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Abstract
Drug-induced liver toxicity is one of the leading causes of acute liver failure in the United States,
exceeding all other causes combined. The objective of this paper is to describe systems biology
methods for identifying pathways involved in liver toxicity induced by free fatty acids (FFA) and
tumor necrosis factor (TNF)-D in human hepatoblastoma cells (HepG2/C3A). Systems biology
approaches were developed to integrate multi-level data, i.e., gene expression, metabolite profile,
toxicity measurements and a priori knowledge to identify gene targets for modulating liver toxicity.
Targets that modulate liver toxicity, in vitro, were computationally predicted and some targets were
experimentally validated.

Background
The liver plays a central role in clearing toxic chemicals
from the human body and is susceptible to toxicity during
the process. More than 900 drugs have been found to
induce liver toxicity, which is a leading cause of acute liver
failure in the United States, exceeding all other causes
combined [1]. It is one of the most common reasons for
drug recalls, resulting in substantial financial cost to the
pharmaceutical industry. Different mechanisms are
involved in liver toxicity, for example, the disruption of
the cellular membrane, alteration of mitochondrial func-
tion or drug metabolism pathways, non-specific covalent
binding of the drug to the cell's proteins or activation of
apoptotic signaling pathways, to name some [1]. Liver
toxicity can also be induced by nutrients, e.g. a high fat

diet. Elevated Free fatty acid (FFA) levels increase the accu-
mulation of triglycerides in liver cells and enhance the risk
of developing non-alcoholic steatohepatitis (NASH),
which is characterized by extensive cell death and inflam-
mation [2]. Identifying the pathways that contribute to
the development of liver toxicity by drugs or diet may pro-
vide insight into minimizing or preventing the toxicity.

We investigated fatty acid induced liver toxicity in vitro
using HepG2/C3A cells as the experimental model sys-
tem. Saturated fatty acid, palmitate, was found to induce
significantly higher toxicity as compared to unsaturated
fatty acids [3]. To elucidate the underlying toxicity path-
ways, dynamic, multiple-level information, i.e., microar-
ray gene expression, metabolite profile, toxicity
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measurements and pathways information, were collected.
Systems biology approaches were developed thereafter to
integrate the aforementioned multi-level data to identify
the toxicity pathways. First, dynamic module mapping
analysis was applied to study the dynamic changes in the
pathways induced by fatty acid treatment. Based upon the
dynamic pathways analysis, we hypothesized and con-
firmed that toxic signals were induced within the first 24
hours (day one). Second, toxicity measurements and gene
expression profile on day one were integrated using a
Three-Stage-Integrative-Pathway-Search (TIPS©) frame-
work. Briefly, toxicity-relevant genes were identified using
genetic algorithm coupled partial least squares analysis
(GA/PLS) and toxicity pathways were subsequently recon-
structed based upon the expression of the identified genes
using Bayesian network analysis. The predicted toxicity
pathways were then used to infer the effects of perturbing
a gene on the liver toxicity using Bayesian inference.
Finally, a hierarchical approach was developed to identify
toxicity relevant genes by integrating toxicity measure-
ment, metabolite profile, gene expression and pathway
information. Gene targets, such as NADH dehydrogenase,
were identified and experimentally confirmed to have sig-
nificant effects on reducing the toxic signal, reactive oxy-
gen species (ROS), and ultimately toxicity levels in
palmitate treated liver cells. The details of the approaches
discussed in this paper are published elsewhere [4-6]. The
objective of this paper is to provide an overall picture of
how systems biology approaches may be used to integrate
multiple-source information for novel biological discov-
eries.

Methods
Cell culture
One million HepG2/C3A cells were seeded into each well
of a 6-well culture plate. Cells were incubated at 37°C and
in 10% CO2 atmosphere. After the cells reached conflu-
ence, the medium was replaced with 2 ml of the chosen
medium, either HepG2; or the FFA medium containing
0.7 mM palmitate, oleate or linoleate; or the FFA-TNF-D
medium. The FFAs were dissolved in 4% fatty acid-free
BSA. TNF-D was added from a 100 Pg/ml stock in deion-
ized water to make the desired final concentrations of
either 20 or 100 ng/ml.

Toxicity, gene expression and metabolite measurement
The cytotoxicity of the treatments was measured as the
fraction of lactate dehydrogenase (LDH) released into the
medium. Cytotoxicity detection kit (Roche Applied Sci-
ence, Indianapolis, IN) was used to measure the LDH
release. The gene expression profiles were obtained with
the cDNA microarrays at the Van Andel Institute, Grand
Rapids, MI (protocols available online at [7]. The net
uptake or production of a metabolite was calculated by
the difference in the concentration of the metabolite in

the medium, before and after the treatment. The concen-
trations of metabolites were measured using enzymatic
assays or HPLC. The experimental details were described
in reference [2].

Gene module map analysis
Module map analysis [8] was applied to identify the
important pathways perturbed by FFA treatment using
Genomica (available at [9]). 350 biologically meaningful
gene sets were first defined based upon their functional
category or pathways defined in the MsigDB database
[10]. The number of genes within a gene set that signifi-
cantly changed under a treatment was obtained and the
significance calculated with hypergeometric test as com-
pared to random selection. The module maps at different
time points were compared to identify the dynamics of
the modules that are important to the cytotoxic pheno-
type.

