

A Survey of Search Strategies in the Dynamic Symbolic Execution

Yu LIU*, Xu ZHOUa and Wei-Wei GONGb

National University of Defense Technology, Changsha, China
azhouxu@nudt.edu.cn, bIssacGong@outlook.com
*Corresponding author: liuyunudt@gmail.com

Abstract: Dynamic symbolic execution (DSE) is an important way to discover software vulnerabilities. One key
challenge in DSE is to find proper paths in the huge program execution space to generate effective inputs. Currently,
the main search strategies used for DSE include classical search strategy, heuristic search strategy, and pruning
redundance strategy. This paper reviews and compares the main search strategies of DSE in recent years, including
the Generational strategy, CarFast, Control-Flow Directed Search, Fitness-Guided Search strategy, Context-Guided
Search strategy, RWset technique and Veritesting.

1 Introduction
Recent years have witnessed a widespread concern over
the dynamic symbolic execution for software
vulnerability analysis. The key idea behind dynamic
symbolic execution was put forward by King, James C
[1] 40 years ago. Dynamic testing tools
[2,4,12,13,14,16,17,18,19] based on it have been
coming out with the remarkable development of
constraint solving technology [6]. Meanwhile, DSE has
become a key approach to discover the program
vulnerabilities.

As an approach of software testing, DSE is
supposed to explore as many program nodes and paths
as possible, which contributes to the discovery of more
bugs in a given time budget. DSE starts with the
user-given or random input, through which an execution
path can be discovered; by calculating the constraints on
this path, it is able to gain new inputs covering more
different paths. Every change of path condition makes
more optional branches available to DSE. With the
expanding of the test case set, DSE will gain a large
exploration space, which will bring challenge for
selecting the best path [10].

Even a simple program may have a huge exploration
space (e.g. the program in Fig. 1). In a given time
budget, selecting an appropriate path directly affects the
efficiency of DSE. Classical path selection approaches
include BFS, DFS and Random Search, since each path
has the same importance, it is difficult to avoid the path
explosion problem. In order to address that, heuristic
search approaches such as the Generational strategy
[14], CarFast [5], Control-Flow Directed Search [23]
and Fitness-guided Search Strategy [21] are applied to
DSE to enhance its efficiency. Heuristic approaches
make good use of program execution context but fail to

take full advantage of DSE’s high semantic insight
which can be used to prune redundant paths and find the
effective execution path for DSE.

Figure 1. An example program under test

DOI: 10.1051/, 03025 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 3025

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
 License 4.0 (http://creativecommons.org/licenses/by/4.0/).

Figure 2. The topology of the example program

The remainder of the paper is organized as follows.
Section 2 introduces the dynamic symbolic execution.
We explain path search strategy in the dynamic
symbolization execution in Section 3. Section 4 makes a
comparison of theses search strategies. We conclude in
Section 5.

2 Overview of Dynamic Symbolic
Execution

2.1 Symbolic Execution

The main idea of symbolic execution is to represent
variable values in the program with symbolic values.
The symbolic execution maintains a symbolic state
consistent with the program execution state. The
symbolic state consists of a symbolic path constraint PC
and a symbolic memory state σ. In classical symbol
execution, σ is initialized to empty and PC is initialized
to true. σ and PC are being updated during symbol
execution. For example, for an input variable v, the
symbol value s0 is introduced into the mapping
����� ��� ; at each assignment statement, σ is
updated, representing variables in the program as
symbolic expressions over the symbolic values. In the
statement if (e) S1 else S2, the condition e is evaluated
under the current symbolic memory state as σ (e), and
PC is updated to �� ����, generating a new path
constraint PC' with the initial value being���������.
When the symbolic execution of a path comes to an end,
the concrete input values generated by PC using a
constraint solver will be executed, steering the
execution of the program towards the path of PC, and
the same execution result is obtained.

2.2 Dynamic Symbolic Execution

DSE is based on classical symbolic execution [1,26],
and combines concrete execution with symbolic
execution to make the latter faster and more accurate.
DSE includes three main strategies.

The first one is concolic symbolic execution adopted
in DART [4] and CUTE [18]. Dynamic symbol
execution maintains two states, one is the concrete state
and the other is the symbolic state. The concrete state
maps all variables to their concrete values, while a
symbolic state maps only variables without concrete
values to their symbolic values. Concolic execution
starts from a specific input and collects symbolic
constraints at the conditional statements along the
execution path. When the program execution reaches a
conditional branch, concolic execution fork two new
states where it generates two corresponding inputs
respectively by solving constraints and then explore
both branches independently. In theory, concolic
execution can cover all program paths, while in practice
it usually stops when a user defined coverage criteria
are met, or the time budget expires.

