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Abstract—Video analytics has a key role to play in smart cities
and connected community applications such as crowd counting,
activity detection, event classification, traffic counting etc. Using
a cloud-centric approach where data is funnelled to a central
processor presents a number of key problems such as available
bandwidth, real-time responsiveness and personal data privacy
issues. With the development of edge computing, a new paradigm
for smart data management is emerging. Raw video feeds can be
pre-processed at the point of capture while integration and deeper
analytics is performed in the cloud. In this paper we explore
the capacity of video processing at the edge and shown that
basic image processing can be achieved in near real-time on low-
powered gateway devices. We have also investigated deep learning
model capabilities for crowd counting in this context showing
that its performance is highly dependent on the input size and
rescaling video frames can optimise processing and performance.
Increased edge processing resolves a number of issues in video
analytics for crowd monitoring applications.

I. INTRODUCTION

Smarter cities utilising Internet-of-Things (IoT) technolo-
gies are required to provide a sustainable environment to
accommodate the needs of the increasing urban population
of tomorrow and preserve natural resources [1]. In [2] the
authors define smart cities as ”an urban system that uses
information and communication technology (ICT) to make
both its infrastructure and its public services more interactive,
more accessible and more efficient”. A smart city goal is
to improve the quality of life of citizens while providing
a sustainable environment and reducing the cost of living.
This objective can be achieved by deploying sensors (cameras,
microphones) across the city to capture urban data and analyse
them to extract knowledge and wisdom in order to improve
city management.

However, because cities are big and public areas, it repre-
sents a big challenge to manage the quantity and variety of
potential sensor data including video. Three major issues are:
(i) optimising network bandwidth; (ii) real-time responsiveness
and (iii) preserving personal data privacy. Various applications
of image processing and computer vision require high to
moderate resolution data that increases the volume of data
that needs to be transferred from the camera to a central
processing server or cloud system. Crowd monitoring using

video can provide excellent real-time data on crowd density or
abnormal situations but require a fast turn around of analytics.
Finally the general public is increasingly aware of the potential
intrusiveness of surveillance video systems and legislation is
being enacted to protect personal data requiring system to
avoid the capture, transmission and storage of data where
individuals are visible.

In the early stage of IoT, the majority of the infrastructures
were cloud centric to exploit the computational power of
shared resources and to facilitate large-scale deployment and
scaling of data processing. But cloud architectures have shown
some limitations in terms of bandwidth, latency and data
privacy. Edge applications, also known as fog computing,
have emerged as an alternative architecture to alleviate some
of those issues [3]. For example, in a video-based crowd
monitoring application captured frames can be transformed
into meaning information (number of people in the scene, main
activity) at the device level, close to point-of-capture, enhanc-
ing response-time and improving data privacy by pushing only
low-bandwidth, anonymous data (numbers) to the cloud for
analysis and aggregation.

Fig. 1. Croke Park sensors infrastructure

A common challenge for practical research in IoT and smart
environments is the gap between laboratory prototyping and
deploying in a real-world scenario. The Smart Stadium for
Smarter Living project1 is a research collaboration between
Insight Centre for Data analytics (Dublin City University),
Intel, Microsoft, the GAA (Gaelic Athletic Association) and

1https://channel9.msdn.com/Blogs/DX-Ireland/Croke-Park-IOT-Smart-
Stadium-Dublin978-1-4673-9944-9/18/$31.00 c© 2018 IEEE



Croke Park (Dublin) to provide within Croke Park stadium
a test bed for smart cities solutions. The stadium offers an
ideal environment, small enough to trial but big enough to
prove. Figure1 shows the current sensors installation in Croke
Park including gateways, sound level monitoring devices and
cameras.

A stadium environment is very like a city. During an event
(a match or a concert), a stadium has to deal with a large
crowd facing the same difficulties as a city centre area. The
stadium experience can be improved by monitoring the crowd
to avoid congestion and improve emergency management, or
by monitoring the sound level for nearby residential areas.

