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Derivative-free Kalman filtering based Approaches
to Dynamic State Estimation for Power Systems
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Abstract—This paper proposes a decentralized derivative-free
dynamic state estimation method in the context of a power system
with unknown inputs, to address cases when system linearisation
is cumbersome or impossible. The suggested algorithm tackles
situations when several inputs, such as the excitation voltage,
are characterized by uncertainty in terms of their status. The
technique engages one generation unit only and its associated
measurements, and it remains totally independent of other system
wide measurements and parameters, facilitating in this way the
applicability of this process on a decentralized basis. The robust-
ness of the method is validated against different contingencies.
The impact of parameter errors, process and measurement noise
on the unknown input estimation performance is discussed. This
understanding is further supported through detailed studies in a
realistic power system model.

Index Terms—Dynamic state estimation, Kalman filters, pha-
sor measurements, power system dynamics, state estimation,
synchronous generator, unscented transformation

NOMENCLATURE

α Difference between rotor angle and stator voltage
phase in rad

χ State sigma point
χb Biased predicted state sigma point
χu Unbiased predicted state sigma point
∆ Linear regression model error term
δ Rotor angle in rad
γb Biased predicted measurement sigma point
γu Unbiased predicted measurement sigma point
d̂ Unbiased predicted unknown input
x̂b Biased predicted state estimate
x̂u+ Unbiased a posteriori state estimate
x̂u− Unbiased a priori state estimate
ŷb Biased predicted measurement
ŷu Unbiased predicted measurement
κ Scaling parameter of sigma point spread
n Number of states in the augmented state vector
P Augmented state error covariance
Q Augmented additive process noise covariance
ω, ωB Rotor speed in p.u. and its base value in rad/s
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φI Stator current phase with respect to stator voltage
phase in rad

φIy Measured stator current phase
φ Difference between stator voltage and stator current

phases in rad
ψ1d Subtransient emf due to d-axis damper coil in p.u.
ψ2q Subtransient emf due to q-axis damper coil in p.u.
0α×β Zero matrix of size (α× β)
x Augmented state variables vector
θ Stator voltage phase in rad
ỹ Measurement innovation
υf Measurement noise associated with fsysy
υI Measurement noise associated with Iy
υP Measurement noise associated with Py
υQ Measurement noise associated with Qy
υφI

Measurement noise associated with φIy
υ Column vector of measurement noise
c Measurement equation approximation constant vector
D Rotor damping constant in p.u.
d Column vector of system unknown inputs
e Measurement equation linearization error
E′dc Transient emf due to flux in q-axis dummy coil in p.u.
E′d Transient emf due to flux in q-axis damper coil in p.u.
E′q Transient emf due to field flux linkages in p.u.
Efd Generator field excitation voltage in p.u.
f Discrete form of system differential equations
fθ Rate of change of the stator voltage phase in p.u.
fυ Noise term of the measured value of fθ in p.u.
fy Measured value of fθ in p.u.
fsysy Measured system frequency
fsys System frequency in p.u.
G Discrete form of unknown input distribution matrix
h Column vector of system measurement equations
Hm Measurement equation linear approximation
I Stator current magnitude in p.u.
i ith generator
Id d-axis component of the stator current in p.u.
Iq q-axis component of the stator current in p.u.
Iy Measured stator current magnitude
K Kalman gain matrix
k kth time step
Kd1 Ratio (X ′′d −Xls) / (X

′
d −Xls)

Kd2 Ratio (X ′d −X ′′d) / (X ′d −Xls)
Kq1 Ratio

(
X ′′q −Xls

)
/
(
X ′q −Xls

)
Kq2 Ratio

(
X ′q −X ′′q

)
/
(
X ′q −Xls

)
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l lth sigma point
M Inertia constant in p.u.
m Number of measurements
n Number of state variables
p Number of unknown inputs
P b Biased predicted state error covariance
Pu+ Unbiased a posteriori state error covariance estimate
Pu− Unbiased a priori state error covariance estimate
Px State error covariance
Puy Unbiased predicted measurement error covariance
Pwpx Cross-correlation between the nonlinear process noise

and the states
Pwp

Estimated nonlinear process noise covariance
P bxy Biased cross-covariance between x̂b and ŷb

Puxy Unbiased cross-covariance between x̂u− and ŷu

Py Measured active power value
Q Constant additive process noise covariance
Qp Constant nonlinear process noise covariance
Qy Measured active power value
R Measurement noise covariance
r Number of (known) inputs
Rs Armature resistance in p.u.
T Matrix transpose
T ′d0 d-axis transient time constant
T ′q0 q-axis transient time constant
T0 Simulation time step
Te Electrical torque input in p.u.
Tm Mechanical torque input in p.u.
T ′′d d-axis subtransient time constant in s
T ′′q q-axis subtransient time constant in s
u Column vector of system inputs
V Stator voltage magnitude in p.u.
Vυ Noise term of the measured value of V in p.u.
Vy Measured value of V in p.u.
W Sigma point weight
w Discrete form of process noise vector
wp Nonlinear process noise
x Column vector of system state variables
X ′d d-axis transient reactance in p.u.
X ′q q-axis transient reactance in p.u.
Xd d-axis synchronous reactance in p.u.
Xq q-axis synchronous reactance in p.u.
X ′′d d-axis subtransient reactance in p.u.
Xls Armature leakage reactance in p.u.
X ′′q q-axis subtransient reactance in p.u.
y Column vector of system measurements

I. INTRODUCTION

MODERN power systems are facing major operational
challenges [1], driven by the rapid deployment of re-

newable energy based new generation technologies, increasing
power consumption and limited investments in transmission
level, leading to system operation close to its limits [2].
The arising complexity, as well as the experience from the
1996 North American Power Blackouts in WECC system [3]
resulted in more sophisticated tools of capturing the system
stability conditions and security margins, based on methods

belonging to the area of dynamic security assessment (DSA)
[4]. Operators’ awareness of the power system state is very
much dependent on wide area monitoring systems (WAMS).
Dynamic state estimation (DSE), supported by WAMS, always
provides useful outputs. In this context, Kalman filtering and
its variants, such as the Extended Kalman filtering (EKF)
and the Unscented Kalman filtering (UKF) have gained much
popularity, since they can be applied to power systems, which
are inherently characterized by nonlinearity [5], [6].

