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Abstract:  21 

In the calibration of hydrological models, evaluation criteria are explicitly and quantitatively 22 

defined as single- or multi-objective functions when utilizing automatic calibration approaches. In 23 

most previous studies, there is a general opinion that no single-objective function can represent all 24 

of the important characteristics of even one specific kind of hydrological variable (e.g., 25 

streamflow). Thus hydrologists must turn to multi-objective calibration. In this study, we 26 

demonstrated that an optimized single-objective function can compromise multi-response modes 27 

(i.e., multi-objective functions) of the hydrograph, which is defined as summation of a power 28 

function of the absolute error between observed and simulated streamflow with the exponent of 29 

power function optimized for specific watersheds. The new objective function was applied to 196 30 

model parameter estimation experiment (MOPEX) watersheds across the eastern United States 31 

using the semi-distributed Xinanjiang hydrological model. The optimized exponent value for each 32 

watershed was obtained by targeting four popular objective functions focusing on peak flows, low 33 

flows, water balance, and flashiness, respectively. The results showed that the optimized 34 

single-objective function can achieve a better hydrograph simulation compared to the traditional 35 

single-objective function Nash-Sutcliffe efficiency coefficient for most watersheds, and balance 36 

high flow part and low flow part of the hydrograph without substantial differences compared to 37 

multi-objective calibration. The proposed optimal single-objective function can be practically 38 

adopted in the hydrological modeling if the optimal exponent value could be determined a priori 39 

according to hydrological/climatic/landscape characteristics in a specific watershed. This is, 40 

however, left for future study. 41 
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1. Introduction 44 

Hydrological models are often used to simulate the past and to predict the future hydrological 45 

behaviors of catchment. All kinds of models, lumped conceptual models or distributed physically 46 

based models, are simplifications of reality. Their parameters usually cannot be directly observed 47 

or easily derived from measurable catchment characteristics, but have to be indirectly estimated by 48 

some kind of calibration methods (Booij and Krol, 2010; Madsen, 2000; Pokhrel and Gupta, 2010; 49 

Vrugt et al., 2002). Calibration means that parameters are adjusted to match model simulation with 50 

historically observed data as closely as possible. Generally, it is translated into an optimization 51 

problem from the perspective of mathematics, and performed automatically using optimization 52 

algorithms (Guinot et al., 2011; Muleta, 2012). In this approach, objective functions are necessary 53 

to evaluate the closeness between the simulated and observed variable. 54 

There are ample literatures on model performance evaluation, because it is important not only 55 

for calibration but also for model development and intercomparison (Krause et al., 2005; Muleta, 56 

2012; Wagener, 2003). The traditional approach is using a single-objective function. However, 57 

many researchers share the concerns about single-objective functions such as the most widely 58 

used Nash-Sutcliffe efficiency (NSE) (Jain and Sudheer, 2008; McCuen et al., 2006; Schaefli and 59 

Gupta, 2007). The opinion that a single-objective function cannot capture all of the important 60 

characteristics of the observed data has been gradually accepted (Vrugt et al., 2003; Wagener, 61 

2003). More and more hydrologists seek to improve the calibration methods to capture various 62 

aspects of hydrologic responses simultaneously (Fenicia et al., 2007; Madsen et al., 2002). 63 
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Inspired by the excellent studies by Gupta et al. (1998) and Yapo et al. (1998), multi-objective 64 

calibration has been considered to be able to extract more information from historical data hence 65 

widely used to identify non-dominated or Pareto optimal parameter sets (Gupta et al., 2009; Hall 66 

et al., 2005; Matott et al., 2009; van Werkhoven et al., 2009). The progress in multi-objective 67 

calibration in recent years was well summarized in a comprehensive review paper by Efstratiadis 68 

and Koutsoyiannis (2010). 69 

In general, multi-objective calibration can be categorized into three types, i.e., multiple 70 

objectives based on multi-variable measurements, multi-site measurements, and multi-response 71 

modes (Madsen, 2003). In this study, multi-objective calibration referred to the third type that 72 

measures various responses of the hydrological processes, especially the streamflow hydrograph. 73 

High flows and low flows are two important characteristics of the hydrograph and the trade-offs 74 

between them have been considerably discussed (Bekele and Nicklow, 2007; Boyle et al., 2000; 75 

