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Abstract 

Background:  A quantitative trait is controlled both by major variants with large genetic effects and by minor vari-
ants with small effects. Genome-wide association studies (GWAS) are an efficient approach to identify quantitative 
trait loci (QTL), and genomic selection (GS) with high-density single nucleotide polymorphisms (SNPs) can achieve 
higher accuracy of estimated breeding values than conventional best linear unbiased prediction (BLUP). GWAS and 
GS address different aspects of quantitative traits, but, as statistical models, they are quite similar in their description of 
the genetic mechanisms that underlie quantitative traits.

Methods:  Here, we propose a stepwise linear regression mixed model (StepLMM) to unify GWAS and GS in a single 
statistical model. First, the variance components of the genomic-BLUP (GBLUP) model are estimated. Then, in the SNP 
selection step, the linear mixed model (LMM) for GWAS is equivalently transformed into a simple linear regression to 
improve computation speed, and the most significant SNP is selected and included into the evaluation model. In the 
SNP dropping step, the SNPs in the evaluation model are tested according to the standard errors of their estimated 
effects. If non-significant SNPs are present, the least significant one is dropped from the model and variance compo-
nents are re-estimated. We used extended Bayesian information criteria (eBIC) to evaluate the model optimization, i.e. 
the model with the smallest eBIC is the final one and includes only significant SNPs.

Results:  We simulated scenarios with different heritabilities with 100 QTL. StepLMM estimated heritability accurately 
and mapped QTL precisely. Genomic prediction accuracy was much higher with StepLMM than with GBLUP. The 
comparison of StepLMM with other GWAS and GS methods based on a dataset from the 16th QTLMAS Workshop 
showed that StepLMM had medium mapping power, the lowest rate of false positives for QTL mapping, and the high-
est accuracy for genomic prediction.

Conclusions:  StepLMM is a combination of GWAS and GBLUP. GWAS and GBLUP are beneficial to each other in a 
single statistical model, GWAS improves genomic prediction accuracy, while GBLUP increases mapping precision and 
decreases the rate of false positives of GWAS. StepLMM has a high performance in both GWAS and GS and is feasible 
for agricultural breeding programs and human genetic studies.
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Background
The genetic mechanisms that underlie a quantitative trait 
are complicated processes to analyse. Under the infini-
tesimal model [1], it is assumed that a quantitative trait 
is determined by an infinite number of unlinked and 
non-epistatic loci, each with an infinitesimal effect, that 
satisfy normality and linearity. Based on the infinitesi-
mal hypothesis, best linear unbiased prediction (BLUP) 
[2] is an effective method to predict genetic values based 
on the resemblance between genetically-related ani-
mals within a pedigree. With the advancement of high-
throughput genotyping, prediction of genetic values can 
also be inferred from genome-wide single nucleotide pol-
ymorphism (SNP) data, referred to as genomic selection 
[3].

Many statistical models and algorithms are available 
for genomic prediction, which differ in the assumptions 
regarding the distribution of SNP effects. For example, 
Bayesian variable selection models [4] and least absolute 
shrinkage and selection operator (LASSO) models [5] 
assume that some SNPs have large or moderate effects 
and the others have small or null effects, while linear 
mixed models assume that the effects of all SNPs are nor-
mally distributed with equal variance [6]. The genomic 
BLUP (GBLUP) model is a linear mixed model, which 
integrates a genomic relationship matrix that is built 
using the information of SNPs, instead of a pedigree-
based relationship matrix [6, 7]. This model has become 
a frequently used method for genomic prediction in plant 
and animal breeding [8–10].