Kalman filtering based DSE requires good knowledge of
the power system dynamic model. However, a centralized
dynamic state estimation scheme would necessitate accurate
information about all the states and devices of the system, as
well as the phasor measurement unit (PMU) measurements
across all the network, which is practically infeasible, espe-
cially for real-time implementations [7]. This fact has driven
research in decentralized state estimation approaches [7]–[9].
Nevertheless, even in this case, the generation unit model is
subjected to uncertainties. For instance, although excitation
voltage measurement is possible through PMUs [5], [10], this
is difficult to be applied in brushless excitation systems [6].
Moreover, under stressed conditions, the excitation voltage is
likely to be dictated by timer-based overexcitation limiters,
dramatically affecting the system stability margin [11]. There-
fore, to tackle the cases of inaccessible or uncertain inputs
in power system models, several dynamic state estimation
algorithms have been employed, based on EKF [6], [9].

UKF has a proven superiority compared to EKF in terms
of estimation accuracy in nonlinear systems [12]. In addition,
contrary to EKF, this method does not involve Jacobian based
linearisation, which can be rather complicated with regard
to highly nonlinear systems, such as power networks [7].
Furthermore, system linearisation might be impossible when
there are functions which are not smooth. In this context, this
research study deals with the development of a derivative-
free Kalman filtering based power system dynamic state
estimation method with unknown (or inaccessible) inputs,
assuming no prior knowledge of the unknown input models
or distributions, in contrast with [7] for instance, where, in
the proposed decentralized UKF algorithm, all system inputs
were known. There have been similar research efforts in other
fields, such as health assessment of structural systems [13], or
control systems [14], [15], where linear relationship is inferred
between the state variables and measurements. In [16], the
nonlinear measurement equations are approximated using both
linearisation and derivative-free techniques, but in this study
there is a direct relationship between the unknown inputs and
the measurement equations, which is not always the case in
power systems. Here, this research effort leads to the following
contributions:
• to establish a decentralized derivative-free Kalman filter-

ing based dynamic state estimation framework for power
systems with unknown inputs;

• to introduce a new synchronous generator model in the
decentralized context, without any knowledge required
from the network, apart from the information obtained
by measurements at its terminal bus;

• to tackle nonlinearity in system measurement equations;
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• to shed light on techniques to minimize the impact of
measurement noise.

The remainder of this paper is organised as follows: In
Section II, the proposed dynamic state estimation method is
developed and analysed. Section III presents the generation
unit model used in the decentralized state estimation context.
Section IV includes the case studies evaluating the perfor-
mance of the proposed method in a model power system:
the IEEE benchmark 68-bus 16-machine system, representing
the inter-connected New England (NETS) and New York
(NYPS) power systems, which are connected to other three
geographical regions [17], [18]. Section V discusses the effect
of parameter errors, process and measurement noise on the
state and unknown input estimation results, and this part also
discusses techniques addressing the impact of measurement
noise. Section VI concludes the paper.

II. SIGMA-POINT BASED KALMAN FILTERING WITH
UNKNOWN INPUTS

It assumed that the power system is described by the follow-
ing set of discrete nonlinear differential-algebraic equations
(DAEs):

xk = f (xk−1, uk−1, wk−1) +Gdk−1

yk = h (xk, uk) + υk
(1)

where x and w are n-dimensional vectors of state variables and
process noise, respectively, u is a r-dimensional vector of sys-
tem (known) inputs, d is a p-dimensional vector of unknown
inputs, y and υ are m-dimensional vectors of measurements
and measurement noise, respectively, whereas, f and h denote
the system dynamic and measurement equations, respectively,
G is the unknown input distribution matrix, showing the
relationship between the dynamic states and the unknown
inputs, and k is the time step.

In this model, process and measurement noise vectors are
supposed to be Gaussian, zero-mean, white, and uncorrelated
to each other. This means that:

E[wkυ
T
k ] = E[υkw

T
k ] = 0 for all k

E[wkw
T
j ] = E[υkυ

T
j ] = 0 for k 6= j

E[wkw
T
k ] = Qk

E[υkυ
T
k ] = Rk

(2)

The formulation of the unknown input estimation procedure
is very similar to the ones used in [14], [15]. However, in
these cases, the state variables of the systems are linearly
related to the measurement outputs. Nonetheless, this is very
difficult to appear in power system dynamic models. In order
to overcome this bottleneck, the statistical linearisation ap-
proach is employed, which does not involve any calculation
of derivatives [19]. The proposed method aims at joint state
(xk) and unknown input (dk−1) estimation at every time step
k. It has to be noted that at every time step, the unknown input
of the previous time step is estimated (in contrast with the state
variables’ case), since there is no direct relationship between
the unknown inputs and the measurement output equations.

