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Self-organized collective coordinated behaviour is an impressive phenom-

enon, observed in a variety of natural and artificial systems, in which

coherent global structures or dynamics emerge from local interactions

between individual parts. If the degree of collective integration of a

system does not depend on size, its level of robustness and adaptivity is

typically increased and we refer to it as scale-invariant. In this review, we

first identify three main types of self-organized scale-invariant systems:

scale-invariant spatial structures, scale-invariant topologies and scale-invar-

iant dynamics. We then provide examples of scale invariance from different

domains in science, describe their origins and main features and discuss

potential challenges and approaches for designing and engineering artificial

systems with scale-invariant properties.
1. Introduction
The shift from centralized control to distributed and self-organized control in arti-

ficial systems has been one of the most significant trends in recent decades. This

transition can be seen in a broad spectrum of artificial systems made of physical or

virtual components. To fulfil their purpose, these systems must exhibit collective
behaviour that results from a combination of multiple individual actions and inter-

actions. For instance, a robot swarm can perform aggregation, collective motion

or resource gathering as a result of multiple individuals autonomously taking

decisions that are based on their local conditions—i.e. their direct neighbourhood

and environment.

In nature, we find a large set of complex systems in which collective behav-

iour is observed. Such behaviour arises when parts of an organism coordinate to

achieve a given function (e.g. cells self-organizing within a multicellular organ-

ism) or when organisms coordinate within a group (e.g. birds self-organizing

in a flock or fish in a school). According to Brambilla et al. [1], these systems

are characterized by three properties that engineers would benefit from replicat-

ing in decentralized designs: scalability, robustness and adaptivity. Robustness

and scalability result directly from having redundant large-scale systems that

achieve collective objectives without relying on global information. By contrast,

achieving flexibility in artificial self-organizing systems is still a challenge.

To confront the design challenges of robustness and adaptivity, much can

be learned from nature, since natural systems must be capable of achieving

effective collective responses to a variety of external conditions and environ-

mental changes in order to survive. Regardless of the specific mechanisms

responsible for self-organization, a necessary condition for achieving such a col-

lective response is having strong integration in the behaviour of the components

of the self-organized system. In many cases, this integration must not depend

on the spatio-temporal scale of the system, so that it can exhibit a collective inte-

grated response to stimuli independently of the size of the system or of a given

stimulus. We refer to such emerging collective dynamics as scale-invariant.
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Figure 1. In this review paper, we identify three main types of scale invariance: (i) structures, (ii) topologies and (iii) dynamics, covered in §§3, 4 and 5 respectively.
Fractals and modified random walks are examples of spatial and temporal structure that are scale-invariant. Scale-invariant topologies can be scale-invariant either
in their node degree (scale-free networks) or in their intra-node distance (small-world networks). Scale-invariant dynamics can be induced either by the underlying
scale-invariant topology, or by a mechanism called criticality (which can be either self-organized or induced by tuning an external parameter), or via collective
modes. (Online version in colour.)
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In this paper, we will review the scale-invariant properties

exhibited by various systems in different branches of science

and their underlying mechanisms, focusing on their potential

application for the engineering design of flexible decentralized

systems that respond coherently, as a single unit, to environ-

mental challenges at all scales. We will start by, providing in

§2, a mathematical framework and background materials on

scale invariance. In §§3–5, we will describe different types of

scale invariance found in nature, classifying them by their cor-

responding emergent scale-invariant features and by the

underlying mechanisms responsible for them (figure 1). Sec-

tion 3, will focus on scale-invariant spatial distributions, §4

on scale-invariant interaction networks and §5 on scale-

invariant dynamics. For each type, we will present various

examples found in the literature, stemming from diverse scien-

tific fields, including physics, biology and social sciences. In

§6, we will discuss potential applications of these examples

from nature for engineering future artificial decentralized

scale-invariant systems that are scalable, robust and flexible.

Finally, §7 is our conclusion.
2. Background
The property of scale invariance describes situations where

the essential structural and/or dynamical properties remain

unchanged (i.e. invariant) when considering the system at

different scales. In general mathematical terms, if we use

f (x) to describe the structure or dynamics of any system

as a function of the (spatial or temporal) variable x,

a scale-invariant system f (x) must satisfy the condition

f(lx) ¼ C(l) f(x): ð2:1Þ

Hence, if we consider a scale that differs from the original

one by a factor l, replacing f (x) for f (lx), the property
described by f remains essentially unchanged; it is only mul-

tiplied by a scaling factor C(l) that does not depend on x.

Although, in principle, C(l) can be any function, in practice,

it is a power law for all the natural systems reviewed in this

paper. We distinguish here two types of scale invariance, a

continuous scale invariance in which l can take any value

and a discrete scale invariance in which it takes only discrete

values, noting that the latter case may be in dissonance

with some definitions found in the literature. In this paper,

we thus define as scale-invariant any property that satisfies,

for continuous or discrete values of l and for a given

D [ R, the power-law expression

f(lx) ¼ lD f(x): ð2:2Þ

The continuous case is equivalent to stating that f is a

homogeneous function. An example is any power law,

since f (x) ¼ cxp always satisfies equation (2.2) for D ¼ p.

The discrete case corresponds to fractal-like, self-similar

systems. We note, in addition, that some apparently discrete

scale-invariant systems can actually correspond to specific

statistical samplings of a continuous scale-invariant prob-

ability distribution. Therefore, if a discrete realization of a

scale-invariant system is observed, it does not necessarily

imply that equation (2.2) is satisfied only for a discrete l,

but could instead mean that f (x) is a probability distribution

and that we are observing a discrete statistical sampling of

its values.

Scale-invariant systems typically have no characteristic scale,

since any specific scale that defines them would have to appear

in the function f(x), making the transformation in equation (2.2)

impossible. Such scale-invariant systems are thus often referred

to as being scale-free (SF). From a system design perspective,

this means that the property f(x) holds regardless of the spatial

or temporal scale. This also explains why power laws commonly

appear when describing scale-invariant systems. Indeed, the
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argument in most other functions (such as exponential or trig-

onometric functions) must have dimensionless units, and this

can be achieved only by dividing x by another dimensional vari-

able that defines a characteristic scale. Finally, we note that in

real-world scale-invariant systems, this invariance can never

cover all scales—there will always be physical cut-offs at very

large and very small scales—but must still be valid over a

broad range of scales.

All systems we review in this paper exhibit the above prop-

erty of scale invariance. An important distinction that must be

made is whether these systems are the result of biological evol-

ution and adaptation or not. If this is the case, we can argue

that these systems are ‘guaranteed’ to be optimally responsive

to the environmental conditions, and therefore robust and

adaptive. If instead such systems are not under a biological

evolutionary process (e.g. social systems), robustness and flexi-

bility are not necessarily guaranteed. Although this distinction

is very important, we will not use it as a unit of taxonomy, as

for the sake of our review both these systems deserve to be

fully understood as they may contain insight that would

allow us to develop useful engineering systems. In fact,

although a social system, for instance, may not be behaving

in a robust and adaptable fashion under certain conditions,

in an engineering context, parameter conditions are fully

under control, so understanding the regime in which such sys-

tems behave optimally is important. In the following, we

define robustness and adaptability and clarify their interplay

in the context of collective engineering systems.

In works such as those of Young et al. [2] and Kitano [3],

robustness is referred to as the ability of the system to main-

tain its functionality when a system parameter changes. In

collective systems, this functionality is the global behaviour

that emerges from the individual behaviours, which are for-

mulated based on the individual’s opinion and the

interactions with other individuals. Hence, the robustness

of a collective system can be stated as the system’s ability

to maintain its global behaviour under the presence of pertur-

bation, changes or failures in the individual behaviours and/

or in the interaction. The impact of a failing component on the

robustness of a collective system must thus be studied in

terms of the other affected components and not by zooming

in on the internal details of the failing component.

Adaptability in a collective system, on the other hand, can

be defined as the ability of the system to shift from one collec-

tive state to another in response to a stimulus. The new state

can be either better or worse than the old state. Example of

collective state changes as stimuli responses are: the change

in flying direction of a bird flock as a response to a predator

attack; the transformation of matter from liquid state to gas

state as a response to rising temperature; the selection of a

new hive site by a honeybee colony as a response to unsuitabil-

ity of the current nest location. Adaptability is a fundamental

feature in unpredictable and dynamic environments, in which

the stimuli are unknown a priori.

Robustness and adaptability may have synergistic or

antagonistic interactions. In static environments in which

the collective system response is not expected to change,

having a high degree of adaptability may have a detrimental

effect on robustness, as an adaptive reaction to noise, for

example, may trigger an unneeded collective state change.

On the other hand, in dynamic environments adaptability

is more likely to promote robustness, as changes will most

likely be triggered by environmental stimuli rather than by
the noise, thus collective state change will more likely keep

the system functioning under the new environmental con-

dition. The adaptive response to stimuli must be efficient

and coherent. One way to achieve this is through a quick

and wide enough propagation of information throughout

the system, which again can be realized by scale-invariant

interaction networks as we will discuss across this review.

