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Previous change blindness studies have failed to address the importance of balancing low-level visual salience when
producing experimental stimuli for a change detection task. Therefore, prior results suggesting that top<down processes
influence change detection may be contaminated by low-level saliency differences in the stimuli used. Here we present a
novel technique for generating semi-automated balanced modifications to a scene, handled by a genetic algorithm coupled
with a computational model for bottom<up saliency. The saliency model obtains global saliency values for input images by
analysing peaks in feature contrast maps. This quantification approach facilitates the generation of experimental stimuli
using natural images and is an extension to a recently investigated approach using only low-level stimuli (Verma &
McOwan, 2009). In this exemplar study, subjects were asked to detect changes in a flicker task containing the original
scene image (A) and a synthesised modified version (AV). We find under the conditions where global saliency is balanced
between A and AVas well as between all modifications (all instantiations of AV) that low-level saliency is indeed a reasonable
estimator of change detection performance in comparison with high-level measures such as mouse-click densities. When
the saliency of the changes are similar, addition/removal changes are detected more readily than colour changes to the
scene.
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Introduction

Introduction to change blindness

When viewing an original image (A) and the modified
version (AV), change blindness occurs when the viewer
cannot detect the change. For example, compare A with
AV1, AV2, AV3, or AV4 in Figure 4. Not only can a viewer miss
large changes (Grimes, 1996) but they also tend to be
entirely confident that they would notice such striking
changes (Levin, Drivdahl, Momen, & Beck, 2002). This
experimental paradigm has proved to be a powerful tool
for exploring various lines of research in visual attention,
consciousness, memory, perception, and cognitive science.
The nature and robustness of the effect has lead to

studies conducted using psychophysics (e.g., Grimes,
1996) as well as real-life interactions (for a summary of
techniques, see Rensink, 2002; Simons & Levin, 1997).
In a controlled laboratory setting, a change in the two

scenes (A) and (AV) can be noticed immediately if the two
scenes are spatially aligned and presented in sequence.
However, change blindness can occur when viewing the
scenes side<by<side or when the scenes are blended
together to achieve a gradual change. Another experimental
approach was presented by Rensink, O’Regan, and Clark

(1997) known as a flicker task, where an interstimulus
interval (ISI) is inserted between (A) and (AV) as well as
after (AV). This sequence is iterated until the observer
responds, allowing the accuracy of the response as well as
the reaction time to be recorded. Several change detection
experiments have been conducted using these approaches
to explore the foundations for change blindness. One
explanation points to the absence of a sufficient internal
representation of the region to be altered (Noë, Pessoa, &
Thompson, 2000; O’Regan & Noë, 2001). An alternative
explanation is that the pre-change information is encoded
but is disrupted, overwritten, or forgotten (Beck & Levin,
2003; Landman, Spekreijse, & Lamme, 2003; Rensink
et al., 1997). A third explanation is that the pre-change
information is represented and retained but not compared
with the post-change representation (Mitroff, Simons, &
Levin, 2004; Scott-Brown, Baker, & Orbach, 2000). Since
a change region must be localized in order for a change to
be detected or sensed (Galpin, Underwood, & Chapman,
2007; Mitroff & Simons, 2002), change blindness can be
studied by observing the allocation of visual attention in
the scene. The now classic eye-movement evidence by
Yarbus (1967) found that saccades and fixations do not
follow random paths and are dependent on particular
viewing conditions. These viewing patterns have led to
the formulation of computational models for visual
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attention which can be broadly categorized as being either
top<down or bottom<up.

Top<down versus bottom<up attention

On the one hand, top<down models show that our
perception and interpretation of an object is influenced by
factors such as prior knowledge (Smith, Hopkins, &
Squire, 2006), the context (Torralba, Oliva, Castelhano,
& Henderson, 2006), and the task at hand (Triesch,
Ballard, Hayhoe, & Sullivan, 2003). According to such
theories, the general scene–schema (or gist) is obtained
after very brief glimpses (Biederman, 1972) and is
coupled with knowledge to direct attention around the
scene. As an example, when viewing an office environ-
ment and searching for a computer, we might expect to
find it on the desk rather than on a shelf. We might also
expect only certain types of objects that would fit in the
general setting of the scene (e.g., a stapler rather than a
football on the desk). Object identification and detection
has been shown to be more accurate when primed by a
semantically consistent scene (Davenport & Potter, 2004;
Palmer, 1975). However, objects that violate the scene–
schema have been shown to draw earlier and/or longer
fixations (Biederman, 1972; Loftus & Mackworth, 1978;
Underwood, Templeman, Lamming, & Foulsham, 2008).
Unfortunately, the scene-inconsistent object advantage has
not been replicated in subsequent scene perception
investigations (De Graef, Christiaens, & d’Ydewalle, 1990;
Henderson, Weeks, & Hollingworth, 1999; Underwood
& Foulsham, 2006; Underwood, Foulsham, van Loon,
Humphreys, & Bloyce, 2006; Underwood, Humphreys, &
Cross, 2007).
Bottom<up theories, on the other hand, propose that

image properties drive the allocation of attention. They
can be viewed as a low-level visual search problem where
features are analysed in parallel across the visual field and
highly contrasting regions that pop out are allocated
attention. These models are biologically plausible (de
Brecht & Saiki, 2006; Itti & Koch, 2000; Koch & Ullman,
1985; Treue, 2003) and can be implemented for a variety
of features. Typically, each feature has a feature map, and
these feature maps are combined to build a saliency map.
The model proposed by Itti and Koch (2000) hypothesized
the order of viewer fixations by inhibiting the return of
previously fixated areas. This allows the use of the
saliency map to traverse from high to low regions drawing
attention. These saliency maps match well with early
saccadic movements whether participants are encoding
pictures in preparation for a memory test (Foulsham &
Underwood, 2007; Underwood & Foulsham, 2006;
Underwood et al., 2006) or free viewing (Parkhurst,
Law, & Niebur, 2002). Parkhurst et al. (2002) have shown
that the saliency at fixation is better than a chance fixation
distribution. A flickering light or an abrupt onset can