The suggested algorithm is developed as follows:

A. Biased State Estimation

The starting point of every step is the biased dynamic state
estimation, since there is no prior information regarding the
unknown input of the previous step. The states are predicted
as shown below:

1) Sigma point generation: Sigma point filters are based
on the creation of a collection of points, capturing the several
statistical properties of a random variable, and here the target is
to obtain a good approximation of the mean and the covariance
of x [20], [21]. Besides, the unscented transformation relies
on a concept according to which it is easier to approximate a
probability distribution than it is to approximate a nonlinear
function [20]. The standard UKF employs the following set of
sigma points [20]:

χ
(l)
k−1 =

[
x̂u+k−1 x̂u+k−1 + x̃(l) x̂u+k−1 − x̃

(l)
]

x̃(l) =

(√
(n+ κ)Pu+k−1

)
l

, l = 1, 2, ..., n
(3)

where x̂u+k−1 and Pu+k−1 are the unbiased dynamic state estimate
and the unbiased a posteriori state error covariance estimate
of the previous time step, respectively, and κ is the scaling pa-
rameter of the spread of sigma points around x̂u+k−1 [20]. Here,

κ = 3− n. Also,
(√

(n+ κ)Pu+k−1

)
l

is the lth column of the
lower triangular matrix resulting from the Cholesky decompo-

sition: (n+ κ)Pu+k−1 =
√

(n+ κ)Pu+k−1

√
(n+ κ)Pu+k−1

T

.
2) Biased state prediction: Here, the sigma points are

instantiated through the process model (i.e the dynamic state
equations), and the biased state prediction is obtained, taking
into account the associated weights for each sigma point [20].
The state prediction is biased, since the unknown inputs are
not taken into account:

χ
b(l)
k = f

(
χ
(l)
k−1, uk−1

)
(4)

x̂bk =

2n∑
l=0

W (l)χ
b(l)
k (5)

where
W (0) =

κ

n+ κ

W (l) =
1

2 (n+ κ)
, l = 1, 2, ..., 2n

(6)

3) Biased state error covariance calculation:

P bk =

2n∑
l=0

W (l)
(
χ
b(l)
k − x̂bk

)(
χ
b(l)
k − x̂bk

)T
(7)

4) Biased measurement prediction: Here, the sigma points
are instantiated through the measurement model, so as to
obtain the biased predicted measurements (ŷbk):

γ
b(l)
k = h

(
χ
b(l)
k , uk

)
(8)

ŷbk =

2n∑
l=0

W (l)γ
b(l)
k (9)
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5) Calculation of the biased cross-covariance between the
states and the predicted measurements:

P bxyk =

2n∑
l=0

W (l)
(
χ
b(l)
k − x̂bk

)(
γ
b(l)
k − ŷbk

)T
(10)

B. Unknown Input Estimation

As previously stated, the unknown input estimation proce-
dure is very similar to the ones in [14], [15], but, in those
cases, a linear relationship was assumed between the states
and the measurements. To address the nonlinear measurement
function case, Jacobian based linearisation could be one op-
tion, but this would defeat the purpose of the derivative-free
sigma point based method utilization. Therefore, the statistical
linearisation approach is used [19], [21]. This relies on the
following concept: The sigma points are instantiated through
the measurement model, and the two sets of sigma points
(i.e the ones corresponding to the dynamic state - χb(l)k -
and the ones corresponding to the predicted measurement
- γ

b(l)
k ) are used so as to formulate a least square linear

regression problem, in order to find a linear approximation
of the nonlinear measurement function [19], [21]:

h(xk) ≈ Hmkxk + ck + ek

Hmk = (P bxyk)
T (P bk)

−1

ck = ŷbk −Hmkx̂
b
k

(11)

where ek is a zero mean random variable. Therefore, the
unknown input vector can be estimated through a linear
regression model, as shown below [14]:

ỹk = yk − ŷbk = HmkGdk−1 +∆k (12)

where

∆k = Hmk

(
f (xk−1, uk−1, wk−1)− x̂bk

)
+ υk

E(∆k) = 0

E(∆k∆
T
k ) = HmkP

b
kH

T
mk +Rk = R̃k

(13)

Thus, the unknown input vector is calculated through weighted
least squares, to obtain the unbiased estimate [22]:

d̂k−1 =
(
GTHT

mkR̃
−1
k HmkG

)−1
GTHT

mkR̃
−1
k ỹk (14)

The unknown input estimation equation above requires that
rank(HmkG) = rank(G) = m, meaning that the number
of measurement outputs (m) has to be at least equal to the
number of unknown inputs (p), in contrast to [9], where, in
the mentioned method, the number of measurement outputs
has to necessarily be greater than the number of unknown
inputs.

C. Unbiased State Estimation

Since the unknown inputs have been estimated, the standard
UKF procedure can be followed, so as to obtain the state
estimates. The formerly unknown inputs are now known and
they are considered as normal inputs. The UKF algorithm can
be summarized as follows:

1) Unbiased (a priori) state prediction:

χ
u(l)
k = f

(
χ
(l)
k−1, uk−1

)
+Gd̂k−1 (15)

x̂u−k =

2n∑
l=0

W (l)χ
u(l)
k (16)

2) Unbiased a priori state error covariance calculation:

Pu−k =

2n∑
l=0

W (l)
(
χ
u(l)
k − x̂u−k

)(
χ
u(l)
k − x̂u−k

)T
(17)

3) Unbiased measurement prediction:

γ
u(l)
k = h

(
χ
u(l)
k , uk

)
(18)

ŷuk =

2n∑
l=0

W (l)γ
u(l)
k (19)

4) Unbiased predicted measurement covariance estimation:

Puyk =

2n∑
l=0

W (l)
(
γ
u(l)
k − ŷuk

)(
γ
u(l)
k − ŷuk

)T
+Rk (20)

5) Calculation of the unbiased cross-covariance between
the states and the predicted measurements:

Puxyk =

2n∑
l=0

W (l)
(
χ
u(l)
k − x̂u−k

)(
γ
u(l)
k − ŷuk

)T
(21)

6) Measurement update of the state estimate (or a posteriori
state estimate):

Kk = Puxyk
(
Puyk
)−1

(22)

x̂u+k = x̂u−k +Kk (yk − ŷuk ) (23)

Pu+k = Pu−k −KkP
u
ykK

T
k (24)

The steps (3)-(24) constitute the proposed UKF based
algorithm for dynamic state and unknown input estimation in
the context of power systems, henceforth termed as UKF-UI
method. All these calculations are repeated at every time step.