Among the common scenarios to smart city and smart
stadium, crowd monitoring is an interesting one to investigate.
Highly congested city areas present both safety risks for peo-
ple, economic performance and can have a significant impact
on the quality of life. Crowd monitoring is through video
analytics and many cities are already equipped with Closed-
Circuit Television Video (CCTV) network. Video analytics
can be computationally expensive and the data captured are
highly sensitive. An area of significant and active interest is
to develop smart cameras capable of running sophisticated
algorithms for person detection or object counting. However,
this requires equipment upgrades and generally expensive
hardware to implement.

In this paper we explore the capacity of video processing
at the edge of an IoT infrastructure utilising low-powered
gateway devices for a crowd monitoring use case. In the
following section we present a brief overview of video an-
alytics in smart cities. Then we explore the limitations of
processing at the edge comparing the performance of three
different algorithms with different complexity levels, using a
Dell Edge Gateway 5000. Finally we discuss the feasibility
of video processing at the edge focussing on the processing
speed and capacity. We have found that even state-of-the-art
approaches based on computationally expensive deep learning
methods can be orchestrated on gateway devices though the
trade off in responsiveness is significant.

II. VIDEO PROCESSING AND SMART CITIES

Over the last decade IoT has extended computing ca-
pacity beyond traditional desktops and servers, connecting
the real and virtual together [4]. This provides a distributed
environment of inter-connected devices able to communicate
and exchange data with each other to enable environment
awareness and data-driven decision making. The amount of
data generated by IoT devices in 2014 was estimated as 233
exabytes and by 2020 this number is set to exceed 1.600
exabytes [5]. Therefore, particularly with the additional load
of video data, efficient management of data is critical for
successful deployment in smart cities and smart ecosystems.

Many cities are already equipped with a video surveillance
network and leveraging video analytics for near real-time
applications at the edge can facilitate smart cities development.
However, the processing power required is very different when

you move from simple statistical computations on sets of
numbers to analysing images in near real-time.

Deep learning has emerged in the past 10 years as a
powerful tool to handle complex decision-making and more
specifically image processing, achieving human-level predic-
tion [6], [7]. In [8] the authors present an overview of deep
learning algorithms useful for video analytics in smart cities
(object detection, object tracking, face recognition and image
classification). Deep learning models have a key role to play
in the future of smart city; one model can achieve up to three
different tasks [9]. One challenge of applying this technology
in realistic IoT environments is the need for specific powerful
hardware in the form of GPUs to train and process the
networks.

A. Smart cities applications using video processing

In this section we present two smart cities applications
that have been explored by research from a video analytics
perspective – smart lights and smart transportation.

1) Smart Lights: City streets are lit for over half the day
to increase road safety as well as citizen comfort. Lighting
systems represent one of the major sources of energy con-
sumption and have to be targeted to preserve resources. Veena
et al. [10] proposed a light system where video analytics is
used to recognise movement in real-time to activate street
lights during low traffic hours. They used a raspberry Pi to
leverage computational capabilities at the edge. The camera
frames are ingested by the Raspberry Pi and converted to
a grey scale image. Contour mapping and object extraction
is then applied using the OpenCV library and the result is
compared to a threshold value to activate or not the street
lights.

2) Smart Transportation: Another big application for video
analytics in smart cities is traffic management. CCTV cameras
are already used by humans to monitor and regulate the traffic
but automated systems to detect, recognise, classify and count
objects are the target of much research. Aryal et al. [11]
proposed a framework for object recognition. However, their
framework operates on the Cloud and requires high resolution
images. The city of Boston, in association with IBM, is
engaged in a smart city urban plan specifically including smart
traffic control using CCTV cameras [12].

Bonomi et al. [13] present a way to balance edge and
cloud analytics for smart traffic lights system. Traffic lights are
equipped with sensors that detect the presence of pedestrians
and cyclists and sensors measure the speed of incoming cars
to perform instant decision making at the edge (change the
colour of the traffic light) and at the same time enhance long
term planning prediction in the cloud.

In [14] the authors have surveyed smart cities from a data
centric point of view. Several smart city applications have
demonstrated that video processing has a key role to play in
the city of tomorrow. Edge computing is appealing for real-
time processing but it lacks computational power, but some
studies have proposed efficient framework to mine data at the
edge [15].



