
XACML Policy Performance Evaluation Using a Flexible
Load Testing Framework

Bernard Butler, Brendan Jennings, Dmitri Botvich
FAME

Telecommunications Software & Systems Group
Waterford Institute of Technology

Ireland
{bbutler,bjennings,dbotvich}@tssg.org

ABSTRACT
The performance and scalability of access control systems is
growing more important as organisations deploy ever more
complex communications and content management systems.
Fine-grained access control is becoming more pervasive, so
decisions are more frequent and policy sets are larger. We
outline a flexible performance testing framework that ac-
cepts XACML PDP implementations (in the server com-
ponent) and submits representative access control requests
(from the client component) in a representative temporal or-
dering. The framework includes instrumentation and anal-
ysis modules to support performance experiments. We de-
scribe an initial realization of the framework and report on
initial experiments comparing the performance of the SunX-
ACML and Enterprise XACML PDPs.

Categories and Subject Descriptors
D.2.8 [SOFTWARE ENGINEERING]: Metrics—Per-
formance measures; D.4.6 [OPERATING SYSTEMS]:
Security and protection—Access controls, Information flow
controls

General Terms
Security, Performance, Measurement

Keywords
Access control policies, performance evaluation, measure-
ment testbed

1. INTRODUCTION
Policy Decision Point (PDP) performance is an important

access control system requirement. In larger organisations,
access decisions depend on the context of an access request,
so fine-grained access control is needed to implement se-
curity policies with complex boundaries between permitted
and denied behaviour. There are more access requests, hence
policy evaluations and each policy evaluation takes longer as
policy sets grow larger.

As an example, policy control of instant messaging com-
munications in enterprises causes large numbers of policy
evaluations, particularly in group-chat scenarios, where the

Copyright is held by the author/owner(s).
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
ACM 978-1-4503-0244-9/10/10.

access control system must decide which participant pairs
can communicate. Such policy control is needed in organi-
sations where Chinese Walls [1] must be maintained between
groups for regulatory reasons.

Many enterprise-level access control systems encode access
controls as XACML (the eXtensible Access Control mod-
elling Language) [7] hence researchers focus on XACML poli-
cies and requests and their use in PEPs (Policy Execution
Points) and XACML-based PDPs.

It is relatively easy to scale out the (stateless) PEP func-
tion, but not the (stateful) PDP function. Typical perfor-
mance measures of a PDP set include latency and through-
put, so any testbed needs to compute both. Some researchers
advocate “black box” approaches such as caching frequently
encountered request-result pairs. Alternatively, given one or
more one of the policy set, request profiles or PDP source
code, “white-box” approaches are possible. XACML poli-
cies can be improved by categorisation, reordering and clus-
tering [4], numericalisation and simplification to tree struc-
tures [3], etc. XACML policies can also be replaced with an
equivalent Description Logic formulation [2].

Generally the evidence presented by researchers is based
on comparisons with the Sun XACML reference implemen-
tation [8] often using unpublished policies and requests. Hence
it is difficult to compare one approach with another, or to
determine what tradeoffs occur. We propose a performance
testbed for access control implementations to facilitate re-
search into the performance and scalability problems facing
XACML-based access control. The aim of our work is to
provide a flexible (easily configured) framework, enabling
researchers to perform quantitative experiments under rep-
resentative, controlled and repeatable conditions.

2. RELATED WORK
The problem of generating a large and representative set

of policy requests for performance evaluation is related to
that of generating a test set that covers as many of the pol-
icy conditions as possible. By ensuring full coverage, all
policy conditions are checked and so there is a path to each
terminal node in the decision tree inferred from the policy
set [5]. [5] also describes how Margrave can be used to de-
termine redundant rules in a complex policy set. [6] describe
how policy mutation testing may be used to determine how
well a given test set of XACML requests discovers faults
(deliberately injected as mutations) in policy sets.

Data clustering has been applied to characterise policies
and hence improve PDP performance [4].



PDP
Universal

PEP
Request

Dispatcher

Generator

XTS

XTC

Figure 1: XACML Load Testing System Architec-
ture.

3. FRAMEWORK OVERVIEW
The architecture of our XACML load testing framework

is presented in Figure 1. The XTS (server) comprises a PDP
and a simplified “universal” PEP and specific PDP adapter.
Each PDP implementation needs an adapter to wrap calls
from the universal PEP. The adapter also brackets each PDP
call with timing calls to compute the elapsed time at the
PDP.

Several modes of request generation are possible in the
XTC (client)

• Reusing existing requests by weighted resampling

• Generating new requests, motivated by Section 2

XTC submits the generated XACML requests to the XTS PEP
based on request scenarios chosen by testbed users. XTA per-
sists the XTS results (both responses and timings) and anal-
yses it offline by fitting empirical (frequency) distribution
functions (edf ) and clustering requests by locating peaks in
the response duration edf.