A genomic estimated breeding value is obtained by 
summing the effects of all variants but it is generally 
acknowledged that, among the whole set of variants, 
some have a larger genetic effect on the trait of interest 
than others. Genome-wide association studies (GWAS) 
have validated the existence of causal variants and have 
become an important tool to identify variants that 
underlie human diseases and agriculturally important 
traits. Nevertheless, performing GWAS and quantita-
tive trait loci (QTL) analyses at the genome-wide level 
is a challenging issue. Population structure or related-
ness between individuals can lead to a high rate of false 
positives and to lower mapping precision and statistical 
power. The linear mixed model (LMM) is an effective 
method to handle population structure [11], but com-
pared to the linear regression model (LRM), which is 
widely used in human genetics, LMM is computation-
ally demanding. Although it takes only a few seconds to 
perform an association analysis for one variant, the total 
computation time necessary for millions of genomic vari-
ants is unimaginable. To improve the computation effi-
ciency of GWAS, several methods were developed. The 
GRAMMAR method [12] first adjusts observations for 

family effects to estimate the residuals, and then analy-
ses the association between SNPs and the residuals. To 
further decrease computational burden, Zhang et al. [13] 
compressed LMM by clustering individuals into groups 
and using a two-step association analysis to eliminate 
the need of re-computing variance components, which 
significantly improved computation efficiency. However, 
the clustering process by compression of the genetic 
relationship matrix eliminates the possibility of predict-
ing genetic values, because individuals in the same group 
share the same genetic value. Kang et  al. [14] proposed 
the EMMA algorithm to improve iteration speed, but 
solving mixed model equations (MME) with a large sam-
ple size and hundreds of thousands of variants remains 
computationally intensive. Meyer and Tier [15] found 
that the coefficient matrix C11 of MME and C−1

11
 were 

constant across the multiple analyses for individual SNPs, 
and proposed a computing strategy named SNP Snappy.

The above methods are based on a single-locus model 
combined with a realized genetic relationship matrix to 
account for confounding effects. Because quantitative 
traits are controlled by multiple loci, a multiple-locus 
model may be more appropriate. It was reported that a 
multiple-locus model outperforms a single-locus model 
in traditional QTL mapping [16]. A multiple-locus model 
for GWAS is not only more robust than a single-locus 
model in the statistical sense, but it also brings more 
computational burden. Shrinkage is an efficient method 
to select latent sparse predictors from genome-wide 
variants. Lee et  al. [17] developed a Bayesian method 
that uses genome-wide markers to predict phenotypes 
simultaneously. Li et al. [18] proposed the Bayesian Lasso 
model for GWAS but it ignores population structure. 
Rakitsch et  al. [19] presented the LMM-Lasso model, 
which corrects confounding effects with LMM and then 
selects candidate variants by Lasso regression. Although 
LMM-Lasso is efficient in computation cost, it approxi-
mates the variance components for confounding that is 
caused by the genetic background of variants and ran-
dom errors, and these are assumed to remain unchanged 
after new variants become cofactors in the statistical 
model for GWAS, which may have unfavourable effects 
on the subsequent genomic prediction. Segura et al. [20] 
suggested a multiple loci mixed model (MLMM) that 
introduced a stepwise regression with forward inclusion 
and then backward elimination of variants. A more gen-
eral and comprehensive stepwise regression would be to 
include a new variant into the model conditionally on 
the GWAS results based on residuals of the model and 
to drop the least significant variant through a signifi-
cance test until all variants in the model are significant 
and those outside of the final model are not significant, as 
in multiple linear regression. From a genomic prediction 



Page 3 of 8Li et al. Genet Sel Evol  (2017) 49:64 

point of view, a combination between the linear mixed 
model and the sparse regression model is more accurate 
than either model separately [21, 22].

As an alternative, we proposed a stepwise linear mixed 
regression model that is stable, flexible and computation-
ally efficient. Importantly, this model can be used both for 
GWAS and GS simultaneously. We used the linear mixed 
model and a realized relationship matrix to handle popu-
lation structure or confounding effects. At each regression 
step, the variance components are re-estimated by an effi-
cient mixed model (EMM) approach. Then, the linear mixed 
regression model is equivalently transformed into a simple 
linear model by removing the influence of random effects 
(see “Methods”), which decreases computation time signifi-
cantly. For the genetic evaluation model, we used extended 
Bayesian information criteria (eBIC) as convergence crite-
ria, which are useful and stringent criteria for model selec-
tion in GWAS [23]. The model for which the eBIC reaches 
the lowest value is considered as the final model, and all the 
variants that it includes are significant quantitative trait loci 
(QTL). We evaluated our approach and demonstrated its 
utility by applying it in GWAS and GS on simulated data for 
human genetic analyses and agricultural breeding.

