
Mineral deposits are most commonly
represented by a block model that divides the
orebody into a three-dimensional array of
blocks. Each block consists of a cluster of
similar characteristics such as rock type and
ore grade, and has attributes such as tonnage
of ore contained within the block and an
expected economic value (Bley et al., 2010).
For each block, the mine production
scheduling problem consists of the decisions of
(1) whether to mine a block, (2) when to mine
that block, and (3) how to process the mined
block. The overall objective is to maximize the
net present value (NPV) while meeting
feasibility constraints such as production,
blending, sequencing, and pit slope (Dagdelen,
2001).

Three main sub-problems of scheduling
are the determination of production rates,
discrimination between ore and waste, and
block sequencing (Kumral, 2013a). These
problems are interdependent; one sub-problem
cannot be solved if the others have not been
solved previously. However, in common
applications, production rates are usually
assumed and the other sub-problems are
solved under this assumption (Menabde et al.,
2004; Nehring et al., 2010; Asad and Topal,
2011). This leads to sub-optimal results. Our
approach introduces a concept of cut-off range,

which regards the cut-off grade as guidance
and optimizes it within the range provided.
This is a step toward simultaneously
optimizing production rates along with process
destination discrimination and extraction
sequencing.

Exact methods such as mixed integer
programming (MIP) have been used for the
block sequencing problem to obtain an optimal
result for various cases (Kumral, 2013b; Little
et al., 2013; Nehring et al., 2012; de Carvalho
Jr. et al., 2012) and yields a deterministic plan.
However, MIP suffers from certain drawbacks.
The size of the problem increases exponen-
tially as the level of complexity (such as
multiple metals, process destinations, rock
types) increases (Rothlauf, 2011). To
overcome the data size problem in MIP, block
aggregation is suggested (Tabesh and Askari-
Nasab, 2011; Topal, 2011) but naturally, this
results in loss of optimality. Also, given that
the block model is based on drill-hole data but
is usually generated by geostatistical
simulation, it is impossible in practice for the
generated schedule to be optimal. Considering
the amount of time MIP takes with large data-
sets and that MIP is unnecessarily precise in
our case, a faster, approximately-optimal
algorithm is much more suited to the practical
need.

Another widely used exact method is the
Lerchs-Grossman algorithm (Lerchs and
Grossman, 1964), which yields the ultimate
pit. This is an algorithm based on graph theory
that converts each block to nodes. Although
faster than MIP, in addition to the problems in
MIP, when using Lerchs-Grossman algorithm
it is difficult to assign varying pit slopes at
different points and determine mining and
processing capacities for each period. Dagdelen
and Johnson (1986) attempted to handle the
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capacity constraints problem by incorporating the Lagrangean
multiplier. The selection of the Lagrengean multiplier is a
significant problem and the viability of the sequence
generated depends on this selection. There is no clear way to
determine the multiplier such that the NPV of the project is
maximized.

In this research, simulated annealing (SA) meta-heuristic
with addition of heuristic memory is utilized to solve mine
production scheduling. The addition of heuristic memory
helps to reduce the randomness of SA and improves
computational efficiency. Heuristic memory learns the path of
search in SA in such a way as to accelerate escape from local
optima. As such, this addition can be seen as the incorpo-
ration of machine learning into the optimization process.
Machine learning takes existing data a step further by
automatically learning and improving the performance based
on the data (Witten and Frank, 2005). Machine learning
consists of many different techniques based on mathematical
and empirical methods. These methods can be used to
enhance the optimization and are especially easy to integrate
with meta-heuristic approaches.

The application of SA to the mine production scheduling
problem was developed by Kumral and Dowd (2005). This
approach gradually improves an initial non-optimal solution
by making several changes at each step and observing the
effects of the changes. Although reaching the near-optimal
solution takes time, the advantage of this technique is that it
can be stopped at any time to obtain the most profitable
solution so far.

The application of genetic algorithms was first introduced
by Clement and Vagenas (1994). Based on the principles of
natural selection, multiple feasible solutions are mixed by
involving randomization. Similar to SA, solutions are
improved gradually and the process can be stopped to obtain
the best solution so far.

