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Abstract: Acute cardiac allograft rejection is a serious complication of heart transplantation. Investigating molecular processes in 
whole blood via microarrays is a promising avenue of research in transplantation, particularly due to the non-invasive nature of blood 
sampling. However, whole blood is a complex tissue and the consequent heterogeneity in composition amongst samples is ignored in 
traditional microarray analysis. This complicates the biological interpretation of microarray data. Here we have applied a statistical 
deconvolution approach, cell-specific significance analysis of microarrays (csSAM), to whole blood samples from subjects either under-
going acute heart allograft rejection (AR) or not (NR). We identified eight differentially expressed probe-sets significantly correlated 
to monocytes (mapping to 6 genes, all down-regulated in ARs versus NRs) at a false discovery rate (FDR) # 15%. None of the genes 
identified are present in a biomarker panel of acute heart rejection previously published by our group and discovered in the same data.
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Introduction
Cardiac transplantation is the final treatment option 
for heart failure. Acute cardiac allograft rejection is 
a serious complication of heart transplantation that, 
left untreated, will result in organ failure. Furthering 
our understanding of the biological processes at 
work during rejection is thus very valuable. The 
use of peripheral blood as a readily available bio-
logical sample to investigate pathobiological mech-
anisms of acute allograft rejection is an active area 
of research.1–6 Drawing useful biological inferences 
from such studies is not trivial, however. While there 
is no doubt that the various cell populations in whole 
blood are undergoing important and complex regu-
latory changes during an acute rejection event, any 
signal we detect in whole blood cannot be directly 
attributed to differential expression in any of these 
individual cell populations. It is a consequence of both 
differences in the mean expression of all cell types 
between groups, as well as the differences in rela-
tive cell type abundances between these same groups. 
Traditional microarray analysis does not account for 
this.7 This problem is often acknowledged,8–11 but 
seldom addressed despite several strategies having 
been proposed.7,12,13 Perhaps the most straightforward 
would be to separate the individual cell types experi-
mentally (e.g., fluorescence-activated cell sorting or 
enrichment). Physical separation can be prohibitively 
expensive, however, and may itself affect transcript 
abundance levels.14,15 In addition, certain cell-types 
may not be readily isolated by traditional approaches. 
Sub-populations may not be uniquely identified by 
their surface signature alone or suitable antibodies 
may not be available.14–16 More recently, statistical 
methods for deconvolving cell-specific signal from 
whole blood microarray experiments have been pro-
posed.7,12,13,17 In this report we have applied one of these 
statistical deconvolution approaches, cell-specific 
significance analysis of microarrays (csSAM),7 to 
whole blood samples from subjects undergoing acute 
cardiac allograft rejection. CsSAM combines infor-
mation from complete blood count (CBC), includ-
ing white blood cell differentials, and whole blood 
microarray data to deconvolve cell-specific expres-
sion measurements that can then be compared across 
groups. The algorithm’s ability to produce biologi-
cally relevant inference was originally assessed in the 

context of pediatric kidney transplantation and though 
it was able to identify ∼200  monocyte-specific dif-
ferentially expressed genes; the specific genes identi-
fied were not reported. We hypothesized that csSAM 
could be used to enrich whole blood microarray data 
in the context of acute cardiac allograft rejection. To 
our knowledge, this is the first report that has used a 
deconvolution approach such as csSAM in this con-
text and reported individual genes to be differentially 
expressed.

Results
Cohort characteristics
Patient demographics are listed under Table 1. Briefly, 
a single treatable acute rejection (International Society 
for Heart & Lung Transplantation, ISHLT grade $2R) 
sample from each of 10 subjects and one non rejection 
sample (ISHLT grade = 0R) from 16 subjects who did 
not have treatable acute rejection at any time within 
the first six months post-transplant were selected 
for analysis. Groups had similar mean age (48 ± 14 
and 50 ± 16 in ARs and NRs, respectively) and were 
mainly composed of Caucasian subjects. NRs were 
more predominantly male (14/16 subjects) compared 
to ARs (6/10 subjects).