D. Remarks
1) Different set of sigma points: Apart from the aforemen-

tioned set of sigma points, several variants have also been
proposed in literature [12]. When κ=0, this results in 2n sigma
points (instead of 2n+1 of the standard UKF case, since the
estimate x̂u+k−1 is no longer regarded as part of the sigma
points). This corresponds to the Cubature Kalman filter (CKF),
whose algorithm coincides with the UKF one, using the set of
sigma points as defined below [23], [24]:

χ
(l)
k−1 =

[
x̂u+k−1 + x̃(l)

]
, l = 1, 2, ..., 2n

x̃(l) =

(√
nPu+k−1

)
l

, l = 1, 2, ..., n

x̃(n+l) = −
(√

nPu+k−1

)
l

, l = 1, 2, ..., n

(25)

Substituting κ = 0 in Eqs. (4)-(24), the algorithm for joint
dynamic state and unknown input estimation will be hence-
forth termed as CKF-UI method, to distinguish from the
aforementioned UKF-UI algorithm.
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2) Augmented state: The system equations (1) are formu-
lated in such a way so as to accommodate cases when there is
nonlinear process noise driving the system. In general, process
noise accounts for the mismatch between the true generator
model, and the inferred one which is used for estimation
purposes. Process noise is associated with numerical integra-
tion errors, modelling uncertainty, and noise of measurements
which are used as inputs, driving the dynamic system [12],
[25], [26]. It can be additive or nonlinear, depending on what
it represents. Additive process noise usually accounts for mod-
elling uncertainty and numerical integration errors, whereas
nonlinear process noise is often associated with noise coming
from measured inputs, which have a nonlinear relationship
with the dynamic states [12], [26]. Nonlinear process noise
is handled by augmenting the state vector with the nonlinear
noise terms [7], [12], [20]:

x =

[
x
wp

]
(26)

In this case, the augmented state error covariance has the
following form [7], [12], [20]:

P =

[
Px PTwpx

Pwpx Pwp

]
(27)

where Px is the state error covariance, and Pwpx is the
cross-correlation between the states and the nonlinear process
noise terms. The nonlinear process noise covariance (Pwp

) is
considered to be constant, equal to Qp. It has to be noted
that the vectors and matrices in bold associated with the
augmented state vector x. It has to be noted that, although
the state vector can be further augmented in order to include
the additive process noise terms [12], this approach is not
followed here, for two reasons: First, to avoid dealing with
large covariance matrices, which could negatively contribute
to the computational time. Secondly, in this way, the additive
process noise is not included in the statistical linearisation
procedure, so as for the linearisation error not to encompass
its effect, resulting in better approximation of the measurement
function [19], [27]. Therefore, the additive process noise
covariance matrix has to be added to the state covariance
matrices related to additive process noise, after the statistical
linearisation procedure [19].

III. SYNCHRONOUS GENERATOR MODEL

A. Model Development

Synchronous generators constitute the core of a power sys-
tem. Depending on each study’s targets and the modelling de-
tail, various models have been reported in literature [28], [29].
The decentralization procedure is based on system partitioning
(in the context of the estimation calculations) and requires
some measurements on the assumed ‘boundary’ to be treated
as inputs [7], [30]. There are several approaches in terms of
which measurements to be used as inputs, and whether these
measurements, which are corrupted with noise, are decoupled
[7], [31] or not [6], [9], [32] with their associated noise term.
In addition, different models have been utilized to represent
the synchronous generator and its associated equations [6], [7],

[9], [31], [32]. Here, the synchronous generator subtransient
model is used for the UKF-UI/CKF-UI algorithm and it is
described by the following equations [17], [28]:

α̇ = ωB (ω − 1− fθ) (28)

ω̇ =
1

M
[Tm − Te −D (ω − 1)] (29)

where α is the generator’s internal voltage angle with respect
to the terminal voltage phasor, ω is the p.u. rotor speed, ωB
is the base value for ω, fθ is the rate of change of the angle
of the terminal voltage phasor, M is the inertia characterizing
the rotor’s mass, Tm is the mechanical torque, coming from
the turbine driving the generator, Te is the electrical torque,
associated with the power which the generator is required (by
the network) to supply, and D is the damping coefficient,
to smoothen ω oscillations in transient conditions. These
equations (called ‘swing’ equations) are important from the
stability point of view. ω is conceptually tied with power
system frequency [33], and any changes in the power network
are reflected on fθ, driving changes on Te. The generator’s
rotor includes coils and flux to produce voltage in the stator,
given by the following equations:

Ė′q =
1

T ′d0

{
Efd − E′q − (Xd −X ′d) [−Id

− Kd2

X ′d −Xls

(
ψ1d − (X ′d −Xls) Id − E′q

)]} (30)

Ė′d =
1

T ′q0

{
−E′d −

(
Xq −X ′q

)
[Iq

− Kq2

X ′q −Xls

(
−ψ2q +

(
X ′q −Xls

)
Iq − E′d

)]} (31)

ψ̇2q =
1

T ′′q0

[
−ψ2q − E′d +

(
X ′q −Xls

)
Iq
]

(32)

ψ̇1d =
1

T ′′d0

[
−ψ1d + E′q + (X ′d −Xls) Id

]
(33)

and

Te = Kq1E
′
dId +Kd1E

′
qIq

+
(
X ′′d −X ′′q

)
IdIq +Kd2ψ1dIq −Kq2ψ2qId

(34)

[
Id
Iq

]
=

[
Rs X ′′q
−X ′′d Rs

]−1 [
Kq1E

′
d −Kq2ψ2q − Vd

Kd1E
′
q +Kd2ψ1d − Vq

]
(35)

Vq = V cosα (36)

Vd = −V sinα (37)

V = Vy − Vυ (38)

fθ = fy − fυ (39)