In this review, we will mainly focus on scale-invariant

systems that involve space-like variables (including physi-

cal positions in space, topological locations on networks,

and dynamics on different physical or virtual sites). This is

because space-like scale invariance can often be achieved by

self-organizing systems, which are our main interest here

because they can inspire distributed solutions for future

engineering, design and control applications. In the following,

we will describe three classes of scale-invariant systems, each

associated with a different scale-invariant physical property:

spatial distributions (§3), connectivity (§4) and dynamical

correlations (§5).
3. Scale-invariant spatial and temporal
distributions

We consider first situations where scale invariance is mani-

fested in the structure of physical objects, in the distribution

of positions in space (i.e. the physical occupation of the

space) or in the signal left by the system over time. Although

we will mainly focus on the scale-invariant connectivity and

dynamics discussed in §§4 and 5 (since they describe collective,

rather than individual, scale-invariant phenomena), for the

sake of completeness, we also include below a brief description

of common ways in which scale-invariant spatial distributions

may emerge in nature. In contrast with the other two kinds of

phenomena, these scale-invariant distributions could be gen-

erated by the action of a single individual, or by the action of

multiple individuals that are not necessarily coordinated.

We start by discussing fractals, because they are a funda-

mental component of the study of scale-invariant structures.

We then illustrate several ways in which scale-invariant struc-

tures can also be generated starting from a simple random

walk. It is important to note that scale-invariant spatial pat-

terns can also emerge in other contexts, and due to very

different processes. Self-propelled microswimmers, for

example, can form such patterns due to underlying fluid

flows (as further discussed in §4.2). Elgeti et al. [4] and

Wysocki et al. [5] have described how such fluid flows

contribute directly to long-range interactions at multiple scales.

3.1. Fractal structures
Fractals are geometrical structures made of patterns that

repeat themselves at all spatial or temporal scales. The

study of fractals has become a broad discipline in mathemat-

ics that includes the following: how they are generated, the

characterization of their geometry, examples in nature, and

potential applications. These different aspects of fractals

have been well reviewed in the literature, e.g. by Briggs [6],

Falconer [7], Mandelbrot & Pignoni [8]. In what follows, we

will describe only briefly some examples of how fractals

appear in biology and other natural systems, in order to illus-

trate cases of both temporal and spatial scale invariance

found in this context.
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Prime examples of fractal time series in biology are given by

Scafetta et al. [9], namely the physiological signals produced in

response to stress and environmental changes, such as (i) beat-

to-beat intervals in the human heart (or heart rate variability),

(ii) human stride intervals under different conditions

(e.g. different walking paces) and (iii) inter-breath intervals in

patients with different conditions. Also spatial fractals were

found in physiological systems by West [10] and Goldberger

et al. [11] such as the arterial and venous trees, the branching

of certain cardiac muscle bundles and the nervous system.

Some fascinating examples of fractal structures manifest

themselves as morphogenic patterns in a variety of living sys-

tems. These patterns naturally emerge as these systems grow,

leaving a trace on the design of the grown organism. Sea-

shells, for example, often display geometric structures that

are fractal in nature. A set of underlying mechanisms that

can produce such patterns were investigated by Umulis &

Othmer [12]. This work describes the spatio-temporal evol-

ution of morphogen-mediated patterns by dividing the

system into four models. The first model generates the mor-

phogen signal, the second one redistributes the morphogen,

the third one shapes the morphogen distribution and the

forth one detects and transduces the corresponding signal.

Umulis & Othmer [12] then show how the combination of

these models leads to a scale-invariant morphogenic pattern.

Fractals have already been widely used in the analysis and

engineering of artificial systems. In the time domain, examples

include the study of market dynamics by Peters [13], who used

a rescaled range analysis to identify fractal characterizations of

market fluctuations and risk factors and to help predict future

dynamics. In the space domain, the detection of fractal struc-

tures in images is an important enabler to compress data

efficiently. Fractal compression has been applied by Hramov

et al. [14] for neuro-images or by Liu et al. [15] for images of

agricultural fields, which indeed show a high degree of

repetition in their visual appearance.
3.2. Modified random walks
A set of simple mechanisms used by nature to generate scale-

invariant spatial structures can be obtained by modifying the

standard random walk dynamics. An example is given by

self-avoiding random walks, of which a simple physical

example is given by polymer systems. Polymers are large

molecules composed of chains of monomers. These mol-

ecules form long strands in space that can randomly bend

in different directions and can thus be described by a

random walk. However, these chains cannot cross or touch

themselves, so they are better characterized as self-avoiding

chains or walks [16]. Such self-avoiding random walks are

scale-invariant (e.g. the history of jumps as a set of temporal

correlated events), and can thus be seen as a remarkable

example of how simple individual interactions can lead to

the emergence of a scale invariance [17].

An interesting aspect of self-avoiding random walks is that

they are relatively simple mathematical objects for which sev-

eral properties have been studied. For example, one of their

well-understood properties is how the mean squared end-to-

end distance of a walk segment R2
N depends on its number

of steps N. As N tends to infinite, it has been shown that this

distance can be approximated by equation (3.1).

R2
N � N2v: ð3:1Þ
Here, v is the critical exponent that was found by Nienhuis

[18] to be 3=4 for a random walk on a two-dimensional (2D)

Euclidean lattice.

Another well-studied property of self-avoiding random

walks is the total number CN of distinct walks that can be

performed with N steps, which is given by equation (3.2).

CN � mNNg�1: ð3:2Þ

The exponent g was found to be 43=32 by Nienhuis [18] (also

for a random walk on a two-dimensional lattice), while m is a

connectivity constant that depends on the specific structure of

the lattice.

An example of a self-avoiding walk process that generates

scale-invariant structures which are beneficial for survival

can be found in the collective foraging of social insects. Col-

lective foraging is the process through which groups of

insects search for food. In the case of ant colonies, for

example, pheromone trails could be used to generate scale-

invariant search patterns. Indeed, ants typically create and

reinforce search routes using chemical pheromones [19–22],

which serve here as an implicit means of communication.

As each ant deposits on its trail pheromones that evaporate

over time, favoured routes will present a higher pheromone

concentration than less used ones. It is well known that this

leads to emergent phenomena, such as the selection of short-

est routes, but it was also suggested by Reynolds [23] that

pheromone trails can be used to avoid revisiting locations.

Ants could, therefore, use pheromone trails collectively to

effectively generate a self-avoiding random walk structure.

This would result in a scale-invariant fractal-like search pat-

tern with power-law distribution of path lengths, thus

providing an evolutionary advantage for the colony by facil-

itating the collective exploration and foraging in terrains with

features at all scales. An equivalent mechanism that exploits

chemical odour tagging to avoid particular locations is used

by phytophagous insects to control the distribution of pos-

itions where the eggs should be laid [24] and by honeybees

searching for flowers that have not already been visited [25].

Another type of a random walk that does not intersect its

own path is given by the loop-erased random walk, which is

sometimes considered a simpler version of the self-avoiding

random walk. A loop-erased random walk between two

points is obtained by launching a simple random-walk process

from the initial to the final point, and then erasing loops along

the path, in order. Algorithms based on this process, such as

Wilson’s algorithm, are often used to create uniform spanning

trees, e.g. by Aldous [26]. These trees are undirected subgraphs

of a given network that include all of its nodes, contain no

loops, and are chosen randomly with equal probability. As in

the case of self-avoiding random walks, loop-erased random

walks show their critical properties when the number of

steps N tends to infinity. Guttmann & Bursill [27] have

shown, for example, that in the limit the mean squared end-

to-end distance on a two-dimensional Euclidean lattice is

distributed following a power law with exponent v ¼ 4=5

(instead of the v ¼ 3=4 obtained for self-avoiding walks). The

sizes of the erased loops have also been shown to follow a

power-law distribution for large loops. In this limit, the prob-

ability for the perimeter of an erased loop to have length l is

characterized using a power law [28].

Lévy flights are a different type of modified random-walk

process that can also be used to generate scale-invariant spatial

distributions [29]. They are defined as random walks in which

http://rsif.royalsocietypublishing.org/
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the direction and the length of each step are chosen randomly.

In this case, scale invariance is directly imposed by picking the

step length from a power-law distribution. No additional self-

avoidance constraint is, therefore, required. Note that this is an

example of a continuous statistical spatial invariance (in the

step-length distribution) that results in a discrete pathway

structure in each realization, as mentioned in §2. Lévy flights

are used by a number of organisms in their search patterns.

For example, soldier crabs use them in their collective foraging

and some social insects, such as bees or ants, use them during

their nest selection process [30–33].
J.R.Soc.Interface
14:20170662
4. Scale-invariant interaction networks
Scale-invariant structures in natural systems are not limited

to the spatial distributions described in §3. They can likewise

appear in systems in which space does not play an important

role. For example, the scale-invariant property can be given

by topological distance rather than by physical distance.