Methods
Linear mixed model
The phenotypic value is decomposed as:

where y is the vector of phenotypes; b is the vector of 
fixed systematic effects; q is the vector of allele substi-
tution effects of the major QTL, which are treated as 
fixed effects; g is the vector of additive genetic effects 
explained by the polygenes, g∼N (0,Kσ 2

g ), where K 
is the realized genetic relationship matrix calculated 
from genome-wide SNP information [6], and σ 2

g  is the 
genetic variance explained by the polygenes; X and W 
are the corresponding design matrices for b and g; Z is 
the matrix of genotype codes for SNPs with large effects; 
e is the vector of residuals, and e∼N (0, Iσ 2

e ), where σ 2
e  

is the variance of the random errors. The overall pheno-
typic variance–covariance matrix can be expressed as: 
V = σ 2

g WKW
′

+ σ 2
e I.

The mixed model equations for Model (1) are:

where � = σ 2
e /σ

2
g .

Model (1) can be compared with the null model:

to test the significance of individual SNPs.

(1)y = Xb+ Zq +Wg + e,

(2)
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(3)y = Xb+Wg + e,

Stepwise linear mixed model (StepLMM)
In order to improve computation efficiency, GWAS with 
LMM can be conducted alternatively by applying a two-
stage strategy. First, variance components are estimated 
with LMM and V is calculated, second, both the geno-
type matrix and observation vector are rotated with the 
inverse of V, and a simple regression with rotated data for 
individual SNPs is performed. This strategy was proven 
to yield near-identical results to an exact approach [24]. 
Likewise, the first step of StepLMM is to estimate σ 2

g  
and σ 2

e  by restricted maximum likelihood (REML) under 
a null model that ignores the effect of individual SNPs. 
Because the spectral decomposition of the G matrix and 
the conversion of the restricted maximum likelihood into 
a one-dimensional optimizer can improve the computa-
tion speed of LMM [14, 25, 26], we adopted this approach 
to find the optimized σ 2

g  and σ 2
e . Consequently, the single-

SNP association analysis can be equivalently performed 
with simple linear regression after transformation of y 
and SNP genotype code m. First, we calculated matrix V 
with the estimated variance components and inverted it, 
then calculated L by Cholesky decomposition of V−1 with 
the equation:

where L is an upper-triangular matrix. The model for 
the association analysis can be simplified as:

where

y∗ is the vector of transformed observation values, X∗ 
is the transformed X matrix, Z∗ is the matrix of trans-
formed SNP genotype codes, and e∗ is the vector of 
transformed random errors, respectively. b∗ and q∗ are 
the vectors of fixed non-genetic effects and SNP effects 
in the transformed scale, respectively. After transfor-
mation, the association test can be alternatively con-
ducted with a linear regression model. This is more 
efficient for computation than LMM by avoiding the 
iteration process of the association test using LMM for 
each SNP.

For stepwise linear regression, the most significant SNP 
is selected for the full model by the log-likelihood ratio 
test based on a simplified model, and this SNP will be 
kept at least once. At the same time, if any insignificant 
SNP existed in the full model, the least significant one 
would be dropped according to Student’s t test as follows:

(4)L
′

L = V−1

(5)y∗ = X∗b∗ + Z∗q∗
+ e∗,

(6)y∗ = L · y,

(7)X∗
= L · X,

(8)Z∗
= L · Z.
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where C22 is the elements corresponding to q in the 
inverse of the left hand side (LHS) of MME,

The degree of freedom is nobs − nbeta − nqtn, where nobs , 
nbeta and nqtn are number of observation, rank of X and 
number of SNPs in the full model, respectively. The step-
wise procedure was performed by repeating the selection 
and dropping. In this study, we used eBIC [23] as a meas-
ure of model-fit, which can tightly control the rate of 
false positives with a small loss in mapping power. When 
a new SNP is included, the eBIC of the model must be 
smaller than that of the last model without this SNP. The 
stepwise procedure stops when the eBIC cannot decrease 
anymore and all the variants in the final model are sig-
nificant QTL (Fig. 1).

