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Abstract: Dynamic symbolic execution (DSE) is an important way to discover software vulnerabilities. One key 
challenge in DSE is to find proper paths in the huge program execution space to generate effective inputs. Currently, 
the main search strategies used for DSE include classical search strategy, heuristic search strategy, and pruning 
redundance strategy. This paper reviews and compares the main search strategies of DSE in recent years, including 
the Generational strategy, CarFast, Control-Flow Directed Search, Fitness-Guided Search strategy, Context-Guided 
Search strategy, RWset technique and Veritesting. 

1 Introduction 
Recent years have witnessed a widespread concern over 
the dynamic symbolic execution for software 
vulnerability analysis. The key idea behind dynamic 
symbolic execution was put forward by King, James C 
[1] 40 years ago. Dynamic testing tools 
[2,4,12,13,14,16,17,18,19] based on it have been 
coming out with the remarkable development of 
constraint solving technology [6]. Meanwhile, DSE has 
become a key approach to discover the program 
vulnerabilities. 

As an approach of software testing, DSE is 
supposed to explore as many program nodes and paths 
as possible, which contributes to the discovery of more 
bugs in a given time budget. DSE starts with the 
user-given or random input, through which an execution 
path can be discovered; by calculating the constraints on 
this path, it is able to gain new inputs covering more 
different paths. Every change of path condition makes 
more optional branches available to DSE. With the 
expanding of the test case set, DSE will gain a large 
exploration space, which will bring challenge for 
selecting the best path [10]. 

Even a simple program may have a huge exploration 
space (e.g. the program in Fig. 1). In a given time 
budget, selecting an appropriate path directly affects the 
efficiency of DSE. Classical path selection approaches 
include BFS, DFS and Random Search, since each path 
has the same importance, it is difficult to avoid the path 
explosion problem. In order to address that, heuristic 
search approaches such as the Generational strategy 
[14], CarFast [5], Control-Flow Directed Search [23] 
and Fitness-guided Search Strategy [21] are applied to 
DSE to enhance its efficiency. Heuristic approaches 
make good use of program execution context but fail to 

take full advantage of DSE’s high semantic insight 
which can be used to prune redundant paths and find the 
effective execution path for DSE. 

 
Figure 1. An example program under test 
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Figure 2. The topology of the example program 

The remainder of the paper is organized as follows. 
Section 2 introduces the dynamic symbolic execution. 
We explain path search strategy in the dynamic 
symbolization execution in Section 3. Section 4 makes a 
comparison of theses search strategies. We conclude in 
Section 5. 

2 Overview of Dynamic Symbolic 
Execution 

2.1 Symbolic Execution 

The main idea of symbolic execution is to represent 
variable values in the program with symbolic values. 
The symbolic execution maintains a symbolic state 
consistent with the program execution state. The 
symbolic state consists of a symbolic path constraint PC 
and a symbolic memory state σ. In classical symbol 
execution, σ is initialized to empty and PC is initialized 
to true. σ and PC are being updated during symbol 
execution. For example, for an input variable v, the 
symbol value s0 is introduced into the mapping 
����� ��� ; at each assignment statement, σ is 
updated, representing variables in the program as 
symbolic expressions over the symbolic values. In the 
statement if (e) S1 else S2, the condition e is evaluated 
under the current symbolic memory state as σ (e), and 
PC is updated to �� ����, generating a new path 
constraint PC' with the initial value being���������. 
When the symbolic execution of a path comes to an end, 
the concrete input values generated by PC using a 
constraint solver will be executed, steering the 
execution of the program towards the path of PC, and 
the same execution result is obtained. 

2.2 Dynamic Symbolic Execution 

DSE is based on classical symbolic execution [1,26], 
and combines concrete execution with symbolic 
execution to make the latter faster and more accurate. 
DSE includes three main strategies.  

The first one is concolic symbolic execution adopted 
in DART [4] and CUTE [18]. Dynamic symbol 
execution maintains two states, one is the concrete state 
and the other is the symbolic state. The concrete state 
maps all variables to their concrete values, while a 
symbolic state maps only variables without concrete 
values to their symbolic values. Concolic execution 
starts from a specific input and collects symbolic 
constraints at the conditional statements along the 
execution path. When the program execution reaches a 
conditional branch, concolic execution fork two new 
states where it generates two corresponding inputs 
respectively by solving constraints and then explore 
both branches independently. In theory, concolic 
execution can cover all program paths, while in practice 
it usually stops when a user defined coverage criteria 
are met, or the time budget expires. 