The second one is called Execution-Generated
Testing. The EGT [27] approach which is used by EXE
and KLEE is a technique of generating testcases by
solving the constraints on concrete values of program.
EGT starts with a symbolic input rather than a concrete
one. When program read external variables, EGT
replaces it with a symbolic variables. All the variables
depending on these symbolic variables will be operate
symbolically. If the operation based on concrete values,
it should be executed with concrete values. In the
process of symbolic execution, the EGT adds
constraints to the symbolic variables. When the symbol
execution of a path comes to an end, we can generate
input by solving these constraints on this path.

The last one is symbolic guided fuzzing, which is
used by SAGE [14] and Driller [2]. As a combination of
symbolic execution techniques and fuzzing techniques
[2,8,14,15,20], symbolic-guided fuzzing utilizes the
rapid test generating of fuzzing techniques and the good
semantic insight into the program of symbolic execution.
Symbolic-guided fuzzing use the dynamic symbol
execution to guide how to mutate inputs [20], or just
generate input to supplemental fuzzing[2]. The testcases
generated by the Symbolic-guided fuzzing can trigger
previously-unexplored code, which is not reachable by
the fuzzing approach. Besides. Symbolic-guided
fuzzing has better execution efficiency than pure
dynamic symbolic execution.

2.3 The Importance of Search Strategy

In reality, it is not feasible to traverse all execution
paths under a fixed time budget. This is referred to as
the path explosion [10]. Therefore, each dynamic
symbol execution is inevitable to face an important
problem of how to choose a proper path in the huge
path space. Some search strategies are adopted to the
dynamic symbol execution to solve this problem. These
strategies improve the coverage of symbolic execution,

DOI: 10.1051/, 03025 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 3025

2

which enables dynamic symbol execution to detect bugs
in a more efficient way.

3 Search Strategies in the Dynamic
Symbolization Execution
The search strategies used in the implementation of
DSE can be divided into three categories: classical
search strategy, heuristic search strategy, and pruning
redundance strategy.

3.1 Classical Search Strategy

The classical search strategy uses the typical tree
traversal algorithms which are independent of any prior
knowledge of the execution tree. Typical tree traversal
algorithms include DFS, BFS and Random Search.

DFS. Applied in symbolic execution tools such as
DART[4] and CUTE[18] in the early days, DFS is the
earliest search algorithm that used in dynamic symbolic
execution. DFS has a good memory model that applies
to dynamic symbolic execution: it first explores a path
until the end, which provides an incremental path
constraints. The previously used symbol constraint
states are stored in memory for reuse by the solver.
However, DFS may get trapped in loops and iterations
that rely on symbolic input for conditional evaluation in
the program. In addition, as the execution path becomes
longer, the constraints will become larger, which will
make the constraint solving more difficult.

BFS. BFS algorithms are rarely used in dynamic
symbolic execution because it tends to choose a new
path execution every time, which will make the
dynamic symbol execution to continually switch the
program states and the symbol states, resulting in a very
poor memory utilization. What is worse, BFS algorithm
will rapidly increase the exploration space of the
program, making the path explosion problem more
obvious.

Random Search. The random search algorithm
executes from the root node of the program execution
tree, and it will randomly select a path to continue the
execution when a conditional branch appears. This
selection method may provide a quick access to the
deep of the program execution tree, however, it is of
little stability and hard to guarantee a reliable path
coverage. Hybrid concolic testing[11] interleaves
random testing with concolic execution and utilizes
random testing to rapidly increase path coverage. When
the random testing saturate, it switches to the symbolic
mode and uses the concolic execution to reach deeper
uncovered nodes. Hybrid concolic testing shows a better
coverage than DFS and pure random search.

3.2 Heuristic Search Strategy

Heuristic search strategy uses DSE to obtain the context
information, select metrics (e.g., high statement
coverage, node coverage, path coverage), and calculate
the weight for the candidate path. Different heuristic

algorithms focus on the different criteria, which makes
a great difference of the results.