Balancing data processing between the cloud and the edge
can greatly improve performance, responsiveness and cost.
Raw data that is transformed into meaningful information at
the edge reduces the cost of using cloud services, while heavier
processing and decision making can be performed in the
cloud to aggregate data and perform stronger analytics [16].
Gateway devices have the potential to enhance data processing
on the edge but limited studies have been conduct on the
specific trade-offs that can be made between performance
and responsiveness. We focus on image processing and deep
learning to explore how far we can take real-time video
processing at the edge for application to crowd monitoring
in a smart environment.

B. Data processing

With the large volume of data generated by smart devices, a
natural platform to handle IoT application is cloud computing.
It presents many advantages as it is prone to scale up, and
offers infinite resources to alleviate computational weakness
of the devices at the edge [17]. However, using cloud services
implies offloading some workload to a third party. This can
be an issue in terms of data privacy and reliability. Video
data for example are highly sensitive data and with new law
enforcements like the European regulation 2016/679 [18] it
will become harder to outsource sensitive data.

But one of the main drawbacks of cloud computing is
dealing with real-time applications. In [19] the authors have
surveyed network topologies for real-time application and state
that in their current form, data centres are not suitable for real-
time processing due to network lag and transfer delays. This
was also identified in the Smart Stadium project during an
exercise to measure crowd sound on busy match days [20]
[21].

In [22], Bonomi et al. presented an alternative to cloud
centric application which they named fog computing. The
architecture they proposed uses the edge of the network to
alleviate cloud limitation by carrying out some of the pro-
cessing tasks on the devices themselves. This reduce the cost
of using cloud computing and enhance more robust real-time
applications. Nevertheless not all the devices are IP capable.
In those case, gateways can be used to link the device to the
rest of the network. Gateways are minimised computer like
Raspberry Pi where the emphasis is put on the connectivity
and weather robustness.

III. CROWD MONITORING AT THE EDGE

Highly congested urban areas present many challenges for
city planners. Monitoring crowd movement can help under-
standing crowd patterns to avoid congested areas and ensure
people move in a safe, secure and predictable manner, for
example before the game kick-off in a stadium. This has
potential to improve quality of experience but also, critically,
crowd safety as illustrated by recent deaths in situations of
crowd panic or congestion such as Shanghai 2014 new-year
eve where 34 people tragically lost their life.

Fig. 2. Software architecture for crowd monitoring

Crowd monitoring uses image processing and the data cap-
tured are highly sensitive. Outsourcing storage and processing
to the cloud is not suitable. However, when performing crowd
analytics only metadata such as the crowd density, activity Or
the number of people present matter. The image in itself is not
meaningful. Therefore, video processing at the edge improve
responsiveness while ensuring better data privacy.

A. Algorithms

To assess the capabilities of real-time video processing at
the edge, three algorithms of different complexity are tested.
All the algorithms are written in python. For the deep learning
model, pre-trained models are used. Table I summarises the
different algorithms tested.
Crowd density: The frame are ingested and converted to

greyscale to extract the background of the scene and com-
pute interesting point locations corresponding to objects
in the scene. The crowd density is estimated by splitting
the frame into a grid and computing the percentage of
grid cells that are occupied by one or more tracked points.
This algorithm has a low complexity.

ResNet50: Object detection is an integral part of image
processing and known to be computationally demanding.
Residual network architecture has been introduce by He
et al. [23] for object recognition. It is among the best
performing state-of-the-art deep learning model for image
classification. It presents a medium complexity and works
with low resolution images.

Crowd Counting: ResnetCrowd was developed by Marsden
et al. [24] to achieve crowd counting. It is based on
a ResNet18 [23] architecture and uses an heat map
approach to estimate the number of people in a scene.
High resolution images are divided into patches and
fed to the ResnetCrowd to count the number of people.
Each individual result is summed to compute total crowd
counting. This model achieves state-of-the-art results and
presents a high complexity with significant compute
requirements.