All these equations formulate the subtransient generator
model, which has been thoroughly analysed in literature (for
instance [17], [28], [29]). The equations have been given in
continuous form, but they can be discretized assuming that
ẋ = (xk − xk−1)/T0, where T0 is the simulation time step.
This model is built based on the principle that d-axis leads
q-axis. It can be noticed that the rotor angle (δ) is not part of
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the state variable used here, but the internal rotor angle (α)
is utilized instead. The notion behind this choice is that, in a
multi-machine power system model, the rotor angle (δi) and
the stator voltage phase (θi) of each generator i, which are
significant for the generator’s internal parameters, are defined
with respect to a common reference frame. However, in the
context of decentralization, the knowledge of the values of
these quantities would require knowledge of the common
reference frame, which would defeat the purpose of decen-
tralization [31]. To handle this, we can use the internal rotor
angle as a state variable, as carried out in [9], but defined as
α = δ − θ and employing Eq. (28) to describe its dynamics
[31]. The rate of change of the stator voltage phase can be
approximated by the equation below (here divided by ωB , to
obtain the p.u. value) [28]:

fθk ≈
θk − θk−1
ωBT0

(40)

Assuming that in the beginning of the simulation the system
is in steady state operation, the initial internal rotor angle value
can be given by the following equation (with ‘0’ subscripts
denoting initial conditions) [34]:

α0 = arctan

(
XqI0cosφ0 +RsI0sinφ0

V0 +XqI0sinφ0 −RsI0cosφ0

)
(41)

Following the procedure described in [31], the measure-
ments of the stator voltage magnitude (Vy) and the rate of
change of its phase (fy) are considered as inputs, whereas their
noise terms (Vυ and fυ) are regarded as part of the augmented
state vector [7]. This means that the measurement noise of
these quantities are considered as ‘pseudo process noise’
(using the same terminology as in [7]), showing that this form
of nonlinear noise is assumed to drive the estimation model
here. Additionally, process noise, representing consideration of
modelling uncertainty, is added to each state variable. There-
fore, the synchronous machine state-space model includes the
state vector as follows:

xa =
[
α ω E′q E

′
d ψ2q ψ1d Vυ fυ

]T
(42)

Also, the input vector is:

u = [Vy fy]
T (43)

Whereas the unknown input vector is:

d = [Tm Efd]
T (44)

The unknown input distribution matrix is given by:

G =

[
0 T0

M 0 0 0 0 0 0
0 0 T0

T ′
d0

0 0 0 0 0

]T
(45)

The nonlinear relationship between the states is clear from the
Eqs. (28 - 39).

Given the presence of both additive and nonlinear process
noise in our generator estimation model, in the context of the
discussion in Section II-D regarding the consideration of an
augmented state vector, the following additive process noise

covariance matrix is added to the additive process noise related
state covariance matrices, in Eqs. (14), (17):

Q =

[
Q 06×2

02×6 02×2

]
(46)

The proposed UKF-UI/CKF-UI (depending on the set of sigma
points used) algorithm, for the generator estimation model
used here, is summarized in Appendix A.

B. Rank requirement and measurement quantities selection

Following the practice in [7], [31], the stator current mea-
sured magnitude (Iy) and its measured phase with reference
to the voltage phasor (φIy) are the measurements which are
treated as system outputs. These are given by the following
equations:

Iy =
√
I2q + I2d + υI (47)

φIy = α+ arctan

(
Id
Iq

)
+ υφI

(48)

and Iq , Id are given by Eq. (35), whereas υI , υφI
are

the measurement noise terms, associated with Iy and φIy,
respectively.

However, careful attention has to be paid to the rank require-
ment of the unknown input estimation procedure, according
to which rank(HmG) = m. With regard to Eq. (14), in
mathematical terms, this means that, the matrix inversion
which is involved in this equation is not possible when the rank
requirement is violated, due to singularity which arises, and
the unknown input estimation is impossible. In practical terms,
this is closely related to the measurement variables chosen as
system outputs. More specifically, given matrices G, x and d,
the unknown inputs are reflected on ω and E′q . In turn, the
rank requirement of HmG is violated when at least one of
columns 2, 3 of matrix Hm is a column of zeros, since this
would result in a column of zeros in HmG. Given the state
vector x, columns 2, 3 of matrix Hm correspond to ω and
E′q , respectively. This means that these two states have to be
able to be viewed from the measurements/outputs. Using just
I and φI as outputs, given Eqs. (47, 48, 35), it is clear that ω
is not reflected on the measurements. Therefore, frequency
measurement (fsysy ) has also been considered, since it is
closely related to speed [33], and its p.u. value is:

fsysy = ω + υf (49)

where υf is the associated measurement noise. This is the
reason why frequency measurement is considered in [9] as
well. Thus, the measurement vector is the following:

y =
[
fsysy Iy φIy

]T
(50)

C. Model Initialization

The synchronous generator model is initialized assuming
that the system operates in steady state. Since the terminal
voltage and current magnitudes, along with their phase differ-
ence, can be obtained from the PMU at the terminal bus [9],
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and the global reference frame is unknown, the reference frame
is considered to coincide with the position of the terminal
voltage phasor. Therefore, if V0 = V ∠0 and I0 = I∠−φ0

0 ,
the initial conditions of all states and unknown inputs can
be derived from the following equations (with subscripts ‘0’
denoting initial conditions) [35]:

E∠α0
q0 = V ∠0

0 + (Rs + jXq) I
∠−φ0

0 (51)

Id0 = −I0sin (α0 − (−φ0)) (52)
Iq0 = I0cos (α0 − (−φ0)) (53)
Vd0 = −V0sin (α0) (54)
Vq0 = V0cos (α0) (55)
Efd0 = Eq0 − (Xd −Xq) Id0 (56)
E′q0 = Efd0 + (Xd −X ′d) Id0 (57)

E′d0 = −
(
Xq −X ′q

)
Iq0 (58)

ψ2q0 = −E′d0 +
(
X ′q −Xls

)
Iq0 (59)

ψ1d0 = E′q0 + (X ′d −Xls) Id0 (60)

Tm0 = Te0 (61)

and Te0 is given by Eq. (34).

