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 

Abstract—Resilience to high impact low probability events is 

becoming of growing concern, for instance to address the impacts 

of extreme weather on critical infrastructures worldwide. 

However, there is, as yet, no clear methodology or set of metrics 

to quantify resilience in the context of power systems and in 

terms of both operational and infrastructure integrity. In this 

paper, the resilience “trapezoid” is therefore introduced which 

extends the resilience “triangle” that is traditionally used in 

existing studies, in order to consider the different phases that a 

power system may experience during an extreme event. The 

resilience trapezoid is then quantified using time-dependent 

resilience metrics that are specifically introduced to help capture 

the critical system degradation and recovery features associated 

to the trapezoid for different temporal phases of an event. 

Further, we introduce the concepts of operational resilience and 

infrastructure resilience to gain additional insights in the system 

response. Different structural and operational resilience 

enhancement strategies are then analyzed using the proposed 

assessment framework, considering single and multiple severe 

windstorm events that hit the 29-bus Great Britain transmission 

network test case. The results clearly highlight the capability of 

the proposed framework and metrics to quantify power system 

resilience and relevant enhancement strategies.   
 

Index Terms—Critical Infrastructure, Extreme Weather, High 

Impact Low Probability Event, Power Systems Resilience, Power 

Systems Resiliency 

I. INTRODUCTION 

HE effect of extreme weather on power systems is 

becoming increasingly evident worldwide in the last 

decades. These events are usually categorized as high-impact 

low-probability events, as their frequency may be relatively 

low, but their impact may be extremely high.  

One of the first attempts for defining resilience comes from 
C. S. Holling in 1973 [1] for ecological systems, based on 
which various definitions have arisen in different disciplines,  
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such as social systems [3], community [4], economy [5] and 
health systems [6]. Despite the minor differences between 
these definitions, the concept of resilience in any discipline 
(including power systems) can be in general approached as the 
ability of a system to anticipate and withstand external shocks, 
bounce back to its pre-shock state as quickly as possible and 
adapt to be better prepared to future catastrophic events. 
Defining and understanding power systems resilience to such 
catastrophic events has recently attracted the interest of 
several researchers [7-9]. Several resilience-oriented studies 
have been developed over the years [10-17], including 
modelling techniques and resilience enhancement strategies. 
Further, different from the traditional reliability indices (e.g. 
Loss of Load Frequency, LOLF, and Loss of Load 
Expectation, LOLE), various metrics have been proposed for 
specifically quantifying resilience. For example, resilience is 
quantified as the ratio of the area between the real and target 
performance curves in [10, 11, 15]. In [12], system resilience 
is measured using the proportion of delivery function that has 
been recovered from its disrupted state, while in [13] 
resilience is measured as the difference between the capacity 
of the fully functioning system and the post-event capacity.  

The so-called “resilience triangle” [2], depicted in Fig. 1, is 

modelled in the majority of these studies, even though 

different performance response curves of an infrastructure 

have also generally been discussed (for example in [10] and 

[12]). The shape of the triangle’s hypotenuse can vary, e.g. 

linear, triangular or exponential [14], depending on the 

effectiveness of the recovery strategies in place. However, 

although this approach can effectively capture the resilience 

recovery following an event (t[t1, t2]), it cannot capture other 

highly critical resilience dimensions that may be experienced 

by typical power systems, e.g., how fast resilience degrades 

once the event hits a critical infrastructure or how long the 

infrastructure remains in one or more post-event degraded 

states before restoration is initiated and while it is fully 

accomplished. It is therefore not capable of providing a 
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complete picture of the resilience level of a critical 

infrastructure during all the phases of an event. Further, it does 

not allow the evaluation of the contribution of different 

adaptation and resilience enhancement strategies in each one 

of these phases. This is also to be seen in the light of the fact 

that there may be different levels of resilience that may be 

achieved from an operational perspective and from an 

infrastructure perspective, and that different options will have 

different effects (and costs) on both. Relevant metrics that can 

quantitatively capture all this complexity are also missing. 

Finally, the existing works mainly focus on assessing the 

resilience of critical infrastructures to a single weather event. 

However, as evidenced by recent major disasters, multiple 

events might hit the infrastructure in a short time period, 

resulting in further resilience degradation. 

 In this paper, a novel resilience quantification framework is 

proposed, building around the concept of a resilience 

trapezoid that depicts all the phases that a critical 

infrastructure, including power systems, might reside in during 

an event, as well as the transition between these states. Similar 

curves to this trapezoid have been provided in previous works 

(for example [10, 12, 15]), but have not been adequately and 

methodically modelled or quantified. Time-dependent 

operational and infrastructure resilience metrics based on 

different indicators are proposed in this work to quantify this 

multi-phase resilience trapezoid and relevant critical resilience 

metrics, i.e., how low and how fast resilience drops when the 

weather event hits a power system, how long it resides to the 

post-event degraded state and how fast it recovers to its pre-

event state, enabling the modelling of the actual, time-

dependent behavior of an infrastructure subject to an extreme 

event and making indeed a distinction between operational 

and infrastructure impacts. Then, building on and synthesizing 

these four metrics, the area of the trapezoid is also used as a 

complementary, quantitative metric for gaining additional 

information on the resilience performance of the infrastructure 

and the effect of various resilience enhancement strategies.  