TABLE I
CROWD MONITORING ALGORITHMS – ALL THE ALGORITHMS ARE IMPLEMENTED IN PYTHON

Name Description Algorithm
Complexity

Deep
Learning Library Data size

(pixels)
Crowd Density Estimation Extract background of image to

estimate the density of people in
the scene

Low No Opencv-python, Numpy 1024× 728

ResNet50 from Keras ResNet50 default Keras model
application with ImageNet
weights

Medium Yes Numpy, Keras, Tensorflow,
pillow

224x224

Crowd Counting Crowd counting from Keras
ResNet50 model with custom
weights

High Yes Numpy, Keras, Tensorflow,
Opencv-python

1024× 728

TABLE II
CPU SPECIFICATION

Model Release date #core (#thread) CPU cache TDP
Laptop Intel Core i5-3210M Q2 2012 2 (4) 2.50 GHz 3MB SmartCache 35W

Gateway Intel Atom E3825 Q4 2013 2 (2) 1.33 GHz 1MB L2 6W

B. Data

The IP camera was emulated with a Python RESTful web
service sending images every second using the HTTP protocol.
For the Crowd Density estimation and Crowd counting algo-
rithms, the data consisted of 10 images with high resolution
(1024 × 728 pixels) extracted from the Shanghaitech Part B
dataset [25]. The Shanghai street scenes containing between
23 people and 476 people. For the ResNet50 model, 10 images
from the ImageNet dataset [26] with low resolution (224×224
pixels) were used.

C. Technologies

1) Hardware: The performance of each algorithm was
tested on two different machines, a laptop and DELL Edge
gateway 5000 with respectively an Intel I5-3210M (medium)
and Intel Atom E3825 (low) CPU. The main differences
between the two CPUs are highlighted in Table II. We inten-
tionally choose a i5 CPU to have a fair point of comparison
with the Atom CPU. There is no doubt that an i7 or a Xeon
CPU would have outperform the E3825 by far. The gateway
runs with Ubuntu Core 16.04 OS.

2) Software: The software was implemented in Python
using a multi-threaded approach to ingest raw images from
the emulated IP camera, pre-process the frame and transfer the
result to the Event Hub service in Azure as shown in figure
1. The runtime was monitor with the timeit library. Docker
was used to deploy the solution on the gateway. The software
was run multiple times on the laptop to ensure consistency
before to be deploy on the gateway.

D. Results

1) CPUs performance comparison: The results are pre-
sented in Table III. The crowd density estimation algorithm
performs equally well on a middle and low CPU; the algorithm
is not CPU-bound. Basic image pre-processing can be done
at the edge to ease the cloud workflow. However when the

complexity of the algorithm increase there is a significant
difference between the two CPUs.

When the complexity of the algorithm is high but input data
has low resolution (ResNet50), the performance is better on the
middle CPU but the runtime on the gateway is acceptable (3
seconds per frame). But when the complexity of the algorithm
is high and the image resolution is high (ResnetCrowd),
the low CPU lacks of computational power. In both case,
increasing the complexity have a runtime impact around 5
times worst on the E3825 than the i5-3210M CPU. This can
be explained by the CPU architecture.

With only two cores the Atom E3825 is not capable of real
multi-threading. Moreover, adjacent L2 and L3 memory size
is larger in the i5-3210M which results in a better support of
high performance computing. Note that I/O-bound algorithms
do not require high performance computing; therefore the
difference in runtime for the crowd density is explained by the
dimensions of the input image. With low resolution images, the
crowd density algorithm performs equally well on both CPUs.
It is also important to note that we observed a 2 minute average
delay between the ingestion of the data and the the Microsoft
Azure cloud reception due to the choice of the HTTP protocol
known to be slower than MQTT.

2) Downscaling input data: The size of the input image has
an important impact on the performance. To push further, we
investigated if a good trade-off between the model accuracy
and runtime could be found by rescaling the input frame for
the crowd counting algorithm. The images were rescaled by
a factor of 5 from 100% (full-size image) up to 25% size
image. The cv2.resize() function was used to shrink the
frame with the INTER-AREA interpolation parameter. Figure
3 shows the different accuracy of the model using the mean
square error (MSE) and mean absolute error (MAE) of the
miscount number of people obtained while figure 4 pictures
the speed improvement when rescaling the image.

