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Fuzzy-based Path Planning for Multiple Mobile Robots in Unknown 
Dynamic Environment 
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Abstract – This paper presents a path planning problem for multi-robot system in the environment 
with dynamic obstacles. In order to guide the robots move along a collision-free path efficiently and 
reach the goal position quickly, a navigation method based on fuzzy logic controllers has been 
developed by using proximity sensors. There are two kinds of fuzzy controllers developed in this work, 
one is used for obstacle avoidance and the other is used for orientation to the target. Both static and 
dynamic obstacles are included in the environment and the dynamic obstacles are defined with no type 
of restriction of direction and velocity. Here, the environment is unknown for all the robots and the 
robots should detect the surrounding information only by the sensors installed on their bodies. The 
simulation results show that the proposed method has a positive effectiveness for the path planning 
problem. 
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1. Introduction 
 
As an important branch subject of robotics, autonomic 

mobile robot technology has a long history and will be 
used widely in future. Mobile robots have vast application 
prospects in areas including space exploring, factory 
automation, mining, eliminating dangerous situation, 
military and service, which can economize the labor force 
to be engaged in other aspects. In these applications, the 
navigation problem of mobile robots is one of the most 
popular issues. Thus, how to detect the surrounding 
information and finding a safe path for the robot is the first 
condition of success. In an environment with obstacles, the 
navigation of a robot together with its path planning is to 
find the collision-free path from a starting location to a 
target location. The robots have several difficult problems 
which need to be solved, such as obstacle avoidance, 
position identification, driving safety, etc. Therefore, an 
intelligence algorithm can be used to provide a mobile robot 
with the ability to identify the current location, avoid any 
collisions and determine a suitable path to the goal position. 

In the past few decades, plenty of researchers have 
contributed themselves to solve the path planning problem 
and a variety of methods have been proposed, such as 
neural network [1, 2], genetic algorithm [3], artificial 
vision method [4] and PID control [5] in static environment. 
These methods are usually used in global path planning 
and hardly be used in real-time control. Many other real-
time control methods applied to static environment have 

also been developed. Researchers in [6] proposed a 
navigation method for mobile robots based on an improved 
remote control algorithm which combines the inertial sensors 
with vision information. In [7], researchers developed an 
expanded guide circle method for the navigation of mobile 
robots and improved the efficiency of the remote operation. 
Many traditional methods designed for global (static) 
path planning have also been extended to local (dynamic) 
path planning, such as potential field method [8], roadmap 
method [9] and rolling window method [10], etc. These 
methods can be performed well in static environment, but 
part of them usually are somewhat flawed in dynamic 
environment because of the assumptions for the moving 
obstacles as static in a certain period of time. 

Navigation problem for multi-robot systems is also 
another issue for researchers. Tiago [11] has studied a 
formation control problem for multiple robots by using 
the Takagi-Sugeno type fuzzy automaton. Zhong [12] 
established a new Velocity-Change-Space method by using 
the changes of the speed and direction of the robot’s 
velocity for dynamic motion planning. But all the robots 
must be measured the size, positions and velocities of 
obstacles and other robots online. Dayal [13] also studied 
the navigation problem for multiple robots by using Neuro-
Fuzzy method. Similarly, an online inter-communication 
among robots is required. Therefore, come studying the 
proposed problem in completely unknown environment 
more seem to be have the necessity. 

In this paper, we focus on a fuzzy-based path planning 
approach for multi-robot system in completely unknown 
dynamic environment. By means of the danger coefficient 
detected by a set of proximity sensors and the fuzzy 
inference system, the robots can avoid both static and 
dynamic obstacles and then seek for the target by another 
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fuzzy controller step by step. In addition, all the robots 
have no difference and use the same navigation strategy. 

The rest of this paper is organized as follows: Section 
2 presents the modeling of a mobile robot simulated in 
this work and the kinematic functions. Section 3 describes 
the design of two kinds of fuzzy logic controllers. In 
section 4, we discuss the special situations in the procedure 
of obstacle avoidance. In Section 5, we verify the 
effectiveness of the proposed algorithm by a serious of 
simulations. Finally, conclusions and discussions are 
included in Section 6. 