Gill et al., 2006; Khu et al., 2008; Tang et al., 2007; van Griensven and Bauwens, 2003). In 76 

addition, water balance and flow variability are of great importance as well (Kollat et al., 2012; 77 

Price et al., 2012; van Werkhoven et al., 2009). 78 

The multi-objective calibration produces a series of parameter sets located on the Pareto front, 79 

which provides new perspectives for parameter estimation. However, single-objective calibration 80 

has still been widely used, because a unique parameter set is often preferred by decision makers 81 

for daily water resources management practices. It is useful to identify a good compromise against 82 

the conflicting objectives. For this purpose, in this study we proposed a new methodology to 83 

obtain an optimized single-objective function (OSOF) which can simultaneously address 84 

multi-response modes for automatic calibration of hydrological models. 85 
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This paper was organized as follows. After this brief introduction, in Section 2, we 86 

introduced the definition of new single-objective function. Case study areas and data, the applied 87 

methods including the hydrological model, the optimization algorithm, the evaluation framework, 88 

and the procedure of numerical experiments were presented in Section 3. Then in Section 4, we 89 

showed the optimized single-objective function for the study areas, compared with traditional 90 

single-objective function NSE and multi-objective calibration. Finally, conclusions were drawn in 91 

Section 5. 92 

2. Definition of objective function 93 

Most objective functions used for calibration of hydrological models contain a summation of the 94 

error term, i.e. the difference between the simulated and observed variable (Krause et al., 2005). In 95 

addition, absolute or square function is introduced to avoid the offset between errors with opposite 96 

signs. In order to normalize the objective function, a baseline or benchmark, such as average of 97 

observed variables, is often used in many objective functions. As the average of observed 98 

variables is a constant value, such linear normalization has no impact on the calibration results. 99 

Therefore, only the power function of absolute errors is of major importance for model calibration. 100 

Different exponent value of the objective function leads to emphasizing different 101 

hydrological response mode in the calibration. For example, the exponent value of NSE function 102 

is 2 (see Eq. (2) below). When we try to maximize NSE to find the best parameter set of a 103 

hydrological model, it leads to matching high flow parts of the hydrograph at the expense of low 104 

flow parts, because errors related to high flows are amplified and tend to be larger than those 105 

related to low flows. Conversely, if the exponent is smaller, errors related to low flows tend to be 106 
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relatively emphasized and low flows can thus be better replicated. 107 

Based on the above analysis, we proposed a hypothesis that appropriate (optimal) exponent 108 

value can balance multi-response modes of the hydrograph. To explore the optimal exponent value 109 

(OEV), a general form of the new single-objective function is defined as, 110 

, .
1

bn

s t o t
t

C Q Q
=

= −∑          (1) 111 

where, C is the newly proposed single-objective evaluation criterion, ,s tQ  is the simulated 112 

streamflow at time 𝑡, .o tQ  is the observed streamflow at time 𝑡, 𝑛 is the length of entire 113 

simulation period. Given a specific watershed and a proper hydrological model, there is an optimal 114 

exponent b with which the proposed objective function can simultaneously address multi-response 115 

modes of the hydrograph. We call the objective function with the exponent value of OEV the 116 

optimal single-objective function (OSOF). Practical hydrological modeling experience suggests 117 

that NSE is an appropriate objective function for replicating high flows, thus the exponent b was 118 

assumed less than or equal to 2 in this study. Here we take streamflow as a demonstrating 119 

hydrological variable, but one can easily extend to other variables in the future study. 120 

3. Materials and Methods  121 

3.1 Hydrological model 122 

In this study, the Xinanjiang model (Zhao, 1992) was used as a runoff generation module, the 123 

Model for Scale Adaptive River Transport (MOSART) (Li et al., 2013) was used as a routing 124 

module. The Xinanjiang model was proposed in 1973 and is based on the concept of runoff 125 

formation on repletion of storage. The runoff generation is composed of three components: surface, 126 

subsurface, and groundwater, which are calculated based on tension water capacity and free water 127 
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capacity. Based on soil moisture and potential evapotranspiration, the evapotranspiration is 128 

calculated from three vertical layers. This model has been widely used in humid and semi-humid 129 

watersheds (Bao et al., 2011; Cheng et al., 2006; Gan et al., 1997; Ju et al., 2009; Li et al., 2009; 130 