Both the speed and accuracy presents a linear relationship
with the size of the input. However, reducing the input size



TABLE III
CPU PERFORMANCE COMPARISON

Laptop Gateway
Algorithm Frames per second Seconds per frame Frames per second Seconds per frame

Crowd Density 12.5 0.08 6.7 0.15
ResNet50 2 0.5 0.25 4
Crowd Counting 0.02 44 0.005 219

can have a positive impact on the accuracy. The 90% image is
an interesting result. It performs 31% better than the full-size
image (MSE of 36 compare to 53 and MAE of 25 compare
to 31) with a 22% time decrease (167 s/frame instead of 219
s/frame).

A good trade-off can be found. The 80% image is a good
candidate with a 7% decrease in accuracy and 31% decrease in
runtime. Nevertheless it is still taking two and a half minutes
(150 seconds) to process one frame.

IV. DISCUSSION

Video processing at the edge has already been integrated
in several smart city applications such as smart lights sys-
tems [10]. It presents many advantages mainly regarding
application responsiveness and data storage and privacy. Edge
computing has an important role to play for a sustainable data
management. For many years It was put aside because of its
computational limitation but with the progress of technology
it is now possible to enhance advanced processing at the edge
of an IoT network.

A fine tuning of the data pipeline where the processing is
balanced between cloud and edge computing, is a key element
for smart applications and several parameters need to be taken
into account. When designing a solution, real-time requirement
and the sensitivity of the data should be carefully considered
to choose the right trade-off.

For example, from a crowd monitoring perspective most of
the CCTV cameras capture only one image per second. When
computing the crowd density or the crowd counting, real-time
processing (approximately 25 frames per second) is not cru-
cial. Extracting those features every half minute is sufficient.
However, other applications like autonomous driving require

Fig. 3. MSE and MAE

an extreme responsiveness and therefore the computational
limitation of the edge along with network latency is an issue.

But regarding data privacy, video analytics at the edge has
many benefits. The raw data captured by CCTVs are highly
sensitive. To perform data-driven decision making just a high
level representation of those data such as the density of the
crowd or the activity of the crowd is needed. Computing
those informations at the edge reduced the cost of using cloud
services and ensure a better anonymity of the data.

V. CONCLUSION

In the early stage, smart city applications were relying
on a cloud centric approach. This design has shown its
limitations (high costs in terms of bandwidth, latency and
energy consumption) and a new paradigm has emerged where
data processing is balanced between the cloud and the edge.

In this paper we have explored video analytics at the edge
using a Dell Edge Gateway 5000. Basic image processing
which are not CPU-bound are performing equally good on
a low and middle range CPU devices. They can process
more than one frame per second where most CCTVs only
capture one image per second which make them suitable for
near real-time crowd monitoring. However, with the algorithm
complexity increasing, the size of the frame highly impacts the
performance. It can increase by a factor of 5 the processing
time at the edge. Carefully choosing the input size is important
as a good trade-off between the model accuracy and the
runtime performance can be found saving up to 30% time.

In the future work, the crowd monitoring solution will be
stressed out in Croke Park. We will also explored further
rescaling methods to fasten deep learning processing. Other
hardware solutions exist to enhance computing at the edge.

Fig. 4. Runtime



Fig. 5. Trade-off speed vs accuracy

Movidius, an Intel company, has released a computational
USB stick to provide a computer vision solution for low CPU
devices.

Processing video at the edge enhance real-time analyt-
ics as well as better data-privacy; sensitive images can be
anonymised at capture point. In this paper we have reviewed
the capacity of edge video analytics. We have shown that video
analytics can be performed but the application responsiveness
highly depends of the input data size. Rescaling video frames
is a good way of reducing the processing time for complex
algorithms. Therefore to balance processing between the cloud
and the edge some parameters such as the responsiveness of
the application desire and sensitivity degree of data need to
be taken into account.
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