Scale invariance is then related to the number of steps

required to connect different parts of the system via inter-

action links. In this case, the property of scale invariance

describes the fact that, regardless of the number of parts in

a given system, a similar density of interactions between

them is enough to guarantee a certain level of connectivity

that results in system integration and coordinated collective

response. Given that the focus here is on the links between

parts of the system (rather than on physical distances) these

scale-invariant structures are best analysed using the tools

of network theory, which we briefly review next.

One of the earliest mathematical analyses of networks was

introduced in [34], in which a theory of random networks was

developed based on the Erdös–Rényi (ER) random graph

model. Random networks resulting from this model (also

called ER networks) are constructed by considering a set of

nodes that are pairwise connected with a given constant prob-

ability PER. One of the key results of this theory is that a

connected network emerges suddenly once PER exceeds a criti-

cal threshold. Another important prediction is that ER

networks have a narrow distribution of their node degree,

where the node degree is defined in network theory as the

number of links per node. When networks were analysed in

the real world, however, it was discovered that they do not

follow the properties of ER networks. More specifically, con-

nected real-world networks do not emerge suddenly.

Instead, they develop slowly over time, and different nodes

typically have very different degrees. The differences between

ER networks and real-world networks can be explained by

noting that the probability of linking any two nodes does

not need to be constant in real-world networks. It can instead

depend on various other factors, in contrast with the assump-

tion made by ER. A series of alternative, more realistic

network growth processes have thus been proposed.

One of the most studied network growth algorithms that

generates topologies that go beyond ER random networks

and can often be scale-invariant, is preferential attachment. In

this process, nodes are added to the network one by one,

and newly added nodes tend to link with a higher probability

to nodes that have a higher connectivity degree. This algor-

ithm was first introduced by Yule [35] to explain the power

distribution that characterizes the number of species per

genus of flowering plants. It was then used by Barabási &
Albert [36] to study the growth of the World Wide Web

(WWW). They verified that this process is not equivalent to

that hypothesized for random networks [37].

Another well-studied network growth algorithm, which

generates yet a different set of topologies that can also be

scale-invariant, is the model of Watts & Strogatz [38]. As orig-

inally introduced, this algorithm consists of first laying all

nodes on a regular circular formation and then connecting

all first and second neighbours. This forms a regular network

that is then modified by randomly selecting a new destination

node for a fraction p of the links, while keeping the source

node. For a range of values of p, such networks will satisfy

the small-world (SW) property, that is, the topological dis-

tance between two randomly chosen nodes will grow

proportionally to the logarithm of the total number of nodes.

The two network growth processes described above pro-

duce networks with specific topological properties. The

preferential attachment process leads to what are known as

SF networks and the Watts–Strogatz model, to SW networks.

In the following two subsections, we describe these two

topologies and provide real-world examples, originating

from different fields, of both types of networks.

Although we limit the discussion in this review to scale-

invariant structures that are directly related to only node

degree or node distance, we should note that scale invariance

can also be associated with larger network structures. For

example, communities or modules (both defined as groups

of nodes that are more strongly connected among themselves

than to others) can organize into scale-invariant systems that

involve substructures with multiple nodes. Community struc-

tures have recently played an important role in facilitating the

analysis of collective behaviour in different kinds of networks.

Weng et al. [39] have relied on community structure as their

model to predict the virality of disease spreading as a property

of the collective behaviour in social networks. Another

example is the work of Mosleh & Heydari [40], who studied

collective fair behaviour between different societies using the

mode of community structures. On a microscopic scale such

as neuron networks, Crossley et al. [41] have shown that com-

munity structure represents the underlying topology over

which a set of collective cognitive behaviours emerge such

as the activation of different brain regions.

As in the cases detailed below, growth algorithms that

produce networks with a power-law distribution of commu-

nity sizes [42] or that contain fractal-like embedded structures

(resulting from either deterministic [43] or stochastic [44] pro-

cesses) have also been developed. However, a detailed

description of these algorithms would require a deeper dis-

cussion of the large-scale structural network properties that

goes beyond the scope of this review paper. Thus, in the

next subsections, we focus only on the scale invariance

associated with node degree and node distance.
4.1. Networks with scale-invariant node degree
The type of networks that result from preferential attachment

processes are called SF networks, defined as networks in

which the degree distribution follows a power law. These

can thus be viewed as networks with a scale-invariant topo-

logical property, specifically their node degree. In SF

networks, most nodes thus have a low connectivity degree,

but there are also a few nodes—often referred to as hubs—

with a very high connectivity degree. SF networks often
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follow the ‘first mover advantage’ dynamics, in which nodes

that appear first in the network have the time to obtain more

links (i.e. gain a higher connectivity degree) and will thus

tend to become the hubs [45]. This is not always the case,

however. For example, in the case of real Internet systems,

Google was a relatively late-arriving search engine, but it

quickly emerged as one of the most used ones: it became a

hub for search requests, and many other websites started

linking to the Google homepage. The rule of preferential

attachment can be modified to describe such cases by

making the probability of a new link to attach to a node pro-

portional to the product of the connectivity degree and a

node fitness. This node fitness describes the intrinsic ability

of a given node to attract links [46,47], beyond its current con-

nectivity properties. In the case of Google, this fitness was

high from the moment the site entered the Internet, due to

its very effective search algorithm.

An essential property of SF networks that often makes

them particularly useful in real-world systems is their robust-

ness to random failures. This property refers to the ability of a

network to remain functional, while a fraction of its nodes or

links is removed at random. Functional networks are defined

here as those where the mean topological distance between

nodes (i.e. the number of steps required to connect two

nodes via network links) does not grow strongly when more

nodes or links are removed. In the case of random networks

(i.e. ER networks), random failures will typically lead to net-

work fragmentation in a fast-speed manner. Even if only a

small fraction of nodes or links is removed, the network

breaks into smaller, disconnected parts and the mean distance

between nodes becomes infinite. On the contrary, SF networks

are very robust to random failures. In fact, studies as those of

Cohen et al. [48] have shown that some SF networks can still

function after randomly removing 99% of the nodes. The

reason is intuitive: when nodes are targeted at random, it is

more probably that the affected nodes will be low-connectivity

nodes (because these are much more common in SF networks),

which have a small effect on the overall network connectivity.

However, when attackers are able to discover and disable the

hubs in the collective system, the system network will rapidly

disintegrate. This is thus an important flaw in the robustness of

scale-invariant systems, as described by Albert et al. [49] and

Cohen et al. [48]).

Given the robustness and the simplicity of the preferential

attachment mechanism, we expect SF networks to appear in a

broad variety of systems, ranging from molecular interaction

networks to social networks. In the following, we provide a

list of examples of SF networks found in nature within

various disciplines.

In the context of molecular biology, a series of technologi-

cal breakthroughs in recent decades have allowed us to look

deeper into the inner workings of bio-molecular systems.

This has resulted in large datasets that can be used to con-

struct underlying interaction networks. Interactions in

molecular systems can be physical, chemical or functional.

They can be modelled as a network by defining the partici-

pating molecules (e.g. proteins, genes, etc.) as the nodes

and their corresponding interactions as the links, which

could be directed or undirected [50]. Although the data avail-

able for most molecular networks are incomplete, Rzhetsky &

Gomez [51] have shown that the majority can be identified as

SF networks. We describe some of the best-studied molecular

biological networks next.
The first type of molecular networks that we consider

are metabolic networks. These networks describe all possible

chemical reactions involved in maintaining life in cells and

organisms. They are constructed by associating the metabolites

to nodes and their corresponding chemical reactions (invol-

ving either reactants or catalysts) to links. Jeong et al. [52]

carried out a mathematical analysis of the metabolic networks

of 43 different organisms representing all three domains of life:

archaeon, bacterium and eukaryote. They found that most of

them display a power-law degree distribution and are thus

SF networks. They also showed a characteristic feature of

metabolic networks: their network diameter (defined as the

shortest topological distance between the two most distant

nodes in a network) is similar, and relatively small, for all

studied organisms. This may provide an advantage for survi-

val, because it allows living organisms to respond efficiently to

external or internal changes, i.e. to demonstrate a properly

integrated collective response [53–56].

The second type of molecular networks that we consider

are protein–protein interaction (PPI) networks. As the amount

of data collected on molecular interactions increased, it

became possible to also deduce the underlying PPI networks.

Proteins are the main building blocks of living systems and an

essential part of every cell. PPI networks represent how

proteins bind to each other, and are thus represented by

non-directed graphs. This binding can lead to different collective

responses, including inhibition, signalling, and the production

of macrostructures. PPI networks have also been found to be

SF networks [51,57]. Some works have particularly focused

on the PPI networks in yeast [58–60]. They have shown that

yeast cells rely on a variety of signalling and regulatory mech-

anisms to coordinate their collective response to environmental

changes such as temperature variations (often referred to as

environmental stressors), and that the networks used to

achieve these collective responses are SF. Furthermore, the

important role of hubs has been investigated as well in these

networks. He & Zhang [61], for example, have demonstrated

that the PPI network hubs play an essential role for survival

and reproduction. They also showed that hubs are involved

in essential PPI functions with high probability, because they

are by definition highly connected proteins. This implies that

losing a hub protein can be lethal, which is often referred to

as the centrality–lethality rule. The role of hubs has also

been analysed in other SF molecular networks [62–64].