involuntarily capture attention (Posner, 1980), a property
widely used by police cars, ambulances, and railroad
crossings. This has been found to occur independently of
goals and the task at hand (Christ & Abrams, 2006,
Mulckhuyse, Van Zoest, & Theeuwes, 2008; Neo & Chua,
2006; Schreij, Owens, & Theeuwes, 2008). Although
spatial and temporal feature contrasts could explain this
finding, a probabilistic-based formulation has been pro-
posed where salient regions may be defined by the amount
of bottom<up Bayesian Surprise (Itti & Baldi, 2006).
Contrasting studies have found that this attention capture
effect can be modulated by top<down factors (e.g., Lien,
Ruthruff, Goodin, & Remington, 2008). Hollingworth and
Henderson (1998) suggest that the processing of object
information is functionally independent of the scene
context. This finding not only conflicts with evidence of
a consistent or inconsistent scene advantage but also
supports the idea that image feature contrasts objectively
draw attention. Recent studies have also found a relation-
ship between image salience and high-level cognitive
functions, for tasks involving working memory (Fine &
Minnery, 2009) and for scene labeling (Elazary & Itti,
2008). To obtain a more accurate model of scene
perception, presumably both bottom<up and top<down
factors should be incorporated, and advances have been
made to achieve this (Navalpakkam & Itti, 2005).

Visual attention and change detection

The ongoing debate of top<down versus bottom<up
influences also incorporates evidence from change detec-
tion studies. Rensink et al. (1997) found that when the
transient in the signal accompanied by the change is
suppressed by a blank frame, change blindness ensues.
Attention is not drawn to the change region, resulting in
long change detection times or the change not being
detected at all. To explore the influence of high-level
effects on attention, Rensink et al. conducted a two-part
experiment. The first part involved each participant rating
regions of image according to interest; regions selected
three or more times were classified as of central interest,
and regions not selected at all were deemed to be of
marginal interest. The second part tested these classified
regions of interest by making changes to them and
observing which changes are detected more readily. In
order to avoid selection bias, changes were manually
controlled for intensity and colour, but the size of the
change was on average 4 sq. deg (or 20%) larger for
marginal changes. Even though central changes were
found to be detected quicker than marginal changes, the
subjectivity of the initial interest assessment may have
confounded with salience levels. In other words, the “high
interest” regions could have been selected because they
also had high image salience. This could explain why
image feature statistics are highly correlated with semantic
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information which is driven endogenously by top<down
factors (Henderson, Brockmole, Castelhano, & Mack,
2007). However, there have been competing results
concerning whether this saliency argument accounts for
the finding that changes to areas rated high in subjective
interest are more easily detected. Shore and Klein (2000)
found that saliency is key in a flicker task. Using the same
stimuli as Rensink et al., they rotated half of the image
pairs presented by 180- in order to decouple any possible
context effects. The original and modified scenes were
first displayed side<by<side and participants were asked to
identify where a change occurred. When viewing upright
images, central changes were detected more readily than
marginal changes, in line with the findings of Rensink
et al. However, the advantage of central changes was
inhibited by inverting the orientation of the scenes,
underlining the importance of scene semantics. Shore
and Klein found that when using the flicker paradigm, that
central and marginal changes are unaffected by scene
inversion, instead showing that changes are detected by
stimulus-driven processes not scene semantics. Salience
was not measured in the experiments conducted but was
instead used for a post hoc explanation of their central
versus marginal interest differences. Kelley, Chun, and
Chua (2003) on the other hand attempted to manually
balance salience levels by eye, concluding that high-level
factors suppressed the influences of low-level salience. In
their experiments, two competing changes were used per
scene to address the imbalance of saliency between
marginal and central changes. This imbalance could
explain why Rensink et al. found a central change
advantage and also why Shore and Klein found a null
effect of scene inversion. Kelley et al. identified the need
to balance the low-level discriminability of changes and
therefore manually matched central and marginal changes
per scene for size, colour, eccentricity from the centre, and
background contrast. However, the study did not control
for imbalances in the salience between the original and
modified images, which could have biased attention to
the more salient of the two change regions. Manual
changes to scenes using photo editing software, especially
the addition or removal of objects, could have resulted in
the altered region being salient due to differences in
luminance or colour balance with its background. Another
issue was that Rensink et al., Shore and Klein, and Kelley
et al. failed to address the subjectivity of the interest
categorization, since participants were always asked to
determine the regions of central and marginal interest. In
order to objectively assess the image salience of the
changes made, Stirk and Underwood (2007) used an
approach which considered intensity, colour, and orienta-
tion image feature contrasts. They avoided image artefacts
being left by manual changes through taking a photograph
of a scene, replacing an object, and taking a second
photograph. The Itti and Koch (2000) attention model was
used to predict which objects would receive earlier or later
fixations. A high saliency change was one which occurred

between one and three in the ordinal ranking and a low
saliency change was one which ranked eight or higher.
This objectivity also provided a means for fair competi-
tion between various object modifications made. They
found that change detection performance was positively
correlated with scene inconsistency rather than object
salience, in line with the high-level effects observed by
Kelley et al. However, the results of Kelley et al. and
Stirk and Underwood could have been contaminated
since they did not control for the differences in the
salience between the original and modified scenes. The
potential imbalance in low-level image properties could
have attracted attention to the replaced object, not
because of its scene inconsistency but because of its
visual salience. Using a scene pair from the study by Stirk
and Underwood and the model described in Experiment 1,
Figure 1 shows that a discrepancy exists in salience map
values.