IV. CASE STUDIES

The UKF-UI/CKF-UI algorithm has been implemented in a
68-bus 16-machine system model, shown in Fig. 1, the details
of which can be found in [18]. It has to be highlighted that,
in this model, the synchronous generator subtransient model
is used for all the machines, and, therefore, the synchronous
generator is characterized by the subtransient model for the
purpose of estimation. However, in the context of power
system model, an additional state variable is used as part of
the synchronous generator model, the transient emf (E′dc) due
to flux linkage of a dummy coil in the q-axis [35]. But, this
is utilized to facilitate the multi-machine system simulation
[35], thus it is not needed in the synchronous machine decen-
tralized model for UKF-UI/CKF-UI. Power system modelling
is MATLAB/Simulink based, and all simulations continue for
10 s. Measurements are obtained by PMUs having reporting
rate of 120 frames per second, according to IEEE Standards
[36], [37]. The standard deviation concerning the process and
measurement noise is assumed to be 10−6. Two case studies
have been considered:
• Case Study 1A: A three-phase to ground fault occurs at

bus 25 at the time instant t = 2 s, it is cleared after 100
ms and the line connecting buses 25 and 26 is tripped at
the same time.

• Case Study 1B: A step increase by 1 p.u. in Tm of Gen.
5 occurs at the time instant t = 2 s and lasts for 1 s,
returning to its previous value afterwards.

As previously stated, an EKF based state estimation method
for power systems with unknown inputs has been recently
proposed (termed as EKF-UI) [6], [9]. Thus, it would be
interesting to assess the performance of that method and the
ones developed here (i.e. UKF-UI and CKF-UI) in the context
of the aforementioned case studies. The main differences
between UKF-UI/CKF-UI and EKF-UI can be summarized
as follows:
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Fig. 1: NETS-NYPS 68-bus, 16-machine system

• In order to apply EFK-UI, the Jacobians for state and
measurement equations have to be calculated. This pro-
cedure is not needed in UKF-UI/CKF-UI;

• In UKF-UI/CKF-UI, the unknown inputs are calculated
at every time step, based on a linear regression model
as explained earlier, without any relationship to arise
between their values at two successive time steps. In
EKF-UI, the estimation procedure is based on a different
approach, where the unknown input estimation is based
on a formula dependent on the unknown input’s estimated
value of the previous time step [6], [9];

• In EFK-UI, the number of measurements has to be greater
than the number of unknown inputs at every time step [6],
[9], whereas in UKF-UI, the number of measurement is
required to be at least equal to the number of unknown
inputs.

Therefore, here, all techniques are utilized, based on the
same measurements and models developed in the context of
this research effort and analysed in earlier sections, so as to
evaluate all estimation algorithms under the same conditions
and assumptions.

As far as the case study 1A is concerned, the state and
unknown input estimation results are illustrated in Figs 2, 3
regarding Gen. 8. In addition, the state and unknown input
estimation results are depicted in Figs. 4, 5 for the case study
1B concerning Gen. 5. The effectiveness of UKF-UI and CKF-
UI methods can be clearly noticed, as all algorithms are reveal
highly accurate results.

V. ROBUSTNESS ASSESSMENT

A. Sensitivity to parameter errors

Uncertainty is present in power system operation, and
system operators are likely to consider erroneous data in
power system analysis, due to various reasons, such as ageing
components [1]. Therefore, it is interesting to assess the
performance of UKF-UI and CKF-UI methods, when there is
10% error in Xq and X ′q of the generator studied in each case
study. Here, case study 1A has been revisited, and the results
for Gen. 8 are illustrated in Figs. 6 and 7. It can be noticed that
the estimation model dynamics are excited to a small extent
before the contingency occurrence, reflecting the incorrect
system initialization considering the erroneous parameters.
Also, unknown input estimation results are accurate towards
the end of the transient period, whereas state estimation results
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Fig. 2: Case Study 1A: Dynamic state estimation of Gen. 8
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Fig. 3: Case Study 1A: Unknown input estimation of Gen. 8

are characterized by a small steady state error apart from rotor
speed, which is highly viewable through system frequency
measurements. Similar observations have been noted in [9],
under similar sensitivity analysis. Therefore, good knowledge
of the local machine parameters under study is required to
achieve highly accurate estimation results.

B. Sensitivity to process and measurement noise

As discussed in Section II-D, process noise is associated
with model integration errors, model uncertainty and noise
coming from measured inputs. The success of the UKF-
UI/CKF-UI algorithm has been validated in the previous case
studies, but these are based on the assumptions that system
modelling approximations are low and PMUs give highly
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Fig. 4: Case Study 1B: Dynamic state estimation of Gen. 5
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Fig. 5: Case Study 1B: Unknown input estimation of Gen. 5

accurate measurements. However, in practice the measure-
ment noise can be higher. According to the IEEE Standard
C37.118.1-2011 and its recent amendment C37.118.1a-2014,
the basic time synchronisation accuracy is 0.2 µs [11], [36],
[37], which corresponds to phase measurement error of ±0.08
mrad, for a 60-Hz system. Also, the frequency error has to be
up to 0.005 Hz [36], [37]. Furthermore, the current and voltage
magnitude measurements are limited by the accuracy of the
instrument transformers [38], and the IEEE Standard C57.13-
2008 specifies the instrument transformers’ accuracy within
the range of 0.1% and 0.3% [11], [39].