Zhao, 1992), and cannot be used in watersheds where snow processes is of importance because it 131 

has no snow module. Two criteria, therefore, need to be satisfied for the watersheds used in this 132 

study: the climate is humid or semi-humid, and snow processes can be ignored. 133 

A runoff routing model, called MOSART, was developed by Li et al. (2013) and has been 134 

applied at different spatial resolutions. In this model, surface runoff was assumed to be first routed 135 

across hillslopes and then discharged along with subsurface runoff into a sub-network channel 136 

before entering the main channel. The sub-network channel is a hypothetical equivalent to all 137 

tributaries combined, i.e., with equivalent transport capacity. For the hillslope and sub-network 138 

channel routing, the kinematic wave routing method is used. For the main channel routing, both 139 

kinematic and diffusion wave routing methods are available, but the former was used in this study. 140 

In summary, the hydrological model has 14 calibrated parameters: 5 parameters related to 141 

evaporation, i.e., K, C, WUM, WLM, WDM; 2 parameters related to runoff generation, i.e., B, 142 

IMP; 4 parameters related to runoff partition, i.e., SM, EX, KG, KSS; and 3 parameters related to 143 

runoff routing, i.e., C_nh, C_nr, C_twidth. The physical meaning of the model parameters and the 144 

range of parameter values were given in Table 1. 145 

Table 1. Parameters of the hydrological model 146 

Parameter Physical meaning Unit Range 

K Evaporation pan coefficient - 0.70-0.99 

C Coefficient of the deep layer, that depends on the 

proportion of the basin area covered by vegetation 

with deep roots 

- 0.1-0.4 

WUM Averaged soil moisture capacity of the upper layer mm 5-120 
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WLM Averaged soil moisture capacity of the lower layer mm 5-120 

WDM Averaged soil moisture capacity of the deep layer mm 5-120 

B Representation of the non-uniformity of the spatial 

distribution of soil moisture storage capacity over the 

watershed 

- 0.1-0.7 

IMP Percentage of impervious and saturated areas in the 

watershed 

- 0-0.05 

SM Areal mean free water capacity of the surface soil 

layer, which represents the maximum possible deficit 

of free water storage 

mm 1-30 

EX Exponent of the free water capacity curve influencing 

the development of the saturated area 

- 0-2 

KG Outflow coefficients of the free water storage to 

groundwater relationships 

- 0-0.4 

KSS Outflow coefficients of the free water storage to 

interflow relationships 

- 0-0.6 

C_nh Scale factor for Manning’s roughness coefficient for 

hillslope routing 

- 0-1 

C_nr Scale factor for Manning’s roughness coefficient for 

channel routing 

- 0-1 

C_twidth Coefficient to account for the difference between the 

hypothetical sub-channel network and real tributary 

network 

- 0.1-10.0 

3.2 Study area and data 147 

The Model Parameter Estimation Experiment (MOPEX) watersheds were chosen as the study 148 

areas. The MOPEX dataset was described by Duan et al. (2006) and can be downloaded from 149 

http://www.nws.noaa.gov/oh/mopex/mo_datasets.htm. Daily mean areal precipitation, potential 150 

evaporation, and streamflow are available for 438 watersheds ranging from 67 to 10329 km2 151 

across the United States. As shown in Kollat et al. (2012), 392 of the MOPEX watersheds have 11 152 

complete years of data from 1 Oct. 1961 to 30 Sep. 1972. Among these watersheds, 196 153 

watersheds across the eastern United States (shown in Figure 1) were selected because of the 154 

applicability of the Xinanjiang hydrological model. Daily precipitation and potential evaporation 155 

were used to drive the hydrological model. Daily streamflow series were used to calibrate the 156 
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hydrological model. The periods of 1 Oct. 1961 - 30 Sep. 1962, 1 Oct. 1962 - 30 Sep. 1972, and 1 157 

Oct. 1972 - 30 Sep. 1982 were selected for warm-up, model calibration, and validation 158 

respectively.  159 

Faustini et al. (2009) developed the downstream hydraulic geometry relationships for 160 

bankfull channel width as a function of drainage area for nine aggregate eco-regions comprising 161 

the conterminous United States using 1588 sites from the US Environmental Protection Agency’s 162 