The second one is called Execution-Generated 
Testing. The EGT [27] approach which is used by EXE 
and KLEE is a technique of generating testcases by 
solving the constraints on concrete values of program. 
EGT starts with a symbolic input rather than a concrete 
one. When program read external variables, EGT 
replaces it with a symbolic variables. All the variables 
depending on these symbolic variables will be operate 
symbolically. If the operation based on concrete values, 
it should be executed with concrete values. In the 
process of symbolic execution, the EGT adds 
constraints to the symbolic variables. When the symbol 
execution of a path comes to an end, we can generate 
input by solving these constraints on this path. 

The last one is symbolic guided fuzzing, which is 
used by SAGE [14] and Driller [2]. As a combination of 
symbolic execution techniques and fuzzing techniques 
[2,8,14,15,20], symbolic-guided fuzzing utilizes the 
rapid test generating of fuzzing techniques and the good 
semantic insight into the program of symbolic execution. 
Symbolic-guided fuzzing use the dynamic symbol 
execution to guide how to mutate inputs [20], or just 
generate input to supplemental fuzzing[2]. The testcases 
generated by the Symbolic-guided fuzzing can trigger 
previously-unexplored code, which is not reachable by 
the fuzzing approach. Besides. Symbolic-guided 
fuzzing has better execution efficiency than pure 
dynamic symbolic execution. 

2.3 The Importance of Search Strategy 

In reality, it is not feasible to traverse all execution 
paths under a fixed time budget. This is referred to as 
the path explosion [10]. Therefore, each dynamic 
symbol execution is inevitable to face an important 
problem of how to choose a proper path in the huge 
path space. Some search strategies are adopted to the 
dynamic symbol execution to solve this problem. These 
strategies improve the coverage of symbolic execution, 
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which enables dynamic symbol execution to detect bugs 
in a more efficient way. 

3 Search Strategies in the Dynamic 
Symbolization Execution 
The search strategies used in the implementation of 
DSE can be divided into three categories: classical 
search strategy, heuristic search strategy, and pruning 
redundance strategy. 

3.1 Classical Search Strategy 

The classical search strategy uses the typical tree 
traversal algorithms which are independent of any prior 
knowledge of the execution tree. Typical tree traversal 
algorithms include DFS, BFS and Random Search. 

DFS. Applied in symbolic execution tools such as 
DART[4] and CUTE[18] in the early days, DFS is the 
earliest search algorithm that used in dynamic symbolic 
execution. DFS has a good memory model that applies 
to dynamic symbolic execution: it first explores a path 
until the end, which provides an incremental path 
constraints. The previously used symbol constraint 
states are stored in memory for reuse by the solver. 
However, DFS may get trapped in loops and iterations 
that rely on symbolic input for conditional evaluation in 
the program. In addition, as the execution path becomes 
longer, the constraints will become larger, which will 
make the constraint solving more difficult. 

BFS. BFS algorithms are rarely used in dynamic 
symbolic execution because it tends to choose a new 
path execution every time, which will make the 
dynamic symbol execution to continually switch the 
program states and the symbol states, resulting in a very 
poor memory utilization. What is worse, BFS algorithm 
will rapidly increase the exploration space of the 
program, making the path explosion problem more 
obvious. 

Random Search. The random search algorithm 
executes from the root node of the program execution 
tree, and it will randomly select a path to continue the 
execution when a conditional branch appears. This 
selection method may provide a quick access to the 
deep of the program execution tree, however, it is of 
little stability and hard to guarantee a reliable path 
coverage. Hybrid concolic testing[11] interleaves 
random testing with concolic execution and utilizes 
random testing to rapidly increase path coverage. When 
the random testing saturate, it switches to the symbolic 
mode and uses the concolic execution to reach deeper 
uncovered nodes. Hybrid concolic testing shows a better 
coverage than DFS and pure random search. 