Taking these into account, the estimation procedure has been
re-examined against high process noise levels. This consists
of high measurement noise levels for the measured inputs (i.e.
standard deviation of 10−3 p.u. for voltage and 0.08 mrad for
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Fig. 6: Case Study 1A: Dynamic state estimation in the
presence of 10% error in Xq and X ′q of Gen. 8
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Fig. 7: Case Study 1A: Unknown input estimation in the
presence of 10% error in Xq and X ′q of Gen. 8

its phase), which correspond to nonlinear process noise, as
well as high levels of additive process noise, corresponding to
standard deviation of 10−3 for all states, in a similar approach
followed in [25], accounting for 10% of the largest state
changes in one time step. High value of additive noise covari-
ance Q means that ‘fictitious’ noise is added to the estimation
model, so as for the filter to include a larger emphasis on
the measurement correction part, which is important when
unmodelled dynamics are present, as explained in [12]. The
results for the previous case studies are shown in Figs. 8, 9
for the case study 1A and Gen. 8, and in Figs. 10, 11 for the
case study 1B and Gen. 5. The robustness of the proposed
methods is evidently showcased with respect to the dynamic

state estimation, whereas the unknown input estimation is
greatly affected by the high process noise levels. This is due
to the fact that the UKF-UI/CKF-UI algorithm is optimized
for the estimation of the dynamic states, whose behaviour is
described by known equations. Similar performance has been
observed for EKF-UI.
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Fig. 8: Case Study 1A: Dynamic state estimation of Gen. 8
under high process noise levels
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Fig. 9: Case Study 1A: Unknown input estimation of Gen. 8
under high process noise levels

The proposed algorithm has also been tested against high
measurement noise levels for the measurements obtained (i.e.
the ones forming the measurement vector y), considering low
process noise levels. The results are illustrated in Figs. 12,
13 for the case study 1A and Gen. 8, and in Figs. 14, 15
for the case study 1B and Gen. 5. It can be observed that
they are similar to the ones with high process noise levels,
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Fig. 10: Case Study 1B: Dynamic state estimation of Gen. 5
under high process noise levels
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Fig. 11: Case Study 1B: Unknown input estimation of Gen. 5
under high process noise levels

meaning that the dynamic state estimates are highly accurate,
as opposed to the unknown input estimates, showing higher
sensitivity to measurement noise increase.

Since highly noisy measurements affect the unknown input
estimation performance from both process and measurement
noise related points of view, it is required to search for noise
impact mitigation strategies. This has been done in two ways:
Finding ways of obtaining more accurate measurements, and
increasing the number of measurable quantities in our model.

1) Discussion on measurement noise reduction: Noise re-
duction has been thoroughly tackled in the context of other
fields, such as signal processing. As far as power systems are
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Fig. 12: Case Study 1A: Dynamic state estimation of Gen. 8
under high measurement noise levels
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Fig. 13: Case Study 1A: Unknown input estimation of Gen. 8
under high measurement noise levels

concerned, the advent of PMUs and their significance in wide
area monitoring has triggered research studies on measurement
noise mitigation. Various techniques have been reported in
literature, such as:
• Empirical mode decomposition (EMD) methods [40],

[41];
• Singular value decomposition (SVD) based algorithms

[42];
• Wavelet shrinkage procedures [40], [43], [44];
• Integrated calibration techniques [45], [46];
• Multiple measurement averaging processes (also termed

as ‘data buffering’) [47], [48].
However, these methods mainly aim at offline denoising.
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Fig. 14: Case Study 1B: Dynamic state estimation of Gen. 5
under high measurement noise levels
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Fig. 15: Case Study 1B: Unknown input estimation of Gen. 5
under high measurement noise levels

Real-time denoising’s importance has been recently high-
lighted in power systems [40]. Online measurement noise re-
duction algorithms include Kalman filtering based approaches
[49], and methods including autoregressive models, which has
been reported in the field of real-time glucose monitoring
[50]. Furthermore, novel algorithms, integrated within PMUs’
software have the capability to report measurements with
increased accuracy [51]–[55]. In addition, PMU algorithms
have been employed so as to minimize their execution time,
enabling the existence of PMUs with reporting rates as high
as 5000 frames per second [56]. This capability can be found
useful in the context of data buffering as well.

2) Consideration of additional measurements: Attempting
to enhance the unknown input estimation accuracy, additional

measurements can facilitate this purpose [9]. This depends
on the decentralized model used, in terms of the measurable
quantities, and the model used here enables the use of more
quantities as measurements (in contrast with the model in [9],
for instance). PMUs have the capability of measuring active
and reactive power [9], thus, the previous case studies have
been re-examined, considering these additional measurements,
since this can be accomplished through the decentralized
model used here. The measurement functions for these are
given as follows:

Py = Kq1E
′
dId +Kd1E

′
qIq +

(
X ′′d −X ′′q

)
IdIq

+Kd2ψ1dIq −Kq2ψ2qId −
(
I2d + I2q

)
Rs + υP

(62)

Qy = Kq1E
′
dIq −Kq2ψ2qIq

−X ′′q I2q −X ′′dI2d −Kd1E
′
qId −Kd2ψ1dId + υQ

(63)

where Py and Qy are the active and reactive power, re-
spectively, measured at the generator’s terminal bus. The
measurement vector is then the following one:

y =
[
fsysy Iy φIy Py Qy

]T
(64)

Here, considering the worst case scenario, same high pro-
cess and measurement noise levels as earlier are considered,
but assuming 1800 Hz PMU reporting rate (in accordance
with the research findings listed previously), while the UKF-
UI/CKF-UI algorithm runs twice per cycle, and, therefore, 15
measurements of every output are averaged every time that the
algorithm iterates. The results are depicted in Figs. 16, 17 for
the case study 1A regarding Gen. 8, and in Figs. 18, 19 for the
case study 1B concerning Gen. 5. The results are acceptable
in terms of unknown input estimation.

VI. COMPUTATIONAL FEASIBILITY

As previously stated, in all cases the UKF-UI/CKF-UI
algorithm runs twice per cycle, in the context of a 60 Hz
system. Therefore, the algorithm is repeated at a frequency of
120 Hz. As a result, it is important for the whole procedure to
be completed within a shorter time frame than the simulation
time step (which is 1/120 ≈ 8.33 ms). It has to be mentioned
that this study has been conducted on MATLAB/Simulink,
using a personal computer with Intel Xeon E5-1650, 3.20
GHz CPU and 16 GB RAM. The average time required for
one iteration for all methods are depicted in Table I. The
proposed UKF-UI and CKF-UI appear to require more time
to be executed than EKF-UI, which is expected, since they
include more equations. CKF-UI is also proven to be faster
than UKF-UI, which can be justified by considering that UKF-
UI engages one more sigma point for each state, resulting
in larger matrices. Most importantly, all methods require less
amount of time than 8.33 ms, thus, they can be implemented
in real time.

