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Abstract—In this paper, the generalized likelihood ratio
test-linear quadratic (GLRT-LQ) has been extended to the mul-
tiple-input multiple-output (MIMO) case where all transmit–re-
ceive subarrays are considered jointly as a system such that only
one detection threshold is used. The GLRT-LQ detector has been
derived based on the Spherically Invariant Random Vector (SIRV)
model and is constant false alarm rate (CFAR) with respect
to the clutter power fluctuations (also known as the texture).
The new MIMO detector is then shown to be texture-CFAR as
well. The theoretical performance of this new detector is first
analytically derived and then validated using Monte Carlo sim-
ulations. Its detection performance is then compared to that
of the well-known Optimum Gaussian Detector (OGD) under
Gaussian and non-Gaussian clutter. Next, the adaptive version of
the detector is investigated. The covariance matrix is estimated
using the Fixed Point (FP) algorithm which enables the detector to
remain texture- and matrix-CFAR. The effects of the estimation
of the covariance matrix on the detection performance are also
investigated.

Index Terms—Detection performance, generalized likelihood
ratio test-linear quadratic (GLRT-LQ), multiple-input mul-
tiple-output (MIMO) radar, non-Gaussian clutter, Spherically
Invariant Random Vector (SIRV).

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) is a
technique used in communications to increase data

throughput and link range without additional bandwidth or
transmit power. This is achieved by higher spectral efficiency
and link reliability or diversity. Recently, this concept has
been used for radar applications [1]. In the context of radar, a
(statistical) MIMO radar is one where both the transmit and
receive elements are sufficiently separated so as to provide spa-
tial diversity. This reduces the fluctuations of the target radar
cross section (RCS) due to the different target aspects seen
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by each pair of transmit–receive elements [2]. It can also be
used to improve the probability of detection [3] and resolutions
[4]. Several applications including target classification and
high-resolution imaging can be enhanced by a MIMO radar. On
top of that, each transmit element sends a different (orthogonal)
waveform which can be separated at the receive end. This pro-
vides waveform diversity which in turn increases the separation
between clutter and target returns [5]. According to [6], it also
improves the identifiability of target parameters, enables the
direct application of adaptive arrays for target detection, and
enhances flexibility for transmit beampattern design.

MIMO procedures for radar have been widely studied for the
case of additive Gaussian noise. In [3], [7], and [8], the au-
thors consider the detection performance for widely separated
antennas while in [6] and [9] the authors consider colocated an-
tennas. The combined case of having widely separated antenna
subarrays which contain colocated antenna elements is consid-
ered in [10]. However, these detectors may exhibit poor perfor-
mance when the additive noise is no longer Gaussian.

In the case of MIMO radar, it is even more important to
consider non-Gaussian models. First, as mentioned earlier, one
advantage of a MIMO imaging radar is improved resolution.
Usually, in each resolution cell, there is a large number of
scatterers. According to the Central Limit Theorem (CLT), the
clutter power in each cell is almost constant and the clutter is
considered to follow a Gaussian distribution. However, as the
resolution cell becomes smaller, there are fewer scatterers in it
and the CLT will no longer apply. Non-Gaussian models which
take into account the variation in clutter power therefore have
to be used. Moreover, as the resolution cell becomes smaller, it
is more likely for the illuminated area to be nonhomogeneous.

Second, for configurations with widely separated
transmit–receive subsystems, the target returns received by
each receive subsystem are different due to different aspect
angles, thus reducing target RCS fluctuations. Similarly, the
clutter returns vary from subsystem to subsystem. Hence, it is
important to use non-Gaussian models which better reflect the
clutter power fluctuations. Indeed, experimental radar clutter
measurements [11]–[14] have been found to fit non-Gaussian
statistical models such as the well-known Spherically Invariant
Random Vector (SIRV) model [15]–[17] which has been
widely studied, particularly in terms of detection [18]–[20].