The third type of molecular networks that we consider are

gene regulatory networks. These networks regulate gene

expression, which is the process of reading genetic infor-

mation to synthesize functional products (often resulting in

the production of specific proteins). Gene expression involves

a set of steps that include (i) transcription, (ii) RNA splicing

and (iii) translation. By regulating these steps, the cell can

control its functions and cell differentiation (i.e. the pro-

duction of different cell types). Here, the nodes are the

expressed proteins and mRNA, while the (directed) links

are the reactions through which the products of one gene

affect those of another. Gene regulatory networks have

been shown to be approximately SF in multiple studies

[65–67]. In Lee et al. [68], for example, the transcription regu-

lation maps for Saccharomyces cerevisiae (one of the most

studied species of yeast) were investigated. The degree distri-

bution of outgoing links in the resulting networks was found

to follow a power law. Note that these are directed networks

because regulatory interactions are not bidirectional.
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In other branches of biology, several interaction structures

have also been characterized as SF networks. In neurobiol-

ogy, brain connectivity networks and functional networks

have been shown to have SF degree distribution [69–71]

(see §4.2 for definitions of these two types of networks ident-

ified in the brain). In the context of ecology, predator–prey

food webs were reported as SF networks with power-law

degree distribution in several works [72–74]. These webs

are defined as the networks formed by assigning a node to

each species and connecting two nodes with a directed link

if one of the species eats the other.

We now turn our attention to what is perhaps today the

most well-known example of SF networks: human social

interaction networks. Social media platforms, such as Face-

book or Twitter, have become one of the main means

through which we interact. They define social networks, in

which nodes are individuals and the directed or undirected

links between them represent their ‘friendship’ (e.g. on Face-

book) or ‘following’ (e.g. on Twitter) relationships. These

networks are continuously growing as new users join these

platforms. At a first approximation, they tend to follow pre-

ferential attachment rules, because new users will connect

with a higher probability to users that have more connec-

tions. However, Javarone & Armano [75] found other

fitness values driving the linking dynamics, such as the repu-

tation of the user or the similarity between individuals. An

analysis of the different linking dynamics through which

social networks grow can be found in [76].

Various online social networks have been shown to have

SF properties. The large network that reflects all friendship

relationships in Facebook, for example, was found to have a

power-law degree distribution [77]. Likewise, other socio-

economic networks, such as Bitcoin payment transactions,

were analysed and their networks were found to have SF

properties [78].

A large variety of other networks related to real-world

human interactions and dynamics display SF properties.

We briefly describe some of these here. Most real-life social

networks between individuals present a SF structure similar

to that found in online social networks. One of the first

examples examined from a network perspective was pre-

sented in the work of Liljeros et al. [79], which analysed the

data gathered in a Swedish survey concerning the sexual be-

haviour of people ranging between 18 and 74 years old. In the

network representation, nodes were defined as individuals

that were linked if they had had sexual relations. The result-

ing network was found to be SF for males and females. These

results were explained by considering changes in the social

properties of individuals that depend on the number of

current connections, all of which can be mapped to preferen-

tial attachment mechanisms. Many other social interaction

networks have also been shown to be SF since this seminal

study. The focus has often been on understanding how to

stop the spread of viruses or other contagious agents, either

biological or computer based. Dezsó́ & Barabási [80], for

example, suggested ways to focus on immunizing the hubs,

which is an effective strategy because the underlying network

is SF.

The real structure of a variety of human interaction net-

works can be deduced from available datasets. Phone

numbers, for example, can be used to define networks

where each node is a number and a directed link is estab-

lished from the caller to the receiver each time a call is
made. Aiello et al. [81] analysed these networks and

showed that the outgoing and incoming link distributions

follow power laws. Similarly, e-mail networks, in which

each e-mail address is a node and two nodes are linked if

e-mails are sent between them, also display a power-law

degree distribution [82]. Furthermore, traffic networks,

which can be considered as proxies for a type of human

interaction networks, have been shown to be SF [83].

Cities represent a straightforward manifestation of human

interaction networks. Bettencourt [84] found power laws in

respect to the population size with sub-linear exponent (less

than 1) for urban properties that are related to the volume

occupied by city infrastructure needed to transport goods

and information, as well as power laws with super-linear

exponent (greater than 1) for social properties such as the

number of jobs, medical services, crimes and diseases.

Schläpfer et al. [85] formulate the underlying hypothesis

that the sub-linear growing is related to the spatial efficiency

needed for the infrastructure, whereas the super-linear expo-

nents are associated with human interactions. A final type of

real-world human interaction networks that we will describe

here is given by collaboration networks. Newman [86], for

example, analysed the structure of scientific collaboration net-

works, in which scientists are the nodes and two scientists are

connected if they have authored a paper together. According

to scientific databases, the resulting networks are SF and SW.

Other types of collaboration networks have also been

studied. For example, the IMDB database (containing infor-

mation on all released movies) was used to build a network

in which each node is an actor and two nodes are linked if

the corresponding actors appear in the same movie. Barabási

et al. [87] found this network was also SF. Similarly, a net-

work of Marvel comic characters was studied by Alberich

et al. [88], in which each character is a node and two nodes

are linked if their corresponding characters appeared in the

same comic book, which also resulted in an SF network.

Finally, it is important to mention that many studies claim

networks with SF node degree distribution without solid stat-

istical analysis. The technique of estimating the power-law

coefficient by linear regression on a log–log histogram of the

node degree in the empirical data are inadequate. Clauset

et al. [89] indicate that this linear regression may lead to erro-

neous parameter deviations, even when the underlying

distribution is a power law. Another critical issue while prov-

ing SF properties is the sampling procedure used. Stumpf et al.
[90] proved that random subnet samples from SF networks are

not themselves SF. The deviation is more pronounced with

larger values of the power-law exponent, with the sampled

subnets having many more nodes with relatively small node

degree. This is an important finding, as many empirical data-

sets cover only parts of the full network, e.g. depending on the

organism only 10–80% of protein interactions have been sur-

veyed. The work on subsample scaling is an active domain

of interest, e.g. a novel methodology was presented by

Levina & Priesemann in early 2017 [91].
4.2. Networks with scale-invariant node distance
The type of networks that result from the Watts–Strogatz

model are called SW networks. In a SW network, each node

can reach any other node within a small number of hops.

More specifically, the topological distance L between two

random nodes is proportional to the logarithm of the total

http://rsif.royalsocietypublishing.org/
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number of nodes N in the system, that is: L/logN. Here, L can

be associated with the network diameter, defined in the

previous section. When considering the SW property in differ-

ent types of networks, it is important to note that many

real-world networks can simultaneously have SF and SW

properties. In fact, many of the systems initially analysed for

their SF topology were later shown to also have SW behaviour.

The PPI networks discussed in the previous subsection, for

example, were also studied from this perspective. Giot et al.
[92], Watts & Strogatz [38], Yook et al. [93] have shown that

the distance between the hubs of PPI networks is close to

the typical SW network diameter. We point out, however,

that the SF and SW properties are intrinsically different regard-

ing the role of space. Indeed, whereas the SF property is purely

associated to topology (physical distances are not considered),

SW systems must have a combination of short-range inter-

actions between adjacent parts in space and long-range

interactions that can link any two parts of the system.

The question of how short- and long-range network con-

nections can develop in physical space is easily answered in

the context of biological systems, in which interactions

(links) between components (nodes) can be of many different

types. Indeed, biological interactions can be mediated by bio-

chemical signalling, mechanical forces, symbiotic dynamics,

predator–prey relations, etc., and in many cases some of

these interactions are intrinsically short-range, while others

are long-range. This produces a mixed topology, in which

some connections are influenced by spatial constraints,

while others are not, much as in the Watts–Strogatz model.

A good example of this can be found in microorganisms

immersed in a fluid, in which diffusive signalling interactions

tend to be short-range, but hydrodynamic couplings can be

long-range. This was observed by Lushi et al. [94] and

Wioland et al. [95], who have shown that the reaction to stimuli

in swimming bacterial colonies can result not only from the

local chemical interactions, as expected, but also from long-

range hydrodynamic flows (figure 2). Similar results were

presented by Cisneros et al. [96]. A full review of the different

types of short- and long-range microbial interaction, as well
as approaches for modelling them, is presented by Faust &

Raes [97].

An important area where the SW properties of interaction

networks have been studied in detail is neuroscience. In

recent years, breakthrough brain probing technologies have

allowed a deeper investigation of the dynamics of neuronal

activity and synaptic connectivity (i.e. the links between

neurons). Using these tools, two different types of networks

have been identified: (i) the structural network that describes

the static neuronal architectures and (ii) the functional net-

work that shows the activity correlation between neurons

that may or may not occur through these connections. Both

types of networks have shown scale-invariant properties.