Without loss of generality, the assessment framework is 

exemplified considering extreme weather events1 and using 

fragility curves for obtaining the time- and weather-dependent 

failure probabilities of power system components. Several 

case studies are carried out on the Great Britain (GB) 

transmission test network [18], in order to quantify both 

operational and infrastructure resilience and the effect of 

enhancement strategies using the proposed resilience metric 

framework. Further, the network resilience is quantified when 

subject to single and multiple successive windstorms, for a 

better understanding of the impacts of such disastrous events. 

 The rest of the paper is organized as follows. Section II 

introduces the proposed resilience quantification framework. 

The fragility modelling and simulation procedure are briefly 

outlined in Section III. Section IV presents different case 

study applications using the 29-bus test version of the GB 

transmission network. Finally, Section V concludes the paper. 

 
1 Severe windstorms with varying intensities hitting transmission networks 

are used as an illustrative case study, but any (weather) event could be used if 
the relevant data are available. 
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Fig. 2. The multi-phase resilience trapezoid 

II. QUANTITATIVE APPROACH AND METRICS FOR RESILIENCE 

ASSESSMENT OF POWER SYSTEMS 

The multi-phase resilience trapezoid is discussed in this 

section, along with the time-dependent resilience metrics and 

indicators used in this study for quantifying the operational 

and infrastructure resilience of a power system. 

A. Multi-phase resilience trapezoid associated to an event 

Fig. 2 shows the multi-phase resilience trapezoid2, where 

the resilience indicator used for quantifying the resilience 

level of a power system during the event is shown as a 

function of time. Further, the operational and infrastructure 

resilience are depicted, which, as discussed later, are 

quantified using different indicators. The operational 

resilience, as its name suggests, refers to the characteristics 

that would secure operational strength for a power system, 

e.g., the ability to ensure the uninterrupted supply to 

customers or generation capacity availability in the face of a 

disaster. The infrastructure resilience refers to the physical 

strength of a power system for mitigating the portion of the 

system that is damaged, collapsed or in general becomes 

nonfunctional.  

In Fig. 2, it is considered that the resilience indicators used 

for expressing and quantifying the operational and 

infrastructure resilience levels in the pre-disturbance resilient 

state (i.e., R0o and R0i respectively) are 100% before the event 

occurs at toe, e.g. 100% of the demand and of the transmission 

lines are online respectively. However, it must be clarified that 

these resilience levels might differ.  

Three phases can be clearly seen in the resilience trapezoid 

of Fig. 2, namely: 

- Phase I, disturbance progress (t[toe, tee]), between the 

time of the event toe and the end of the event tee, 

- Phase II, post-disturbance degraded state following the 

end of the event and before the restoration is initiated 

(t[tee, tοr] and t[tee, tir] for the operational and 

infrastructure resilience respectively), and 

 
2A linear approximation for the transitions between the resilience 

levels/states during the event is used for demonstration purposes; however, in 

reality, these state transitions can have any shape depending on the network 

constraints and prevailing conditions, and the impact of the event that hits the 
network 
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- Phase III, restorative state (t[tor, Tor] and t[tir, Tir] for 

the operational and infrastructure recovery respectively). 

The features that a resilient power system must possess for 

responding effectively during these phases are given in [8].  

During Phase I, the resilience level drops from the pre-

disturbance resilience R0o and R0i to the post-disturbance 

infrastructure resilience, Rpdi, and to the post-disturbance 

operational resilience, Rpdo, respectively. It has to be noted that 

Rpdo may be lower or higher than Rpdi, depending on the 

system and on the severity of the event hitting the network. It 

is thus system- and event-specific. 

In Phase II, the system resides at the post-disturbance 

degraded operational and infrastructure state (i.e., Rpdo and Rpdi 

respectively) for some time before the operational and 

infrastructure restoration is initiated at tor and tir respectively. 

The duration of this period can differ for the infrastructure and 

operational resilience depending on the resilience solutions in 

place, e.g. smart operational solutions may initiate the load 

restoration (i.e., operational resilience) faster than the 

infrastructure recovery, which is a desirable situation. 

Similarly, Phase III can be divided in two sub-phases: the 

operational recovery, t[tor, Tor], and the infrastructure 

recovery, t[tir, Tir]. As will be illustrated in the case study 

application and as it is in most of the cases in reality, the 

operational resilience is restored faster than the infrastructure 

resilience. For example, the customers might be fully 

reconnected before the affected infrastructure components 

(e.g., collapsed transmission lines or towers, flooded 

substations, etc.) are fully restored. This is an additional 

reason why it is critical to make the distinction between 

operational and infrastructure resilience and to evaluate these 

concepts independently and using different indicators for 

capturing their distinct characteristics.    

