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The area of biology has evolved in a manner that encom-
passes mining meaningful information to answer the next 
biological question. Machine learning techniques are com-
putational methods that use “experience” to improve perfor-
mance or to make accurate predictions. Within the context 
of this supplement, experience refers to past information 
such as electronic data available to the learners, which are 
then consequently used for analyses.1

Over the years, the collection of biological information 
has been rapidly increasing due to the developments and 
improvements of existing technologies and facilities. An 
excellent example would be the Human Genome Project, 
founded in 1990 by the US Department of Energy and the 
US National Institutes of Health and was eventually com-
pleted in 2003. The rapid growth of these massive data 
eventually led to the need for the use of computational and 
statistical methods to organize, maintain, and interpret bio-
logical results.2

There is a strong motivation in the use of machine learn-
ing methods in knowledge discovery and data mining to 
generate models of biological implications. The history of 
the relationship between machine learning and biology is 
considered long and complex. One of the early techniques 
used in machine learning called perceptron constituted an 
attempt to mimic and model the the behavior of a biological 
neuron. Consequently, the area of artificial neural network 
(ANN) emerged from this attempt.3

This supplement covers a wide array of topics involving 
the use of machine learning techniques to extract meaning-
ful information from genetic and clinical data with the pri-
mary objective of answering biological questions. Various 
applications of machine learning techniques in different 
areas are covered in this supplement, including its use for 

predicting human leukocyte antigen (HLA)-peptide bind-
ing activity, integrating disparate short-read alignment 
algorithms for mapping next-generation sequencing reads 
to a reference genome, identifying similar diseases by 
semantic and genomic similarity, as well as development of 
risk assessment tools for prediction of life expectancy using 
genetic algorithm (GA) and weighted quantile sum (WQS) 
regression. The network analysis, as well as other machine 
learning techniques, is reviewed by Luo et  al.4 This review 
summarizes different methods and tools for predicting bind-
ing properties of the HLAs. The HLA system produces a 
variety of peptides that play a critical role in immune system 
regulation by recognizing foreign antigens and presenting 
them to different types of immune cells. The review by Luo 
et al4 covers a wide variety of machine learning methods for 
predicting HLA binding, from regression-based techniques 
and decision trees through support vector machines (SVMs), 
hidden Markov models, and ANNs. The authors discuss the 
strengths and limitations of each method and propose a 
combination approach that uses multiple types of prediction 
methods to address some of the limitations.

The complexity of immune system was also addressed in the 
paper by Dozmorov et  al.5 The authors compare 2 methods, 
csSAM and DSection, for detection of cell type–specific dif-
ferential expression by analyzing RNA-seq data obtained from 
a heterogeneous mixture of immune cells of healthy individuals 
and patients diagnosed with an autoimmune disease systemic 
lupus erythematosus. Both methods use linear regression to 
estimate cell type–specific gene expression differences, whereas 
the DSection method also uses Bayesian approach to estimate 
cell proportions. Dozmorov et al5 compared the results of cell 
type–specific differential expression analysis with genes differ-
entially expressed in heterogeneous mixture of cells. In 
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addition to evaluating csSAM and DSection methods applied 
to the cell type–specific differential expression analysis of 
RNA-seq data, the authors provide a brief methodologic over-
view of gold standard tools for differential expression analysis 
of RNA-seq data.

Adams et al6 provided a novel examination on the use of 
GA for determining variables predictive of mortality. Their 
manuscript offers a novel method involving the use of a GA 
approach for selection of predictive variables from health 
questionnaire data. The selected variables are then used to 
construct predictive models of 5-year mortality using vari-
ous machine learning techniques. Parametric and nonpara-
metric machine learning algorithms are emerging 
computational methods that have increasing applications in 
the area of bioinformatics and computational biology. 
Results obtained from this study will provide novel insights 
for computational biologists and bioinformaticians to use 
GA in conjunction with machine learning techniques to 
efficiently select important variables and also determine 
their collective prediction accuracy. The various machine 
learning techniques used in the study included gradient 
boosting, ANN, elastic net, SVM, ridge regression, logistic 
regression, random forest, least absolute shrinkage and 
selection operator (LASSO), partial least squares-discrimi-
nant analysis, and decision trees. The optimization of vari-
able selection for questionnaire data and the construction of 
predictive models using selected variables are areas of inter-
est for researchers and clinicians alike. The study demon-
strates the feasibility of various machine learning techniques 
for developing both prognostic and explanatory models 
using data collected via surveys or questionnaires.6

Bello et al7 used a statistical technique known as weighted 
quantile sum (WQS) regression to develop a model that 

condenses the information from a variety of health markers 
into a composite index (referred to as the health status metric 
[HSM]). The HSM can be used as a holistic measure of over-
all health and also as a risk score for predicting all-cause mor-
tality. Indeed, results of their study indicated that the index 
was highly predictive of life expectancy and long-term health-
related outcomes such as hospital utilization. Weighted quan-
tile sum regression is a novel, penalized regression method 
that was developed to handle multicollinear data, the situa-
tion whereby complex correlation patterns exist among mul-
tiple variables. Weighted quantile sum controls the variance 
inflation arising from multicollinearity by imposing nonneg-
ative and unit-sum penalties on model coefficients. It is a 
powerful alternative to other penalized regression techniques, 
such as LASSO and the elastic net, which are commonly used 
in machine learning. The study demonstrates the utility of 
WQS in predictive modeling and development of risk scores.
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