4. INITIAL EXPERIMENTS AND RESULTS
In the testbed, we compared the performance of the Sun

XACML and Enterprise XACML [9] PDP implementations,
using the same policies and identical resampled requests, see
Figure 2. Note that both PDPs made the same access deci-
sions for all requests. We believe each cluster of processing
durations (equivalently, edf peak) corresponds to a set of
requests that share similar processing requirements such as
policy search paths for a given PDP. Qualitatively, the En-
terprise XACML PDP has better performance (tEX < tSX)
than the Sun XACML PDP. In fact, the Enterprise XACML
PDP shows remarkably consistent performance at about 1.4
milliseconds processing time per request, with just a few
upper outliers.

The experiments are valid for that combination of policies
and requests since we employ a randomised block design and
control for other known factors.

5. CONCLUSIONS AND FUTURE WORK
The testing framework provides necessary infrastructure

for building access control policy evaluation models. Such
models are needed to understand how to improve perfor-
mance and/or scalability of a XACML-based access control
system. The framework can be used to test hypotheses re-
garding how to improve access control performance and scal-

ability. For the future, there will be better request genera-
tion and timing analysis techniques, to broaden the scope of
the hypotheses that can be tested. We can extend to more
PDP implementations and multiple PDP instances. We will
also look for a predictive model underlying the observed tim-
ings.

6. ACKNOWLEDGMENTS
The authors acknowledge the contribution of Keith Grif-

fin and Ger Lawlor, Cisco Systems Inc., who helped clarify
the requirements for modelling the performance of XACML
PDPs. The work was funded by Science Foundation Ire-
land via the “FAME” Strategic Research Cluster, grant no.
08/SRC/I1403.

7. REFERENCES
[1] D. F. C. Brewer and M. J. Nash. The Chinese Wall

Security Policy. In IEEE Symposium on Security and
Privacy, pages 206–214, 1989.

[2] V. Kolovski, J. Hendler, and B. Parsia. Analyzing web
access control policies. In WWW ’07: Proceedings of
the 16th international conference on World Wide Web,
pages 677–686, New York, NY, USA, 2007. ACM.

[3] A. X. Liu, F. Chen, J. Hwang, and T. Xie. Xengine: a
fast and scalable XACML policy evaluation engine. In
Proceedings of the 2008 ACM SIGMETRICS
international conference on Measurement and modeling
of computer systems, pages 265–276, New York, NY,
USA, 2008. ACM.

[4] S. Marouf, M. Shehab, A. Squicciarini, and
S. Sundareswaran. Statistics & Clustering Based
Framework for Efficient XACML Policy Evaluation. In
POLICY ’09: Proceedings of the 2009 IEEE
International Symposium on Policies for Distributed
Systems and Networks, pages 118–125, Washington,
DC, USA, 2009. IEEE Computer Society.

[5] E. Martin. Automated test generation for access control
policies. In OOPSLA ’06: Companion to the 21st ACM
SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pages 752–753,
New York, NY, USA, 2006. ACM.

[6] E. Martin, T. Xie, and T. Yu. Defining and measuring
policy coverage in testing access control policies. In
Proc. 8th International Conference on Information and
Communications Security, pages 139–158, 2006.

[7] T. Moses. eXtensible Access Control Markup Language
TC v2.0 (XACML), February 2005.

[8] S. Proctor. Sun’s XACML Implementation -
Programmer’s Guide for Version 1.2.
http://sunxacml.sourceforge.net/guide.html, July 2004.
Last accessed 2009-11-25.

[9] Z. Wang. Enterprise Java XACML.
http://code.google.com/p/enterprise-java-
xacml/wiki/DevelopmentPlan, February 2010. Last
accessed 2010-04-19.



EnterpriseXacml PDP: Resampled Single request set

Median duration per policy evaluation (milliseconds)

D
en

si
ty

: f
re

qu
en

ci
es

 n
or

m
al

is
ed

 s
o 

th
at

 a
re

a 
un

de
r 

cu
rv

e 
=

 1

1.4 1.6 1.8 2.0 2.2 2.4 2.6

0
5

10
15

20
25

(a) Enterprise XACML PDP evaluation duration frequen-
cies.

SunXacml PDP: Resampled Single request set

Median duration per policy evaluation (milliseconds)

D
en

si
ty

: f
re

qu
en

ci
es

 n
or

m
al

is
ed

 s
o 

th
at

 a
re

a 
un

de
r 

cu
rv

e 
=

 1

1.5 2.0 2.5 3.0 3.5 4.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

(b) Sun XACML PDP evaluation duration frequencies.

Figure 2: Comparison of the performance profiles of two XACML PDPs on the same policy and request sets.