B. The ΦΛΕΠ quantitative resilience metric framework 

In order to quantify the resilience of a power system, it is 

critical to define a set of metrics capable of capturing its 

performance during the different phases of the resilience 

trapezoid. Table I presents the key resilience metrics proposed 

here to characterize the resilience trapezoid, specifically for 

how fast (Φ) and how low (Λ) resilience drops in Phase I, how 

extensive (E) is the post-event degraded state (Phase II) and 

how promptly (Π) the network recovers to its pre-event 

resilient state (Phase III), considering both operational and 

infrastructure resilience in each phase. This set of four metrics 

is defined in this work as the ΦΛΕΠ resilience metric system 

(“ΦΛΕΠ” is pronounced like “FLEP”).  

As seen in Table II, the Φ-metric in Phase I is evaluated by 

estimating the slope of the resilience degradation during the 

event (where tee-toe is the duration of the windstorm, i.e., 

twindstorm), while the Λ-metric is defined by the resilience 

degradation level, i.e., R0i-Rpdi and R0o-Rpdo for the 

infrastructure and operational resilience respectively. The Ε-

metric showing the time that the network remains in the post-

disturbance degraded state (Phase II) is given by tor-tee and tir-

tee for the operational and infrastructure resilience 

respectively. The Π-metric in Phase III is defined by the 

slopes of the operational and infrastructure recovery curves,  

 

TABLE I 

THE ΦΛΕΠ RESILIENCE METRIC SYSTEM 

Phase State Resilience metric  Symbol 

I 
Disturbance 

progress 

How fast resilience drops? 

How low resilience drops? 

Φ 

Λ 

II 
Post-disturbance 

degraded 

How extensive is the post-

disturbance degraded state? 
E 

III Restorative 
How promptly does the network 

recover? 
Π 

TABLE II 

MATHEMATICAL FORMULATION OF RESILIENCE METRICS 

Metric 
Mathematical Expression Measuring Unit 

Operational Infrastructure Operational Infrastructure 

Φ 
pdo 0o

ee oe

R R

t t





 
pdi 0i

ee oe

R R

t t





 
MW/hours 

Number of 

lines 

tripped/hours  

Λ 0o pdoR R  
0i pdiR R  

MW 
Number of 

lines tripped 

Ε 
or eet t  

ir eet t  Hours Hours 

Π 
0o pdo

or or

R R

T t





 
0i pdi

ir ir

R R

T t





 
MW/hours 

Number of 
lines 

restored/hours 

Area  
or

oe

T

op
t

R t dt
 

 
ir

oe

T

i
t

R t dt
 

MW×hours 

(Number of 

lines in 

service)×hours 

TABLE III 
MATHEMATICAL EXPRESSION OF THE LINEARIZED TRAPEZOID AREAS 

Trapezoid 

Area 

Mathematical Expression 

Operational Infrastructure 

AreaI 
operational

2

windstormt   
infrastructure

2

windstormt   

AreaII operational operationalE   
infrastructure infrastructureE   

AreaIII 
 operational

2

or orT t     infrastructure

2

ir irT t    

which consider both the original pre-event3 resilience level 

and the time required for reaching this resilience level. 

Further to the ΦΛΕΠ resilience metrics, an additional metric 

is used, i.e., the area of the trapezoid. As shown in Table II, 

the area metric would be expressed as the integral of the 

trapezoid for the duration of the event, again taking into 

account the operational and infrastructure resilience. 

Considering piecewise linearity for the different phases of the 

resilience trapezoid of Fig. 2 (which results in two right 

triangles for Phases I and III and one rectangular for Phase 

II), the areas corresponding to the three phases of the 

resilience trapezoid (I, II and III) can be approximated as 

shown in Table III. The total area of the operational and 

infrastructure resilience trapezoid is given by the sum of 

AreaI, AreaII and AreaIII. It can be seen that the area metric is 

dependent on the ΦΛΕΠ metrics (mainly on the Λ and Ε 

metrics) defined and mathematically expressed in Tables I and 

II.  

 
3 In principle, a “post-restoration” resilience level could also be defined 

which might differ from the original pre-disturbance level. For simplicity, 

here we do not explicitly deal with this aspect which can be case specific, but 
the proposed framework is capable to address it. 
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Different resilience indicators can be used to express and 

quantify these resilience metrics. It is critical to use indicators 

that capture both the prevailing operational and infrastructure 

resilience during the event. In this study where the focus is on 

assessing the resilience of transmission networks to extreme 

weather events, the following indicators are used4: 

- the amount of generation capacity (MW) and load 

demand (MW) that are connected during the event are 

used as indicators for the operational resilience; and 

- the number of online transmission lines is used as an 

indicator for the infrastructure resilience. 

Based on these indicators, the measuring units of the resilience 

metrics are also defined in Table II.  