The Generational Strategy. The Generational
strategy was introduced by SAGE [14], which is a
whole-program white-box file fuzzing tool for x86
Windows applications. The generational search starts
with an input seed and maintains a worklist. Each time
generational search fetches an input from the workList
for symbolic execution at a time. The generational
search fetches an input from the workList, then starts the
symbolic execution. After a single execution,
ExpandExecution function based on path constraints is
applied to generate new input. These childInputs are
symbolically executed respectively, and scored
according to the incremental block coverage. Then the
childInputs will be inserted into the workList according
to the score. Each new input limits the backtracking
through the bound parameter. This search method can
maximize the number of new test cases generated per
symbolic execution, at the same time avoid any
redundant search. Heuristics enables the generational
search to maximize code coverage in a short time.

CarFast. CarFast [5] algorithm is a kind of heuristic
algorithm which is based on the information of CFG
graph. The main idea is that the number of program
states contained in each branch in the program is
different. In order to cover more states, branches
containing more states should take the priority in
dynamic symbolic execution. For the purpose of
calculating the state information contained in the
branches, CarFast algorithm needs to analyze the CFG
graph of the program and sort the branches. CarFast
algorithm works by analyzing the program CFG, which
may result in a low efficiency of DSE when the
program scale becomes large.

Control-Flow Directed Search. Control-Flow
Directed(CFD) Search [7,23] uses the static structure of
the program to direct the dynamic symbolic execution
to explore path space of the program. Firstly,
Control-Flow Directed Search generates the control
flow graph of the program, then assigns values to each
edge. The two branch edges of the conditional jump
have a weight of 1, the remaining edges (including the
function calls) have a weight of 0. For undiscovered
program nodes, the total weight of the reachable path is
computed. The path of the least weight is selected for
exploration. Control-Flow Directed Search always
selects the path with the fewest constraint, which
reduces pressure of the solver.

Fitness-Guided Search Strategy. Fitness functions
were originally used in search-based software [22], and
introduced by Pex [24] as Fitnex strategy, a guide
strategy of the dynamic symbolic execution.
Fitness-Guided Search (FGS) Strategy flips a branch
according to the fitness value of each branching node.
Fitness value for the branch b is calculated by the
formula (F (p) - FGain (b)). F (p) is the fitness function
of path p. Fitness functions are derived from the
boolean binary predicates [28]. The fitness function
calculates the distance from a path to a target, which
can be expressed as a fitness value. For example, for the
if (counter == 50) in Fig.1 line 14, the fitness function is

DOI: 10.1051/, 03025 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 3025

3

“if (|50 – x| == 0) then 0 else |50 – x|”. FGain (b) is the
fitness gain of the branch b, which indicates the increase
(or the decrease) of the path's fitness value when the
branch is flipped. For example, when we flip the
branching node code for the false branch of Fig.1 line 8
(input[i] == ‘S’) to the true branch, the fitness gain is
1.For each branch node, composite fitness value is (F(p)
- FGain(b)). The Fitness-Guided Search Strategy always
selects the branch with the smallest composite fitness
value for the execution, which makes each symbolic
execution closer to the target. At the same time, in order
to achieve better results, Fitness-Guided Search
Strategy also integrates other simple search strategies.

Context-Guided Search Strategy. Context-Guided
Search(CGS) Strategy selects the branch with new
context for the dynamic symbolic execution based on
the context information of the executed program, so as
to obtain better branch coverage. Context-Guided
Search Strategy uses k-context to represent context
information and determine whether to execute a new
branch through the comparison of k-contexts. k-context
is calculated from the information of preceding
branches and dominator and defined as a sequence of k
preceding branches in an execution path. For example
in Fig.2, 2-context of b5 is (b3,b5). Under ∞-context,
CGS becomes BFS. In the CGS strategy, k
incrementally increases. While computing the k-context,
CGS needs to take the dominator information into
account. In CFG, node d dominates node n, written as d
dom n, if every path from the entry node to node n must
go through node d[8]. It can be applied to edges (e.g. In
Fig.2, b1 dominates b5 since all the execution paths
heading for b5 must go through b1). In the calculation
of k-context, CGS considers non-dominating branches
only in the context information. For example in Fig.2,
2-context of b5 is (b1,b5) instead of (b1,b3,b5), since b3
is the dominator of b5.When the dynamic symbolic
execution encounters branch selection, the CGS
algorithm compares the k-context of the current branch

with those in the context cache. If the k-context did not
appear before, the branch is selected for the next input.
CGS algorithm makes good use of the context
information, and has a very good efficiency.