 
 

2. Modeling of Wheel Mobile Robot 
 
In this paper, we choose a classic wheeled mobile robot 

as an example for simulation. There are two DC motors 
installed on left and right wheels respectively and both 
sides have an encoder on each one, so that the robot can 
detect how far each wheel has moved by itself. Usually 
there is also a gyro sensor installed on the robot body for 
feedback information and correction of driving direction 
in practice. The structure of such a robot with circular 
shape is as shown in Fig. 1. Totally there are 16 proximity 
sensors (ultrasonic sensors or infra-red sensors) equably 
installed around the robot with the same interval. These 
sensors which are numbered from 0s  to 15s  are used to 
detect the distance to the surrounding obstacles or the other 
robots. We assume that the positions of all the obstacles 
and the other robots are unknown for the robot. 

The data that defines a path element can be denoted as a 
series of coordinate values defining points. Let WP  and 

RP  be the center point between two wheels and the center 
of robot. We use the generalized coordinates [x, y, ]Tθ  to 
describe the configuration of every point. Thus, the 
kinematic functions of WP  can be given as: 
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where Lv  and Rv  are the corresponding linear velocity 
of left and right wheels. θ  denotes the angle between 
the robot’s driving direction and x-axis and L is measured 
as the distance between two wheels. 

We assume that the robot is driven under the condition 
with no slippage, thus, the robot should follow the 
nonholonomic constraint: 

 
 sin cos 0x yθ θ− = .  (2) 

 
Measured d as the length between WP  and RP . 

According to the geometrical method, the kinematic 
function of RP  can be easily transformed from (1) as:  
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3. Design of Fuzzy Logic Controller 
 
The fuzzy logic control theory is one of the most 

successful areas in the application of intelligent control. It 
has shown excellent performance when the procedures 
are too complex for analysis by traditional mathematical 
description. The process where the input variables are 
treated in using a system, called a fuzzy logic controller 
(FLC). A FLC contains three processes which are 
fuzzification, fuzzy inference and defuzzification. 

Our purpose is to guide the mobile robots with a 
collision-free path to move in a dynamic environment with 
moving objects and reach the target position successfully. 
Then, the path planning problem can be considered as 
obstacle avoidance and orientation to target. Thus, two 
kinds of FLCs with different effectiveness are developed in 
this paper. 

 
3.1 Obstacle avoidance 

 
Firstly, at the start position, the robot will move ahead 

with the direction towards the target. Once the sensors 
installed on the robot body detect any object (obstacles or 
other robots), an avoidance strategy is to be activated. This 
strategy is obtained by means of a fuzzy logic controller 
which is named as OA-FLC, based on a set of rules. 

In this paper, we use the velocity vector v  to denote 
the velocity of robots and moving obstacles, that is, 

[ ,  ]Tv v θ= . As shown in Fig. 2, RP  and OP  denote the 
current position of a robot and an obstacle and with the 
current velocity rv  and ov  respectively. The relative 
velocity of the robot with respect to the obstacle is 
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Fig. 1. Modeling of a wheel mobile robot 
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ro r ov v v= − . In this figure, the direction of vector rov  is 
towards the obstacle. It means that, if nothing is done now, 
there will be a collision between the robot and the obstacle. 

The sensors installed on the robot body are set to run 
once every 0.1 second. Thus, in such a short time, we can 
simplify the relative velocity calculation as the following 
equation to obtain the acceptable approximate solutions: 
 

 1 2
i i

i t t
ro

d d
v

t
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Δ
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where 1

i
td  and 2

i
td  are the distance detected by the thi  

sensors ( 0 15i = ) at time 1t  and 2t . And the time 
interval tΔ  of 1t  and 2t  is 0.1 second. We use the 
expected time of collision to denote the danger coefficient, 
that is: 
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The smaller the value of i

dcR  is, the more dangerous 
the robot will be. Specially, when the direction of vector 

i
rov  points away from the obstacle the value of i

dcR  is set 
as infinity. 

Here, the minimum danger coefficient and the angle of 
the corresponding sensor are taken as the input variables of 
OA-FLC. Moreover, the linear velocity of left and right 
wheels will be the output variables. We can denote that: 

 
 { }| 0 15i

dc dcR i= ≤ ≤ . (6) 
 
Then the input variables of OA-FLC can be described as: 
 

 min( )dcR = , (7) 
 ,    min( )i

i dc dcs when RΦ = ∠ = ,  (8) 
 

where 180 180is− ≤ ∠ < , which is the corresponding 
angle of the thi  sensor. 