CBC differentials
No statistically significant differences (P , = 0.05) 
were found between AR and NR subjects for any cell 
type or total leukocyte absolute counts. Similarly, 
no statistically significant differences in relative 
cell-type abundances were observed, though relative 

Table 1. Demographics of cardiac transplant subject 
cohorts.

AR (n = 10) NR (n = 16)

Age, mean ± SD (years) 48 ± 14 50 ± 16
Gender (n male) 6 14
Ethnicity (n)
 C aucasian 10 13
  Asian 0 2
  Other 0 1
Primary disease (n)
  Ischemic heart disease 5 6
 �N on-ischemic  

cardiomyopathy
4 6

  Other 1 4
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Figure 1. Complete blood count leukocyte differentials reveal no statistically significant differences between groups in any cell sub-population.
Note: (A–E) Relative abundance of white blood cell differential cell sub-populations in AR and NR subjects were plotted and their mean compared by a 
two-sided t-test.

lymphocyte counts were generally lower in AR 
compared to NR. This was not statistically signifi-
cant, however (Fig.  1, cell counts can be found in 
Supplementary Table 1).

Differential gene expression  
in whole blood
5063 probe-sets (5059 down-regulated in ARs and 
4 up-regulated in ARs) were identified as differ-
entially expressed in whole blood (Significance 
Analysis of Microarrays [SAM], false discovery rate 
[FDR] # 5%—Fig. 2).

We compared these probe-sets to our previously 
published panel and found that all panel members 
published in Lin et al. were present and highly ranked 
in the 5063 probe-set list.1

CsSAM: adjusted whole blood expression
After adjusting for sample cell-type composition, 
1474 probe-sets are called as differentially expressed 
(all down-regulated in ARs [FDR # 20%]—Fig. 2). 
When we compared the probe-sets in this adjusted list 
against those identified in the traditional analysis (via 
SAM, above), 1105 probe-sets were common to both 

lists (not shown). None of the probe-sets unique to 
the adjusted list were present in the Lin et al. panel.1

CsSAM: cell-specific differential gene 
expression
No cell-specific signal was detected at a reasonable 
FDR cutoff in neutrophils, lymphocytes, eosino-
phils or basophils. However, deconvolution to cell-
specific expression yielded 8 probe-sets identified as 
differentially expressed (down-regulated in ARs) in 
monocytes (FDR # 20%—Fig. 3). These probe-sets 
were mapped to 6 genes (using Affymetrix HG-U133 
plus 2.0 annotation release 31). One probe-set lacked 
annotation (238320_at), while 2 others (202855_s_at 
and 202856_s_at) mapped to the same gene, SLC16A3. 
These are summarized in Table 2.

Cell-specific functional enrichment
The test statistic produced by the deconvolution algo-
rithm was used to create a cell-specific ranked list of 
probe-sets for submission to Gene Set Enrichment 
Analysis (GSEA).18 Enrichment analysis of the decon-
volved monocyte expression using KEGG canonical 
pathways as input yielded 93 gene sets down-regulated 
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Figure 2. Whole blood differential expression signal is reduced once we account for sample heterogeneity.
Notes: (A and B) SAM in whole blood yields thousands of probe-sets differentially expressed at a relatively stringent FDR # 5%. (C and D) Once sample 
heterogeneity is taken into account, the signal diminishes with only 1474 probe-sets called as differentially expressed at FDR # 20%.

in ARs relative to NRs in monocytes and 4 gene set 
up-regulated using an FDR cutoff of #25% (default 
value, as recommended by the Broad Institute). We 
found no gene sets identified as enriched in either 
ARs or NRs in the unadjusted whole blood analysis 
(FDR # 25%). KEGG canonical pathways enriched 
in monocytes in ARs were largely associated with 
cancer (10 pathways), but also immune cell activity 
and infection (7 and 4 pathways, respectively) and cell 
migration/recruitment (3 pathways). The most signif-
icant gene sets (FDR # 1%, Familywise error rate 
[FWER] P # 0.05) are summarized in Supplementary 
Table 2.