3.3 Pruning Redundance Strategy

Strictly speaking, the strategy of pruning redundance
strategy is not a search strategy. However, by reducing
the search space, this method can effectively control the
path explosion problem, and select the path suitable for
DSE.

RWset. The main idea of the RWset [25] technique
is that when the dynamic symbolic execution reaches a
branch that has the same state as some previous
execution, the branch can be pruned. At the same time,
if two states that only differ in program values that are
not subsequently read can be seen as identical, which
can also be combined into a state. RWset truncates a
path as soon as possibl e, thereby enhancing the
efficiency of the dynamic symbolic execution, and
reducing the path explosion.

Veritesting. Veritesting [9] is a combination of DSE
and SSE, and has been integrated into the angr [29]
platform as an effective selecting method to avoid path
explosion. Veritesting starts with DSE, when the
program encounters a branch and needs to fork new
executions, it switches to an SSE-style approach. In
SSE mode, Veritesting uses SSE to analyze a
dynamically recovered CFG, removes some
unexecutable paths from CFG, and unrolls loops.
Finally, it merges the states obtained by SSE with the
previous DSE states, and then continues the dynamic
symbolic execution. This method solves the DSE path
explosion overhead with SSE solution overhead, which
gains better node coverage and path coverage in most
cases.

Table 1. The comparison of Search strategies

 Main Cost Criteria Usage of Semantic Insight Tools

DFS/BFS -- -- -- DART
CUTE

Random
Search -- -- -- DART

Generational
Search ExpandExecution Code coverage The hierarchy of the program

topology diagram SAGE

CarFast Analysis of CFG Statement coverage The state information of the CFG CarFast

CFD Calculating the weight
of edge Shortest path Topological structure of CFG graph CREST

FGS Solving fitness
function Closer to the target Fitness value of conditional branch Pex

CGS Comparing k-context Path coverage
Node coverage

The context dependency of the
program path --

RWset Pruning statement Merge Statements Program status using DSE RWset

Veritesting SSE Reduce invalid paths DSE status and SSE status Angr
MergePoint

DOI: 10.1051/, 03025 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 3025

4

4 The Comparison of Search Strategies

No matter what search strategy it is, its main purpose is
to choose the best path for the dynamic symbol
execution within a limited time and help it achieve a
better performance. The comparison of these strategies
is in Table 1.

In theory, DFS and BFS enable a full traversal of the
execution tree. However, this approach is not feasible
because of the huge search space. The heuristic search
algorithm abandons completeness, selects specific
metrics, and uses the program context, CFG and other
information to prioritize the paths of the dynamic
symbolic execution, in order to achieve the optimal
performance with the limited time cost. The method of
pruning redundant paths reduces the state space of DSE,
so as to improve the efficiency of DSE.

5 Conclusion
DSE is an effective means of finding software
vulnerabilities. Search strategies play a major role in the
improvement of DSE. In this paper, we discuss and
compare the main search strategies of DSE, divide them
into three categories: classical search strategy, heuristic
search strategy, and pruning redundance strategy. In the
future, the research on the combination of pruning
redundant paths with a heuristic search approach could
possibly enhance the execution efficiency of DSE.

Acknowledgement
This work is partially supported by National High-tech
R\&D Program of China (863 Program) under Grants
2015AA01A301, by program for New Century
Excellent Talents in University, by National Science
Foundation (NSF) China 61272142, 61402492,
61402486, 61379146, 61272483, by the laboratory
pre-research fund (9140C810106150C81001)

References
1. King, James C. "Symbolic execution and program

testing." Communications of the ACM 19.7 (1976):
385-394.

2. Stephens, Nick, et al. "Driller: Augmenting Fuzzing
Through Selective Symbolic
Execution." Proceedings of the Network and
Distributed System Security Symposium. 2016.

3. Seo, Hyunmin, and Sunghun Kim. "How we get
there: a context-guided search strategy in concolic
testing." Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of
Software Engineering. ACM, 2014.

4. Godefroid, Patrice, Nils Klarlund, and Koushik Sen.
"DART: directed automated random testing." ACM
Sigplan Notices. Vol. 40. No. 6. ACM, 2005.

5. Park, Sangmin, et al. "CarFast: achieving higher
statement coverage faster." Proceedings of the
ACM SIGSOFT 20th International Symposium on

the Foundations of Software Engineering. ACM,
2012.