In this paper, we consider MIMO radar detection under
non-Gaussian heterogeneous and impulsive clutter. The
non-Gaussian statistical model we use is the SIRV model.
This model writes clutter returns as the product of a Gaussian
random process (speckle) and the square-root of a positive
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random variable (texture). Speckle models temporal fluctu-
ations of clutter while texture models spatial fluctuations of
clutter power. The SIRV can model different non-Gaussian
clutter depending on the chosen texture, with Gaussian clutter
as the special case where the texture is a constant. It also has a
Gaussian kernel which means that certain classical results can
still be applied. For example, the maximum-likelihood (ML)
estimates of target parameters are given by the maximization
of the traditional matched filter.

In radar applications, the clutter covariance matrix is usually
unknown and has to be estimated from target-free secondary
data. Under non-Gaussian clutter, the classical Sample Covari-
ance Matrix (SCM) is no longer the ML estimate. Hence, we
consider here the fixed point estimate (FPE) which was first in-
troduced in [21] and [22] and then fully analyzed in [23] and
[24]. FPE is the exact ML estimate when the texture is assumed
to be deterministic and unknown. On the other hand, when is a
positive random variable, FPE is an approximate ML estimate.

The main contribution of this paper is the derivation of a
MIMO non-Gaussian detector for constant false alarm rate
(CFAR) detection and estimation. Previously, several gener-
alized likelihood ratio tests (GLRTs) like the GLRT-linear
quadratic (GLRT-LQ) detector in [18] and [19] and asymptotic
Bayesian optimum radar detector (aBORD) in [20] have been
derived based on the SIRV model and have been shown to be
CFAR with respect to the texture (texture-CFAR). We gen-
eralized the GLRT-LQ detector to the MIMO case where all
subarrays are considered jointly as a system such that only one
detection threshold is used to regulate the false alarm rate. The
resulting MIMO detector is also texture-CFAR. The Gaussian
case is a special case of SIRV where the probability density
function (pdf) of the texture is given by and

is the clutter power. Hence, this new detector is expected
to give similar results as the well-known optimum Gaussian
detector (OGD) under Gaussian clutter and superior results
under non-Gaussian clutter.

The adaptive version of this new MIMO detector is then con-
sidered. Using the FPE to estimate the covariance matrix, this
detector is shown to be texture-CFAR. Moreover, it is matrix-
CFAR as it does not depend on the unknown covariance matrix.
The detection performance depends on an additional parameter,

: the number of secondary data containing only clutter returns
which are used to obtain the FPE.

This paper is organized as follows. First, we consider a
general signal model for MIMO radar (Section II). Instead
of considering a single element at each location, we assume
that there is a subarray containing one or more elements.
Section III-A shows the derivation of a MIMO non-Gaussian
detector. In Section III-B, the theoretical performance of this
new detector is derived and verified using Monte Carlo sim-
ulations. The detection performance is then analyzed through
Monte Carlo simulations and compared to that of the OGD
(extended to the MIMO case in [7], [25]) under both Gaussian
and non-Gaussian clutter (Section III-C). Next, in Section IV-A,
the adaptive version of this new detector is considered, using
the FPE as the covariance matrix estimate. The effects of the
covariance matrix estimation on the detection performance are

Fig. 1. Configuration where .

investigated using Monte Carlo simulations in Section IV-B.
Finally, conclusions are presented in Section V.

II. SIGNAL MODEL

In this paper, vectors and matrices are denoted by lowercase
and uppercase bold, respectively. The superscript “ ” denotes
the Hermitian operator.

In this section, we consider a target located at . Let
there be transmit subarrays and receive subarrays. The

th transmit and th receive subarray contain and ele-
ments, respectively, for and . The
configuration can be seen in Fig. 1. The RCS of the target seen
by each receive–transmit pair is assumed to be different but de-
terministic. The elements within each subarray are assumed to
be closely spaced such that the RCS is the same.