This was a reasonable expectation, because neurons in the

brain need to be capable of developing coherent collective

responses at all scales to properly control the behaviour of

an organism. In addition to the scale-invariant activity pat-

terns that have been measured in the brain (which may or

may not be related to the underlying network topology),

the review by Bullmore & Sporns [69] of structural and func-

tional brain networks based on graph theory has shown that

both display not only SF topology but also SW properties.

Achard & Bullmore [98] have shown that the SW feature in

functional brain networks provides high efficiency (defined

in terms of parallel information processing capabilities) for

a relatively low connection cost, and that this efficiency

decays for older age-groups, as the connection cost increases.

Another area where SW effects have been measured is

Internet networks. In fact, one of the first real-world net-

works that were shown to be simultaneously SF and SW

was the WWW network, where HTML pages are defined as

the nodes and the hyperlinks between them as their connec-

tions. The SW property of the WWW is confirmed by the fact

that two WWW pages are, on average, at a topological

distance of only 19 hops (through hyperlinks).

Finally, various social networks have SW properties, in

addition to a SF degree distribution. This is the case, for

example, for the particular online social network that was

studied by Wohlgemuth & Matache [99], in which the
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nodes were representing Facebook groups that are linked

if the groups have common users. This is also the case for

Twitter [100] and in author collaboration networks [86],

where nodes represent authors that are linked if they have

co-authored a paper.
ietypublishing.org
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5. Scale-invariant dynamics
The third scale-invariant feature that we will consider in this

review is scale-invariant dynamics. Systems with scale-invar-

iant dynamics can be defined as having either local activity

that displays scale-invariant correlations in space, or global

activity that displays scale-invariant correlations in time.

A formal example of scale-invariant dynamics in space can

be described as follows. Consider an extended system in

space with individual parts that evolve in time according to

f(x, t), where f describes a specific state at location x and time

t. We say that this system has scale-invariant dynamics if the

correlation function Corr[ f(x, t), f(x þ z, t)] is a scale-invariant

function of z. These spatial correlations are often related to tem-

poral scale-invariant correlations of the dynamics of the whole

system. In our example, we say that a quantity F(t) that

describes the system dynamics and depends on the local

activity f(x, t) will display such temporal scale invariance if

Corr[F(t), F(t þ t
0
)] is a scale-invariant function of t

0
.

We identify in this review three different mechanisms for

generating scale-invariant dynamics: (i) the presence of an

underlying scale-invariant interaction network, (ii) the devel-

opment of critical dynamics with divergent correlation

lengths and (iii) the selection of global collective modes. We

describe next the underlying mechanisms responsible for

each of these types of scale-invariant dynamics and provide

examples for each.

5.1. Dynamics on scale-invariant networks
A simple way to achieve scale-invariant dynamics is through

scale-invariant interactions. Simple mathematical models

commonly used in statistical mechanics can develop scale-

invariant dynamics when SW interactions are included. For

example, the XY and coupled oscillators models have been

shown to display scale-invariant dynamical correlations in

their degree of global polarization and synchronization,

respectively, when SW interaction topologies are considered

[101–103]. Similar results have been obtained when using

SF topologies in the works by Arenas et al. [104], Dorogovtsev

[105], Kwak et al. [106] Moreno & Pacheco [107].

The emergence of scale-invariant dynamics as a conse-

quence of scale-invariant interactions is not only seen in

models but also in nature. Several works have shown, for

example, that the gene-regulatory networks discussed in §4

display collective behaviours, such as self-sustained system-

wide coherent oscillations that result from the underlying

SF connectivity [108–112]. In addition, other collective beha-

viours demonstrated in the genetic networks, such as the

functional clustering of related genes, have been found to

emerge from the SF topology of gene networks [113]. In a

specific example of this, it was explained by Brazhnik et al.
[114] how coherent cell-level responses emerge from the coor-

dinated activities of groups of genes that interact through a

SF network. This work showed that hub genes were impor-

tant for such responses, that cell phenotypes result from

collective gene dynamics and that these dynamics strongly
depend on the structure of the underlying gene regulatory

network. Inoue & Kaneko [115] focused on the case of the col-

lective adaptivity of the cells in gene expression networks

and showed that such adaptive behaviour results from the

interplay of positive and negative interactions between

genes in a SF network.

A connection between scale-invariant interactions and

scale-invariant dynamics can be found in various types of

biological systems and at different scales. For instance, for

groups of bacteria (which are expected to be scale-invariant

because different colony sizes must still behave collectively),

it is known that the structure of the underlying interaction

network can play an essential role in achieving some types

of collective behaviour at any scale. For example, bacteria

populations use signalling to collectively coordinate and syn-

chronize attacks against their hosts. The interaction topology

underlying this signalling process has been found to be SF

[116]. For organism-level responses, there is also evidence

showing that integrated behaviour can be a consequence of

the underlying interaction structure. Subramanian et al.
[117], for example, studied the human immune system by

describing immunity as a set of nonlinear behaviours arising

from dynamic and feedback-regulated interactions between

components, and when these interactions were mapped,

they were shown to form SF networks.

It has been argued that the scale invariance of the human

interaction topologies must produce scale-invariant collective

dynamics. This has been confirmed in recent years by analys-

ing human interaction dynamics using online data. Such

dynamics include collective decision-making processes such

as market choices [118], political alignments [119,120], travel-

ling decisions [121] or news aggregation [122]. In all these

cases, the emergent collective dynamics has been shown to

present scale-invariant temporal behaviour, such as the self-

similar, fractal-like fluctuations displayed by a variety of

market indicators.

In the context of animal groups, Rosenthal et al. [123]

studied the relevance of the underlying interaction networks

in producing collective behaviour in fish schools. This behav-

iour must be scale invariant to remain effective regardless of

the group size. In this work, Rosenthal et al. [123] performed

a set of experiments with golden shiners (Notemigonus cryso-
leucas) to determine the actual functional interactions

between individuals during evasion (a collective response).

As these interactions are mainly visual, they computed the

visual field of view of each individual in a series of exper-

imental events in which initiators influenced responders to

engage in evasive behaviour. They used these data to build

a model that describes which individuals tend to influence

the response of other fish, and then used this model to

build a functional interaction network. While this network

has some complex features and cannot be directly identified

as a simple SF or a SW network, it does contain a significant

fraction of long-range connections, because its linking prob-

ability only decays logarithmically with distance. It is,

therefore, possible that the scale invariance required for col-

lective evasive behaviour to be effective is directly related

to the scale invariance of the underlying interaction network.

However, as we will discuss below, in highly sophisticated

biological systems such as animal groups or the brain it is

hard to know if the origin of scale-invariant collective

responses is in the connectivity structure or in the type of

self-organized critical dynamics described in the next section.
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We complete this section by considering the scale-

invariant dynamics observed in the brain. It is clear that

neurological activity must be more than the sum of parts

and display multiple levels of collective responses [124,125].

Direct experimental observation supports this view. Indeed,

a nested frequency analysis by He et al. [126], to unveil the

spatio-temporal structure of functional brain activity,

showed that the spatio-temporal structure of brain activity

follows scale-invariant dynamics with power-law exponents

that vary across different brain regions. A connection has

also been established between exposure to scale-invariant

stimuli and normal brain functioning. Indeed, an analysis

carried out on the occurrence of Alzheimer’s disease found

that it was strongly correlated to the level of scale invariance

in the degree of activity fluctuations at different ages.

Although the underlying causes of the scale-invariant

behaviour observed in the brain are still unknown, it is reason-

able to hypothesize that it is related to properties of the

underlying interaction network between neurons. One way

to test this hypothesis is to analyse the role of the hubs ident-

ified in brain networks, given their SF structure identified in §4.

Achard et al. [127] showed that these hubs are prominent when

focusing on the low-frequency (i.e. large scale) functional con-

nectivity of the human cortex, becoming hot spots of the

macroscopic states in experiments during high metabolic

activity. It thus appears that hubs play an essential role in orga-

nizing local dynamics into collective responses. Hubs even

seem to play a role in the emergence of cognitive functions,

as suggested by Gu et al. [128] after studying how to control

trajectories in the state space of brain functional networks.

A network scale-invariant structure with hubs appears to pro-

vide the correct structure to be able to quickly reach the

different collective states [129]. This allows the cortex (the part

of the brain associated with higher functions such as thought

and behaviour), for example, to quickly change state to achieve

a diversity of functional responses, as needed [130,131].

Furthermore, at a theoretical level, simple SF models of brain

connectivity have helped investigate mechanisms that may

underlie various brain diseases. Batista et al. [132] studied the

synchronization of bursting neurons that is observed in several

neurological diseases (such as Parkinson’s disease). Similarly,

Stam [133] tried to exploit the SW and SF properties of brain

networks to gain a deeper understanding of various brain dis-

orders, using a combination of three different models to

describe the brain network, as illustrated in figure 3.