Ant colony optimization is a population-based
metaheuristic method  first developed by Dorigo and Birattari
(2010) to imitate the foraging mechanism of ants. Ant colony
optimization was proposed to solve the mine production
scheduling problem by Sattarvand and Niemann-Delius
(2013), Sattarvand (2009), and Shishvan and Sattarvand
(2015). Using the Lerchs-Grossman method to produce an
initial solution, the schedule was improved through iterations
based on pheromone trails.

Reinforcement learning is similar to SA and genetic
algorithms in terms of being an algorithm for searching the
parameter space using the concept of reward; which in our
case will be the improvement in the NPV. However, it yields
better immediate results by applying a trial-and-error search
having a memory-like system by incorporating historical
error into its search mechanism (Sutton and Barto, 1998).
Combined with dynamic programming, this type of learning
can be used to adapt incoming updated information, for
example during mine exploration.

Bayesian inference assumes the quantities of interest and
parameters have an underlying probability distribution. By
combining these probability distributions and observed data,
optimal decisions can be made (Mitchell, 1997). Bayesian

learning can be used to estimate the parameters, their
relations to other parameters, and update their values with
the incoming new drilling data.

SA was developed initially by Kirkpatrick et al. (1983) and
Cerny (1985). The method was applied to open pit mine
production scheduling by Kumral and Dowd (2005) and
Kumral (2013a) by the following steps:

Step 1: Start with a non-optimal feasible solution
Step 2: Select a portion of the blocks
Step 3: Possibility 1: modify ore-waste discrimination.

Change ore blocks to waste, and waste to ore by
some probability
Possibility 2: modify the period of the given
block to a previous or following period by some
probability

Step 4: Recalculate NPV for the newly found solution
Step 5: Apply the Metropolis criterion as the acceptance

criterion; accept the new solution with the
probability yielded by Metropolis

Step 6: If the NPV has not increased for last n steps,
terminate. Otherwise, go to Step 2.

The Metropolis criterion (Metropolis et al., 2004), shown
in Equation [1], is a criterion that takes two solutions and a
temperature T as inputs and outputs a probability of
acceptance between 0 and 1, where E0 is the current
solution's NPV and E is the newly found solution's NPV.

[1]

T should be chosen high at first and then decreased
slowly. If T decreases slowly enough, theoretically a global
minimum will be reached (Lundy and Mees, 1986).
According to how the Metropolis criterion is set up, at higher
temperatures the criterion tends to accept solutions that are
not improving as well as those are improving. This stage is
called ‘exploration of the parameter space’, as shown in
Figure 1a. As T is lowered, there is less chance of accepting
solutions that are not improving. If T is not decreased slowly
enough, there is a chance of becoming stuck at a local
minimum as shown in Figure 1b.

�
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As SA takes time, ideally the initial solution should
provide very fast, although sub-optimal, results. The ranked
positional weight (RPW) algorithm is a heuristic algorithm
that draws a downward cone from each block and the block
gains a score according to the economic values of the blocks
in the downward cone (Gershon, 1987b). This approach
follows the logic that if a block is underlain by a valuable
block, it should gain more score as the removal of this block
leads the way to the underlying valuable block. After the
scoring has been completed, a schedule is generated such
that starting from the first level, the highest, scored blocks
will be mined. The RPW fits our purpose well because it
produces a feasible solution rapidly.

A computer program was written to perform RPW and SA
as demonstrated in Algorithm 1 to perform mine production
scheduling. First, RPW is run to generate an initial feasible,
sub-optimal solution. Then this solution is transferred to SA,
which needs an initial input. SA gradually improves this
solution at each iteration and outputs the result. A feasible
solution respects the slope constraints, mining capacity
constraints, and processing capacity constraints.

In this paper, in addition to SA, the developed SA variant
method with memory is used to solve a mine production
scheduling problem. In SA, only improvement is tracked and
the decisions are made based on improving the objective
function. Thus, SA is memoryless (Glover and Kochenberger,
2003). Tabu search attempted to improve SA by creating a
dynamic list of forbidden solutions, thus introducing a
concept of memory (Glover, 1989, 1990). However, this is
very specific and limited. Tabu search only attempts to
decrease re-visitation of the same solutions; it does not
attempt to utilize the information in the solutions in some
way. 