National Wadeable Streams Assessment. Using these relationships, we calculated the bankfull 163 

width for each watershed in this study. The channel slope, sub-channel slope, and drainage density 164 

were calculated based on the National Hydrography Plus Dataset (NHDPlus) which is a 165 

geo-spatial, hydrologic framework dataset incorporating the National Hydrography Dataset 166 

(NDH), the National Elevation Dataset (NED), and the Watershed Boundary Dataset (WBD), and 167 

can be downloaded from http://www.horizon-systems.com/NHDPlus/index.php. In this study, the 168 

minimum slope was set to 0.005%. The main channel was defined as the channel draining out of 169 

the watershed outlet and/or into the downstream watershed. Following Eqns. (6) and (8) in Li et al. 170 

[2013], the length and width of hypothetical sub-network channel were estimated based on the 171 

drainage density value derived from NHDPlus and the aforementioned hydraulic geometry 172 

relationships.  173 
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 174 

Figure 1. Map of the 196 MOPEX watersheds used in this study. These watersheds were selected from 175 

the 392 watersheds with 11 years of data [Kollat et al., 2012]. 176 

3.3 Optimization algorithm 177 

The Epsilon Dominance Nondominated Sorted Genetic Algorithm-II (ε-NSGAII) (Kollat and 178 

Reed, 2006) was chosen as the optimization algorithm for model calibration in this study. The 179 

ε-NSGAII integrates epsilon dominance strategy (Laumanns et al., 2002) and automatic 180 

parameterization (Reed et al., 2003) with the NSGA-II (Deb et al., 2002). The algorithm has been 181 

frequently used in hydrological modeling and has been demonstrated to be consistently better 182 

compared to other state-of-the-art evolutionary algorithms (Kollat and Reed, 2006; Sun et al., 183 

2014; Tang et al., 2006).  184 

3.4 Evaluation framework 185 

According to Kollat et al. (2012), four widely used objective functions focusing on peak flows, 186 
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low flows, water balance, and flashiness, respectively, were applied in this study. The first one is 187 

Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970) which emphasizes peak flows, as 188 

shown in Eq. (2), 189 

2
, ,

1

2
,

1

( )
1

( )

n

s t o t
t
n

o t o
t

Q Q
NSE

Q Q

=

=

−
= −

−

∑

∑
        (2) 190 

where, oQ  is the mean observed streamflow over the entire simulation period of length 𝑛.  191 

The second objective is Transformed Root Mean Square Error (TRMSE) which emphasizes 192 

low flows, as shown in Eq. (3), 193 

' ' 2
, ,

1

1 ( )
n

s t o t
t

TRMSE Q Q
n =

= −∑ , where ' (1 ) 1QQ
λ

λ
+ −=     (3) 194 

where, '
,s tQ  is the Box-Cox transformed (Box and Cox, 1964) simulated streamflow at time t, 195 

'
,o tQ  is the Box-Cox transformed observed streamflow at time t, 'Q  is the Box-Cox 196 

transformation of the streamflow Q , λ  is a constant ( 0.3λ = ). 197 

The third objective is Runoff Coefficient Percent Error (ROCE) which emphasizes water 198 

balance, as shown in Eq. (4), 199 

,

1 ,

1 1 100%
Y

s y

y o y

Q
ROCE

Y Q=

= − ×∑        (4) 200 

where, ,s yQ  is the mean annual simulated streamflow, ,o yQ  is the mean annual observed 201 

streamflow, Y is the number of years in the simulation period. 202 

The fourth objective is Slope of the Flow Duration Curve (SFDCE) which emphasizes 203 

flashiness of the hydrological response, as shown in Eq. (5), 204 

,67% ,33%

,67% ,33%

1 100%s s

o o

Q Q
SFDCE

Q Q
−

= − ×
−

        (5) 205 
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where, ,67%sQ  and ,33%sQ  are the 67th and 33rd percentile of the simulated streamflow, ,67%oQ  206 

and ,33%oQ  are the 67th and 33rd percentile of the observed streamflow. 207 

Price et al. (2012) provided an aggregated multi-objective functions termed the composite 208 

likelihood index (CL) compositing three metrics in order to allow trade-offs in fitting high flow, 209 

low flow, and flow variability components. In this study, Price et al.’s principle (2012) was applied 210 

to aggregate these four selected objective functions described above for evaluating the proposed 211 

objective function with different exponent values. Following the process in Price et al. (2012), we 212 

first transformed the four objective functions to a similar scale for aggregation, as shown in Eq. 213 