Hence, a set of five resilience metrics is proposed in this 

work for effectively and systematically quantifying the 

resilience of a power system subject to an external shock. This 

quantitative resilience metric framework includes the four 

independent ΦΛΕΠ metrics, and the area metric which is 

dependent on the ΦΛΕΠ metrics. The resilience assessment of 

a power system using this framework would enable the in-

depth understanding of the resilience level of the power 

system and drive the utilization of targeted resilience 

enhancement strategies for improving the resilience of the 

system if and during the specific phase of the resilience 

trapezoid it is deemed inadequate. 

III. FRAGILITY MODELLING AND RESILIENCE ASSESSMENT OF 

A TRANSMISSION NETWORK TO EXTREME WEATHER 

In order to model the fragility of a transmission network to 

a weather event, the concept of fragility curves is used here, 

which express the failure probability of a component as a 

function of the weather parameter, e.g. wind speed. By 

mapping the weather profile at each simulation step to these 

curves, the weather- and time-dependent failure probability of 

a transmission corridor can be obtained. A generic fragility 

curve is shown in Fig. 3, whose shape varies and depends on 

the application, but it can be expressed as follows:  

0,                    

( ) ( ),             

1,                   

critical

i critical collapse

collapse

if w w

P w P w if w w w

if w w

 


  




 (1) 

where P(wi) is the failure probability of the component as a 

function of the weather parameter (w) at simulation step i, 

wcritical is the value of the weather parameter at which the 

failure probability picks-up and wcollapse represents the value of 

the weather parameter at which the failure of the component is 

certain, i.e., Pi(w)=1. The transmission corridor will trip at the 

next simulation step if Pi(w)>r, where r is a uniformly 

distributed random number (r~U(0,1)). If Pi(w)<r, the corridor 

will not trip. The restoration time is randomly generated if a 

transmission corridor outage occurs, which is also weather-

dependent as will be discussed later. 

The weather- and time-dependent operational modes of the 

corridors are then fed to a Sequential Monte Carlo simulation- 

 
4 Other similar indicators could of course also be used, depending on the 

specific study and objectives of the analysis. 

 
Fig. 3. A generic fragility curve showing the failure probability of a 

component as a function of the weather intensity 
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Fig. 4. System approach for assessing the resilience of transmission networks 

to weather events 

based engine to capture the multi-temporal and multi-spatial 
impact of the weather front as it moves across the transmission 
network. Fig. 4 shows the generic approach followed for 
obtaining the weather-dependent resilience indicators and 
applying the ΦΛΕΠ resilience metric framework. It is worth 
mentioning here that even though AC OPF is considered an 
appropriate dispatch tool for this specific application where 
the focus is on developing and illustrating a complete 
resilience quantification framework, it does not consider other 
important relevant issues, such as, e.g., the ramping rates of 
the generators. However, the proposed tool offers the 
capability and flexibility to include such constraints for 
modelling additional dimensions of the problem. 

In particular, regarding the calculation of the operational 
resilience indicators, the amount of the generation capacity 
connected at each simulation step is taken as the capacity that 
can be provided given the prevailing transmission network 
topology, connectivity and constraints during the event. It has 
to be clarified that this indicator is different from the 
generation output at each simulation step. Also, for the 
purposes of the AC OPF implementation, the load shedding 
that might occur at each simulation step (which enables the 
calculation of the connected load) is calculated using an 
objective function for the minimization of the load shedding, 
which considers the power flows and network constraints, 
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such as generation and transmission capacities and voltage 
operational limits. These resulting non-linearities are 
considered in the calculation of the operational indicators. 
Finally, the infrastructure resilience indicator is calculated by 
recording the status of the transmission lines at each 
simulation step. 

IV. CASE STUDY APPLICATION 

The proposed approach is demonstrated in this Section 

through various case studies on the GB test system to illustrate 

different aspects and the metrics of the resilience trapezoid. 

A. Test network and simulation data 

The test version of the GB transmission network of Fig. 5 is 
used here, for which further details can be found in [18, 19]. 
The node demands (derived from [18] and [20]) are 
fluctuating and are time-varying in the simulations, but it is 
assumed that there is no impact of the weather event on the 
demand profiles. The generation is then dispatched at each 
simulation step through the AC OPF to meet this demand, 
taking into account the network constraints. 

As the focus is on assessing the impact of windstorms on 
the transmission network resilience, and in particular on 
transmission lines and towers, the wind fragility curves of 
these components are required. Fig. 6 shows the transmission 
tower and lines’ wind fragility curves used in this application 
(for the base and robust case scenarios) [16, 21].   