Let and be the steering vectors and and
the angular location for the target for the th transmit and

th receive subarray, respectively.
Different orthogonal waveforms are assumed to be trans-

mitted from every transmit element, even those belonging to
the same subarray. This means that while there is a closely
spaced configuration within the subarray, the configuration
is still MIMO due to the diversity of waveforms within the
subarray. This enables the received signal from each transmit
element to be separated such that transmit angular information
can be obtained.

The received signal after matched filtering can be expressed
as

(1)

where is the corresponding time-delay for re-
ceive–transmit pair and is the matrix containing
the RCS of the target seen by each receive–transmit pair. The
vector is the bistatic angular steering vector
which is equal to and stands for the
Kronecker product.

The vector is a vector containing the clutter
returns and it is modeled by SIRV which is essentially a non-
homogeneous and non-Gaussian process with random power.
The variation in the power arises from the spatial variation in
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the backscattering of the clutter. According to [16], a SIRV is
the product of the square root of a positive random variable

(texture) and a -dimensional independent complex circular
Gaussian vector

The vector has zero mean and covariance matrix , denoted
by . The matrix is assumed to be nor-
malized such that for identifiability considerations
[21]. denotes the expectation and the trace. The pdf of
a SIRV is then given by

where is the texture pdf and

For each radar parameter to be determined, a steering vector is
required. The resulting steering vector is simply the Kronecker
product of all the steering vectors. In the bistatic case, as the
transmit and receive angles are no longer the same, a separate
steering vector is required for transmit and receive

.
For simplicity of notation, will be written simply

as .

III. MIMO NON-GAUSSIAN DETECTOR

A. Derivation

Let us now consider the detection problem as the following
binary hypothesis test

Under the hypothesis , it is assumed that the received signal
contains only clutter returns and hence there is no target. Under
the hypothesis , it is assumed that the received signal contains
a deterministic signal on top of the clutter returns and hence a
target is present at the location .

The dimension of each received signal, , is assumed
to be greater than one since the steering vector does not give any
information if its length is one.

1) and : We begin with the case where
and . The dimension of the received signal is .

As there is only one received signal and steering vector, let
them be denoted simply by and . The clas-
sical likelihood ratio test is given by

If we assume that the covariance matrix is known and ac-
cording to [20], and are replaced by their
Bayesian estimates and asymptotically, we obtain

(2)

which is equivalent to

(3)

and leads to the GLRT-LQ test. The same test is derived in [18]
through an asymptotic development of the test statistic in the
GLRT, and in [19] it is based on the ML estimation of the clutter
power. Note that no explicit form on the steering vector is as-
sumed in the derivation of the GLRT-LQ. Thus, these detectors
can also be applied to our case where .

2) and : We consider now the general case
where and . As the transmit–receive subarrays
are widely separated, the clutter returns can be considered to
be independent, hence are independent and the likelihood
ratio test becomes

where is the matrix containing all the received signals
.

Using (2), the GLRT-LQ, extended to the MIMO case, is
given by

(4)

where is the covariance matrix for the re-
ceive–transmit pair.

From (4), we see that when the number of elements in each
subarray is not a constant, the expression for MIMO
GLRT-LQ is very complicated and it is difficult for its detection
performance to be analyzed theoretically. Monte Carlo simula-
tions have to be run in such cases to obtain the detection perfor-
mance. Instead, in the next section, we will consider the partic-
ular case where is a constant.
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3) and : If we consider now that
the number of elements in each transmit and receive subarray is
the same, i.e.,

then the total number of elements in each subarray is the same

Moreover, as the returns from each transmit–receive pair are
independent, having transmit subarrays and receive sub-
arrays is equivalent to having one transmit subarray and

receive subarrays. Equation (4) can thus be simplified to
be

(5)

where

(6)

and is the covariance matrix of .

B. Theoretical Performance

The probability of false alarm is the probability of
choosing when the target is absent

Theorem III.1: Given a MIMO radar system containing
subsystems and elements in each subsystem and
using the detector given in (5), the probability of false alarm is
given by

(7)

Remark III.1:
• When there is only one subsystem , the probability

of false alarm is given by . This is equivalent
to the expression derived in [18]. When there is only one
element in the subsystem , this gives us .
This implies that the test breaks down as more than one
element is required to estimate the clutter power.