The algorithm can be summarized as follows: 

Step 1: estimate σ 2
g  and σ 2

e  using Model (3);
Step 2: calculate V and decompose it with Eq. (4), then 
transform y, X and Z with Models (6), (7), and (8), 
respectively;
Step 3: perform a significance test for individual SNPs 
with Model (5);
Step 4: select the new, most significant SNP in the 
model and estimate variance components with Model 
(1);

(9)t =
q

√

σ 2
e · diag(C22)

,

(10)LHS−1
=





C11 C12 C13

C21 C22 C23

C31 C32 C33



.

Step 5: test the significance of old SNPs in the model 
with Eq.  (9), and if non-significant SNPs exist, drop 
the one that is least significant and estimate variance 
components with Model (1);
Step 6: repeat Step 2 through Step 5 until the eBIC of 
the model cannot decrease anymore;
Step 7: estimate the breeding values and QTL effects.

Evaluation of the model
The proposed StepLMM model was evaluated in terms 
of mapping precision and prediction accuracy. Mapping 
precision was evaluated by the number of QTL detected 
and the number of QTL located at defined regions with 
certain genome lengths (0, 10, 20 kb) on either side of a 
true QTL. Genomic prediction accuracy was defined as 
the correlation between genomic estimated breeding 
values (GEBV) and true breeding values. In the above 
model, an individual GEBV is: GEBV = Zq +Wg. The 
variance of QTL i is σ 2

qi
= 2pi(1− pi)q

2
i , where pi is 

the minor allele frequency of QTL i, and the total QTL 
variance is σ 2

q =
∑

2pi(1− pi)q
2
i . Therefore, the herit-

ability is calculated as h2 =
σ 2
q+σ 2

g

σ 2
q+σ 2

g +σ 2
e
. To evaluate our 

StepLMM model, we also compared it with traditional 
genomic selection methods such as GBLUP and BayesB.

Data
We used Wellcome Trust Case Control Consortium 
(WTCCC) human genotypic data for the simulation 
(https://www.wtccc.org.uk/info/access_to_data_samples.
html). The data consisted of 2000 samples each from the 
following disease collections: type 1 diabetes, type 2 dia-
betes, rheumatoid arthritis, inflammatory bowel disease, 
bipolar disorder, hypertension and coronary artery dis-
ease. The samples were genotyped with 500,568 SNPs. 
SNPs with a minor allele frequency (MAF) less than 
0.05 were removed from the analysis. We simulated one 
complex trait controlled by 100 QTL. The causal variants 
were randomly chosen and the effect of each locus was 
randomly drawn from an exponential distribution with a 
rate of 1. The genetic value of an individual was defined 
as the sum of the effects of all loci, i.e., the 100 QTL 
accounted for the whole genetic variance. The pheno-
typic value was generated by adding a random residual to 
the genetic value, and a random residual was drawn from 
a normal distribution with a mean of zero and scaled 
variance to fix the trait heritability to 0.25, 0.50 and 0.75. 
For each scenario, 50 replicates were simulated to test the 
performance of our method.

In addition, we used QTLMAS16 datasets (http://qtl-
mas-2012.kassiopeagroup.com/en/dataset.php) to com-
pare our method with methods in the literature. The 
QTLMAS16 data consisted of simulated genotypes, true 

Fig. 1  An example of the iterations of the StepLMM model. The 
horizontal axis represents the iteration round, and the vertical axis is 
the value of the extended Bayesian information criteria and −2 * log-
likelihood (−2logL) of likelihood. As the iteration number increases, 
eBIC and −2logL decrease, and the final optimized model is achieved 
when the eBIC does not decrease anymore

https://www.wtccc.org.uk/info/access_to_data_samples.html
https://www.wtccc.org.uk/info/access_to_data_samples.html
http://qtl-mas-2012.kassiopeagroup.com/en/dataset.php
http://qtl-mas-2012.kassiopeagroup.com/en/dataset.php
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breeding values for three traits with different heritabili-
ties for 4100 samples, among which 3000 samples were 
phenotyped as training data.