Balancing saliency levels

To neutralise any effect of differences in low-level image
properties between pre-change and post-change scenes as
well as for competing changes, our study aims to readdress
this problem by using a technique that computationally
balances the global saliency levels. To investigate whether
the failures to detect changes are due to the change type as
well as the saliency of the region being modified, addition/
removal and colour changes relating to each scene are
examined. In developing our new semi-automated stimulus
generation technique, we draw on previous work using line
drawings (De Graef et al., 1990; Henderson et al., 1999;
Loftus & Mackworth, 1978; Mitroff et al., 2004), com-
puter-generated scenes (Hollingworth & Henderson,
2002), or manual modifications to real-world scenes
(Biederman, 1972; Davenport & Potter, 2004; Mitroff &
Simons, 2002) to allow controlled modifications. A
genetic algorithm is used to drive the process of balancing
saliency by searching the alteration space for a modified
scene that has a similar global saliency value to the
original scene as well as any competing change scenes.
Under the viewing conditions of a flicker task,
if bottom<up factors guide attention, we would expect
the change region as inferred by the saliency map to
influence the speed and accuracy to detect changes.
Conversely, if top<down factors are an influence, perfor-
mance should not correlate with changes in high and low
saliency regions. Investigating the type of change in these
regions could tell us about how representations are
encoded and compared.
The first experiment conducted was to gather low-level

saliency regions and high-level regions of interest. This
was followed by the change blindness experiment. Details
of the process of stimulus generation are provided in the
corresponding Stimuli section, followed by the results
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from the flicker experiment using such stimuli. We then
suggest possible explanations for the results we have
obtained herein.

Experiment 1: Low-level saliency
and interest ratings

Methods
Participants

Sixty-four naı̈ve subjects with ages ranging from 19 to
44 (M = 26.71, SD = 4.77) participated in the experiments,
reporting normal or corrected-to-normal visual acuity.

Stimuli

Forty scenes were used, the image dimensions of which
were 640 � 480 pixels (22.5 � 16.9 cm) at a resolution of
72 ppi, subtending visual angles of 22.3- � 16.9-. The
content of the images was a mixture of indoor and outdoor
scenes. Some were landscapes images while others were
focused on one or two items.
The natural images were colour segmented using mean-

shift segmentation (Comaniciu & Meer, 2002) in order to
control the content of the scenes for Experiment 2. Any
under-segmentation errors violating the semantics of the
scene, such as a foreground object containing part of its
background, were manually corrected by reassigning the
pixels to the correct segment. This segmentation step
produces a realistic image, the structure of which is easier
to manipulate autonomously.

Figure 1. Images from the Stirk and Underwood (2007) study, showing that sometimes an imbalance in salience levels exists, which may
introduce confounding variables thus biasing results.
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Apparatus

The experiment was programmed with the Psychophy-
sics Toolbox extensions (Brainard, 1997; Pelli, 1997)
implemented in MATLAB. Stimuli were presented on a
15-in. monitor at a screen resolution of 1024 � 768.
Participants viewed from approximately 57 cm away from
the computer monitor, and movement was restricted using
a chin rest. The room was dimly illuminated by a low-
intensity light source.

Procedure

The first stage of the experiment involved obtaining
model-predicted low-level saliency measures for each
segmented scene, and therefore there was no human
interaction for this stage. A low-level saliency map was
computed for each scene using the biologically plausible
saliency model proposed by Verma and McOwan
(2009). In this model, centre-surround similarities and
discontinuities for colour, luminance, and orientation

feature contrasts are computed across scales 7 scales
according to the size of the input image. There are 2 colour
subfeatures (for double-opponent B-Y and R-G channels)
and 4 orientation subfeatures (0-, 45-, 90-, and 135-), and
luminance is captured by measuring the brightness of each
pixel. The saliency model uses a dynamic feature
combination strategy, which logarithmically combines
scored subfeature similarities and contrasts according to
a peak analysis using Hurst exponent estimations. Once
these subfeatures have been fused to form conspicuity
maps, these are linearly combined to produce the final
saliency map. Since the colour, luminance, and orientation
feature maps are normalized and linearly combined, no
biasing of features occurs in this methodology. The
dynamic weighting procedure ensures that the contribu-
tion of each subfeature is never fixed but is instead
dependent on the activity peaks of centre-surround feature
similarities and contrasts. Stronger isolated peaks are
given a high weighting, so these contribute more towards
the feature map. Another benefit of the peak analysis
process is that the contribution of each subfeature

Figure 2. The mouse-click locations in a sample-segmented image selected by 64 subjects are shown in panel c. The observed
segmented image (a) and the saliency map (b) are also shown.
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conspicuity map can be quantified to form an overall
saliency value for each given scene. Specifically, the
Hurst exponent is estimated for each centre-surround
contrast image computed across spatial scales for colour
and luminance subfeatures. The Hurst exponent is also
estimated for orientation subfeatures across spatial scales.
For each collection of Hurst exponent estimates per
subfeature, the maximum is taken to form an accumu-
lative sum. The final sum of these scores is the overall
saliency value for the given saliency map, which is
particularly important to obtain for Experiment 2. See
Verma and McOwan for more details.
Each segmented region acts as a potential focus of

attention region. First, a connectivity structure is formed
to provide bi-directional linkage information for pixels in
the segmentation image to segmented regions in the same
image. The pixel intensities of the saliency map are sorted
in descending order of saliency. Next, to establish a
saliency ordering of segmented regions, each sorted pixel
value from the saliency map is matched with its
corresponding linked segmented region. Once a high
saliency value pixel has been assigned to a region, any
subsequent lower value pixels locally present in the
saliency map are prohibited from being associated with
the same region. This procedure ensures that each seg-
mented region is associated with the highest pixel intensity
value for that region. Assuming that these high saliency
map pixel values attract attention, this technique crudely
replicates the biological behaviour of an inhibition-of-return
mechanism. We defined high saliency regions as those
among the four highest ranked segments and low saliency
regions as those between four and eight in the ranked list.
The second stage of the experiment involved obtaining