(6), 214 

1
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where, 𝜃$%&, 𝜃()*%&, 𝜃)+,&, 𝜃%-.,&	are the scaled 𝑁𝑆𝐸, 𝑇𝑅𝑀𝑆𝐸, 𝑅𝑂𝐶𝐸, 𝑆𝐹𝐷𝐶𝐸 , respectively; 216 

the subscript i represents each calibration run with different exponent value of the proposed 217 

objective function. L is the total number of calibration runs, which is 9 in this study (see Section 218 

3.5). Then CL equally weights these four scaled objective functions, as shown in Eq. (7), 219 

( , , , )NSE TRMSE ROCE SFDCECL mean θ θ θ θ=                      (7) 220 

3.5 Framework to search for an optimized single-objective function 221 

In order to investigate the possibility of using the proposed single-objective function to 222 
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compromise the multi-response modes of hydrograph, four experiments were designed in this 223 

study. The purpose of the first experiment is to identify the OEV for each of 196 MOPEX 224 

watersheds, which is the prerequisite for application of the proposed objective function. In this 225 

study, we designed nine numbers quasi-uniformly distributed in the range of exponent values 226 

[0-2.0] (see Section 2), 0.1, 0.3, 0.5, 0.7, 1.0, 1.3, 1.5, 1.7, and 2.0. For each MOPEX watershed, 9 227 

automatic calibrations were conducted with the objective function defined using the 9 exponent 228 

values respectively. The OEV was then identified as the exponent value corresponding to the 229 

optimal value of CL defined in Section 3.4.  230 

According to the identified OEVs, 196 MOPEX watersheds could be grouped into 9 231 

categories. We selected one representative watershed from each category for further exploration. 232 

In the context of single-objective calibration, the second experiment was implemented to compare 233 

the OSOF with the most widely used objective function NSE. Then in the third experiment, we did 234 

a comparative study between single-objective calibration with the OSOF and multi-objective 235 

calibration with four objective functions described in Section 3.4. Finally, in the fourth experiment, 236 

in order to investigate the robustness of calibration with the OSOF, the simulated streamflow was 237 

validated in a period of 10 years. We also compared the hydrograph replicating capability of 238 

optimized parameters using single-objective calibration and multi-objective calibration in the 239 

fourth experiment. 240 

4. Results and discussion 241 

4.1 Single-objective calibration 242 

Figure 2 shows the results of 196×9 single-objective calibrations in the first experiment. In order 243 
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to investigate the effect of exponent values on the result of single-objective calibration, four 244 

widely used metrics, i.e., NSE, TRMSE, ROCE, and SFDCE, were adopted to evaluate 9 245 

optimized simulations for each of 196 MOPEX watersheds. 246 

 247 

Figure 2. The evaluation merits for single-objective calibration. Each sub-figure represents the results 248 

calibrated by one exponent value but for all the 196 watersheds. NSE was plotted on the horizontal axis, 249 

TRMSE was plotted on the vertical axis, ROCE was plotted as the diameter of circles, SFDCE was 250 

plotted as color. A-I represent results with different exponent values. The shapes enclosed by the black 251 

envelop lines show the distribution range of the results. 252 

From Figure 2(I) to Figure 2(A), as the exponent value decreases from 2.0 to 0.1 the 253 

distribution range of NSE increases significantly from 0.5-0.9 to 0.15-0.86. The larger the 254 

exponent value is, the better (high score and narrow range) the NSE evaluation merit becomes. 255 

This indicates that the objective function with larger exponent value tends to match high flows. 256 

For the TRMSE (more related to low flow), its distribution ranges are almost unchanged with 257 

different exponent values. The average TRMSEs of 196 watersheds for nine exponent cases were 258 
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calculated and shown in Figure 2. When the exponent decreases from 2.0 to 0.1, the average 259 

TRMSE decreases from 0.386 to 0.351. Also, the proportion of the TRMSE greater than 0.4 260 

(worse performance) was calculated for each figure, which also shows a decreasing trend from 261 