Results
Mapping precision
Table 1 shows the mapping precision of StepLMM. Aver-
aged over replicates, the number of identified QTL was 
7.78 for the trait with a low heritability (h2 =  0.25) and 
sharply increased to 34.22 for the trait with a high heritabil-
ity (h2 = 0.75). Mapping precision also increased when her-
itability increased. For all scenarios in terms of heritability, 
more than 65% of the identified QTL were mapped exactly 
to their positions under all scenarios. If a SNP within a 
certain distance on either side of a causal SNP was consid-
ered as a QTL, then the mapping precision in the scenario 
of medium heritability (h2 =  0.50) within ±10, ±20, and 
±30 kb lengths were 0.83, 0.87 and 0.90, respectively. The 
mapping precisions for the scenarios of low and high herit-
ability were approximately 3% lower or higher than those 
for the scenarios of medium heritability, respectively.

Genomic prediction
Using the StepLMM presented here, the estimated her-
itability was quite close to true heritability (Table  2). 
Because our method consists of both a major genetic 
effect (fixed effect) and a minor polygenic effect (random 
effect), we calculated the proportion of genetic variance 
explained by the identified QTL and three correlations: 
correlation between true breeding value (TBV) and 
genomic breeding value predicted by the detected QTL, 
correlation between TBV and random polygenic effects, 
and correlation between TBV and genomic estimated 
breeding value (GEBV). The identified QTL explained 
68, 81 and 92% of the genetic variance for a trait with a 
low (h2 = 0.25), medium (h2 = 0.50) and high (h2 = 0.75) 
heritability, respectively. With StepLMM, the accuracy of 
genomic values predicted by QTL only was also high but 
slightly lower than the accuracy of GEBV and higher than 
that of GEBV from GBLUP. Without accounting for QTL 
effects, the correlation between the remaining polygenic 
effect and the TBV was low and significantly lower than 
those of GBLUP.

Table 1  Mapping precision of the stepwise linear mixed model based on WTCCC simulated data

h2: heritability of simulated traits

100 QTL were simulated for all scenarios
a  nQTL is the number of significant QTL

Values in parentheses are the corresponding standard errors

h2 nQTLa Number of detected causal SNPs Mapping precision

0 kb 10 kb 20 kb 30 kb 0 kb 10 kb 20 kb 30 kb

0.25 7.78 (0.345) 5.01 (0.171) 6.22 (0.154) 6.54 (0.154) 6.69 (0.132) 0.65 (0.022) 0.80 (0.019) 0.84 (0.019) 0.86 (0.017)

0.50 18.52 (0.522) 12.22 (0.333) 15.37 (0.222) 15.37 (0.185) 16.67 (0.167) 0.66 (0.018) 0.83 (0.012) 0.87 (0.010) 0.90 (0.009)

0.75 34.22 (0.640) 23.95 (0.376) 29.42 (0.308) 30.80 (0.240) 31.82 (0.205) 0.70 (0.011) 0.86 (0.009) 0.90 (0.007) 0.93 (0.006)

Table 2  Comparison of genomic prediction accuracy between the stepwise linear mixed model (StepLMM) and genomic 
best linear unbiased prediction (GBLUP) based on WTCCC simulated data

a  Proportion of phenotypic variance explained by the QTL in the models, h2q =
σ 2
q

σ 2
q+σ 2

g+σ 2
e

b  Correlation between true breeding values and genetic values explained by QTL detected with StepLMM
c  Correlation between true breeding values and genetic values excluding QTL detected with StepLMM
d  Correlation between true breeding values and genomic breeding values estimated with StepLMM
e  Correlation between true breeding values and genomic breeding values estimated with GBLUP
f  Regression coefficient of the true on the estimated breeding values with StepLMM
g  Regression coefficient of the true on the estimated breeding values with GBLUP

h2 ĥ
2

ĥ
2

q/̂h
2a rb

qtl
rc
poly rd

StepLMM
re
GBLUP bf

StepLMM
b
g

GBLUP

0.25 0.25 (0.009) 0.68 (0.026) 0.71 (0.010) 0.27 (0.009) 0.75 (0.007) 0.49 (0.008) 0.89 (0.011) 1.16 (0.055)

0.50 0.52 (0.007) 0.81 (0.013) 0.87 (0.004) 0.23 (0.006) 0.90 (0.002) 0.71 (0.002) 0.94 (0.005) 1.04 (0.042)