interest ratings from subjects, and combining these to
form a consensus on regions of interest. We defined high
and low interest regions according to the segmented
regions corresponding to mouse clicks by subjects. All
64 subjects clicked on regions within segmented images
that they determined were significant for describing the
content of the scene. Even though no time limit was
applied, the subjects were only able to click on a
maximum of eight pixel locations. The segmented
portion(s) relating to densely clicked areas showing
inter-subject agreement for each scene was defined as
highly interesting. As with the classification of salient
regions, high interest regions were the top four regions
and low interest regions were ranked fifth to eighth.

Results

Segmented interest regions from mouse-click densities
and segmented salient regions were compared by con-
ducting an ANOVA on the corresponding ordinal rank
data. However, no statistically significant association was
found between mouse-click densities and salient regions

at the p G 0.05 level. This shows a disparity between
model-predicted low-level saliency regions and interest
regions. Figure 2 presents a sample-segmented image
presented to participants and the corresponding interest
points for all 64 subjects. The figure illustrates the
difference between the saliency model inferred locations
and the areas of high-density mouse clicks. In particular,
notice that the blue text and the white printer are not
highlighted by the saliency model yet they are identified
as interest points through mouse clicks.

Experiment 2: Change detection

Methods
Participants

Sixty-four naı̈ve subjects with ages ranging from 19 to
37 (M = 25.74, SD = 4.23) participated in the experiments,
none of whom participated in Experiment 1. All subjects
reported normal or corrected-to-normal visual acuity.

Stimuli

The same forty colour-segmented scenes were used
from Experiment 1. The image dimensions of which were
640� 480 pixels (22.5� 16.9 cm) at a resolution of 72 ppi,
subtending visual angles of 22.3- � 16.9-.
The aim of this experiment was to test the hypothesis

that high change detection rates are linked to low-level
salient regions rather than regions of interest. The novelty
of our approach is in the use of an automated system for
modifying scenes and balancing saliency levels. These
modified scenes will then be used for observing change
detection performance, monitoring change detection rates
with respect to the location of the change and the type of
the change.
Visual attention may be directed by bottom<up (exog-

enous, stimulus-based) or top<down (endogenous, goal-
directed) control. Thus, to decouple the influence of
salience and visual interest through scene semantics, the
40 scenes were modified in high interest and low interest
regions and well as high and low saliency regions, which
were determined in Experiment 1. Two changes were
made per scene without human intervention, for each of
the four location types. These two changes were colour and
addition/removal changes.
The processing pipeline for automated scene modifica-

tion is shown in Figure 3. The procedure was facilitated
by a genetic algorithm (GA) (Davis, 1991), where the
saliency model was used as the fitness function. For each
scene, a variable-length chromosome held HSV values for
all segmented regions, including a collection of bits
denoting the candidate change region for that chromo-
some. In addition, the chromosome also held the saliency
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value of its counter-part pre-change scene. The fitness
function was responsible for comparing the changed scene
saliency level with the stored pre-change saliency level
and ensuring that only scene pairs with the smallest two
saliency differences in the population (N = 12) were
selected. Accepted scenes were forwarded to the next
generation with the ultimate aim of the evolutionary
process being to minimizing this saliency error for the
changed region. The termination criterion was a tolerance
level which ensured that computed global saliency values
for all 40 scenes were within T3.0 units (M = 34.4, SD =
7.8). A narrower margin may be used; however, this may
decrease the convergence rates and limit the range of the
resultant candidate changes.
The role of the GA was to optimize the search for

changes by minimizing the computed global saliency
values between each original and modified scene. Figure 4
shows the schema for the balancing checks made by the

GA. To prevent an imbalance between the competing
changes due to this tolerance and also due to the
variability within the high and low saliency groups used,
the saliency value of colour and addition/removal change
scenes were also balanced. The purpose of balancing
saliency in this rigorous manner was to avoid any
attentional bias that could be caused by an imbalance in
image salience. Elitism was set to 0.2, one-point crossover
and mutation was used, the crossover rate was 0.80, the
mutation rate was 0.08, and the extent of each HSV
mutation was limited to 5%.
Colour changes were produced by manipulating HSV

value bits, ranging from 0- to 360- for H and from 0.0 to
1.0 for the S and V components. Removal changes were
produced by matching the change region colour with the
neighbouring background colour. In terms of the GA, the
type of change to seek was regulated by an immutable
change type bitV0 denotes colour change, 1 denotes object

Figure 3. The processing pipeline for stimulus generation. The original image (a) is processed to produce the mean-shift segmented
image (b) which is shown here with colour-adjusted regions to illustrate that contiguous homogeneous pixels are grouped together. This
image is then used to produce a grayscale saliency map (b). Using this, a GA is then used to suggest changes in high (d) and low (e)
saliency regions. In this particular case, the high saliency change is the removed road marking and the low saliency change is the
removed roadside safety barrier. The same approach is used for modifying interest regions as determined in Experiment 1.
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addition, and 2 denotes object removal. The background
of a given removed item was reconstructed by using a
dithering approach, which sampled four nearby pixels and
used the mean colour values to fill the space. The four
pixels were randomly chosen along the x and y planes of
the segmented region, and these were encoded into the
candidate change chromosome. The removal of a seg-
mented region requires the largest number of generations
to optimize due to the mismatch in saliency levels. Using
this approach, it is plausible that some object removals
could be drastic enough to never converge on a satisfac-
tory changed-scene counterpart. Such images were not
used in our experiments. Given a pair of scenes in which
an object has been removed, the effect of object
addition was created by switching the original and
modified scenes, for instance, displaying Figure 3d before
the non-colour-adjusted version of Figure 3b. Figure 5
presents examples of candidate modifications in a low-
saliency region, along with their corresponding saliency
maps and numeral saliency values. Figure 5b shows how
the scene appears when the region is removed, Figure 5c
shows how the scene appears when the region colour is
altered, and Figure 5d shows an example of a region change
which is above the acceptable tolerance level.