TABLE I: Computational speed assessment

Method Average execution time for one iteration (ms)
EKF-UI 0.41
CKF-UI 0.54
UKF-UI 0.71
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Algorithm: UKF-UI/CFK-UI

1: The augmented state vector, known inputs, and unknown
inputs are given by the vectors in Eqs. (42), (43), and
(44), respectively. State equations f are given by the
discrete form of Eqs. (28)-(39), whereas measurement
equations h are given by Eqs. (49), (47), (48), considering
3 measurements, or Eqs. (49), (47), (48), (62), (63),
considering 5 measurements. The length of the augmented
state vector is n = n+ 2.

2: while k ≥ 1 do
3: STEP 1: Initialization
4: if k == 1 then
5: Initialize x̂u+0 according to Eqs. (51)-(61), and ŵp0 =

02×1, therefore x̂u+0 = [(x̂u+0 )T 0T2×1]T .
6: Initialize Px0 = Q, Pwpx0 = 02×n, Pwp0 = Qp,

forming P u+
0 , in accordance with Eq. (27).

7: else
8: Reinitialize ŵp(k−1) = 02×1, and Pwp(k−1) = Qp,

while the rest of the elements in x̂u+k−1, P u+
k−1 remain

unchanged.
9: end if

10: STEP 2: Sigma point generation
11: Obtain the sigma points from Eq. (3) for UKF-UI, or

Eq. (25) for CKF-UI.
12: STEP 3: Biased state prediction
13: χ

b(l)
k = f(χ

(l)
k−1, uk−1)

14: x̂bk =
∑2n
l=0W

(l)χ
b(l)
k

15: P b
k =

∑2n
l=0W

(l)(χ
b(l)
k − x̂bk)(χ

b(l)
k − x̂bk)T

16: STEP 4: Biased measurement prediction
17: γ

b(l)
k = h(χ

b(l)
k , uk)

18: ŷbk =
∑2n
l=0W

(l)γ
b(l)
k

19: P b
xyk =

∑2n
l=0W

(l)(χ
b(l)
k − x̂bk)(γ

b(l)
k − ŷbk)T

20: STEP 5: Unknown input estimation
21: Hmk = (P b

xyk)
T (P b

k )
−1

22: R̃k = Hmk(P
b
k +Q)HT

mk +Rk
23: d̂k−1 = (GTHT

mkR̃
−1
k HmkG)

−1GTHT
mkR̃

−1
k (yk − ŷbk)

24: STEP 6: Unbiased state prediction
25: χ

u(l)
k = f(χ

(l)
k−1, uk−1) +Gd̂k−1

26: x̂u−k =
∑2n
l=0W

(l)χ
u(l)
k

27: P u−
k =

∑2n
l=0W

(l)(χ
u(l)
k − x̂u−k )(χ

u(l)
k − x̂u−k )T +Q

28: STEP 7: Unbiased measurement prediction
29: γ

u(l)
k = h(χ

u(l)
k , uk)

30: ŷuk =
∑2n
l=0W

(l)γ
u(l)
k

31: Puyk =
∑2n
l=0W

(l)(γ
u(l)
k − ŷuk )(γ

u(l)
k − ŷuk )T +Rk

32: P u
xyk =

∑2n
l=0W

(l)(χ
u(l)
k − x̂u−k )(γ

u(l)
k − ŷuk )T

33: STEP 8: Kalman update
34: Kk = P u

xyk(P
u
yk)
−1

35: x̂u+k = x̂u−k +Kk(yk − ŷuk )
36: P u+

k = P u−
k −KkP

u
ykK

T
k

37: STEP 9: Output and time update
38: Output x̂u+k and P u+

k

39: k ←− (k + 1)
40: end while
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Fig. 16: Case Study 1A: Dynamic state estimation of Gen.
8 under high process and measurement noise levels, using
measurement noise impact reduction measures
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Fig. 17: Case Study 1A: Unknown input estimation of Gen.
8 under high process and measurement noise levels, using
measurement noise impact reduction measures

VII. CONCLUSIONS

A derivative-free Kalman filtering based decentralized dy-
namic state estimation algorithm with unknown inputs has
been demonstrated, to tackle cases when linearisation is bur-
densome. The dynamic state estimation process is performed
without any prior knowledge or assumptions regarding un-
known input models or distributions. The decentralization
procedure necessitates voltage magnitude and phase measure-
ments to be treated as inputs, and the consideration of the
internal rotor angle as a state variable leads to useful results.
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Fig. 18: Case Study 1B: Dynamic state estimation of Gen.
5 under high process and measurement noise levels, using
measurement noise impact reduction measures
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Fig. 19: Case Study 1B: Unknown input estimation of Gen.
5 under high process and measurement noise levels, using
measurement noise impact reduction measures

This method has been tested on a realistic large power system
model, under low and high process and measurement noise
levels, as well as against parameter errors in the estimation
model, and it has been proven to be robust. The differences
between the proposed methods and an Extended Kalman fil-
tering based decentralized dynamic state estimation approach
with unknown inputs have also been highlighted. Measurement
noise impact reduction techniques have been proposed in order
to further enhance the unknown inputs’ estimation accuracy.
This suggested methodology constitutes a step forward to-

wards the enhanced accuracy of power system dynamic state
estimation, which is significant in terms of stability margin
computation and security assessment, in the context of modern
power networks, characterised by stochasticity and uncertainty.

APPENDIX A
UKF-UI/CKF-UI ALGORITHM

The UKF-UI/CFK-UI algorithm is presented in a pseudo-
code form at the left top of the previous page.
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