The duration of the windstorm is assumed to be 24h, with 
an hourly time resolution. It is also assumed that the severe 
windstorm hits the network at 50h from the beginning of the 
simulation and that all the components are online before the 
event occurs. The hourly wind profiles along the transmission 
corridors of the test network in GB are obtained using 
MERRA re-analysis, as discussed in [19], which provides 
weather data based on satellite observations. As high wind 
speeds that can threaten the transmission network resilience 
are rare in the MERRA wind profiles, these are scaled-up by 
using appropriate multiplication factors for the entire wind 
profile. In particular, three windstorm profiles are generated, 
with maximum wind speeds (wmax) equal to 40m/s, 50m/s and 
60m/s respectively (referred as WS40m/s, WS50m/s and WS60m/s 
in the rest of the paper), which according to the Beaufort wind 
force scale by the Met Office, UK [22] represent hurricanes. 
This approach is followed in order to model the worst 
conditions that the test network might experience.  

A Mean Time To Repair (MTTRnormal) of 10h and 50h is 
assumed for the transmission lines and towers respectively. 
Random times to repair (TTR) based on the MTTRnormal of the 
transmission lines and towers are then generated once a 
fault/collapse of a component occurs during the windstorm, 
which follow an exponential distribution. As aforementioned, 
it is considered that no restoration takes place during the 
extreme event mainly due to safety reasons, so the repair 
crews are dispatched (and thus the TTR starts) at the end of the 
event. The approach followed for modelling the increasing 
time to repair the damaged components for higher wind speeds 
is given in [19], which basically uses multiplication factors for 
higher wind speeds to model the higher damage caused by the 
windstorm and the increasing difficulty in approaching the 
affected areas and restoring the faulted components. 

 
Fig. 5. The test version of Great Britain transmission network [18] 

 
Fig. 6. Wind fragility curves used in the base and robust case scenario 

B. Resilience assessment to a grid-scale windstorm 

Different operational and infrastructure aspects can affect 

the resilience performance of a power system subject to 

extreme weather. Within this context, several case studies 

have been systematically developed to evaluate the impact of 

these aspects on the resilience of the test network, as this is 

quantified using and to test the suitability of the proposed 

ΦΛΕΠ-based resilience metric framework. In particular, the 

following illustrative scenarios are considered: 

- Base: The resilience trapezoid is modelled with the data 

of Section IV-A and for WS40m/s, WS50m/s and WS60m/s. 

- Robust: In this case scenario, the transmission lines and 

towers are made 20% more and less robust to the 

windstorm, by adjusting the fragility curves (see Fig. 6).  

- Response: As in the robust case scenario, the 

responsiveness to the weather event is made 20% better 

and worse, by decreasing and increasing the MTTRnormal 

assumed for the transmission lines and towers by 20%. 

- Resources: A critical aspect is the amount of resources, 

i.e., repair crews (RCs), for responding quickly and 

effectively to the collapsed components during weather 

events. Hence, in this case scenario, the effect of 

unlimited number of repair crews, 5, 10 and 15 is 

evaluated. It is considered that one repair crew is needed 

for each damaged transmission corridor, which introduces 

a limitation on the number of corridors that can be 

repaired at the same time. 

It is also assumed that no restoration takes place during the 

event (i.e., t[toe, tee]). These case scenarios have been based 
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a) Transmission lines online (%) b) Generation capacity connected (%) c) Load connected (%) 

Fig. 7. Resilience indicators as a function of time for the base case scenario 

on engineering judgments and discussions with National Grid, 

the GB transmission system operator. It has to be noted here 

that the case scenarios robust, response and resources are 

applied only for WS50m/s; similar conclusions can be obtained 

by applying these scenarios for the other windstorms. 

1) Obtaining the time-dependent resilience indicators 

Fig. 7 shows the time-dependent resilience indicators for 

the base scenario and the three windstorms modelled, i.e., 

WS40m/s, WS50m/s and WS60m/s. The shape of these curves 

clearly recall the resilience trapezoid of Fig. 2, enabling its 

proper modeling and quantification; that is, the three phases 

can be clearly distinguished: disturbance progress, post-event 

degraded state and restoration phase. The duration of Phase I 

is known and equal to the duration of the extreme event (i.e., 

24h in this work), while the duration of Phases II and III 

would be the output of the simulation engine and, as 

demonstrated later, would depend on the emergency and 

preparedness plans in place by the electric utility (i.e., the 

response and RCs case studies considered in this work). In 

general, Phase II starts at the end of the event (tee) and ends 

when the operational and infrastructure resilience start 

recovering (tor and tir respectively), e.g. when some demand or 

a damage component is restored. Similarly, Phase III starts at 

tor and tir and ends at Tor and Tir respectively, i.e., when the 

operational and infrastructure resilience fully recover.  

Further, as illustrated in Fig. 2, it can be observed that the 

operational resilience degradation (Rpdo) as obtained by the 

operational resilience indicators in Figs. 7.b and 7.c is 

significantly lower than the infrastructure resilience 

degradation (Rpdi) in Fig. 7.a. It can also be seen that the 

operational indicators of generation and load connected 

recover much faster than the infrastructure indicator of the 

transmission lines online. This proves the importance and the 

need for distinguishing the concepts of infrastructure and 

operational resilience, as well as the use of different resilience 

indicators for their quantification.  