The fuzzification process of a FLC transforms a non-
fuzzy input values to a fuzzy value. For fuzzifier, the input 
and output variables can be divided into several linguistic 

terms as follow: 
 
S: small; M: medium; B: big; VB: very big; 
RB: right back; R: right; RF: right front; F: front; 
LF: left front; L: left; LB: left back; B: back; 
NB: negative big; NS: negative small; Z: zero; 
PB: positive big: PS: positive small. 
 
The transformation process of no-fuzzy input values to 

fuzzy values is achieved by using the membership 
functions which provide fuzzy terms with a definite 
meaning. Every fuzzy set which is used to specify a certain 
variable in terms of fuzzy values is defined by means of 
a membership function. The degree of membership of a 
no-fuzzy input value to a certain fuzzy set represents the 
confidence, expressed as a number from 0 to 1, that a 
particular value belongs to this fuzzy set [14]. 

The membership functions for input and output variables 
of OA-FLC are as shown in Fig. 3. As shown in this figure, 
when the main risk comes from left side the angle Φ  is 
positive, otherwise it is negative. Moreover, we use the 
triangular type of membership functions with the range of 
[ 1,  1]−  for the output variables, which denote the scale of 
the maximum linear velocity. 

The procedure of fuzzy inference usually contains a set 
of rules which are used to appoint the desired control 
behavior. A rules set is a condition description taking the 
form of “IF…THEN…” rules. The rules set applied for 
OA-FLC are as shown in Table 1. In this paper, the 
optimization problems (minimal path and time) will not be 
considered. For example, when the direction of impending 
danger is ‘front’, after the OA-FLC is activated, instead of 
turning toward the target to shorten the path length, the 
robot is fixed to turn left. 

 
3.2 Target orientation 

 
When there is no risk of collision between the robot and 

the other obstacles include both static and dynamic objects, 
or the robot has been driven over the obstacles temporarily, 
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Fig. 2. Construction of relative velocity 
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another strategy for target orientation will be activated. The 
strategy is obtained by another fuzzy controller, which is 
named TO-FLC.  

The schematic model of target orientation is given in Fig. 
4. In this figure, with the current position RP , the robot 
has moved over the obstacle OP . With the angle tψ  
between the line from the center of the robot to the target 
point and the x-axis, we denote that the angular difference 
is tθ ψΨ = − . Now, the obstacle is moving far away from 
the robot and poses no risk to the robot. Thus, the strategy 
of TO-FLC is come into use. This controller is used to 
drive the robot to point the target position. In the other 
words, it is used to reduce the angular difference Ψ  
which is one of the input variables of TO-FLC. 

Another constraint for TO-FLC is the distance D 
between the robot and the target, which is denoted with the 
multiple of robot’s radius in this paper. Moreover, the 
output variables are also the linear velocity of left and right 
wheels, which are the same with OA-FLC. 

The membership functions for input variables of TO-

FLC and the corresponding rules set are as shown in Fig. 5 
and Table 2. 

 
 
4. Special Situations in Obstacle Avoidance 

 
In the environment with multiple dynamic obstacles, 

when the value of expected time of collision is smaller than 
“medium”, if there are several obstacles in front of the 
robot and the main risk comes from straight ahead at the 
same time, or if there are several obstacles move toward 
the side of the robot, in such complex situations only use 
“IF…THEN…” rules is obviously not enough. This section 
discussed the special situations when the main risk comes 
from straight ahead, straight astern, directly left or directly 
right. When the value of expected time of collision is larger 
than “medium”, the method developed in this section will 
not be used.  

We use ( )ro rv vφ = ∠ −  to denote the direction of 
coming risk. is∠  denotes the angle of the thi  sensor. 
Then the special situations can be defined as follows: 

 
straight ahead: if { }0 1 2,  ,  s s sφ ⊂ ∠ ∠ ∠ ; 
straight astern: if { }13 14 15,  ,  s s sφ ⊂ ∠ ∠ ∠ ; 
directly left: if { }5 7 9,  ,  s s sφ ⊂ ∠ ∠ ∠ ; 
directly right: if { }6 8 10,  ,  s s sφ ⊂ ∠ ∠ ∠ . 
 