Our proposed SA variant method, improved SA with
heuristic memory, deducts information from the ‘big data’
produced by SA through inputting a heuristic (a quantifiable
component of the solution that is thought to influence the
objective function) and recording the heuristics value and the
corresponding objective functions value. This method adds a
memory on top of SA, with the intent of making it faster to
find the global optimum. The representation of heuristic
memory-added SA can be followed through the pseudocode
demonstrated in Algorithm 2. The algorithm contemplates
whether the provided heuristics indeed have an effect on the
objective function by collecting data and looking at the
relationship between the heuristic and objective function. If
the heuristic has an effect, the value of the heuristic, along

with a balancing parameter k1, is also added into the
objective function to increase its effect. With this approach, if
there is a known or reasoned important component of the
problem, it can be put forward rather than performing a
wholly random search. A comparison of the SA flow chart
and SA with the heuristic memory-added flow chart is given
in Figure 2.
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The program is able to work with multiple metals, process
destinations, and rock types. Other details of the program are
as follows: 
� Cooling schedule—If initial temperature is too high, all

new solutions are accepted. This will lead to undirected
search. If initial temperature is too low, only improved
solutions will be accepted and the annealing process
will be reduced to a local search. Therefore, the initial
temperature is set by taking the first two solutions and
finding T in Equation [1] such that the equation will be
equal to 0.5. This sets T such that, in the beginning, a
solution will have a 50% chance of being accepted even
if it is not improving. Decrementing T is accomplished
by T T × 0.9999 to ensure it decreases slowly
enough to accept more solutions. Each time a fixed
number of solutions are found (40 solutions), T is
updated as described

� Stopping criteria—There are two conditions that can
stop the annealing loop:  

• When the Metropolis Criterion does not accept the
solution for a pre-set, empirically selected amount
of iterations (in our case, four iterations)

• When the program loops for a user-set amount of
value. The second condition exists to produce
solution under limited time. However, the longer
the program is allowed to run, the better the
results

� Maximum number of solutions at each temperature—
This is a parameter that sets the number of generated
solutions before decreasing the temperature. This
should depend on the size of the data, so in our
program we set it to 200 solutions

� Cut-off range—SA uses the guidance of the cut-off
grades. However, it does not adhere to them strictly.
During the generation of transition destinations
process, the cut-off range is used to decide to which
extent the blocks out of the limits of the cut-off grade
could be accepted. This parameter may have a major
effect on the results. If set high enough, it can remove
cut-off grade boundaries altogether

� Number of iterations—SA terminates either when there
is no improvement or when the given number of
iterations is reached. Mining problem sizes are very
large and thus the number of iterations is usually
reached sooner than settling on the ideal solution. This
parameter should be selected as large as possible as
time permits

� Short-coming process blocks effect—This parameter is
used as the balance between maximizing NPV and
satisfying capacity constraints in the objective function.
The parameter specifies how important it is to fulfill the
process capacities. This value ranges between zero
where it is not considered and unity where this
criterion is all that matters 

� Mining cost adjustment factor—The modifiable mining
cost adjustment factor (MCAF) is used to reflect the
increased cost of transport in deeper levels of the
deposit. MCAF is entered by the user and the MCAF 
is added to the mining cost using the Equation [2].  

[2]

� Heuristic memory—For each heuristic, the heuristic
value and the objective function value are stored. When
enough data is produced, a function-fitting method
(Equation [3]) is performed to deduct information of
how this heuristic influences the objective function. In
our case, the number of blocks was the heuristic used
and the fitting function was linear regression. This
influence, along with a balancing parameter (k), is
included in the objective function. The balancing
parameter depends on the coefficient of determination,
R2, of the fitting function. Possible heuristics include 

the number of blocks, number of ore blocks, block
grade versus process destination, coordinates of the
main ore clusters, mine depth, and mine life. 