Discussion
We have identified 6  genes whose transcript abun-
dance is modeled to be significantly lower in the cir-
culating monocytes of subjects diagnosed with acute 
cardiac allograft rejection. While this number may 
seem low, we nevertheless regard it as a biologically 
significant finding, particularly in light of the limita-
tions of deconvolution using CBCs and white blood 
cell differentials as input (incomplete or inappropri-
ate sample composition information may significantly 
affect our ability to detect cell specific differential 

expression; discussed below). The candidates are 
plausible for monocytes in this disease context. 
Furthermore, the functional enrichment results are 
also consistent for monocytes. The following genes 
were identified: SLC16A3, SLC6A6, ADAM8, 
CFLAR, ALPL and PRKDC. All genes were down 
regulated in AR.

SLC16A3 (MCT4—monocarboxylate transporter 4) 
transports lactic acid and pyruvate across the cell 
membrane. It is expressed in monocytic lineage cells, 
and is relatively more abundant in these cells when 
compared to other tissues (BioGPS).19,20 MCT4 is 
expressed at the cell membrane and is tightly bound 
to MCT1,21 a related monocarboxylate transporter 
and known target of current immunosuppressive 
therapies.22 Inhibition of MCT1 has been shown to 
reduce acute and chronic allograft rejection rates in 
rats.23,24 What function MCT4 may play in circulat-
ing, naïve monocytes in the context of acute allograft 
rejection is unclear, though it may relate to regulation 
of intracellular lactate homeostasis.25 Intracellular 
lactate has been shown to enhance TLR4 signaling in 
monocytes and this was dependent on monocarboxy-
late transporter activity.26 Interestingly, TLR4 signal-
ing has been implicated in cardiac allograft rejection 

http://www.la-press.com


White blood cell differentials enrich whole blood expression data.

Bioinformatics and Biology Insights 2012:6	 53

following transplantation,27 and the canonical TL4 
signaling pathway was enriched in our functional 
enrichment analysis (GSEA).

SLC6A6 (TAUT—taurine transporter) is a widely 
expressed metabolite transporter (BioGPS).19,20 
Taurine plays an important cytoprotective role in 
phagocytic cells such as macrophages, by readily 
reacting with the reactive oxygen species formed 
by the myeloperoxidase system.28 The resulting tau-
rine chloramine is a potent anti-inflammatory.29–32 
Reduced intra-cellular availability of taurine leading 
to increased pro-inflammatory signaling would be 
consistent with the down-regulation of SLC6A6 that 
we observe in monocytes in AR subjects.

ADAM8 (ADAM metallopeptidase domain 8) is 
thought to be involved in cell adhesion and cell-matrix 
interaction and has been implicated in inflammatory 
response and leukocyte migration following inflam-
matory response.33 It is highly expressed in monocytic 
cell lineages,34 and has been reported as a key regula-
tor of inflammation in many contexts.33 More recently 
however, ADAM8 was shown to limit inflammation 
in mice by increasing macrophage apoptosis,35 which 
would be consistent with it being down-regulated in 
monocytes in AR subjects.

CFLAR (CASP8 and FADD-like apoptosis 
regulator) is reported to inhibit death-receptor induced 
gene induction, including pro-inflammatory signaling 

Figure 3. csSAM identifies cell type-specific differential expression in monocytes during acute cardiac allograft rejection.
Notes: (A–F) Deconvolved differential expression analysis in the indicated cell types between samples from individuals either undergoing biopsy proven 
acute rejection or not. No significant probe-sets were identified in eosinophils or basophils (not shown).
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via NF-κB.36 Less abundant CFLAR transcripts in AR 
subjects could therefore lead to both increased apop-
tosis and pro-inflammatory signaling.

