING 1 

 
 

    
 

     

     
 

     
 

     
 

    

 

 
TABLE XI 

RECOGNITION ACCURACIES (%) OF OUR METHOD AND DEEP 

LEARNING METHODS ON MSRACTION3D DATASET USING 

SETTING 2 AND MSRGESTURE3D DATASET 

 
 

   
 

    

    
 

   

 
 

TABLE XII 

RECOGNITION ACCURACY (%) OF DIFFERENT FEATURE AND 

CLASSIFIER COMBINATIONS ON ACTION -MHAD DATASET 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
TABLE XIII 

RECOGNITION ACCURACY (%) COMPARED WITH 

EXISTING METHODS ON DHA DATASET 

 
 

  
 

   

   
 

   
 

   
 

   
 

   
 

  

 

 
features, i.e., DMM+LBP and 3DHoTs. The new combined 

Action-MHAD dataset has 38 distinct action categories (the 

same actions in both datasets are combined into one action) 

which consist of 1418 depth sequences. In experiments, odd 

subject numbers such as 1, 3, 5, 7 are used for training and   

the remaining subjects are used for testing. The experimental 

results, as shown in Table XII, demonstrate that our MBC is 

superior to other boosting  methods. 

We also verify our algorithm on the DHA dataset [61]. DHA 

contains 23 action categories where the first 10 categories fol- 

low the same definitions in the Weizmann action dataset [65] 

and the 11th to 16th actions are  extended  categories.  The 

17th to 23rd are the categories of selected sport actions. Each 

of the 23 actions  was  performed by  21  different  individu- 

als (12 males and 9 females), resulting in 483 action samples. 

Table XIII shows the recognition results of our method against 

existing algorithms on the DHA dataset. Again, our method 

achieves the best recognition  performance. 

 
 

 
Fig. 5.   KELM performance w.r.t. parameter ρ on the MSRAction3D  dataset. 

 

Fig. 6.    System performance w.r.t. parameter λ on two   datasets 
 

 

E. Effects of Parameters 

Like other action recognition systems, our system also needs 

to tune a few parameters in both the 3DHoTs feature extraction 

stage and the MBC classification stage so  as to  obtain the  

best performance. Regarding feature extraction, the selections 

of m and r is critical, which determine the region size on DMM 

and also the number of the neighboring points involved in the 

descriptor. In our previous papers [9], [14], we accomplished 

an empirical study for these  two parameters, which   revealed 

m = 4 and r = 1 can obtain good results on most of the 
datasets. 

With respect to our classification algorithm, there are two 

parts involving KELM base classifier and the MBC fusion 

algorithm. For the KELM, there is a  regularization term  ρ  

that is used to solve  ill-posed  problem. In  Fig.  5,  we  plot 

the recognition accuracy changes of our method (training data 

cross validation) if we vary this parameter on the MSRAc- 

tion3D dataset. Seen  from the curve, it is very obvious that  

we could set this parameter to 1000 because the recognition 

rate reaches a peak point when adopting that   value. 

For the MBC, regularization coefficient λ is the only para- 

meter required to be predefined. Here, we investigate how the 

algorithm will behave when varying λ. To do so, we change  

the value of λ  and plot the corresponding recognition rates   

on  two  datasets,  which  are illustrated  in  Fig.  6.  As shown 
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on  this  figure, the  MBC  recognition accuracy  is oscillating As 

when λ is varying between 0 and 50. When λ exceeds 50, 

MBC results increase gradually and finally level off until λ 
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reaches 100. We find more or less the same behavior on two 

different datasets, which makes the selection of this parameter 

feasible. In fact, the regularization term reflects our selected 

model complexity. When we set a small λ, we actually set a 
loose constraint of model complexity, which will easily    lead 
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to overfitting. On the other hand, a large λ ensures that we fσ 2 = z2(ω1G1 +ω2G2)dz − z(ω1G1 +ω2G2)dz  
obtain  a  simple  model.  So,  we  set  λ  = 100  considering a −∞ 

2 2
 

2 
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2
 

tradeoff between algorithm performance and efficiency. 

Finally,  the  execution  time  of  our  system  is  calculated, 

intending to reveal the feasibility of our system for a real-time 

application. To this end, we have set up a simulation platform 

using  MATLAB  on  an  Intel  i5  Quadcore 3.2  GHz desktop 
computer with 8GB of RAM. It can be seen that the  proposed 

= ω1σ1 + ω2σ2 + ω1ω2μ1 + ω1ω2μ2 − 2ω1ω2μ1μ2 

As ω1 + ω2=1, we have: 

ω1ω2 ≤ 1/4, 

and thus, 

fσ 2  = ω1σ 2 2 2 2 
 

method is able to process over 120 frames per   second. 
 