The results discussed above favour the hypothesis that

the brain’s scale-invariant dynamics is a consequence of its

scale-invariant connectivity. There is a long-standing alterna-

tive hypothesis, however, that claims that complex biological

system may achieve scale invariance by placing their

dynamics near a critical point. Indeed, as we discuss in the

next subsection, it has been long known that physical systems

near a phase transition behave as scale-invariant systems.
5.2. Criticality-driven dynamics
The theory of critical phenomena was developed in the 1970s

to describe the properties of matter in a critical system, that is,

matter close to a phase transition [134]. In thermodynamics,

phase transitions typically describe the transition between

the solid, liquid and gaseous states of matter (phases). In

equilibrium and non-equilibrium statistical mechanics, they

describe a broader range of changes of collective state that
occur in systems composed of multiple elements. The

theory of critical phenomena can be used to describe the be-

haviour of the system that emerges when the system is near

any of these changes of state. This behaviour produces

scale-invariant dynamics [134–138]. The theory of critical

phenomena was originally developed in the context of

standard critical phenomena (referred to here as parameter-
driven criticality), in which the critical point is reached by

tuning the system’s control parameters (defined as any con-

trollable external variable that affects the state of the

system, e.g. the temperature). It was later discovered that

some non-equilibrium systems can reach a critical point by

relying on their own self-organizing dynamics, without

requiring any external adjustment of parameters. This

phenomenon is known as self-organized criticality. In this sub-

section, we will describe the underlying mechanisms that

lead to scale invariance in systems that present either

parameter-driven criticality or self-organized criticality, and

provide examples of both.

5.2.1. Parameter-driven criticality
We begin by explaining standard parameter-driven criticality,

and how it relates to scale invariance. Scale-invariant

dynamics can be observed in a collective system near a critical

point of a second-order phase transition. According to equili-

brium statistical mechanics, a second-order phase transition

is a change in the collective state of a system where the

second derivative of the free energy is discontinuous with

respect to a thermodynamic variable, but its first derivative

is continuous. In second-order transitions, the phases at

either side of the transition become identical as the critical

point is approached. For the system to be in this unique criti-

cal phase, fluctuations must be correlated over all distances,

so the correlation length becomes effectively infinite

[139,140]. In non-equilibrium statistical mechanics, tran-

sitions that display a discontinuity not in the order

parameter but in its derivative (as a function of changes of
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the control parameter) are usually also considered second

order. They inherit most properties from equilibrium systems,

including their infinite correlation length. Scale invariance,

therefore, naturally emerges in such critical regimes since,

in finite systems, an infinite correlation length results in

correlations that span a system of any size.

As a pedagogical example of parameter-driven criticality,

we will focus on the model of [141], a simple abstract model

originally formulated to describe ferromagnetism. The Ising

model describes magnetic molecules within a metal as mag-

netic dipoles (referred to as spins) that can be in one of two

states: þ1 or 21. Spins are typically placed in a square lattice

configuration where each spin interacts with its four nearest

neighbours. Spins tend to align to their neighbours, that is,

each spin tends to match the state of the majority of its neigh-

bours. This alignment is hindered by noise, however, which

tends to change the spin states randomly as the temperature

is increased. In two dimensions, the equilibrium state of the

Ising model as a function of temperature can be analytically

solved. This has led to a thorough study of the two-dimen-

sional Ising model as a simple archetypal example of a

second-order phase transition controlled by temperature

[142,143]. The temperature at which the transition between

the disorder phase and the order phase occurs is given (for

a 2D Ising model) by Tc ¼ Jq/KB, where J is a positive coeffi-

cient that represents the interaction strength between two

spins, q is the number of neighbours for each spin (q ¼ 4 in

the classical model) and KB is the Boltzman constant. This

temperature is computed under the assumption of mean

field approximation [144].

The changes of collective states associated with the Ising

order–disorder phase transition can be described as follows

(figure 4). When the temperature T is much higher than the

critical temperature Tc (referred to as the Curie temperature),
spins appear to be randomly oriented (i.e. they have a

random þ1 or 21 spin value). As the temperature is lowered

and the phase transition is approached from above (keeping

T . Tc), locally aligned regions emerge in the form of ‘islands’

(within which all spins have the same value) that are continu-

ally appearing and disappearing (figure 4). Interestingly, for

T � Tc, scale-invariant features emerge: these spin islands

start displaying all possible characteristic sizes and duration

timescales, with both following a power-law distribution. In

this critical regime, long-range correlations and large-scale be-

haviour thus emerge, even though spins continue to interact

only with nearest neighbours. Finally, for T� Tc, most spins

become aligned (they have the same spin value), which can

be viewed as a form of self-organization.
Parameter-driven criticality has been applied as a control-

ling mechanism in the context of collective systems. For

example, Lucas & Lee [146] studied binary decision-making

processes based on parameter-driven criticality, where they

applied an external control to influence the opinions of the

individual nodes in the observed network. They showed

how such networks can reach phase transitions and that

these transitions are independent of the network structure.

Similarly, in social networks, parameter-driven criticality

was used as model to analyse different dynamic social and

economic systems such as in [147], where the inner inclination

of the individuals towards some political selection is defined as

the order parameter. Parameter-driven criticality may rep-

resent an attractive technique to place a collective system

near criticality, especially in artificial engineering systems

where controlling the order parameters is feasible.
5.2.2. Self-organized criticality
We now turn our attention to the more recently discovered

type of critical behaviour mentioned at the beginning of this

subsection: self-organized criticality as described by Per Bak &

Wiesenfeld [148]. Systems that display self-organized criticality

follow a non-equilibrium dynamical process that drifts them

spontaneously towards their critical regime, without requiring

the adjustment of any control parameter. The Abelian sandpile
model, developed by Bak, Tang and Wiesenfeld, was the first

to reproduce this phenomenon. This idealized model describes

a ‘sandpile’ formed by randomly dropping grains of sand that

can either pile up or destabilize the pile where they fall to start

an avalanche. The model can be defined as an n-dimensional

cellular automaton where each cell is associated with a local

pile of height h. Starting from a random initial distribution

of heights, grains are added one by one at a randomly selected

site with index i, so that hi ! hi þ 1. If the slope formed by the

cell with respect to its nearest cells is greater than a threshold

value hc, a local ‘avalanche’ occurs and the excess grains are

moved to neighbouring cells. This avalanche can continue

during multiple iterations if the local slope values of neigh-

bouring cells then become greater than hc. In its original

formulation, the model was defined on a two-dimensional lat-

tice (n ¼ 2) with hc ¼ 4. The four excess grains were thus

redistributed to the four nearest lattice cells every time a

local avalanche process occurred.

Simulations of the sandpile model show that, as grains are

added, the overall slope of the sandpile gradually increases

and larger and larger avalanches start to occur. Eventually,

the system stabilizes to a critical mean slope value. The
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distribution of avalanche sizes and of avalanche lifetimes both

follow a power law, and therefore display no characteristic

scale. This corresponds to a self-organized critical state that

can be understood as follows. As grains are added, the

system drives itself to the highest slope it can achieve until it

reaches the edge of a chaotic state, which corresponds here

to an avalanche. If more grains are added after this slope is

reached, the chaotic regime will be briefly explored as the

system quickly relaxes back to a static sandpile state. The

system is thus repeatedly pushing against the chaotic phase

and falling back to a stable phase, thus spontaneously placing

itself in a collective state that is in a critical regime between two

phases. As in the parameter-driven criticality case, all charac-

teristic scales are lost in this regime and the system displays

scale-invariant collective dynamics [149–151].

Another well-known example of self-organized criticality

is given by the forest fire model of Drossel & Schwabl [152].

In this model, a forest is described by a square lattice in which

each cell can be occupied or not by a single tree. The mean

fraction of occupied cells (i.e. the tree density) is defined at

time t by a function P(t), which fluctuates as some trees mul-

tiply while others burn. The model is updated using the

following rules: (i) a cell becomes empty if its corresponding

tree burns; (ii) a tree burns if at least one of its nearest neigh-

bours is burning; (iii) a tree burns spontaneously at any

occupied cell, with a given fixed probability, even if no neigh-

bour is burning; and (iv) a tree grows spontaneously at any

empty cell with a given probability. As the model evolves,

P(t) grows until a fire starts. The ‘chaotic’ phase is then

reached and trees start burning, which reduces P(t) until

the system is brought back to a stable state where it starts

growing again. The system thus spontaneously self-organizes

by driving itself to the edge of the chaotic phase until P(t)
stabilizes at a critical level Pc, which corresponds to the per-

colation threshold. As in the sandpile case, Pagnutti et al.
[153] revealed that the system then displays two scale-

invariant properties: the distribution of gap sizes between

trees and the distribution of fire lifetimes. Turcotte [154]

and Boer et al. [155] have verified the power laws of both

properties in numerical simulations and using real data

from North American and Australian forest fires.