Two of four special situations are described as shown in 

Fig. 6. In dealing with the situation a), we will consider the 
difference of the distance between the robot and the 
obstacle which located at the left-front side of robot and 
such distance to the right-front side obstacles. Define that 
the distance difference of left-front and right-front side is: 
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2 2dif
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Then the constraint can be described as: if 1 0difD >  the 

robot turns left, otherwise turns right. 
In the case of b) in Fig. 6, the main risk comes from 

Table 1. Rules set for OA-FLC 
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Fig. 4. Scheme of target orientation 
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Table 2. Rules set for TO-FLC 
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right side. Moving forward or backward has become an 
important problem. Similarly, we denote that such distance 
difference of right-front and right-back side is: 

 

 2 4 6 10 12

2 2dif
s s s s

D
+ +

= − . (10) 

 
Likewise, the constraint can be described as: if 
2 0difD >  the robot moves forward, otherwise moves 

backward. In the same way, the method discussed above 
can be easily extended to the situation of straight astern 
and directly left. 

According to the method discussed above and the 
proposed FLCs designed in Section 3, the navigation 
process for path planning can be described as Table 3. 

 
 

5. Simulation Results 
 
In order to verify the effectiveness of the proposed 

algorithm, a series of simulations have been implemented 
with a set of Matlab codes for computing. We use iR  and 

iT  to denote the thi  robot and its corresponding target 
position. iO  and iM  are used to denote the thi  static 
and dynamic obstacles respectively. All the robots will 
move on a horizontal plane with the size of 100 100×  
unit-length. All the robots have the same size with the 
radius of 4 unit length. Every robot uses the same 
navigation strategy and the maximum velocity of left and 
right wheels is 4 unit length per second. The obstacles are 
approximated as circular sharp and the environments with 
no obstacles, static obstacles and both static and dynamic 
obstacles are simulated in this section. In addition, we will 
record the position of the robots by every one second to 
generate the path graph. 

 
5.1 Results in no obstacle environment 

 
The result of path graph in the environment with no 

obstacles is as shown in Fig. 7. There are three robots 
driven from the start points [0,0], [100,100], [0,50] to the 
target points [100,100], [0,0] and [100,50] respectively. All 
the robots moved ahead with the maximum speed until 
arrived the dangerous area (black dotted box), then the 
strategy of OA-FLC was activated. 

Fig. 8 shows the velocity variation curve of left and 
right wheels for the robots. The areas in the black dotted 
boxes describe the velocity changes during the process of 
obstacle avoidance. That is, once the robot detect any other 
objects are approaching, it will slow down the speed 
immediately and adjust the direction to left or right by the 
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Fig. 6. Special situations when the main risk comes from 

straight ahead (a) and directly right (b) 
 

Table 3. Navigation process for path planning 

Algorithm: Navigation algorithm for path planning 
Input: R , Φ ; D , Ψ  
Output: Lv , Rv  

1: Initialize: data of all sensors is ; ,  safe safeD T ← safety threshold
2:         of distance and expected time of collision 
3: while the robot is not reached the target position do 
4:    R ← min( )dc  

5:    while min( )i
dcdcR =  find 

6:       isΦ = ∠  

7:    if min( )i safes D<  then 

8:       if safeR T<  then 

9:          if " "R medium<  then 
10:            if special situation mode then  
11:              Φ ← corresponding value 
12:            end if 
13:            do OA-FLC 
14:         end if  
15:         do OA-FLC 
16:      else 
17:         D , Ψ ← generated by the data of encoders and (3)
18:         do TO-FLC 
19:      end if 
20:   else 
21:      D , Ψ ← generated by the data of encoders and (3) 
22:      do TO-FLC 
23:   end if 
24:   update the coordinate of the robot by the data of encoders  
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strategy of OA-FLC, then after leaving the dangerous area 
the velocity of left and right wheels are adjusted to towards 
the target point and raised to the maximum velocity again. 

 
5.2 Results in static obstacles environment 

 
The start and target points for all the robots and the final 

path graph are as shown in Fig. 9. All the obstacles in this 
paper are set to be circular sharp and have different size of 
radius. From this figure we can see that the proposed 
algorithm has good performance in such environment with 
multiple static obstacles. 

The velocity change curves of left and right wheels for 
all the robots are shown in Fig. 10. The areas when the 
robots trying to avoid the obstacles which numbered from 

1O  to 8O  have also been marked in this figure. In these 
marked areas, the robots find the correct directions through 
adjusting the velocity difference of left and right wheels to 
turn left or right according to the surrounding environment 
by OA-FLC strategy. And in the other unmarked areas the 
target orientation strategy is come into use. 