3.2 Heuristic Search Strategy 

Heuristic search strategy uses DSE to obtain the context 
information, select metrics (e.g., high statement 
coverage, node coverage, path coverage), and calculate 
the weight for the candidate path. Different heuristic 

algorithms focus on the different criteria, which makes 
a great difference of the results. 

The Generational Strategy. The Generational 
strategy was introduced by SAGE [14], which is a 
whole-program white-box file fuzzing tool for x86 
Windows applications. The generational search starts 
with an input seed and maintains a worklist. Each time 
generational search fetches an input from the workList 
for symbolic execution at a time. The generational 
search fetches an input from the workList, then starts the 
symbolic execution. After a single execution, 
ExpandExecution function based on path constraints is 
applied to generate new input. These childInputs are 
symbolically executed respectively, and scored 
according to the incremental block coverage. Then the 
childInputs will be inserted into the workList according 
to the score. Each new input limits the backtracking 
through the bound parameter. This search method can 
maximize the number of new test cases generated per 
symbolic execution, at the same time avoid any 
redundant search. Heuristics enables the generational 
search to maximize code coverage in a short time. 

CarFast. CarFast [5] algorithm is a kind of heuristic 
algorithm which is based on the information of CFG 
graph. The main idea is that the number of program 
states contained in each branch in the program is 
different. In order to cover more states, branches 
containing more states should take the priority in 
dynamic symbolic execution. For the purpose of 
calculating the state information contained in the 
branches, CarFast algorithm needs to analyze the CFG 
graph of the program and sort the branches. CarFast 
algorithm works by analyzing the program CFG, which 
may result in a low efficiency of DSE when the 
program scale becomes large. 

Control-Flow Directed Search. Control-Flow 
Directed(CFD) Search [7,23] uses the static structure of 
the program to direct the dynamic symbolic execution 
to explore path space of the program. Firstly, 
Control-Flow Directed Search generates the control 
flow graph of the program, then assigns values to each 
edge. The two branch edges of the conditional jump 
have a weight of 1, the remaining edges (including the 
function calls) have a weight of 0. For undiscovered 
program nodes, the total weight of the reachable path is 
computed. The path of the least weight is selected for 
exploration. Control-Flow Directed Search always 
selects the path with the fewest constraint, which 
reduces pressure of the solver. 

Fitness-Guided Search Strategy. Fitness functions 
were originally used in search-based software [22], and 
introduced by Pex [24] as Fitnex strategy, a guide 
strategy of the dynamic symbolic execution. 
Fitness-Guided Search (FGS) Strategy flips a branch 
according to the fitness value of each branching node. 
Fitness value for the branch b is calculated by the 
formula (F (p) - FGain (b)). F (p) is the fitness function 
of path p. Fitness functions are derived from the 
boolean binary predicates [28]. The fitness function 
calculates the distance from a path to a target, which 
can be expressed as a fitness value. For example, for the 
if (counter == 50) in Fig.1 line 14, the fitness function is 
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“if (|50 – x| == 0) then 0 else |50 – x|”. FGain (b) is the 
fitness gain of the branch b, which indicates the increase 
(or the decrease) of the path's fitness value when the 
branch is flipped. For example, when we flip the 
branching node code for the false branch of Fig.1 line 8 
(input[i] == ‘S’) to the true branch, the fitness gain is 
1.For each branch node, composite fitness value is (F(p) 
- FGain(b)). The Fitness-Guided Search Strategy always 
selects the branch with the smallest composite fitness 
value for the execution, which makes each symbolic 
execution closer to the target. At the same time, in order 
to achieve better results, Fitness-Guided Search 
Strategy also integrates other simple search strategies. 