Apparatus

The same equipment and setup was used as those in
Experiment 1. Subjects responded to stimuli by pressing
assigned keys on a modified keyboard.

Procedure

Modifying the 40 original scenes produced 320 different
possible original-changed pairs, 160 images per level of
the change-type independent variable (colour and addition/
removal). This included 40 scenes each for the two levels
of saliency and two levels of interest (high and low). To
avoid the same scene being presented twice to a
participant, eight groups of 40 unique original-changed
pairs were formed, which were run on four separate
subject groups. Each design condition (e.g., high interest
colour change) was shuffled across the eight groups in
order to test a variety of conditions per group. There were
eight participants per group, so each version of an original
scene was shown eight times. Participants were given
written instructions to prepare for a memory task by
observing a set of paired images separated by an ISI
containing a blank grey frame. They were informed that
changes may occur between the pairs of images presented

Figure 4. The schema for balancing the global scene salience values. Salience was balanced across original and modified scenes (A vs.
{AV1, AV2, AV3, AV4}). The genetic algorithm may obtain an optimal but not always exactly matching modification. For fair competition,
competing changes (AV1 vs. AV3 and AV2 vs. AV4) were also balanced. An example of an original scene (i.e., A) is image a in Figure 3 and
examples of modified scenes such as AV3 and AV4 are images d and e in Figure 3, respectively.
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and that there would only be one object change per pair of
images. Participants were asked to decide whether a
change between the scenes had occurred. A practice block

of six trials was run before the experiment began. The trial
structure is presented in Figure 6. Each scene was
repeatedly presented until the participant responded with

Figure 5. Examples of scene modifications suggested by our automated system. The first row shows the pre-change scene and three
types of changes. The second row shows the corresponding saliency maps and their numeral value. Notice that the difference in the
saliency values of candidate change 3 and the pre-change scene is more than the acceptable level of 3.0 units. For this reason, the
candidate change is rejected by the fitness function, whereas candidate changes 1 and 2 are accepted.

Figure 6. The trial structure for Experiment 2. Participants were presented with 80 scenes in which, either no change was made, or
changes were made to the colour or the presence of an object. The region in which the change was made was determined either by a
saliency map or by a mean subject rating gathered prior to the experiment. Participants were asked to decide as to whether or not a
change occurred.
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a key press indicating “change” or “no change.” The
assignment of key location was randomized between
subjects, and the keys were modified to mask their
labeling. To initiate a trial, participants fixated on a
yellow circle presented in the middle a grey frame for
3000 ms, followed by an ISI containing a blank grey
frame (without the fixation circle), which was presented
for 200 ms. This was followed by the first image of a
scene pairing against a grey background for 500 ms. Next,
a blank ISI was presented again for 200 ms before the
second image of the pairing was presented for 500 ms.
This second image was either the same as the first image
or a modified version. To complete the cycle, there was
another ISI for 200 ms before the sequence was repeated.
The timer was started upon the onset of the first image,
and the response time (RT) was measured from the onset
of the second image. Any response made before the first
700 ms in the presentation cycle was ignored. Once a
response was made, the sequence was stopped and the
next trial was initiated. For each trial, both the change
region and the change type were set according to the eight
subject groups detailed above. Both the scene order and
whether the image pair was original-change or change-
original was randomized. Finally, half the trials presented

contained no change, resulting in a total of 80 trials per
participant. Movie 1 presents an example of a stimulus
image following the mentioned trial structure.

Results

A breakdown of the mean response times is presented in
Table 1. The mean response time for changes in regions of
high salience was 3207 ms, compared with 8132.5 ms for
low salience regions. The mean response time for changes
in regions of high interest was 5014.5 ms compared with
6898.5 ms for low interest regions. Performance results
show that overall, changes in high salience regions tend to
be detected quicker when an object is added or removed.
This effect is present, but reduced, in regions of low
saliency, where colour changes are detected only margin-
ally slower. Modifications to high regions of interest are
detected quicker than low regions of interest for both
types of changes. Also, for high interest region changes,
the response times are generally higher for both types of
changes as compared with highly salient region modifica-
tions. For low interest regions, both types of changes are
detected slightly faster as compared with low salient
region changes.
These results indicate that changes made to high

salience regions are detected faster than changes to low
salience regions. Changes to high salience regions are also
detected much faster than regions rated to be of high
interest, suggesting that perhaps salience has a greater pre-
attentive contribution to building an internal representa-
tion of the scene and for change detection. Overall,
addition/removal changes were detected quicker than
colour changes, regardless of the area in which the change
was made. In particular, addition/removal changes in high
saliency regions were detected far quicker than colour
changes. The mean responses for addition/removal and
colour changes in low saliency regions or regions of low
interest were similar, indicating that the type of change
had no significance in these regions.
Mean response times were subjected to a three-way

within-subjects analysis of variance (ANOVA): Region
Selection (saliency, interest) � Region Type (high, low) �
Change Type (colour, add/remove). Trials in which no
change occurred were excluded from the analysis along

Movie 1. A Quicktime example of a synthesised modification
using the procedures described in this paper.