2) Application of the ΦΛΕΠ resilience metric framework 

Based on the above resilience indicators, it is now possible 

to quantify the system resilience via the proposed metrics.  

The first metric to evaluate is the Φ-metric, i.e., how fast 

the operational and infrastructure resilience levels degrade. 

Table IV shows the Φ-metric of the resilience degradation 

curves of Phase I of the resilience trapezoid for the 

infrastructure and operational resilience indicators. These 

slopes are negative, as resilience degrades. It can be clearly 

seen that the degradation slopes increase for higher wind  

TABLE IV 
THE Φ-METRIC FOR THE BASE CASE SCENARIO 

Event 
Resilience Indicator 

Trans. lines Gen. Connected Load Connected 

WS40m/s -0.2500 -0.0125 -0.0024 

WS50m/s -1.0833 -0.521 -0.249 

WS60m/s -2.0833 -1.5876 -0.6668 

 
Fig. 8. The Λ-metric for the base case scenario 

TABLE V 
THE Φ-METRIC FOR THE ROBUST CASE SCENARIO AND WS50M/S 

Event 
Resilience Indicator 

Trans. lines Gen. Connected Load Connected 

20% Less 

Robust 
-2.2083 -1.8083 -0.7132 

Base -1.0833 -0.521 -0.249 

20% More 
Robust 

-0.2500 -0.0121 -0.0117 

speeds for all the resilience indicators. Further, the highest 

slopes occur for the infrastructure indicator of transmission 

lines online, followed by the operational resilience indicators. 

 The second metric to evaluate within the ΦΛΕΠ framework 

is the Λ-metric, i.e., how low resilience drops in Phase I. Fig. 8 

shows this metric for the base case scenario, as expressed 

using the infrastructure and operational resilience indicators. 

As expected, the resilience degradation increases for higher 

wind speeds. Also, as shown in Fig. 7 as well, the highest 

impact occurs on the infrastructure resilience for all the 

windstorm intensities evaluated here. 

Table V shows the Φ-metric and Fig. 9 the Λ-metric for the 

robust case scenario, which is the scenario with the largest 

effect on these metrics, for WS50m/s. It can be seen that 

boosting (reducing) the robustness of the transmission 

corridors improves (worsens) the slope and level of resilience 

degradation in Phase I.  
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Fig. 9. The Λ-metric for the robust case scenario and WS50m/s. 

TABLE VI 
THE E-METRIC FOR THE RESPONSE CASE SCENARIO AND WS50M/S  

Case study 

Duration of post-event degraded state (hours) 

Transmission 

lines 

Generation 

Capacity 
Load 

20%MoreResponse 44 47 48 

Base 53 54 57 

20%LessResponse 76 80 83 

TABLE VII 
THE Π-METRIC IN PHASE III FOR THE RESPONSE AND RESOURCES CASE 

SCENARIOS AND WS50M/S  

Case Study 
Resilience indicator 

Trans. lines Gen. Connected Load Connected 

5 RCs 0.0128 0.0060 0.0026 

10 RCs 0.0137 0.0069 0.0039 

15 RCs 0.019 0.0148 0.0076 

20%LessResponse 0.0455 0.0266 0.0111 

Base 0.0578 0.0330 0.0724 

20%MoreResponse 0.0925 0.0354 0.0925 

Table VI demonstrates the E-metric, i.e., how long is the 

duration of the post-disturbance degraded state (Phase II), for 

the base and response case scenarios for WS50m/s. It is shown 

that improving (resp. worsening) the responsiveness to the 

event results in lower (resp. higher) durations of the post-

event degraded state for all the resilience indicators. This 

scenario does not have an impact on the Φ and Λ metrics of 

Phase I. Also, the robust and resources scenarios do not have 

a great effect on the Ε-metric. 

 The last metric to evaluate within the ΦΛΕΠ framework is 

the Π-metric, i.e., how fast the operational and infrastructure 

resilience levels recover in Phase III. For this purpose, Table 

VII shows the recovery slopes of the response and resources 

scenarios for WS50m/s (the robust scenario does not affect this 

metric). As can be seen, different recovery slopes correspond 

to the infrastructure and operational indicators. Further, it is 

apparent that the limitation of the repair crews has the greatest 

effect on the restoration capability of the restoration slopes of 

both infrastructure and operational resilience. Also, the higher 

the number of repair crews, the higher the number of 

transmission corridors that can be fixed at the same time and 

hence the higher the restoration slopes (i.e., Π-metric) of all 

the resilience indicators. 

3) Calculation of the area metric 

Based on the resilience metrics estimated within the ΦΛΕΠ 

resilience framework in the previous subsection, the area 

metric is next estimated.  

 
Fig. 10. The area metric for WS40m/s, WS50m/s and WS60m/s 

 
Fig. 11. The area metric of the indicator transmission lines online for WS50m/s 

for the robust case scenario and the phases of the trapezoid 

 
Fig. 12. Area metric of the indicator transmission lines online for WS50m/s. 