The remaining two genes are broadly expressed. 
The exact physiological function of tissue non-
specific alkaline phosphatase (ALPL) is not known. 
DNA-dependent protein kinase, catalytic polypeptide 
(PRKDC) is involved in double stranded DNA break 
repair and recombination, but how this may relate to 
monocytic lineage cells specifically in this disease 
context is unclear.

Given the very disruptive nature of acute allograft 
rejection, it is not surprising that many differentially 
expressed probe-sets (between AR and NR subjects) 
were found in whole blood, as discussed previously.1,2 
More pertinent to our discussion here is the fact that, 
once we correct for the compositional variability that 
exists across our samples, and in the absence of any 
pre-filtering of probe-sets prior to statistical analysis, 
no differentially expressed probe-sets are detected 
unless we increase our FDR threshold to #20%. We 
might interpret this as meaning that any signal we 
detected in whole blood was less robust with respect 
to cell count differences in our samples. This can 
be a limitation when performing differential gene 
expression analysis in heterogeneous tissues (such 
as whole blood). It is often acknowledged,8–11 but 
seldom addressed. The fact that GSEA failed to detect 
any enriched gene sets in our whole blood analysis 
(FDR # 25%) similarly suggests an absence of a bio-
logically interpretable functional signal in the whole 
blood data. Conversely, GSEA carried out on the 
monocyte specific ranked-list of probe-sets yielded 
an abundance of down-regulated gene-sets in AR 
subjects (Supplementary Table 2).

An important limitation in our analysis is the pos-
sibility that we may have deconvolved to inappropri-
ate cell sub-populations; adding to the noise in our 
data and reducing our ability to detect differentially 
expressed probe-sets. Since we assume that there is 
a unique expression profile that can identify each of 
the cell sub-populations that we are deconvolving to, 
heterogeneous sub-populations violate our underly-
ing model. Deconvolution, then, should be to biologi-
cally relevant, functionally uniform sub-populations. 
It follows that deconvolving to non-homogeneous cell 
sub-populations, while possibly providing an incre-
mental improvement over traditional whole blood 

analysis, is not optimal. Neutrophils, lymphocytes or 
monocytes are anything but functionally uniform and 
we should expect that sub-populations of these cells 
be engaged in functionally distinct activities during 
an acute allograft rejection event, even in the circulat-
ing state. We would argue that monocytes represent 
the most functionally uniform of the more abundant 
groups we deconvolved to (excluding eosinophils 
and basophils) and perhaps this is why we failed to 
discover any signal in any other cell type.

CBCs were selected because they were readily 
available in the clinic, but more granular alternatives 
exist in a research setting. Flow cytometry might offer 
a higher quality measure of the relative abundance 
of cell sub-populations and allow higher granularity. 
We could potentially deconvolve to dozens of differ-
ent, and functionally distinct cell sub-populations and 
break down the monolithic neutrophil, lymphocyte 
and monocyte groups into more biologically relevant 
units. Alternatively, another family of deconvolution 
strategies may provide an even more sensitive and 
granular measure of sample composition using mixed 
and pure cell sub-population whole transcriptome pro-
files.16,37,38 Most importantly, such approaches are not 
limited by the existence of unique cell surface markers 
to identify a particular cell sub-population of interest.