[3]

To demonstrate an application of meta-heuristic optimization
on mine production scheduling, a program has been written
using SA with the heuristic method approach. 

The case study  considers a copper and molybdenum
deposit generated from a public drill-hole data-set in
http://www.kriging.com/datasets/ Using sequential Gaussian
simulation, a 3D block model of 595 046 blocks was created,
where each block is 10×10×10 m in size. The mining
company has one waste dump and three process destinations
(low-, middle-, and high-grade processing), where the ore is
processed by different procedures and thus their costs and
recoveries are different. The slopes are 45 degrees in four
directions (north, south, east, and west). Parameters for the
case study are given in Table I. With 595 046 blocks, four
periods, and four total destinations there are 595 046 × 4 ×
(4 + 1) = 11 900 920 decision variables. In the calculation,
destinations are incremented by one because the the decision
can also be taken not to extract the block. 

Cut-off grades were calculated using the method of
Osanloo and Ataei (2003) for finding the equivalent cut-off
grade for multiple metal deposits, yielding 0.4859%,
0.6006%, and 0.7257 % respectively for each process. First,
the RPW algorithm (Gershon, 1987a,b) was run to output a
sub-optimal initial result. This result was input to the SA and
SA with heuristic memory as an initial solution. All solutions
respect the slope, mining, and process capacity constraints.

The resultant NPV of each algorithm is given in Table II.
Using SA improved the RPW results by $75 743 914, which
is 4.70%. SA with heuristic memory, on the other hand,
improved the NPV by $77 386 239, which is a 4.80%
improvement, when run for the same amount of time. 

Figures 3 and 4 show various cross-sections of the
orebody. These figure also compare the RPW and SA outputs,
with each colour corresponding to an extraction period (1:
light blue, 2: green, 3: orange, 4: red, dark blue: not
extracted). It can be seen from these figures that compared to
the RPW algorithm, SA is inclined to mine the blocks in the
earlier periods to increase the NPV. However, the SA results

�

676 VOLUME 116     



look less smooth than the ranked positional algorithm’s
result. This is mainly because of the structure of annealing,
where blocks are switched between the periods one by one,
causing the sections to look rugged. 

Figure 5 shows the average grade of Cu and Mo at each
period for each process, as well as the number of blocks
extracted at each period. These results belong to the SA
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Table I

10 10 10 Block dimensions (m)

98 132 46 No. of blocks in x, y, z directions

4 No. of total destinations

3 No. of ore destinations

1 No. of waste destinations

4 No. of periods

2 No. of rock types

3 3 3 3 Mining cost of each destination rock type 

1 ($ per ton

4 4 4 4 Mining cost of each destination rock type 

2 ($ per ton)

0 15 30 50 Mineral processing cost of each destination rock 

type 1 ($ per ton)

0 18 38 53 Mineral processing cost of each destination rock 

type 2 ($ per ton)

0 60 70 80 Sales cost of each destination ($/ton concentrate)

5 5 5 5 Specific gravity of each destination (t/m3)

60 Mining capacity (ore and waste) (in thousands of 

number of blocks)

25 20 15 Processing capacity of each destination 

(in thousands of number of blocks)

0.01 Cut-off range

2 Number of metals (Cu and Mo)

10000 30000 Ore price ($ per ton) (Cu and Mo)

0 40 70 95 Recovery for each destination metal 1 rock 

type 1 (%)

0 30 40 75 Recovery for each destination metal 2 rock 

type 1 (%)

0 40 80 95 Recovery for each destination metal 1 rock 

type 2 (%)

0 30 40 75 Recovery for each destination metal 2 rock 

type 2 (%)

0.1 Discount rate

300 Number of iterations

0.9 Shortcoming process block effect

0.1 MCAF

0.600 0.680 0.780 Copper grade requirement (%)

0.043 0.063 0.010 Molybdenum grade requirement (%)