Three-Stage-Integrative-Pathway-Search (TIPS©) 
framework
TIPS© approach was developed to integrate gene expres-
sion and toxicity measurement to identify toxicity relevant
gene targets and pathways. Three methods, including
genetic algorithm coupled partial least squares analysis
(GA/PLS), constrained independent component analysis
(CICA) and Bayesian network analysis (BN) were inte-
grated within the framework. As a first approximation, we
assume a log linear relationship between gene expression
and toxicity. In order to extract an independent pathway
related to a phenotype, such as cytotoxicity, from the gene
expression profile, we applied a constrained ICA (CICA)
approach. The relevance of the genes to the toxicity iden-
tified by GA/PLS along with the cytotoxicity profiles were
used as constraints in CICA. CICA extracted a phenotype-
relevant-component from the gene expression data. This
was identified by minimizing the mutual information
between the phenotype-relevant-component and the
other independent components while maximizing the
correlation between the component and the constraints.
The expression profiles of the genes with the highest
weights in CICA were used in BN analysis for network
reconstruction. The reconstructed network was perturbed
to identify i) which genes, when perturbed, had an impact
on altering the cytotoxic phenotype in the palmitate cul-
tures, and ii) how perturbing a gene (node) affected the
other genes in the network. More details can be found in
our published paper [6]. TIPS© was further extended to
identify genes relevant to multiple cellular responses, e.g.,
multiple metabolites, in a separate study [11].

Hierarchical approach to integrate multi-level data
A hierarchical framework was developed to integrate the
toxicity measurement, metabolic profile and gene expres-
sion and pathway information to identify the genes and
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biological processes that may be involved in the pheno-
typic responses. The framework consisted of three stages.
First, the metabolite changes associated with the cytotoxic
phenotype were identified with Fisher's Discriminant
Analysis (FDA). To identify the signaling and gene path-
ways involved in the toxicity, the genomic responses
obtained using cDNA microarrays were analyzed with
gene set enrichment analysis (GSEA) [10]. Finally, the
gene expression and metabolite profiles were integrated
with multi-block partial least squares (MBPLS) regression
analysis to identify the genes, which were most relevant to
the metabolic changes that correlated highly with cytotox-
icity. Further details on the hierarchical approach are
described in [5].

Results
The essential first 24 hours to toxicity
Dynamic gene module map analysis results are summa-
rized in Table 1. Palmitate was found to affect only 5 func-
tional pathways on day 1, while it affected significantly
more pathways on day 2, which coincided with the higher
toxicity observed on day 2 with palmitate treatment. As
discussed in reference [4], palmitate down-regulated met-
abolic pathways such as electron transport chain (ETC)
and TCA cycle on day 1. On day 2, palmitate upregulated
many cell death related pathways, such as apoptosis, TNF
signaling pathway, and down-regulated protective path-
ways, such as pentose phosphate pathway (PPP) and glu-
tathione pathway. Palmitate did not have significant
effects on day 3. Based upon the pathway analysis, we
hypothesized that palmitate altered metabolic pathways,
such as PPP and TCA, to permit the production of toxic
signals on day 1. The toxic signals subsequently caused
up-regulation of cell death pathways and down-regula-
tion of protective pathways. To test this hypothesis, we
compared the toxicity measurement of cells treated with
palmitate for one day with cells treated with palmitate for
two days (Figure 1). There was no significant difference
between these two treatments, which suggested that
palmitate sufficiently induced the toxic phenotype within
the first 24 hours of treatment.

Note that PPP and glutathione pathways were down-reg-
ulated on day 2. PPP and glutathione are known to be
related to cellular reactive oxygen species (ROS) level. PPP
produces NADPH which is required in converting oxi-

dized glutathione to reduced glutathione. Reduced glu-
tathione is used to reduce ROS levels. Therefore we
hypothesized that ROS maybe a toxic signal. We con-
firmed this hypothesis in a separate study [3] by treating
the cells with palmitate along with ROS scavengers and
found the toxicity indeed reduced significantly.

Toxicity-relevant network
To identify the gene targets that may be perturbed to
reduce liver toxicity, we integrated the toxicity measure-
ments with gene expression profile using the TIPS©

approach. A simplified toxicity relevant network was
reconstructed as shown in Figure 2. A more detailed net-
work is shown in reference [6]. The network was used to
predict the effect of perturbing a gene on the liver toxicity.
For example, we predicted the probability of a high level
of toxicity upon palmiate treatment should be reduced
significantly by up-regulating stearoyl-CoA desaturase
(SCD). The prediction was experimentally confirmed with
SCD activation using two chemical agents, clofibrate and
ciprofibrate. Other predictions made by the model are dis-
cussed further in reference [6]. In addition, we applied a
modified GA/PLS to identify genes relevant to multiple
cellular responses, including liver toxicity and Triglyceride
(TG) accumulation [11]. The analyses identified NADH
dehydrogenase and mitogen activated protein kinases
(MAPKs) were relevant to both cytotoxicity and lipid
accumulation. Indeed, inhibiting NADH dehydrogenase
and c-Jun N-terminal kinase (JNK) reduced cytotoxicity
significantly and increased intracellular TG accumulation.
In fact much greater reduction in the toxicity was observed
upon inhibiting the NADH dehydrogenase or MAPK than
for the stearoyl-CoA desaturase (SCD) activation [11],