In addition to the models introduced above, self-orga-

nized criticality has been used to describe the potential

underlying mechanisms of a number of complex collective

behaviours that gradually accumulate energy later released

in catastrophic events with no predetermined scale. Examples

are found for earthquakes in the works of Olami et al. [156]

and Sornette & Sornette [157], for solar flares in the work

of Boffetta et al. [158], and in the work of Hergarten &

Neugebauer [159] for landslides. These systems have

demonstrated various scale-invariant features. For example,

both the earthquake sizes [160] and the frequency of

aftershocks [161,162] can be described using power-law stat-

istical distributions. Similarly, the frequency and energy

distributions of solar flares also follow power laws as

shown in the studies of Aschwanden et al. [163], Baiesi et al.
[164], Lu et al. [165].

Another important ecological example, for which self-

organized criticality was used to interpret the underlying

dynamics, is population growth and extinction. Markov

chains represent a popular stochastic technique to model

the lifetime of species, see e.g. Black & McKane [166]. The

extinction times predicted by Markov chains approach
asymptotically an exponential distribution, which can be

explained through species not adapting quickly enough to

the continuously changing environment (an effect that was

coined by Chr [167] as the Red-Queen effect). This leads to

the extinction probability being independent of time and

hence the exponential distribution emerges. However, it

was revealed that exponential distributions are not always

providing the best fitting to the empirical data obtained.

In several works such as Drake [168], Sneppen et al. [169],

Sole & Bascompte [170], instead power-law distributions

were found to offer the best fitting for lifetime data in large

populations. In such cases, the ecosystem was observed by

Pigolotti et al. [171] as a collective system of interacting

species the dynamics of which converge near to a critical

point. The extinction of specific species by placing the ecosys-

tem near criticality is not the result, in this case, of a response

to an external parameter, but as a response to the interactions

and competition with the other species. Such an evolutionary

behaviour may not advertise robustness in the specific

species that became extinct. The robustness here is to be

observed on a higher level, i.e. the robustness of the whole

ecosystem as a result of being adaptive to the ever-changing

environment.

As mentioned above, in many complex biological systems

it is unclear if the emergence of scale-invariant dynamics is a

consequence of an underlying scale-invariant interaction net-

work or of being in a critical regime. In the previously

discussed context of brain dynamics, for example, the obser-

vation of SF correlations in brain activity has led to the

growing popularity of a hypothesis that claims that the

brain must be near criticality [172,173]. Researchers have

even discovered neuronal avalanches where the fraction of

active neurons involved follows a power-law distribution,

just as in a sandpile model. Furthermore, by establishing ana-

logies with the Ising model, other groups have argued that

certain neuronal networks must operate near a phase tran-

sition [145,174], because systems in this regime have better

information processing capabilities and can more easily

switch between different states of collective activity [175].

However, given that a similar behaviour can be achieved

by having interactions that follow scale-invariant topologies,

it is still unclear to what extent the observed dynamics results

from the brain self-tuning into a critical state or from an

underlying scale-invariant interaction network.

To end this section, we will discuss another system in

which the origin of the observed scale-invariant dynamics

is unclear: animal collective motion. In recent years, signifi-

cant efforts have been made to understand the underlying

mechanisms used by different animal groups to achieve col-

lective motion. However, it is still unclear how large groups

can maintain consensus in their heading direction, despite

the presence of noise and what appear to be only local inter-

actions. These systems are often described using a minimal

flocking model, first described by Vicsek et al. [176], in

which a set of self-propelled point particles advance at a

fixed speed and tend to align their heading direction with

other particles within an interaction range. The Vicsek

model has been extended in multiple ways to describe a var-

iety of collective motion systems [177–181]. Animal groups

are expected to have scale-invariant behaviour, because

they must display coherent collective dynamics regardless

of the group size. This behaviour has been observed exper-

imentally. Fish schools, for example, are known to react to

http://rsif.royalsocietypublishing.org/


Figure 5. A self-organized flocking process that starts in a disordered state (left) and eventually converges to a parallel motion state (adapted from Ferrante et al.
[195]). This system was shown to exhibit scale-free correlations due to the propagation of collective modes in the work by Huepe et al. [194].

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170662

13

 on July 20, 2018http://rsif.royalsocietypublishing.org/Downloaded from 
external perturbations (such as predator sounds or an

artificial predator fish) as a coherent unit [182–184]. Further-

more, Cavagna et al. [185] measured the three-dimensional

trajectory of every bird in multiple starling flocks, and ana-

lysed their speed and velocity fluctuations (after subtracting

the motion of the centre of mass), showing that the corre-

lation length of these fluctuations is linearly proportional to

the system size and, therefore, scale-invariant. However, the

Vicsek model does not display such scale-invariant behav-

iour, unless the noise level is tuned to achieve a critical

regime. This has led Attanasi et al. [186], Bialek et al. [187],

Cavagna et al. [185] to claim that starling flocks must be in

a critical regime, which would explain their scale-invariant

correlations. But there could be other underlying causes of

scale invariance, such as the long-range visual interactions

identified in the experiments with golden shiners described

in the previous subsection. We will describe in the next

subsection yet another alternative cause for this behaviour,

based on mode dynamics. Finally, we note that other studies,

e.g. by Chen et al. [188], have also shown scale-invariant

correlations in the dynamics of the collective motion of micro-

scopic biological systems such as bacteria. Nevertheless, it is

also unclear if these result from criticality or if they are the con-

sequence of long-range (scale-invariant) interactions, which

in this case could result from the type of hydrodynamic

flows discussed in §4.2.
5.3. Collective mode dynamics
The final mechanism for achieving scale-invariant dynamics

that we will discuss in this review is related to the presence

of collective modes that can propagate with almost no resist-

ance throughout the system, which can lead to persistent

scale-invariant behaviour when combined with active

matter dynamics.

It was discovered in the context of condensed matter and

quantum field theory that infinite correlations can spon-

taneously emerge in the dynamics of systems that are not in

a critical regime if they have gone through the spontaneous

breaking of a continuous symmetry. This occurs when

equations that describe a symmetrical state produce asymme-

trical solutions, which leads to a degenerate ground state that

poses no resistance when drifting from one of these solutions

to others. An example is given by a group of vectors that

tend to align due to the interaction between them (as in the

XY-model for ferromagnetic materials). The alignment can be

in any arbitrary direction in space. The symmetry breaking

occurs when a specific direction is picked, but a simultaneous
change in the pointing direction of all vectors costs no energy

(there is no resistance). The excitation that corresponds to this

change is referred to as a Nambu–Goldstone mode, and in the

context of quantum field theory it is identified with a massless

particle; the Nambu–Goldstone boson Goldstone [189],

Goldstone et al. [190], Leader & Predazzi [191], Nambu [192].

The possibility of measuring scale-invariant correlations

which result from dynamics resembling that of massless

Nambu–Goldstone modes has been recently considered in

active matter systems. These are systems in which individual

components inject mechanical energy at a small scale,

which must self-organize to achieve work at larger scales.

They include the animal groups displaying collective

motion discussed in the previous subsection, but also include

other collective systems with self-driven components, such as

bacterial colonies or skin tissue. Because of the continuous

injection of energy at small scales, massless (or low-mass)

modes, which typically span large spatial scales, correspond

to system-wide coherent motion that follows scale-invariant

dynamics. This potential mechanism for scale-invariant

dynamics was pointed out by Cavagna et al. [185] as an

alternative explanation (that does not require a critical

regime) for the scale-invariant correlations observed in the

orientation (flight angle) fluctuations of bird flocks. Indeed,

since the rotational symmetry has been spontaneously

broken in any group of birds that align their velocities, bird

rotation costs no energy and the massless Nambu–Goldstone

mode of rotational perturbation results in scale-invariant

correlations of the orientation [193].

Some works have considered active matter systems where

scale-invariant dynamics in the angular and speed fluctu-

ations can emerge from massless or low-mass modes.

Huepe et al. [194], for example, postulate this mechanism as

the source of the SF correlations measured for speed fluctu-

ations. They proposed a simple position-based model that

describes an idealized active elastic system in which large-

scale collective oscillations (corresponding here to the

low-mass modes) dominate the dynamics [195] (see figure 5

for an example of possible dynamics induced by this

system). They then showed in numerical simulations that

the presence of these collective oscillations of the fundamen-

tal elastic modes produces scale-invariant correlations of the

angular and speed fluctuations in active systems. The pres-

ence of scale-invariant correlations in bird flocks was also

studied through simulations by Hemelrijk & Hildenbrandt

[196]. In this paper, Hemelrijk & Hildenbrandt [196] used a

detailed model of the motion rules of starlings and found

that SF correlations were observed even when far from any
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critical point. Their work did not focus on the causes of such

correlations, but studied instead how correlation lengths

change as a function of the number of influential neighbours

and of individual speed control. Finally, a fundamental

theoretical argument for the presence of scale-invariant

dynamical correlations in collective motion systems with

position-based interactions was given by Melfo [193].