Region Colour Addition/removal Averages

Salience High 3681 (900.2) 2733 (430.3) 3207
Low 8276 (3967.2) 7989 (3313.1) 8132.5

Semantics High 5696 (632.3) 4333 (680.7) 5014.5
Low 7223 (965.2) 6574 (1345.7) 6898.5

Table 1. Mean response times (in ms) for detecting changes in high/low saliency or interest (semantics) regions as a function change type
(SDs in parentheses).
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with RT outliers more than two SDs away from the
subject’s mean. Analysis of reaction time data showed
that there was a main effect of Region Selection, F(1,63) =
26.56, p G 0.001, showing that changes made to salient
regions were detected quicker than changes made to
regions of interest. There was also a significant main
effect of Region Type, F(1,63) = 70.31, p G 0.001, which
indicated that, overall, changes to regions of high interest/
salience were detected quicker than changes to regions of
low interest/salience. A small but significant main effect
of change type was also observed, F(1, 63) = 5.34, p G
0.05, with colour changes taking longer to detect than
addition and removal of objects. A significant Region

Type � Change Type interaction effect was also observed,
F(1,63) = 5.64, p G 0.05, as well as an interaction between
Region Type � Region Selection, F(1,63) = 13.64, p G
0.05. In particular, the regions selected using the saliency
model showed a robust effect of Region Type, F(1,63) =
27.46, p G 0.005, whereas subjectively chosen regions
showed no effect of Region Type, F(1,63) = 0.24, ns. In
summary, these results indicate that changes in subjec-
tively rated regions of interest take longer to detect than
objectively selected regions using a saliency model.
Analysis of the accuracy data also revealed significant

main effects of Change Type, F(1,31) = 15.55, p G 0.01,
and Region Type, F(1,31) = 28.33, p G 0.01.As with RT
data, the latter main effect was modulated by two reliably
significant interactions of Change Type, F(1,31) = 22.32,
p G 0.01, and Region Selection, F(1,31) = 35.34, p G 0.01.
Mean accuracy percentages (Figure 7) show that partic-
ipants made more correct responses in high saliency
regions than low ones (86.65% vs. 74.95%) and in high
interest regions than low ones (74.7% vs. 71.25%). In high
salience regions, responses were also more accurate for
addition/removal changes than colour changes (88.9% vs.
84.4%). Similarly, addition/removal changes in high
interest regions were detected with greater accuracy than
colour changes (76.9% vs. 72.5%). Addition/removal
change accuracy was marginally better than for colour
changes in low saliency regions (76.6% vs. 73.3%). A
similar result was observed for addition/removal versus
colour change accuracy (72.6% vs. 69.9%). These results
were significant at the 0.01 level. There was no evidence
of a speed-accuracy trade-off.
A third experiment was conducted to assess eye-

tracking data for pre-change and post-change scenes.
Since global saliency is balanced for these scene pairs,
fixation durations at modified regions should be similar.

Experiment 3: Saliency levels
versus eye-tracking data

Methods
Participants

Thirteen naı̈ve subjects with ages ranging from 22 to 37
(M = 28, SD = 4.02) participated in the experiments,
reporting normal or corrected-to-normal visual acuity.

Stimuli

Each participant was presented with thirty-two images in
this experiment; half were pre-change scenes and the other
half were post-change scenes. The post-change scenes
contained two images per change type (high saliency
colour change, high saliency addition/removal change, low

Figure 7. Accuracy data for detecting colour and addition/removal-
based changes to model-predicted regions of interest (top) and
manually rated interest regions (bottom). Observers readily
detected changes made to regions of high salience or high
interest, particularly when the change influenced the existence of
an object in the scene. Overall, accuracy was higher for objective
model-determined regions as opposed to subjectively selected
regions. Error bars indicate 1 SEM.

Journal of Vision (2010) 10(6):3, 1–17 Verma & McOwan 11

Downloaded From: https://jov.arvojournals.org/ on 07/20/2018



saliency colour change, and low saliency addition/removal
change). As with Experiment 1, we defined high saliency
regions as those among the four highest ranked segments
and low saliency regions as those between four and eight
in the ranked list. The image dimensions were also the
same as the preceding experiments, 640 � 480 pixels
(22.5 � 16.9 cm) at a resolution of 72 ppi. These images
subtended visual angles of 22.3- � 16.9-. The images
presented were of unique scenes in order to avoid any high-
level influences.

Apparatus

The CRS 50 Hz video eye-tracker coupled with the
MATLAB Video Eyetracker Toolbox were used to record
eye movements. Stimuli were presented on a 15-in. monitor
at a screen resolution of 1024 � 768. Participants viewed
from approximately 57 cm away from the computer
monitor, and movement was restricted using a chin rest.
The room was dimly illuminated by a low-intensity light
source. Eye-tracking data were gathered for both pre-
change and post-change scenes at altered regions.

Procedure

The experiment began with a nine-point calibration
step. Participants were asked to freely view images, which
were a mixture of pre- and post-change scenes. The
change region coordinates were recorded so that fixation
data within these regions could be compared between pre-

and post-change scenes. The trial structure is shown in
Figure 8.

Results

For this experiment, only the fixation data at the change
region were analysed. Fixations less than 50 ms were
removed from the analysis to avoid using unreliable data
from brief fixations. Mean fixations numbers and dura-
tions are presented in Table 2. The number of fixations
between the onset of the stimulus image and first fixation
of either a high or a low saliency change region was
recorded. This was used to indicate the conspicuity of the
region to draw the viewers’ attention. The fixation
duration was taken as an indication of how complex the
region was to interpret.
Mean fixations were subjected to a two-way within-

subjects ANOVA: Region Type (high, low) � Scene Type
(pre-change, post-change). A main effect of Region Type
was observed, F(1,12) = 12.97, p G 0.01, where regions of
high salience were attended earlier than regions of low
salience. No statistically significant main effect was
observed for scene type, and no interaction effects were
observed between scene type and region type (F G 1).
Mean fixation durations for the first fixation on a given

region were also subjected to a similar ANOVA. However,
no main effects were found for Region Type, F(1,12) =
4.74, ns, or Scene Type, F(1,12) = 3.53, ns, or an
interaction between the two, F(1,12) = 5.23, ns.