0.75 0.76 (0.004) 0.92 (0.007) 0.95 (0.002) 0.18 (0.007) 0.96 (0.001) 0.86 (0.001) 0.98 (0.002) 1.01 (0.022)
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Comparison with other methods
QTLMAS16 datasets have been used to compare differ-
ent methods of GS (Table 3) and GWAS (Table 4), hence, 
it is convenient to compare StepLMM with other meth-
ods to evaluate its robustness. Here, we selected sev-
eral methods mentioned in [27] for comparison. Table 3 
shows that the accuracy of genomic prediction with 
StepLMM was the same as that with group least angle 
shrinkage and selection operator (GLASSO) [28] and 
sparse group LASSO (sgLASSO) [28] for the second trait. 
StepLMM predicted breeding values more accurately 
than the other methods for the first and third traits. 
Overall, StepLMM performed best among all methods.

In QTL mapping (Table  4), ridge regression on yield 
deviations (RR_YD) [29] detected the largest number of 
QTL, but also the largest number of false positives, i.e. 
RR_YD had the highest power and also the highest rates 
of false positives. StepLMM, as well as GRAMMAR 

[30], did not identify any false positive QTL for all three 
traits, but detected one more QTL than GRAMMAR, 
i.e. both methods had medium mapping power and very 
low rates of false positives. The combined linkage dis-
equilibrium and linkage analysis method (LDLA) [31] 
had medium mapping power, but a relatively high rate 
of false positives. Among all the methods used for QTL 
mapping, regional heritability mapping with 20 SNPs 
(RHM20) [32] had a relatively high mapping power and 
low rate of false positives, while linkage analysis (LA) [33] 
had the lowest mapping power and a relatively high rate 
of false positives. If the proportion of true QTL among 
all detected QTL was used to measure mapping perfor-
mance, StepLMM and GRAMMAR performed best.

Discussion
A quantitative trait is controlled both by variants with a 
large effect and by variants with a small effect. A statis-
tical model that best captures the genetic architecture 
of a quantitative trait will fit the data of the trait bet-
ter and provide more accurate estimates of the genetic 
effect. StepLMM divides the breeding values into QTL 
and polygenic effects, and fits them with a fixed effect 
and normally distributed random effect separately, which 
basically conforms to the genetic architecture of a quan-
titative trait. StepLMM not only detects variants with 
a large effect, but also estimates breeding values, hence 
it is a combination of GWAS and GS. StepLMM is not 
only an extension, but also a combination of stepwise lin-
ear regression and linear mixed regression model. The 
process of model optimization is also a process of sig-
nificance test for SNPs in the evaluation model, which 

Table 3  Comparison of  the genomic prediction accu-
racy between  stepwise linear mixed model (StepLMM) 
and other methods based on QTLMAS16 data

a  Group least angle shrinkage and selection operator [28]
b  Sparse group LASSO [28]

Method Trait 1 Trait 2 Trait 3

BayesB 0.79 0.83 0.83

GBLUP 0.74 0.77 0.76

GLASSOa 0.79 0.85 0.84

sgLASSOb 0.80 0.85 0.82

StepLMM 0.83 0.85 0.85

Table 4  Comparison of  the mapping precision between  stepwise linear mixed model (StepLMM) and  other methods 
based on QTLMAS16 data with 50 simulated QTL

a  Calculated as the ratio of the number of detected true QTL to the number of all detected QTL
b  Ridge regression on actual yield deviations [29]
c  Genome-wide rapid association using mixed model and regression [30]
d  Regional heritability mapping (20 SNPs) [32]
e  Random forest with yield deviations [39]
f  Linkage disequilibrium and linkage analysis [31]
g  Linkage analysis [33]