Sample sizes were also problematic, particularly 
because of the use, by the csSAM algorithm, of a 
least-square regression approach that is inherently 
sensitive to outliers (though robust alternatives exist). 
Larger group sizes would both reduce any impact 
outliers may have on the csSAM’s multiple linear 
regression stage and allow us to apply more stringent 
pre-filtering criteria. In addition, some subjects could 
be set aside for validation of the model in order to 
assess whether overfitting is a concern. Finally, it is 
important to bear in mind that the purpose of such an 
exploratory analysis is hypothesis generation rather 
than hypothesis testing. As such, any differentially 
expressed genes discovered in this fashion should be 
validated (e.g., RT-qPCR) in the cell sub-population 
in question. This may be challenging: not all sub-
populations may be experimentally separated (e.g., 
because of a lack of unique membrane markers or a 
lack of antibodies for existing markers) and separa-
tion may itself affect abundance of the RNA transcript 
of interest (either directly or by eliminating neces-
sary stimulus from surrounding cells). Nevertheless, 
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such confirmation is necessary and planned as part of 
future work.

This exploratory analysis demonstrates the kind of 
inference that deconvolution of whole blood microar-
ray data allows. CsSAM yielded 6 genes whose tran-
script abundance is modeled to be significantly lower 
in the circulating monocytes of AR vs. NR subjects. 
These genes were ranked very poorly in the whole 
blood analysis, ranked much higher in the adjusted 
whole blood analysis (but at an FDR # 20%) and 
would probably not have been deemed interesting 
in either context. They are either broadly expressed 
or highly expressed in monocytic lineage cells and 
their biological function is plausible in the context of 
circulating monocytes in cardiac allograft rejection, 
though their specific involvement requires validation 
in future studies. In summary, statistical deconvolu-
tion to cell-specific expression can enrich whole blood 
microarray data in the context of allograft rejection 
and allow us to draw additional meaningful biologi-
cal inference.

Materials and Methods
Study design and patient selection
This work builds on previously published work by 
our group in which we discovered and validated bio-
marker panels of acute cardiac allograft rejection.1,2 
The study was approved by the Providence Health 
Care Research Ethics Board and further details 
regarding the study design and cohort characteristic 
can be found in Hollander et al.2 Briefly, 26 subjects, 
enrolled within the Biomarkers in Transplantation 
(BiT) initiative were selected for this study based 
on the availability of CBC, including leukocyte 
differentials. Ten of the subjects had at least one 
treatable acute rejection (ISHLT grade $2R; AR) 
within the first six months post-transplant while 16 
did not (NR). RNA was extracted from one sample 
taken at an ISHLT grade $2R episode from each AR 
subject and from one sample taken during an ISHLT 
grade = 0R rejection from all NR subjects that were 
time-matched to the CBC. CBCs are routinely ordered 
as part of standard patient monitoring and were avail-
able for most subjects. All biopsies were over-read 
in a blinded manner by an experienced transplant 
cardiac pathologist using the revised ISHLT grad-
ing scale.39 Patient demographics were comparable 
between groups and presented in Table 1.

RNA extraction and microarray analysis
Blood samples were collected in PAXgene tubes 
(PreAnalytiX, Hombrechtikon, Switzerland) and 
stored at -80°C until analysis. Whole blood RNA 
was extracted for selected samples. These samples 
were thawed, RNA isolated using PAXgene Blood 
RNA Kits (QIAGEN Inc, Germantown, MD, USA), 
and quality checked using an Agilent BioAnalyzer 
(Agilent Technologies Inc, Santa Clara, CA, 
USA). Affymetrix Human Genome U133 Plus 2.0 
(Affymetrix, Inc, Santa Clara, CA, USA) microar-
rays were utilized at the Microarray Core Laboratory 
at Children’s Hospital, Los Angeles. The microar-
rays were checked for quality using the “affy” 
(version 1.16.0) and “affyPLM” (version 1.14.0) 
BioConductor packages,40–42 as well as an internally 
developed method (Mahalanobis Distance Quality 
Control [MDQC],43 available in the “mdqc” Bioncon-
ductor package).