Results shown for the case scenarios base, response and resources (RCs). 

Fig. 10 shows the total area metric for WS40m/s, WS50m/s and 

WS60m/s for the different resilience indicators. The larger is the 

area, the larger is the overall impact by the windstorm. 

Therefore, as aforementioned, the highest impact is observed 

on the infrastructure resilience. Further, the area metric 

increases significantly for higher wind speeds. 
Figs. 11 and 12 show the area metrics for the different 

phases of the resilience trapezoid using the indicator of 
transmission lines online for WS50m/s and for the robust, 
response and resources (RCs) case scenarios respectively. 
Similar trends are observed for the operational indicators. It 
can be seen that the robust case scenarios (Fig. 11) result in a 
large difference in AreaII due to the large difference in the 
resilience degradation. However, this variance is lower in the 
case scenarios of response and RCs (Fig. 12) due to the 
smaller difference in the duration of Phase II in these 
scenarios. Further, Fig. 12 shows that AreaI is equal for the 
response and RCs scenarios, as the resilience degradation is 
the same for these scenarios; only the post-event restoration 
time is influenced. It can also be seen that AreaIII is 
significantly larger than AreaI and AreaII. This is due to the 
much longer duration of Phase III compared to Phases I and 
II. Further, this is because the value of the Total Area is close 
to the value of AreaIII. Also, in Fig. 12 it is shown again that 
the limitation of repair crews has a much higher effect on 
AreaIII than the response case scenarios. 
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Fig. 13. Transmission lines online (%) when the test system is subject to two, 

successive windstorms, for the base scenario (5 days between windstorms) 

 
Fig. 14. Transmission lines online (%) when the test system is subject to two, 
successive windstorms, for different scenarios  

C. Resilience assessment to grid-scale multiple windstorms  

The resilience of the test network when it is subject to two 

successive events is evaluated next. For brevity, only the time-

dependent infrastructure resilience indicator of transmission 

lines online is provided here (similar trends hold for the 

operational indicators). The complete ΦΛΕΠ-based resilience 

metric framework can be applied following the same approach 

as in the single weather event in the previous subsections. 

In particular, for the base scenario, it is first assumed that 

the test network is hit by two windstorms of the same intensity 

(WS40m/s, WS50m/s and WS60m/s) with a five-day interval 

between the two events, i.e., the first event is applied at 50h 

and the second event at 170h, both with a 24h duration.  

Fig. 13 shows the online transmission lines (%) as a 

function of time. Likewise the single event, the lowest impact 

and fastest restoration is observed for WS40m/s, which enables 

recovery so that the system can effectively deal with the 

second event. In the case of WS50m/s and WS60m/s, due to the 

higher impact and the partial restoration of the infrastructure 

resilience before the occurrence of the second event, further 

infrastructure resilience degradation is observed, i.e., the 

percentage of lines tripped increases after the second event.  

Fig. 14 shows a comparison of different scenarios, namely 

base for WS50m/s, different intensity of the windstorms (SC1, 

the first windstorm that is applied is WS50m/s and the second 

WS60m/s) and improving the responsiveness and robustness by 

20% (SC2 and SC3 respectively) for WS50m/s. The time period 

between the events is 120h. In SC1, the higher intensity of the 

second event causes a much higher infrastructure resilience 

degradation, even though some resilience recovery takes place 

before it occurs. The more effective and faster response in SC2 

enables higher and quicker recovery following the first event, 

which results in a lower resilience decrease following the 

second event, compared to the base scenario. The lowest 

resilience degradation is for SC3, during both windstorms. 

D. Smart operational measure (“defensive islanding”) and 

resilience assessment to region-scale windstorm 

In the previous sections, the resilience of the test network to 

a wide grid-scale windstorm has been evaluated, which is 

considered to be the worst-case scenario in terms of the area 

hit by the weather event. In this section, a region-scale 

windstorm is modelled. Particularly, the windstorm hits the 

North and Central-East region of the test network, and more 

specifically the transmission corridors connecting nodes 1-10 

and 14-17 (see Fig. 5). According to historical data [20, 23], 

this GB region is being hit hard and quite frequently by severe 

winds. Further, in order to evaluate the effect of the failure 

propagation that might be caused by the regional windstorm to 

the rest of the network, the cascading mechanism is 

considered and modelled in this study, as illustrated in [19]. 