Table II

Ranked positional weight $1 613 205 645

Ranked positional weight + simulated annealing $1 688 949 559

Ranked positional weight + simulated annealing $1 690 591 884

with heuristic memory
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method, but the SA with heuristic memory results are very
similar and not distinctive and thus yield the same figures
because of the process capacity push mechanism. On the
other hand, the intelligent search mechanism through
heuristic memory also reduces the running time by about
25%. To maximize NPV, the approach forces to reach the
capacities. Therefore, the results are similar but the NPVs are
different. This can be observed in the NPV increases in 
Table II.  While the number of blocks extracted and the
average grades are similar, the block configurations are
different with these two methods. It should also be noted

that average grade is persistent within a range throughout
the periods at each destination. Therefore, there are no
distinctive changes in average grades. This is important for
the processes to choose and maintain a recovery, where
fluctuations in the block grades affect the recovery process
negatively. Another point to note is that process capacity
push is working well, except for the high-grade process. The
reason for this is the grade is not homogeneous and there are
not enough high-grade blocks for the later periods. Most of
the high-grade material is near the surface, thus the capacity
during the first period is completely filled. It can also be
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observed from Figure 5 that number of blocks sent to each
process at each period is below the corresponding capacity,
satisfying the process capacity constraints. The processing
capacities are 25 000, 20 000, and 15 000 blocks for the low-
, medium-, and high-grade processes, respectively (Table I).
As can be seen from Figure 5, for the low- and medium-
grade processes, capacity satisfaction is quite good. Since the
number of high-grade blocks is low, there is a decreasing
order of number of blocks. In this case, there may be a few
solutions: establishing stockpiles, changing the high-grade
process design to meet the grade requirement, or re-installed
high-grade process capacities. This is a common problem in
mining operations because the capacity installation ignores
ore material heterogeneity. As can be also seen from Figure
5, the grades at each destination are consistent in terms of
periods. Mining capacity was 60 000 and was also satisfied,
as the numbers of blocks extracted in each period are 60 000,
60 000, 59 703, and 46 609 respectively.

Lastly, the overall average grades of low-, medium-, and
high-grade processes are compared in Figure 6. Average Cu
and Mo grades obtained at each process destination are given
as 0.6081% and 0.043 275% for low-grade processing, 0.677
325% and 0.062 778 25% for medium-grade processing, and
0.776 868 25% and 0.101 760 25% for high-grade
processing. The average grades are highly compatible with
the grade requirements. As expected, the high-grade process
has the highest average grade, followed by the medium and
low grades. 

The use of SA after a heuristic-based method guarantees that
it will either produce a better solution or return the initial
solution. It is true that SA takes time to reach the optimal
value. However, unlike exact methods, it can be stopped at
any point and best solution found so far can be returned.
Moreover, almost all parameters can be integrated into SA,
such as process capacity, transportation cost, and multiple
process destinations, which are impossible to integrate in
some other techniques. In exact methods, as the number of
parameters increases, the problem size increases exponen-
tially, whereas with SA the problem size increases propor-
tionally; only as much as the expansion of the search space.
SA is also more convenient to apply to our problem than

other meta-heuristic methods such as genetic algorithms,
particle swarm optimization, and evolutionary search because
these types of algorithms require a pool of initial solutions. In
our case, we used RPW to generate the initial solution, which
can provide only one solution. For such a large problem,
generating more than one solution is hard and time-
consuming.

It is observed from the case study that usage of SA can
add large gains to the revenue compared to RPW. The
average grade and number of blocks sent to destinations
were overall stable. Moreover, the case study has shown that
the revenue of the solution obtained in the same amount of
time has been increased by SA with heuristic memory. As the
running time increases, further improvement can be
achieved. 

In the case study of the heuristic-memory-based SA, a
linear fitting function was used. Efficiency of the memory
enhancement can be increased through improving this fitting
function. Also, in our case most parameters related to
heuristic-memory-based SA were chosen empirically, such as
when to produce the first function, how often to update the
function, and how to balance the optimal function with the
heuristic. Research can be conducted on how to optimize
these parameters. 

The main issue in all meta-heuristic applications is the
parameter selection. This is also true for all types of SA.
Selection of SA-related parameters such as the temperature,
number of iterations, and maximum number of solutions at
each temperature can affect the running time of the program
to a great extent. If the parameters are poorly set and the
program is run for a short time, the results may not be
optimal. 
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