Nambu–Goldstone bosons are therefore expected to also

appear in speed-perturbations (associated with translational

symmetry), and not only in angular perturbations. This can

thus lead to the emergence of scale-invariant dynamical

correlations that include speed perturbations [197].
.Soc.Interface
14:20170662
6. Engineering scale-free systems
From an evolutionary perspective, strong system integration

is ubiquitous in natural systems at all scales, because it

improves the survival probability by enhancing adaptivity

and robustness to challenges and stimuli at different scales.

By understanding the underlying mechanisms that lead to

these beneficial properties, we will be able to use them

through bioinspiration and biomimetics in artificial systems.

In this section, we will discuss the type of engineered systems

in which scale invariance could be beneficial, and how the

three different scale-invariant features identified in this article

(spatial, connectivity and dynamics) could be implemented.

The first type of scale-invariant systems presented in this

paper are those that display scale-invariant spatial features

such as fractals or scale-invariant structures and trajectories.

Scale-invariant spatial features can have many different poten-

tial applications in artificial systems. We describe here only a

few. A prominent example can be found in the field of mor-

phogenetic engineering [198], which studies the systems

endowed with information that can create autonomous mor-

phologies and functions. This field has already led to

successful applications, such as demonstrations showing that

self-organizing robot swarms can build different mor-

phologies, each useful to tackle a different environmental

situation [199–201]. Despite their success, none of these

works have achieved scale-invariant structures so far. A differ-

ent possible application, which can benefit from scale-invariant

spatial features, is collective construction, whereby different

materials rather than robots are used to build structures

such as defense barriers, nests and bridges. One of the

challenges in this task comes from the need to perfectly pos-

ition and align construction materials to the partially built

structure and to have materials and hardware that facilitate

this task [202]. More recently, a few studies focused on using

more amorphous materials in order to build structures the

shape of which depend on the self-organized process leading

to their construction [203]. We believe this is the right approach

that may lead to the same type of scale-invariant structures

observed in nature. Two final examples of scale-invariant

spatial features encountered in nature with direct potential

applications are given by the fractal-shaped pheromone trails

and by the power-law-distributed random-walk trajectories,

both used to enhance exploration and foraging. Although

depositing pheromone trails can be challenging for artificial

artefacts (despite some attempts that have already been

made with robots, see [204,205]), the pheromone concept can

be used to build scale-invariant robot chains to facilitate

exploration (so far, only non-scale-invariant chains have
been considered, see [206]). Additionally, some attempts to

implement power-law distributed random walks in robot

swarms have already been made. Dimidov et al. [207]

implemented Lévy-flight distributed random walks and com-

pared them with traditional random walks (i.e. non-power-law

distributed) considered in swarm robotics, showing that Lévy

flights and a novel random-walk method they proposed (also

power-law distributed) achieved better performance in terms

of resource localization and signalling. This appears to be an

interesting research direction that needs to be further pursued.

The second mechanism identified in this review paper for

achieving scale-invariant integration is the implementation of

interaction networks that are either SF or SW. As discussed in

§4, SF networks have the advantage of being strongly robust

to random failures, i.e. failures that can occur to any component

of the collective system with equal probability. On the other

hand, SW properties enhance collective response, since the

small network diameter allows for the rapid transmission of

information throughout the system. Quick and coherent

system responses can be crucial for survival. From an engineer-

ing perspective, an advantage of SF networks (which often also

display SW properties) is that they can be easily implemented,

at least, in the static topology of artificial systems that have no

spatial restrictions. A simple example is given by the possibility

of setting up SF wireless sensor networks (WSNs), following a

simple algorithm such as preferential attachment. WSNs consist

of a large number of nodes with limited sensing range that are

cooperating to achieve a global perception of the environment

in which they are deployed. Tasks performed by WSNs are

routing [208], chaining [209], aggregation of sensory data, and

analysis of correlation in the data, among others. The latter

example, analysing data correlations, can be helpful in avoiding

redundant transmission and in reducing node energy con-

sumption, one of the main challenges in the field. Some of

these tasks have been optimized by exploiting the properties

of SF and SW topologies [210,211]. SF topologies can also be

used to reduce energy consumption. Zhu et al. [212], for

example, propose an energy-efficient model for WSNs that con-

structs the network, according to the node-degree and the

fitness value of the remaining energy of the node. The obtained

topology is SF, which is more tolerant to random node failures

and demonstrates better energy savings. Similarly, Jian et al.
[213] introduced an energy-aware model based on SF topology

to balance the network connectivity and consequently the con-

sumption of energy. Another example of the use of SF topology

for energy-saving purposes is given by Wang et al. [214], who

proposed a new method referred to as the ‘flow-aware SF’

model to balance energy consumption during a network oper-

ation phase. Jian et al. [215] analysed the link between the

logical topology and the physical topology of WSNs and pro-

posed a SF logical topology that helps optimize connectivity

and lifetime at the physical topology. Finally, Zhao et al. [216]

exploited SF topology to design a WSN, on a three-dimensional

terrain, that is tolerant to random failures.

In addition to WSNs, SF topologies could be leveraged for

other potential applications. Besides increased robustness, they

could be used to implement collective systems on larger scales

using modular units placed at distant locations. An example is

given by robot swarms distributed over the planet, whereby

robots in the same geographical area would be interconnected

through local interactions, while hubs in each location are con-

nected to hubs in distant locations (i.e. via the Internet).

Furthermore, given our discussion in §4 regarding the role of
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SF and SW connectivities in the brain, another potential appli-

cation of these types of connectivity could be the realization of

collective systems able to exhibit swarm cognition [33], that is,

capable of achieving cognitive tasks (discrimination, decision

making, planning, etc.) through distributed self-organized

processes.

Implementing SF or SW interaction networks is probably

the simplest way to achieve scale-invariant properties.

The main requirement for this, however, is to have controllable
topology, which is not always the case. Straightforward mech-

anisms for achieving SF node degree distributions such as

preferential attachment are easily implemented in systems in

which all components can be easily connected, but have not

yet been extended to systems in which spatial distances play

an important role, such as moving systems, where agents are

continuously entering and leaving the communication range

of other agents. Examples of engineered systems where SF top-

ology would be hard to achieve include Mobile Ad-Hoc

Networks (MANETs) [217] (that is, WSNs equipped with

mobility) and swarm robotics [218–221]. Within swarm

robotics, an interesting research direction could be to use vir-

tual potential functions [222] that allow the control of robot

formations to achieve SF topologies. Another interesting direc-

tion could be to create hybrid swarms in which a small

proportion of the robots are equipped with long-range inter-

actions and can thus operate as hubs, connecting portions of

the swarm that are far from each other.

The final type of scale-invariant property considered in this

article was SF dynamics. In natural systems that display this

property, effective collective responses to environmental

stimuli is the main advantage, as SF correlations effectively

allow the information perceived locally to reach other parts

of the collective system at any scale. This is important in

many natural systems such as fish schools or other animal

groups. The example of animal groups can inspire a few engin-

eering applications in the fields of WSNs and swarm robotics.

In WSNs, SF dynamics can enable locally sensed information

(e.g. the presence of an intruder in surveillance systems, or of

survival in disaster recovery) to spread effectively throughout

the network. Analogously, it could be used in swarm robotics

to effectively identify and propagate information perceived

locally by only a few members of the swarms (e.g. the location

where a specific signal was identified locally or the location of

a resource that requires the deployment of multiple robots).

The implementation of scale-invariant dynamics in artifi-

cial systems could benefit from the tools derived from

statistical physics. We know, for example, that scale invar-

iance emerges naturally in critical regimes and when

Nambu–Goldstone modes are present. If we understood

how to design local dynamics and interactions that develop
these features, the implementation of self-organized scale-

invariant systems would be greatly simplified. The decentralized

motion control swarm robotic algorithm implemented

experimentally by Ferrante et al. [223], for example, appears

to robustly display scale-invariant correlations in its

dynamics despite being far from a critical regime. There are

still almost no efforts in this direction, however, and more

research is thus needed.
7. Conclusion
We have reviewed in this paper examples from different

fields of science that show how natural systems achieve

scale-invariant collective behaviour characterized by a high

degree of system-level integration. We analysed the main

mechanisms that lead to natural systems that exhibit scale

invariance, while providing various examples of scale-

invariant properties observed in different biological systems

at the molecular, cellular and organism levels, as well as in

neuroscience and social networks.

When designing artificial collective systems, we may need

them to display sensitivity and an effective collective reaction

to stimuli as a single unit, regardless of the scale of the system

or of the stimuli. This can be achieved by implementing scale-

invariant features in our engineered systems. The challenge is

how to achieve this goal in a decentralized and self-organized

way. As we have discussed here, this challenge has been

solved by many systems in the natural world. We thus

hope that the examples discussed in this review paper will

help inspire the design of artificial systems that display

beneficial scale-invariant properties.
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