In [19], a defensive islanding (DI) scheme based on a 

severity risk index is developed and thoroughly presented, in 

order to determine the effect of “smart” operational measures 

to the resilience enhancement of a power system to extreme 

weather events. In this work, this DI scheme is used as a case 

study in order to demonstrate the capability of the resilience 

metric framework to quantify the contribution of such “smart” 

operational strategies.  
Only the cascading caused by thermal overloads is 

considered and the lines that are tripped by the protection 
equipment due to thermal overloads (these lines are not 
damaged by the windstorm) are reconnected the next hour. 
Lines reconnection is important as it increases the options for 
defensive islanding (possible formations of islands in the next 
simulation step) when its application is decided and reduces 
the possibility of congestion. It is considered that the time 
period of one hour is enough in order to reconnect the lines 
after their tripping by the protection due to thermal overloads. 
Transient phenomena during reconnection of the lines are not 
examined. In addition, it is noted that the reconnections are 
applied in a controlled way and therefore the transient 
phenomena that could lead to instability are assumed unlikely. 

Defensive islanding isolates the region which is hit by 

extreme weather to prevent the cascading events to be spread 

to the rest of the network. The reconnection of islands after the 

application of DI is discussed in [19]. In order to model highly 

stressed conditions which would enable the effective 

demonstration of the contribution of DI to the resilience of the 

test network, the hourly load demand is increased by 20% here 

and the resilience of the system is tested using maximum wind 

speeds higher than 40m/s [19]. 

DI is not able to prevent the direct damage of a line due to 

a windstorm. It is applied to prevent cascading events that are 

triggered due to line damages by the extreme weather. Since 

the tripped lines by the protection due to thermal overloads are 

reconnected in the next hour, the number of damaged lines due 

to windstorm will be the same with or without DI at the end of 

Phase I. Therefore, the operational measure DI is applied 

during Phase I and is able to enhance the resilience of the 

system only in Phase I of Fig. 2, as the overloaded lines are 

reconnected in the next hour. Hence, for demonstrating clearer 

the contribution of DI, Fig. 15 shows the transmission lines 

and load online (%) with and without DI only for Phase I of  
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Fig. 15. Transmission lines and load online during the event (Phase I only) 

with/without the application of defensive islanding for a grid-scale windstorm 

the resilience trapezoid (time of windstorm=50h, duration of 

windstorm=24h). During the first hours of the extreme 

weather event the resilience of the system is significantly 

improved with DI, as it can be observed that the resilience 

indicators with DI are higher than the ones without DI. This is 

because the larger number of tripped lines is usually observed 

in the first hours that the windstorm hits the system. This 

could thus possibly lead to cascading events, which deems the 

DI as an effective solution for mitigating the effects of 

cascading outages. The next hours, due to the fact that several 

lines have already tripped, the number of failed lines is 

reduced. This makes the effect of DI less critical. 

Interestingly, the resilience curve in Fig. 15 is not 

monotonically descending in Phase I as in previous sections 

where the cascading mechanism was not considered. Further, 

it can be seen that DI affects the Λ-metric, i.e., how low 

resilience drops at each hour of Phase I. It is also observed 

that after the first few hours that the windstorm hits the 

network, the connected load increases while the online 

transmission lines are further reduced. This is because in the 

South-East region of GB there are large urban centers (e.g. 

node 25, London) and their electrification can be interrupted 

due to the cascading events during the early stages of the 

event, but reconnected shortly after. It is noted that all the 

previous case studies can be applied in conjunction with DI to 

investigate their combined effect on the resilience trapezoid. 

V. CONCLUSIONS 

A multi-phase resilience trapezoid has been discussed in 
this paper. This trapezoid has been methodically quantified 
using a novel resilience quantification framework based on the 
ΦΛΕΠ (pronounced like “FLEP”) resilience metrics, which, 
along with the area of the trapezoid, define a set of five 
resilience metrics specifically developed. By using different 
resilience indicators for quantifying these metrics, the 
proposed framework critically distinguishes the concepts of 
operational and infrastructure resilience, and enables the 
systematic modelling of the operational and infrastructure 
resilience performance of a power system subject to extreme 
weather, i.e., how fast (Φ-metric) and how low (Λ-metric) 
resilience drops, how extensive (E-metric) is the duration of 
the post-event degraded state and how promptly (Π-metric) it 
reaches its pre-event state. Hence, the proposed approach 
enables the effective modelling of the time-dependent 
behavior of an infrastructure subject to extreme events. 

The effect of different structural and operational resilience 

enhancement strategies can be quantified using the proposed 

framework. This can thus support adaptation policies, which 

is another critical time-dependent resilience feature.   

The case study applications focused on assessing the 

resilience of a 29-bus test version of the GB transmission 

network to grid-scale single and multiple windstorms. The 

resilience of the test network to a region-scale windstorm, 

with the application of the smart operational strategy of 

defensive islanding, has also been assessed. The results clearly 

demonstrate the suitability, effectiveness and flexibility of the 

proposed framework and metrics set to quantify power 

systems resilience, evaluate the effect of different operational 

and infrastructure aspects on the behavior of a power system 

when it is exposed to extreme events, and assess the benefits 

from different resilience enhancement strategies.  

Work in progress aims at illustrating how the proposed 

metrics framework can be used in a full cost/benefit analysis 

framework to support the quantitative decision making for 

fulfilling both resilience and cost goals.  
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