Context-Guided Search Strategy. Context-Guided 
Search(CGS) Strategy selects the branch with new 
context for the dynamic symbolic execution based on 
the context information of the executed program, so as 
to obtain better branch coverage. Context-Guided 
Search Strategy uses k-context to represent context 
information and determine whether to execute a new 
branch through the comparison of k-contexts. k-context 
is calculated from the information of preceding 
branches and dominator and defined as a sequence of k 
preceding branches in an execution path. For example 
in Fig.2, 2-context of b5 is (b3,b5). Under ∞-context, 
CGS becomes BFS. In the CGS strategy, k 
incrementally increases. While computing the k-context, 
CGS needs to take the dominator information into 
account. In CFG, node d dominates node n, written as d 
dom n, if every path from the entry node to node n must 
go through node d[8]. It can be applied to edges (e.g. In 
Fig.2, b1 dominates b5 since all the execution paths 
heading for b5 must go through b1). In the calculation 
of k-context, CGS considers non-dominating branches 
only in the context information. For example in Fig.2, 
2-context of b5 is (b1,b5) instead of (b1,b3,b5), since b3 
is the dominator of b5.When the dynamic symbolic 
execution encounters branch selection, the CGS 
algorithm compares the k-context of the current branch 

with those in the context cache. If the k-context did not 
appear before, the branch is selected for the next input. 
CGS algorithm makes good use of the context 
information, and has a very good efficiency. 

3.3 Pruning Redundance Strategy 

Strictly speaking, the strategy of pruning redundance 
strategy is not a search strategy. However, by reducing 
the search space, this method can effectively control the 
path explosion problem, and select the path suitable for 
DSE. 

RWset. The main idea of the RWset [25] technique 
is that when the dynamic symbolic execution reaches a 
branch that has the same state as some previous 
execution, the branch can be pruned. At the same time, 
if two states that only differ in program values that are 
not subsequently read can be seen as identical, which 
can also be combined into a state. RWset truncates a 
path as soon as possibl e, thereby enhancing the 
efficiency of the dynamic symbolic execution, and 
reducing the path explosion. 

Veritesting. Veritesting [9] is a combination of DSE 
and SSE, and has been integrated into the angr [29] 
platform as an effective selecting method to avoid path 
explosion. Veritesting starts with DSE, when the 
program encounters a branch and needs to fork new 
executions, it switches to an SSE-style approach. In 
SSE mode, Veritesting uses SSE to analyze a 
dynamically recovered CFG, removes some 
unexecutable paths from CFG, and unrolls loops. 
Finally, it merges the states obtained by SSE with the 
previous DSE states, and then continues the dynamic 
symbolic execution. This method solves the DSE path 
explosion overhead with SSE solution overhead, which 
gains better node coverage and path coverage in most 
cases. 

Table 1. The comparison of Search strategies 

 Main Cost Criteria Usage of Semantic Insight Tools 

DFS/BFS -- -- -- DART 
CUTE 

Random 
Search -- -- -- DART 

Generational 
Search ExpandExecution Code coverage  The hierarchy of the program 

topology diagram SAGE 

CarFast Analysis of CFG Statement coverage The state information of the CFG CarFast 

CFD Calculating the weight 
of edge Shortest path Topological structure of CFG graph CREST 

FGS Solving fitness 
function Closer to the target Fitness value of conditional branch Pex 

CGS Comparing k-context Path coverage 
Node coverage 

The context dependency of the 
program path -- 

RWset Pruning statement Merge Statements Program status using DSE RWset 

Veritesting SSE Reduce invalid paths DSE status and SSE status Angr 
MergePoint 
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4 The Comparison of Search Strategies 

No matter what search strategy it is, its main purpose is 
to choose the best path for the dynamic symbol 
execution within a limited time and help it achieve a 
better performance. The comparison of these strategies 
is in Table 1. 

In theory, DFS and BFS enable a full traversal of the 
execution tree. However, this approach is not feasible 
because of the huge search space. The heuristic search 
algorithm abandons completeness, selects specific 
metrics, and uses the program context, CFG and other 
information to prioritize the paths of the dynamic 
symbolic execution, in order to achieve the optimal 
performance with the limited time cost. The method of 
pruning redundant paths reduces the state space of DSE, 
so as to improve the efficiency of DSE. 

5 Conclusion 
DSE is an effective means of finding software 
vulnerabilities. Search strategies play a major role in the 
improvement of DSE. In this paper, we discuss and 
compare the main search strategies of DSE, divide them 
into three categories: classical search strategy, heuristic 
search strategy, and pruning redundance strategy. In the 
future, the research on the combination of pruning 
redundant paths with a heuristic search approach could 
possibly enhance the execution efficiency of DSE. 
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