37.3% to 21.8%. These distribution characteristics of TRMSE show that the simulations of low 262 

flows are improved when the exponent value decreases. As the TRMSE tends to concentrate on 263 

lower portions, this demonstrates that the objective function with lower exponent value 264 

emphasizes low flows. With respect to ROCE and SFDCE, there is no obvious trend detected from 265 

the figures. The general performances of ROCE and SFDCE are reasonably well for most 266 

calibrations in this study. 267 

In Figure 2(I), many results fall in the bottom right corner, which means that they have a 268 

sound simulation for both high flows and low flows. In addition, the other two metrics 269 

emphasizing water balance and flashiness of hydrological response are also reasonable. For these 270 

watersheds, the objective function with exponent of 2.0 is suitable. However, there are many other 271 

watersheds with good simulation of high flows at the expense of poor simulation of low flows, 272 

which indicates that NSE is not a reasonable objective function for all kinds of watersheds (also 273 

see the discussion in Schaefli and Gupta, 2007). 274 

The shapes enclosed by envelop lines of the distribution ranges were also plotted in Figure 2. 275 

We found that the right sides of the shapes in Figure 2(A)-(F) are narrower than those in Figure 276 

2(G)-(I), which means that some simulations of the watersheds with sound NSE and poor TRMSE 277 

are improved when the exponents are moderately adjusted. Especially in Figure 2(C)-(G), many 278 

results concentrate in the bottom right corner, indicating that the hypothesis that a proper exponent 279 

value can compromise multi-response modes of the hydrograph be reasonable. 280 
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4.2 The proposed objective function with the optimal exponent value 281 

The results of single-objective calibration discussed above are evaluated by the composite 282 

likelihood index to identify the OEV for each watershed. Figure 3 shows the identified OEVs of 283 

the proposed objective function for the 196 MOPEX watersheds. Most of the watersheds with 284 

lower OEVs locate in the northwest region, while the watersheds with larger OEVs generally 285 

locate in the northeast region. According to the identified OEVs, these watersheds were grouped 286 

into eight categories, and then eight representative watersheds were arbitrarily selected from these 287 

categories as shown in Figure 3.  288 

 289 

Figure 3. The optimal exponent values of the proposed objective function for the 196 MOPEX 290 

watersheds. Labels are provided for eight watersheds selected as representative watersheds to be 291 

explored in detail based on the identified OEVs. 292 

Figure 4 shows the histogram of these identified OEVs. Identified OEVs distribute from 0.3 293 

to 2.0. For 22 of the 196 MOPEX watersheds, the objective function with exponent of 2.0 is the 294 
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optimal, which are all located in the bottom right corner of Figure 2(I) with sound simulations of 295 

high flows and low flows, as well as water balance and flashiness of hydrological response. Most 296 

watersheds tend to prefer the OEV of 0.5, 0.7, 1.0, 1.3, and 1.5. There are also 12 watersheds with 297 

OEV of 0.3. The regional distribution of these watersheds concentrate in northwest as shown in 298 

Figure 3. 299 

 300 

Figure 4. Histogram of identified OEVs. 301 

4.3 Comparison between the proposed objective function and NSE 302 

In the context of single-objective calibration, NSE is a traditionally widely used objective function. 303 

In order to verify the advantage of the proposed objective function, we compared the OSOF and 304 

NSE. Figure 5 shows the results of comparative study at eight representative watersheds. To be 305 

noted, the identified OEV is the same as NSE in the watershed 01560000. As shown in Figure 306 

5(A1) and 5(A2), we found that the results using the proposed objective function with exponent of 307 

2.0 (similar to NSE) are much better in both high flows and low flows when compared to that with 308 

exponent of 1.0 which is arbitrarily selected. Other figures on the left side show that the 309 

simulations of high flows calibrated by the OSOF have little impact on replicating high flows 310 

when compared to NSE. However, focusing on the low flows as shown in the right figures with 311 
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logarithmic vertical axis, the calibration with the OSOF significantly improve the simulations 312 

especially in Figure 5(D2) to 5(G2). Four widely used metrics including NSE, TRMSE, ROCE 313 

and SFDCE, were applied to quantitatively analyze the difference between the results using two 314 

objective functions. Table 2 shows that the OSOF simultaneously improves TRMSE, ROCE, and 315 

SFDCE with a slight impairment on NSE at most watersheds, except for watershed 02329000. All 316 

the results indicate that there does exist a single-objective function (OSOF here) that can 317 

compromise multi-response modes of hydrograph, which is usually not the traditionally used 318 

single-objective function NSE. 319 

Table 2. Evaluation merits of the simulations calibrated by the optimal single-objective function 320 