Figure 8. The trial structure for Experiment 3 and Experiment 4. Image A is either a pre-change or a post-change scene.

Saliency Pre-change Post-change

No. fixations prior to 1st fixation High 3.21 (3.32) 2.74 (4.16)
Low 8.30 (3.41) 8.98 (2.42)

Duration of 1st fixation (ms) High 257.76 (146.76) 268.12 (158.30)
Low 368.41 (255.45) 486.01 (165.70)

Table 2. Mean number of fixations and durations from Experiment 3, as a function of region salience in pre-change and post-change
scenes (SDs in parentheses).
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This experiment empirically validates the usage of the
saliency model as a method for predicting early visual
attention behaviour, particularly for the preceding change
blindness experiments. This is because the experiment
shows that model predicted salience corresponds with eye
movement data. However, the question arises of whether
altering a scene can significantly alter viewing behaviour.
Therefore, a fourth experiment was conducted to measure
the impact of altering the content at attended regions. This
would statistically confirm whether visual attention is
controllable using a modified version of our proposed
framework. The saliency levels of candidate changes were
not balanced in the following experiment.

Experiment 4: Manipulating
saliency levels without balancing

Methods
Participants

Thirteen naı̈ve subjects with ages ranging from 23 to 39
(M = 28.62, SD = 4.15) participated in the experiments,
reporting normal or corrected-to-normal visual acuity.

Stimuli

Each participant was presented with twenty-four images
in this experiment; half were pre-change scenes and the
other half were post-change scenes. Half of the changes
made were colour changes and the other half were addition/
removal changes. These images contained regions of high
salience that had been adjusted to obtain lower global
saliency levels. In other words, high saliency regions were
transformed into low saliency regions. The image dimen-
sions were the same as the preceding experiments, 640 �
480 pixels (22.5 � 16.9 cm) at a resolution of 72 ppi.
These images subtended visual angles of 22.3- � 16.9-.
The images presented were of unique scenes in order to
avoid any high-level influences.

Apparatus

The same equipment and setup was used as those in
Experiment 3.

Procedure

The experiment began with a nine-point calibration
step. Participants were asked to freely view images, which
were a mixture of pre- and post-change scenes. The trial
structure for this experiment in shown in Figure 8.

Results

As with the previous experiment, only the fixation data
at the change region were analysed. Fixations less than
50 ms were removed from the analysis to avoid using
unreliable data from brief fixations. Mean fixations
numbers and durations are presented in Table 3.
Mean fixations were subjected to a two-way within-

subjects ANOVA: Region Type (high, low) � Scene Type
(pre-change, post-change). There was a main effect of
Region Type, F(1,12) = 9.42, p G 0.01, with fewer
fixations prior to a high saliency region compared with a
low saliency region for pre-change scenes. There was also
a main effect of region type for post-change scenes, with
fewer fixations prior to the first fixation in the low
saliency region as compared with the high saliency region,
(1,12) = 8.27, p G 0.01. The number of fixations prior to
fixating a high/low saliency region was similar for both
pre-change and post-change scenes, F(1,12) = 0.44, ns.
Mean fixation durations for the first fixation on a given

region were also subjected to a similar ANOVA. However,
no main effects were found for Region Type, F(1,12) =
2.22, ns, or Scene Type, F(1,12) = 1.24, ns, or an
interaction between the two factors, F(1,12) = 2.70, ns.
Analysis of the fixation data shows that the time taken

to attend highly salient regions is shorter than for regions
of low salience. However, when the post-change scenes
have the high and low salient regions switched, this
pattern is also reversed. Experiment 3 showed that when
such changes are made while balancing the saliency
levels for pre- and post-change scenes, visual attention
behaviour does not differ, this result being confirmed by
the eye-tracking data. In contrast, this experiment shows
that the visual attention behaviour can indeed be manipu-
lated when there is an imbalance in saliency levels. The
number of fixations prior to fixating a region tends to
depend on the visual properties of that region. When the
region is of low salience, the number of fixations is large.
As the salience level for this region is increased, the
number of fixations (until this region is attended) is seen

Saliency Pre-change Post-change

No. fixations prior to 1st fixation High 2.31 (1.39) 6.74 (3.34)
Low 7.56 (3.21) 3.45 (2.10)

Duration of 1st fixation (ms) High 322.45 (113.64) 238.82 (331.35)
Low 220.41 (214.24) 342.97 (180.73)

Table 3. Mean number of fixations and durations from Experiment 4, as a function of region salience in pre-change and post-change
scenes (SDs in parentheses).
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to significantly drop. This is as expected if the model’s
salience levels are a valid indicator of early visual
attention.

Discussion

Recently, visual attention theories supporting bottom<up
influences have been challenged by new evidence for
top<down processes. top<down factors can influence scene
perception; however, their influence was thought to occur
later in scene viewing as indicated by a decrease in
saliency over multiple fixations (Parkhurst et al., 2002;
however, for a counter argument, see Tatler, Baddeley,
and Gilchrist, 2005). Evidence of these top<down factors
modulating eye movements in early vision has forced
researchers to re-evaluate the role of bottom<up processes.
Here, our studies use the change blindness paradigm to
reveal findings supporting the cognitive construction and
use of a saliency map. We show that even when top<down
information is available that low-level saliency plays an
important role in change detection performance.
Due to the brief exposure times prominent in a flicker