Statistical methods
Statistical analysis of the resulting data was conducted 
on the R platform (version 2.13.0), using the “samr” 
(version 2.0) and “affy” BioConductor (version 2.8) 
packages.40 The deconvolution code was adapted 
from the paper by Shen-Orr et al.7

Microarrays were first background-corrected, nor-
malized and summarized to probe-set level data using 
the robust multichip average (RMA) method.44

All 54613 probe-sets were first submitted to a 
supervised, 2-class, univariate analysis (Significance 
Analysis of Microarrays [SAM]45) to identify poten-
tial differentially expressed probe-sets in whole 
blood. A similar analysis was performed concur-
rently on the csSAM (sample composition) normal-
ized whole blood expression data. We interpreted 
differentially expressed probe-sets identified in the 
second analysis as being differentially regulated 
between the two groups of subjects. We also used 
the csSAM algorithm to deconvolve and compare 
cell-specific expression between the AR and NR 
subjects.

FDR cutoffs were used in order to assess the sig-
nificance of findings. The values used varied based 
on the nature of the analysis and recommended 
best practices. For the traditional 2 class, univariate 
analysis (SAM), an FDR cutoff of #5% was used 
(typically, 1% or 5% are used). This corresponds to 
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an expectation that, within the set of genes below 
the threshold, 5% are false positive results. When 
considering the csSAM normalized whole blood 
results and csSAM deconvolved cell-specific results, 
a threshold of #20% was used. In the original pub-
lication,7 Shen-Orr et al. suggested using a value of 
#25%, arguing that this was acceptable in the con-
text of exploratory analysis. We elected to use #20% 
based on Figure 2c and 3e, where 20% approximately 
corresponds to the inflection point of the “FDR” 
against “#called” plot and, thus, maximized the num-
ber of probe-sets discovered while limiting the total 
number of false positives.

Biological validation
Functional enrichment of the deconvolved cell-specific 
signals obtained from the csSAM algorithm was 
examined using GSEA18; performed using the desktop 
Java application. The test statistic generated by the 
csSAM algorithm was used to generate a cell-specific 
ranked list of the probe-sets, which was then submitted 
to GSEA for Ranked List Analysis. KEGG canonical 
pathways were used as gene set inputs and the Broad 
Institute recommended value of #25%. Finally, signifi-
cant probe-sets were collapsed to well-annotated genes, 
based on annotation provided by Affymetrix, and then 
subjected to literature analysis through PubMed.
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Table S1. White blood cell diffrentials (relative).

Subject ID Group Neutrophils Lymphocytes Monocytes Eosinophils Basophils
B-300 NR 0.250 0.375 0.250 0.125 0.000
B-303 AR 0.685 0.056 0.241 0.019 0.000
B-304 NR 0.750 0.102 0.102 0.034 0.011
B-311 NR 0.929 0.044 0.018 0.009 0.000
B-314 NR 0.604 0.315 0.072 0.009 0.000
B-317 AR 0.670 0.241 0.063 0.018 0.009
B-334 NR 0.866 0.073 0.061 0.000 0.000
B-336 NR 0.700 0.210 0.060 0.020 0.010
B-373 AR 0.556 0.250 0.153 0.028 0.014
B-380 NR 0.500 0.382 0.088 0.029 0.000
B-403 AR 0.725 0.183 0.073 0.009 0.009
B-415 NR 0.766 0.149 0.071 0.004 0.011
B-429 NR 0.747 0.177 0.063 0.013 0.000
B-440 NR 0.493 0.397 0.096 0.014 0.000
B-451 AR 0.872 0.058 0.047 0.017 0.006
B-468 NR 0.646 0.231 0.123 0.000 0.000
B-476 AR 0.735 0.143 0.102 0.020 0.000
B-478 NR 0.783 0.130 0.072 0.014 0.000
B-498 NR 0.746 0.169 0.068 0.017 0.000
B-514 AR 0.833 0.097 0.069 0.000 0.000
B-518 NR 0.589 0.304 0.089 0.018 0.000
B-540 NR 0.747 0.165 0.077 0.011 0.000
B-551 AR 0.725 0.213 0.050 0.013 0.000
B-555 AR 0.822 0.082 0.082 0.014 0.000
B-560 NR 0.699 0.221 0.066 0.007 0.007
B-561 AR 0.699 0.193 0.096 0.012 0.000
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Table S2. Summary of gene set enrichment analysis in monocytes.