(OSOF) and NSE 321 

ID of 
Watersheds 

OSOF NSE 
NSE TRMSE ROCE SFDCE NSE TRMSE ROCE SFDCE 

01560000 0.640 0.495 0.093 0.093 0.640 0.495 0.093 0.093 
03364000 0.787 0.247 0.121 0.039 0.806 0.277 0.255 0.243 
01574000 0.679 0.456 0.092 0.021 0.692 0.504 0.174 0.219 
08189500 0.652 0.345 1.510 5.897 0.655 0.388 2.997 7.468 
01672500 0.615 0.320 0.118 0.096 0.642 0.385 0.356 0.549 
02329000 0.848 0.253 0.186 0.155 0.854 0.335 0.548 0.046 
07340000 0.726 0.367 0.088 0.141 0.734 0.438 0.256 0.285 
03381500 0.714 0.326 0.471 0.017 0.720 0.341 0.503 0.018 

 322 
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 323 

Figure 5. Comparison between the results using proposed objective function and NSE in the calibration 324 

period for 8 representative watersheds. The vertical axis of the four figures in the right column is 325 
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logarithmic. From A-H, the identified OEVs decrease from 2.0 to 0.3, the IDs of these watersheds are 326 

01560000, 03364000, 01574000, 08189500, 01672500, 02329000, 07340000, and 03381500, 327 

respectively. Specifically, for A1 and A2, the proposed objective function is same as NSE, we randomly 328 

selected the result with exponent of 1.0 for comparison. 329 

4.4 Comparison between single-objective calibration and multi-objective calibration 330 

Figure 6 compares single-objective calibration with the OSOF and multi-objective calibration with 331 

four widely used objective functions in the calibration period at eight representative watersheds. 332 

At all these watersheds, the simulation of OSOF calibration locates in the hydrograph ranges 333 

enclosed by the envelop lines of Pareto results using multi-objective calibration and can be able to 334 

capture the major variability of the hydrograph. In Figure 6(A), 6(C), 6(E) and 6(G), the 335 

hydrograph ranges are so narrow that the difference between the results of single-objective 336 

function and multi-objective functions can be ignored. It means that at these watersheds 337 

multi-objective calibration does not extract more information from historical data. Figure 7(A) 338 

shows the flow duration curves (FDCs) at watershed 01574000 (the same as Figure 6(C)). The 339 

uncertainty of the streamflow frequency distribution is also obvious smaller than that in the other 340 

two watersheds in Figure 7. In Figure 6(B), the simulation using the OSOF calibration is near to 341 

the upper bound of uncertainty zone at low flow portions, and the observed hydrograph especially 342 

for low flows is generally slightly greater than the simulations. Similarly, in Figure 7(B), the 343 

simulated FDC using single-objective calibration almost replicates the observed FDC. It also 344 

means that the uncertainty bound using multi-objective calibration does not provide useful 345 

information in this case. On the contrary, in Figure 6(D), 6(F), and 6(H), results of multi-objective 346 
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calibration contain some simulations which can better capture the variability of the streamflow, 347 

but the best simulations in the hydrograph ranges are also far away from the observation 348 

especially for low flows. Corresponding to Figure 6(H), Figure 7(C) shows the similar results 349 

from the perspective of frequency distribution. For example, the 80th percentile of the lower bound 350 

of Pareto results is 0.09 mm, while that of the observed streamflow is 0.02 mm. Overall, 351 

single-objective calibration with the OSOF can compromise multi-response modes of the 352 

hydrograph to obtain a relatively sound simulation, which is comparable to the result of 353 

multi-objective calibration.  354 
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 355 

Figure 6. Comparison between the results using single objective calibration with the optimal 356 

single-objective function and multi-objective calibration with four widely used objective functions in 357 

the calibration period for 8 representative watersheds. The vertical axis of the figure is logarithmic. 358 

From A-H, the identified optimal exponent value decreases from 2.0 to 0.3. 359 
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 360 

Figure 7. Observed and simulated flow duration curves (FDCs) for 3 representative watersheds. The 361 

vertical axis of the figure is logarithmic. 362 

4.5 Model validation 363 

The above analyses demonstrate that the proposed OSOF is effective during the calibration period. 364 