VI. CONCLUSION 

In this paper, we have proposed an effective feature descrip- 

 

 

 
and 

z 1 + ω2σ2 + ω1ω2(μ1 − μ2) 
1 

+ω2σ 2 +   (μ1 − μ2)2
 

≤ ω1σ1 

tor and a novel decision-level fusion method for action recog- 

nition. This feature, called 3DHoTs, combines depth maps and 

texture description for an effective action representation of a 

depth video sequence. At the decision-level fusion, we have 

added the inequality constraints derived from a multi-class 

Support Vector Machine to modify the general AdaBoost 

optimization function, where Kernel-based extreme learning 

machine (KELM) classifiers serve as the base classifiers. The 

experimental results on four standard datasets demonstrate the 

superiority of our method. A future work is to extend this 

multi-class boosting framework to other relevant applications, 

such as object recognition [67] and image   retrieval. 

APPENDIX 

Lemma 1: The GMM with 2 components is represented   by 

f (z, μ1, σ1, μ2, σ2) as: 

f (z, μ1, σ1, μ2, σ2) = ω1 G1 (z, μ1, σ1) + ω2G2 (z, μ2, σ2), 

fσ 2 (z, 0, σ1, 0, σ2) = ω1σ 
2 + ω2σ 

2
 

1 2 

As we constrain 0 ≤ μ1, μ2 ≤ 1, and have: 0 ≤ (μ1 −μ2)2 ≤ 

1 and  1 (μ1 − μ2)2 ≤ 4 . Thus, we   obtain: 

fσ 2 (z, u1, σ1, u2, σ2) ≤ fσ 2 (z, 0, σ1, 0, σ2) + ε 

where ε is smaller than 0.25 in the case of 0 ≤ μ1, μ2 ≤ 1. 
Lemma 2: For GMM with  M  components, we  have: 

fσ 2 (z, μ1, σ1, μ2, σ2, .. .) ≤ fσ 2 (z, 0, σ1, 0, σ2, .. .) 

+ε, 0 ≤ μ1, μ2 ≤ 1, 0 ≤ ε ≤ 1, 

when  M ≤ 4. 
Proof:  We  proven this Lemma from two different  cases, 

when  M  is an even or odd number. 

When M  is an even number, based on Lemma 1, we   have: 

f  2 
z 

, ∞ 

= z2(ω1 G1 + ω2G2 , . . .  , +ωM GM)dz  
−∞ 

and we have: 

fσ 2 (z, μ1, σ1, μ2, σ2) ≤ fσ 2 (z, 0, σ1, 0, σ2) + ε, 

., ∞ 

− 
−∞ 

.2 

z(ω1G1 + ω2 G2 , . . .  , +ωM GM)dz  
1 

≤ ω1σ 2 

2 2 2 2 2 2 

where ω1, ω2 are the  mixture  proportions, μ1, μ2  and  σ1, σ2 

are respectively the mean and variance of the Gaussian com- 
ponents,  and  ε  is  a  constant.  fσ 2  represents the  variance of 

+ω2σ2 , . . .  , +ωMσM + 
4 

(μ1 + μ2 + . . .  + μM −1 + μM) 

As 0 ≤ μi ≤ 1, i = , . . .  , M, we have: 
M 

f (), with 0 ≤ μ1, μ2 ≤ 1, 0 ≤ ε ≤ 1. fσ 2 ≤ ω1σ 
2 + ω2σ 

2
, . . .  , +ωMσ 

2 + . 
z 1 2 M 4 

Proof: Based on the definition of variance, we   obtain: We further prove Lemma 2 when M is an odd number,   and 
, ∞ 

fσ 2 = 
−∞ 

z2(ω1G1 +ω2G2)dz − 
., ∞ 

−∞ 

.2 

z(ω1G1 +ω2G2)dz  
have: 
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where ε = M  ≤ 1. Lemma 2 is   proved. 
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margin, whilst minimizing the variance of margin, when the 

margin samples follow GMM (M ≤ 4). 
Proof:  We   define  zr  =  ωi exp   (−yi F(θ j , xi)). Here 
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achieved by dividing a maximum value among zr . Minimizing 

i  leads  to  a  similar  result  as  that  of  Eq.  (16), because 
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log (.)(Eq. (16)) is a monotonically increasing function. Based 

on Lemma 2, if  zr  (margin)  follows  a  GMM  distribution, 

we have: 
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where ε is a given constant. 
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. .
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. Consequently, we conclude that 
i 

our objective minimizes the variance of margin samples from a 

GMM distribution. In addition, −yi F(θ j , x 
j 
) is defined based 

on [40] aiming to maximize the mean of margin, which is also 
propagated into our method. And so, the theorem is   proved. 
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