6. De Moura, Leonardo, and Nikolaj Bjørner.
"Satisfiability modulo theories: introduction and
applications." Communications of the ACM 54.9
(2011): 69-77.

7. CREST. Automatic test generation tool for C.
https://code.google.com/p/crest/.

8. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison Wesley, 2nd edition, Sept. 2006.

9. Avgerinos, Thanassis, et al. "Enhancing symbolic
execution with veritesting." Proceedings of the 36th
International Conference on Software Engineering.
ACM, 2014.

10. Cadar, Cristian, and Koushik Sen. "Symbolic
execution for software testing: three decades
later." Communications of the ACM 56.2 (2013):
82-90.

11. Majumdar, Rupak, and Koushik Sen. "Hybrid
concolic testing." 29th International Conference on
Software Engineering (ICSE'07). IEEE, 2007.

12. Chipounov, Vitaly, Volodymyr Kuznetsov, and
George Candea. "S2E: a platform for in-vivo
multi-path analysis of software systems." ACM
SIGPLAN Notices 46.3 (2011): 265-278.

13. Ciortea, Liviu, et al. "Cloud9: a software testing
service." ACM SIGOPS Operating Systems
Review 43.4 (2010): 5-10.

14. Godefroid, Patrice, Michael Y. Levin, and David A.
Molnar. "Automated Whitebox Fuzz
Testing." NDSS. Vol. 8. 2008.

15. Caselden, Dan, et al. Transformation-aware exploit
generation using a HI-CFG. No.
UCB/EECS-2013-85. CALIFORNIA UNIV
BERKELEY DEPT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE,
2013.

16. Babic, Domagoj, and Alan Hu. "Calysto." 2008
ACM/IEEE 30th International Conference on
Software Engineering. IEEE, 2008.

17. Cadar, Cristian, Daniel Dunbar, and Dawson R.
Engler. "KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex
Systems Programs." OSDI. Vol. 8. 2008.

18. Sen, Koushik, Darko Marinov, and Gul Agha.
"CUTE: a concolic unit testing engine for C." ACM
SIGSOFT Software Engineering Notes. Vol. 30. No.
5. ACM, 2005.

19. Cadar, Cristian, et al. "EXE: automatically
generating inputs of death." ACM Transactions on
Information and System Security (TISSEC) 12.2
(2008): 10.

20. Cha, Sang Kil, Maverick Woo, and David Brumley.
"Program-adaptive mutational fuzzing." 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015.

21. Xie, Tao, et al. "Fitness-guided path exploration in
dynamic symbolic execution." 2009 IEEE/IFIP
International Conference on Dependable Systems &
Networks. IEEE, 2009.

DOI: 10.1051/, 03025 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 3025

5

22. McMinn, Phil. "Search-based software test data
generation: A survey." Software Testing
Verification and Reliability 14.2 (2004): 105-156.

23. Burnim, Jacob, and Koushik Sen. "Heuristics for
scalable dynamic test generation." Proceedings of
the 2008 23rd IEEE/ACM international conference
on automated software engineering. IEEE
Computer Society, 2008.

24. Tillmann, Nikolai, and Jonathan De Halleux. "Pex–
white box test generation for. net." International
conference on tests and proofs. Springer Berlin
Heidelberg, 2008.

25. Boonstoppel, Peter, Cristian Cadar, and Dawson
Engler. "RWset: Attacking path explosion in
constraint-based test generation." International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer
Berlin Heidelberg, 2008.

26. Clarke, Lori A. "A program testing
system." Proceedings of the 1976 annual
conference. ACM, 1976.

27. Cadar, Cristian, and Dawson Engler. "Execution
generated test cases: How to make systems code
crash itself." International SPIN Workshop on
Model Checking of Software. Springer Berlin
Heidelberg, 2005.

28. Tracey, Nigel, John Clark, and Keith Mander.
"Automated program flaw finding using simulated
annealing." ACM SIGSOFT Software Engineering
Notes. Vol. 23. No. 2. ACM, 1998.

29. Shoshitaishvili, Yan, et al. "SOK:(State of) The Art
of War: Offensive Techniques in Binary
Analysis." Security and Privacy (SP), 2016 IEEE
Symposium on. IEEE, 2016.

DOI: 10.1051/, 03025 (2017) 712012

ITA 2017

ITM Web of Conferences itmconf/201 3025

6