In this section, we aimed to test its robustness by comparing the performance of single-objective 365 

calibration with OSOF to that of multi-objective calibration during the validation period. The 366 

simulations using OSOF calibration can also capture the major patterns of the hydrograph during 367 

the validation period as shown in Figure 8. Similar to the results during the calibration period 368 

(Figure 6), in Figure 8(A), 8(B), 8(C), 8(E), and 8(G), the hydrograph ranges in the validation 369 

period are also narrow, which means that not only in the calibration period can the results of 370 

OSOF calibration be comparable to that of multi-objective calibration, but also in the validation 371 

period at these watersheds. At the other three watersheds, multi-objective calibration provides 372 

more useful information about the hydrograph, but there is also a wide gap between the best 373 

simulations in the hydrograph ranges and the observations. In general, parameter set identified by 374 

the proposed optimal single-objective function has a robust performance in hydrological 375 

modeling. 376 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-88, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 3 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



24 
 

 377 

Figure 8. Comparison between the results using single objective calibration with the proposed objective 378 

function and multi-objective calibration with four widely used objective functions in the validation 379 

period for 8 representative watersheds. The vertical axis of the figure is logarithmic. From A-H, the 380 

identified optimal exponent values decrease from 2.0 to 0.3. 381 
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5. Discussion and Conclusions 382 

In this study, we proposed a new methodology that can compromise multi-response modes (i.e., 383 

multi-objective functions) of the hydrograph by using an optimized single-objective function. The 384 

single-objective function is generally defined as a power function of the absolute error between 385 

observed and simulated streamflow, and the exponent of power function is then optimized when 386 

applying to a specific watershed. The methodology was applied to 196 model parameter 387 

estimation experiment (MOPEX) watersheds across the eastern United States using Xinanjiang 388 

model. The optimal exponent value for each watershed was obtained by targeting four popular 389 

objective functions focusing on peak flows, low flows, water balance, and flashiness, respectively. 390 

The results show that the optimal single-objection function can achieve a better hydrograph 391 

simulation compared to traditional Nash-Sutcliffe efficiency for most watersheds, as well as can 392 

balance high flow part and low flow part of the hydrograph to be comparable to multi-objective 393 

calibration. Our work demonstrates the potential of single-objective function to simultaneously 394 

address multi-response modes of the hydrograph. 395 

Multi-objective calibration is based on the concept of Pareto optimal, which defines the 396 

improvement strictly as that given an initial solution, a change to a better solution results in 397 

making at least one objective function better without making any other objective function worse. 398 

Actually, as discussed in Tekleab et al. (2011), modelers may be willing to accept suboptimal 399 

performance of one aspect of the streamflow series in order to improve accuracy in one or more 400 

other aspects. The proposed optimal single-objective function in this study essentially relaxes the 401 

strict definition of Pareto optimal. For example, when compared to NSE, the proposed OSOF 402 

improves two or three objective functions which represent corresponding modes of hydrological 403 
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responses at a slight expense of the simulation of high flows, which is not Pareto improvement. 404 

Kollat et al. (2012) found that the meaningful multi-objective trade-offs are far less frequent than 405 

prior literature has suggested. They introduced the concept of epsilon-dominance, a way to relax 406 

the Pareto optimal, to obtain meaningful results, and identified only one solution at many MOPEX 407 

watersheds. While multi-objective calibration is helpful to address multi-modes, single-objective 408 

calibration with a proper objective function can also identify a good compromise solution against 409 

multiple criteria which would be applicable for hydrological planning and management. 410 

In addition, automatic calibration (whether single-objective or multi-objective) of 411 

hydrological models is usually implemented with the same objective function or combination of 412 

objective functions for different watersheds. However, we may expect different objective 413 

functions for watersheds with significant differences in terms of climatic condition, vegetation 414 

cover, land use/cover, soil texture, etc. This study demonstrates this idea by identifying a specific 415 

objective function for a specific watershed. 416 

Theoretically, the proposed methodology utilizes the trade-off on the exponent value of 417 

power function to substitute for the trade-offs on multiple objectives. It could be practically 418 

adopted in the hydrological modeling if the optimized exponent could be determined a priori 419 

according to hydrological/climatic/landscape characteristics in a specific watershed. In the 420 

following study, an empirical equation is expected to be established to relate the optimal exponent 421 

value of the proposed objective function with some watershed and hydrograph indices or a 422 

combination of these indices. 423 
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