KEGG canonical pathway Set  
size

ES NES p-val FDR  
q-val

FWER  
p-val

KEGG VIBRIO CHOLERAE INFECTION 50 0.68 2.18 0.00000 0.00000 0.00000
KEGG ACUTE MYELOID LEUKEMIA 56 0.66 2.18 0.00000 0.00000 0.00000
KEGG EPITHELIAL CELL SIGNALING IN  
HELICOBACTER PYLORI INFECTION

62 0.64 2.10 0.00000 0.00000 0.00000

KEGG FC GAMMA R MEDIATED PHAGOCYTOSIS 87 0.59 2.00 0.00000 0.00017 0.00100
KEGG ERBB SIGNALING PATHWAY 85 0.58 1.94 0.00000 0.00019 0.00200
KEGG PATHOGENIC ESCHERICHIA COLI INFECTION 45 0.64 2.01 0.00000 0.00020 0.00100
KEGG NON SMALL CELL LUNG CANCER 52 0.61 1.96 0.00000 0.00020 0.00200
KEGG THYROID CANCER 29 0.67 1.96 0.00000 0.00023 0.00200
KEGG ADHERENS JUNCTION 73 0.61 2.02 0.00000 0.00025 0.00100
KEGG RENAL CELL CARCINOMA 69 0.58 1.93 0.00000 0.00025 0.00300
KEGG LEUKOCYTE TRANSENDOTHELIAL MIGRATION 108 0.58 1.98 0.00000 0.00026 0.00200
KEGG ENDOMETRIAL CANCER 51 0.63 1.98 0.00000 0.00029 0.00200
KEGG REGULATION OF ACTIN CYTOSKELETON 198 0.53 1.88 0.00000 0.00036 0.00600
KEGG PANCREATIC CANCER 69 0.58 1.91 0.00000 0.00036 0.00500
KEGG INSULIN SIGNALING PATHWAY 131 0.54 1.88 0.00000 0.00038 0.00600
KEGG CHRONIC MYELOID LEUKEMIA 72 0.58 1.93 0.00000 0.00039 0.00500
KEGG NEUROTROPHIN SIGNALING PATHWAY 122 0.55 1.89 0.00000 0.00041 0.00600
KEGG VASOPRESSIN REGULATED WATER  
REABSORPTION

44 0.60 1.87 0.00106 0.00051 0.00900

KEGG FOCAL ADHESION 189 0.53 1.86 0.00000 0.00053 0.01100
KEGG PROSTATE CANCER 87 0.55 1.86 0.00000 0.00056 0.01100
KEGG T CELL RECEPTOR SIGNALING PATHWAY 107 0.54 1.85 0.00000 0.00057 0.01300
KEGG B CELL RECEPTOR SIGNALING PATHWAY 71 0.56 1.86 0.00000 0.00059 0.01100
KEGG ARRHYTHMOGENIC RIGHT VENTRICULAR  
CARDIOMYOPATHY ARVC

73 0.56 1.85 0.00000 0.00060 0.01300

KEGG COLORECTAL CANCER 61 0.56 1.84 0.00000 0.00063 0.01500
KEGG TOLL LIKE RECEPTOR SIGNALING PATHWAY 98 0.54 1.82 0.00000 0.00077 0.01900
KEGG LEISHMANIA INFECTION 62 0.55 1.80 0.00000 0.00101 0.02600
KEGG GLIOMA 63 0.55 1.81 0.00000 0.00101 0.02500
KEGG ENDOCYTOSIS 158 0.50 1.76 0.00000 0.00178 0.05000
KEGG APOPTOSIS 82 0.53 1.77 0.00000 0.00181 0.04900
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