Effects of palmitate on toxicity in day 2 cultureFigure 1
Effects of palmitate on toxicity in day 2 culture. The 
cells were treated first with palmitate for 24 hours and 
exposed to either control medium (D1 Palm D2 HG2) or 
palmitate (D1 Palm D2 Palm) in the next 24 hours. Cytotox-
icity of the treatments was measured. No significant differ-
ence was detected between the two treatments.

Table 1: Number of pathways affected by FFA at different time 
points.

Day 1 Day 2 Day 3

Palmitate 6 39 0
Oleate 52 4 0
Linoleate 29 9 0
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thus suggesting the incorporation of more information,
i.e. more metabolites, is beneficial.

Toxicity relevant gene targets
Motivated to identify more relevant toxicity-related genes
using multiple-source information, we developed a hier-
archical approach to integrate multi-level data, i.e., toxic-
ity measurements, metabolite profile, gene expression
profile with pathway information to identify potential tar-
get genes. First we identified toxicity relevant metabolites
using discriminant analysis. As a result, ketone bodies,
such as acetoacetate and beta-hydroxybutarate, were
found to be highly relevant to the toxic phenotype. Sec-
ond, we identified toxicity relevant gene sets with GSEA
analysis. We found gene sets, such as ROS, ETC, PPP and
fatty acid metabolism were significantly enriched. Finally,
MBPLS was applied to identify individual genes that were
relevant to the aforementioned metabolites and in turn
toxicity. Genes, such as glutathione S-transferase, NADH
dehydrogenase and ALDH1A1, were identified to be rele-
vant based upon their regression coefficients. NADH
dehydrogenase and ALDH1A1 were experimentally con-
firmed to have significant effects on the ROS as well as the
toxicity levels. Further details of these results can be found
elsewhere [5].

Discussion
It is the objective of this paper to illustrate how biological
findings can be derived from one or more data sources.
We first demonstrated that integrating dynamic gene
expression profile with pathway information helped to
identify the dynamic changes in the pathways and derived
hypothesis for further experimental testing. After identify-
ing the timing of the events, we integrated gene expression
profile with toxicity measurements using the TIPS©

approach to first identify toxicity relevant genes and then
reconstructed a network based upon the expression levels
of those genes. The TIPS© approach provided a way to
reconstruct context specific pathways using a limited
number of microarray data. It provided an alternative
method for pathway to network reconstruction based
upon interaction measurements and genome wide net-
work perturbations. It also provided a predictive frame-
work to construct hypotheses based upon computational
inference of virtual perturbations. However we would also
like to point out that this study is based upon data from
an in vitro system, namely HepG2 cells. Thus the insights
gained from the analysis could be quite different from
what takes place in vivo, i.e., in the liver. In vivo study
would be necessary to derive biological insights of this
kind.

We also illustrated that integrating more information
improved the ability of the computational model to iden-
tify relevant gene targets and predict possible effects upon
perturbation. Within the hierarchical framework, incor-
porating information, such as metabolite profiles and
pathway information, identified genes and pathways that
were induced by a toxic signal, such as ROS. Perturbing
the genes identified by the multi-source data provided
more relevant targets of toxicity as compared with the
genes identified with single source, i.e. gene expression,
and toxicity measurements. Integrating other sources of
information, such as sequence information, could further
improve the modeling capabilities. For example, sequence
information, such as single nucleotide polymorphism
(SNP), has recently been successfully integrated with gene
expression data using eQTL and Bayesian network analy-
sis to identify disease related genes [12].

Conclusion
In conclusion, it is feasible to identify phenotype relevant
genes using data driven systems biology approaches.
Incorporating more information in an effective manner,
i.e., hierarchical approach, could improve both target
identification and phenotype prediction.

List of abbreviations used
BN: Bayesian network analysis; CICA constrained inde-
pendent component analysis; ETC: electron transport
chain; FFA: free fatty acid; GA/PLS: genetic algorithm cou-
pled partial least squares analysis; GSEA: gene set enrich-
ment analysis; MBPLS: multi-block partial least squares;
NASH: non-alcoholic steatohepatitis; PPP: pentose phos-
phate pathway; ROS: reactive oxygen species; SCD:
stearoyl-CoA desaturase; SNP: single nucleotide polymor-
phism; TG: triglyceride; TIPS: Three-Stage-Integrative-
Pathway-Search; TNF: tumor necrosis factor.

Simplified toxicity networkFigure 2
Simplified toxicity network. LDH (in red) is the pheno-
type node and all other nodes are genes predicted to be rel-
evant to toxicity using Bayesian network analysis.
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