task, an observer is more reliant on bottom<up visual
mechanisms (Shore & Klein, 2000) than in a simulta-
neously display task. These mechanisms, however, could
be misguided by imbalances in visual salience between
the original and modified scenes, providing unreliable
change detection results. The drawback of manually and
subjectively scoring salience was addressed by Stirk and
Underwood (2007), but there are two issues with their
approach that could provide explanations for the reported
null effect of saliency. Firstly, the ordinal ranking does not
guarantee a balance of saliency between the competing
changes. For a given scene, even though both an incon-
sistent and a consistent object can be ranked as 1st, one
change (e.g., the inconsistent change) could be more salient
than the other. The more salient object will therefore attract
earlier fixations. This issue is exaggerated by the use of
high and low saliency groups for balancing changes. A
second issue is the salience of the original sceneVwhat
was the salience level of the replaced object? This is
important because two highly salient replacements could
have different change detection rates because one replace-
ment is more similar to the original than the other. Stirk
and Underwood only evaluated the salience of the modified
scene and balanced salience across the competing changes.
The first issue highlights an imbalance between competing
changes and the second issue highlights an imbalance
between the original and the modified scene. This study
extends their work by balancing salience for both of these
cases. Doing so reduces the chance that visual transients
will attract attention to modified objects and avoids leading
to unreliable conclusions for change detection.
Our goal was to assess whether top<down factors

triumph bottom<up saliency, when top<down information

is available. Saliency maps were computed and balanced
using a solitary global quantifiable measure from our
biologically plausible model (Verma & McOwan, 2009).
When balanced in this way, our findings show that
detection performance can be inferred using low-level
models of salience. Changes made to regions of high
salience were detected more readily than changes to
regions of low salience. Furthermore, colour changes in
high saliency regions were more difficult to detect than
addition/removal changes, requiring on average 948 more
milliseconds to see the change. Indeed, for some images,
participants required more than 15 seconds to see the
change. Even though the corresponding colour changes in
low saliency regions on average took longer to detect
(4.6 more seconds), the change type was not as influential
in these regions. It follows that the difficulty to detect
changes in these regions is not due to low-level image
property similarities, nor for that matter, scene consistency.
The difficulty does however depend on the region in which
the change is made and to a lesser extent the type of change
made. Our findings support two possible explanations for
why change blindness occurs. Firstly, that allocation of
attention is seldom allocated to these low saliency regions
for long enough durations to capture and consolidate an
object representation. This explanation suggests that
encoding failures account for change blindness. Secondly,
even when an object representation is maintained, the
relevant structures involved for the comparison arguably
process change types in a different manner. In particular,
that colour changes are processed separately of addition/
removal changes. This explanation is supported by phys-
iological studies, finding that colour receptive fields are
larger than others therefore requiring larger areas to be
activated (Livingstone & Hubel, 1984). This is also
consistent with the spatial resolution of colour being
relatively low (Livingstone & Hubel, 1987; Mullen,
1985). The colour changes observed in this study manip-
ulate the object while it still exists in the scene, whereas
adding or removing an object from the scene could alter
any cognitive representation built of the scene. The
functional independence of content (colour) and structural
(addition/removal) processing and the advantage of
structure-based changes observed here suggest that a
structural representation of the scene could be captured
in early vision. However, this does not rule out the gist of
the scene being inferred early on, perhaps using the
configuration of the objects in the scene to achieve this. If
the structure of the scene is captured early on in viewing,
this could explain why structural changes are detected
faster than other types of changes. Individually investigat-
ing structural and content changes may provide a greater
insight into change detection performance, and this could
be the focus for future research.
Our findings show that the low-level image saliency

map provides an accurate estimation of visual attention in
a change detection task, which contrast the findings of
Wright (2005). Wright tested subjective and objective
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measures of salience and found that subjective measures
of salience, taken from subjects pre-selecting salient
regions, were more predictive of change detection.
Several different spatiotemporal contrast changes were
measured as a single objective measure of saliency and
were found to not show a relationship with change
detection performance, crucially finding that they were
also not a good predictor of salience of the changed
object. The low-level features we use in this paper appear
to provide a change detection prediction performance
advantage over measures chosen by Wright. Our findings
show that low-level saliency measures are not only a good
predictor of visual attention for low-level images (Verma
& McOwan, 2009) but also for change detection (Wright,
Green, & Baker, 2001). Foulsham and Underwood (2007)
have also found that the saliency map predicts fixation
locations in a memory task but found this to not be the case
when participants are performing a search task. The
memory task has a specific role; it encourages viewing
behaviour akin to many real-world interaction scenarios.
Objects are neutrally analysed unlike a search task that
preferentially provides attentional bias to particular targets.
Finally, additional support for our findings is provided by a
more recent study by Foulsham and Underwood where they
found that salient regions were strongly correlated with
fixation locations. This correlation was better than a biased
or chance fixation model even though the order of fixations
was not predictive of human scan paths.
Alternative saliency models may provide conflicting

results to ours, perhaps due to their definition of salience.
However, the saliency balancing procedure will lead to
more reliable data with which more accurate conclusions
can be drawn. The novel stimuli generation methodology
we have presented in this paper allows rapid semi-
automated production of a corpus of synthetic stimuli
pairs with prescribed saliency distributions. The exper-
imental results presented show that these stimuli provide
useful and convenient customized psychophysical probes
and that this technique could prove a useful tool for
further study of the change blindness phenomena.

Conclusions

Although flicker delocalizes motion signals resulting
from a change, manual changes to a scene can introduce
imbalances in low-level image properties. This paper
presents a novel approach for generating change detection
stimuli by computationally balancing saliency levels not
just for the changed object but for the entire scene. Results
show that faster response times and higher detection
accuracy are linked with bottom<up saliency and to a
lesser extent the change type. Changes made to add or
remove an object from the scene are detected more readily
than changes to the colour of an object, which retains its
existence in the scene.
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