Method Number of false positives Number of true QTL Ratioa

Trait1 Trait2 Trait3 Total Trait1 Trait2 Trait3 Total

RR_YDb 9 15 5 29 8 6 8 22 0.43

GRAMMARc 0 0 0 0 2 3 5 10 1.00

RHM20d 1 0 0 1 6 4 7 17 0.94

RF_YDe 3 2 0 5 3 3 5 11 0.69

LDLAf 3 3 1 7 6 2 5 13 0.65

LAg 4 3 1 8 0 1 2 3 0.27

StepLMM 0 0 0 0 5 4 2 11 1.00
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avoids determining the threshold values as in traditional 
association mapping with a single-locus model. The com-
putational burden of StepLMM depends on how many 
QTL are detected. Compared to other LMM methods, 
StepLMM needs to estimate variance components only 
a few times (equal to the number of detected QTL). 
Because the number of QTL is very small compared to 
the number of markers, StepLMM has a clear compu-
tational advantage. As a multi-locus model, StepLMM 
can also detect variants with a large effect to improve 
genomic prediction for species without a genome map, 
because the stepwise procedure does not depend on 
either a physical or genetic map. It is useful for many 
species in aquaculture, for which no genome assembly is 
available so far.

We found that StepLMM has a high mapping preci-
sion and a low rate of false positives and that the balance 
between these two objectives is good, which is similar to 
GRAMMAR [30] and regional heritability mapping with 
20 SNPs as a region (RHM20) [32]. These three meth-
ods can fit the population structure through a realized 
genetic relationship matrix, which can improve map-
ping precision and decrease the rate of false positives. 
A realized genetic relationship matrix constructed with 
marker data is more accurate than a numerator relation-
ship matrix constructed with pedigree data, and thus 
improves mapping precision. StepLMM is a multiple-
QTL mapping model, which usually has more mapping 
precision than single-QTL models [16].

Many studies have shown that GBLUP models perform 
well for most traits in livestock [34, 35], but are not satis-
factory for the analysis of simulated data where traits are 
controlled by a small number of QTL [36, 37]. The results 
from our analysis on simulated human data showed that 
accuracy of genomic prediction using GBLUP is equal to 
about the square root of heritability. An important fea-
ture of the simulated human data is that genetic rela-
tionships between individuals are very weak. The low 
prediction accuracy obtained with GBLUP indicates that 
this method is not sufficiently accurate for genomic pre-
diction in a population with distantly related individuals.

Compared to GBLUP, StepLMM divides breeding 
values into two parts: major effect and minor effect. Its 
characteristics contribute to high QTL mapping preci-
sion and high genomic prediction accuracy. The accuracy 
of genomic prediction can be expressed as [10, 38]:

where β = σ 2
q /(σ

2
q + σ 2

g ), σ 2
q  and σ 2

g  are the variances 
explained by QTL and polygenes, respectively. N  is the 
number of phenotypic observations, Me is the effective 

(11)rg ,ĝ =

√

βh2

βh2 +Me/N
,

number of segments in the genome, and h2 is the herita-
bility. When more QTL are identified, σ 2

q  tends to be high 
and β increases, thus rg ,ĝ increases as well. Simultane-
ously, when more QTL are identified, σ 2

g  tends to be low 
and the correlations between polygenic effects and TBV 
become weaker than those of GBLUP. StepLMM showed 
superiority in both the GWAS and GS, indicating that it 
can describe the genetic architecture of quantitative traits 
well, possibly by distinguishing the genes with major 
effects from those with minor or null effects. Since major 
and polygenic effects follow different distributions, fitting 
these effects with different distributions (e.g. StepLMM) 
is more robust than fitting them with the same distri-
bution (e.g. GBLUP) and consequently improves the 
genomic prediction accuracy. GS and GWAS are mutu-
ally beneficial in StepLMM, since precisely mapped QTL 
will improve genomic prediction accuracy, while fitting 
polygenic effects improves GWAS precision. During our 
analysis, we defined bias as the regression coefficient 
of the true breeding value on the estimated breeding 
value and found that the results were sometimes biased 
(Table  2), although prediction accuracy with StepLMM 
is high. The degree of bias depended on heritability and 
power, low heritability and low power indicated a large 
random error, which led to large bias. How to decrease 
bias should be studied further.

Conclusions
A quantitative trait is controlled both by major vari-
ants with large effects and by polygenic effects, they are 
separately fitted with GWAS and GBLUP in StepLMM. 
GWAS identifies QTL and simultaneously improves 
genomic prediction accuracy; GBLUP accounts for poly-
genic effects, it also increases mapping precision and 
decreases the rate of false positives of GWAS. StepLMM 
has a high performance in both GWAS and GS and is 
feasible for agricultural breeding programs and human 
genetic studies.
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