 
5.3 Results in dynamic obstacles environment 

 
The simulation results in the dynamic environment are 

as shown in Fig. 11. Here, there are two static and four 
dynamic obstacles. The dynamic obstacles are given 
different radius, driving directions and variable velocities, 
and will keep on moving between the certain points during 
the whole navigation process. As shown in Fig. 11(a), the 
trajectories of all the dynamic obstacles are denoted as 
dashed lines. In this simulation, dynamic obstacles 1M , 

2M  move along the straight lined trajectories, and 3M , 
4M  move along the triangular trajectories which formed 

by three vertices, respectively, at three different velocities 
between three vertices. The coordinate of the range of 
movement for dynamic obstacles and the corresponding 
velocity are defined as in Table 4. Here, the velocity is 
defined as the multiple of maximum linear velocity of the 
robot. 

As shown in Fig. 11, the robots started moving at frame 
a) and ended at frame j). The other frames describe the 
moments when avoiding obstacles and the black arrow 
represents the driving direction of the robots and obstacles 
at the corresponding moments. Specially, if it’s impossible 
for the robot to avoid collision just by turning left or right, 
it will slow down until a complete stop (e.g., R1 at frame i 
and R3 at frame f, etc.), in some cases, it can also be able 
to move backwards. In the complex situations, the robot 
will not only use the fuzzy logic to avoid obstacles but also 
need to apply the rules mentioned in Section 4. For 
example, as shown from Fig. 11 d) to h), three obstacles 
were barreling toward R2 and R3, and two robots were also 
fast approaching to each other. Firstly, at frame d, both 
robots were slowed down rapidly to reduce the risk of 
collision. Then, at frame e, R3 continued moving ahead at 
low speed and R2 was guided to speed by. After R2 passed 
through the danger area from frame f, R3 was speeded up 
to pass through this area as quickly as possible. Moreover, 

0 5 10 15 20 25 30 35 40 45 50 55
-4

-2

0

2

4

R
ob

ot
 1

 

0 5 10 15 20 25 30 35 40 45 50 55
-4

-2

0

2

4

R
ob

ot
 2

 

 

0 5 10 15 20 25 30 35 40 45 50 55
-4

-2

0

2

4

time (s)

R
ob

ot
 3

 

 

Left Wheel
Right Wheel

Left Wheel
Right Wheel

Left Wheel
Right Wheel

Fig. 8. Velocity variation curves of left and right wheels in 
no obstacle environment 

 

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Robot1 - Path Lengths:160.6235      Total Time:71.5715s
Robot2 - Path Lengths:211.6898      Total Time:92.8733s
Robot3- Path Lengths:169.0166      Total Time:70.4316s

1R

2R
3R 1T

2T 3T

1O

2O

3O

4O 8O

5O

6O

7O
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Table 4. Definition of the dynamic obstacles 

Obstacles Radius Vertices of trajectories Speed 
M1 3.5 [20,70] - [50,20] 0.9 
M2 4 [70,90] - [70,30] 0.3 
M3 3 [25,40] - [90,70] - [70,15] 0.75→0.3→0.35
M4 4 [45,25] - [100,35] - [40,80] 0.7→0.6→0.3 
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the velocity change curves for all the robots are described 
as in Fig. 12 and the corresponding areas of obstacle 
avoidance have also been marked in this figure. 

 
 

6. Conclusion 
 
This paper studied a path planning problem for multiple 

mobile robots in the unknown environment with dynamic 
obstacles based on fuzzy logic controller. In this paper, 
both static and dynamic obstacles with different size and 

speed were investigated. The simulation provided 
satisfactory results for the proposed problem and the fuzzy 
approach has been verified to be effective. 

The performance of a FLC is influenced by its rules set 
and the membership functions, which is indispensable to be 
adjusted by other optimization process, such as a genetic 
algorithm or a neural network, to get better performance 
and higher efficiency. The optimization problems of 
minimal path and time are not considered in this paper, to 
integrate the two FLCs and get the optimal path will be a 
meaningful work in the following research. In this paper, 
the dynamic obstacles move under preset trajectories, to 
perform the simulation in the environment with randomly 
moving obstacles will be a rewarding challenge for the 
future work. In addition, all the obstacles in this work are 
simulated as roundness, thus, in the future we will extend 
our experiment to the environment with dynamic irregular 
obstacles. 
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