• depends only on and and not on the clutter param-
eters, hence showing the texture-CFAR property of the test

given by (5). Moreover, it is clear that the detector does not
depend on the covariance matrices which can be different
for each transmit–receive subarray.

• The closed-form expression is useful for the analysis of
detection performance. Using (7), the threshold to be used
in the detection test is theoretically set to ensure a given

.
Proof: Under , the received signal contains only clutter

returns

where and means to be distributed. As
is canceled out in (6), .

According to [26], the GLRT-LQ detector can be expressed
in terms of an -statistics

where is a centralized F-distributed random variable
with parameters and . The pdf of

can be expressed as

(8)
where is the Gamma function as defined in [27]. As and
are both positive integers, (8) can be simplied to

Each can also be expressed in terms of

Let such that

To find the pdf for , we consider the bijective func-
tion from to where
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To obtain the pdf of , we perform a change of variable ( de-
notes Jacobian)

...

To obtain the , we integrate from the threshold to
infinity

To verify Theorem III.1, Monte Carlo simulations
are carried out. The parameters used can be seen in Table I.

Due to Remark III.1, the covariance matrix of each ,
without loss of generalities, is chosen identically and equal to

. is spatially colored and its elements are given by

is the correlation coefficient and it is chosen to be 0.2 such
that there is a slight correlation between different elements of
the subarray.

TABLE I
PARAMETERS USED FOR MONTE CARLO SIMULATIONS

TABLE II
TEXTURE PARAMETERS USED FOR MONTE CARLO SIMULATIONS

Experimental radar clutter measurements have shown that
the texture can be distributed according to a Gamma distribu-
tion [12], [13] or a Weibull one [28], [29]. When the texture is
Gamma-distributed, the resulting clutter corresponds to one that
is K-distributed. This has been widely studied in the literature,
see, e.g., [19], [30], and [31].

The pdf and the statistical mean of the Gamma distribution
with parameters and are given by

(9)

(10)

The pdf and the statistical mean of the Weibull distribution
on non-negative reals with parameters and are given by

(11)

(12)

The clutter power for each element is given by

In order to keep constant, the two parameters of the distribu-
tions are set such that the statistical mean of the texture, given in
(10) and (12), remains the same. In this simulation, is chosen
to be one. The parameters used to simulate the texture are shown
in Table II. The parameters are chosen such that for each texture,
the first case is an instance of impulsive clutter while the second
one is more similar to the Gaussian case.

For comparison, the Gaussian case where ,
is also simulated. In this case, is also equal to one.

On Fig. 2, we have plotted the “ -threshold” curves under
different hypotheses of the clutter distribution: Gaussian, K-dis-
tributed and Weibull-distributed texture. We see that there is
perfect agreement between the theory given by Theorem III.1
and the simulation. The texture-CFAR property can also be seen
clearly since the curves do not depend on the distribution of the
texture.
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Fig. 2. against detection threshold for theoretical calculations and
Monte Carlo simulations under Gaussian clutter and Gamma and Weibull
texture.

C. Simulation Results

The probability of detection is the probability of correctly
choosing when the target is present

Under , the received signal contains both a deterministic
signal and clutter returns

For a given signal-to-clutter ratio (SCR), denoted by
the amplitude of is given by

If is considered to be different for each subarray,
a multidimensional graph would be necessary to represent the
detection performance and it would be very difficult to interpret
the results. Hence, in this paper, we consider that is
the same for all and .

For comparison, the OGD detector which is optimum under
Gaussian clutter is considered. According to [7] and [25], the
OGD detector extended to MIMO case is given by

(13)

where and which is the covariance ma-
trix of , is assumed to be known. Under Gaussian clutter,
this detector has a Chi-square distribution with degrees of
freedom, denoted by .

The same parameters as before are used (see Tables I and II).
The is set to be 0.001 and . The detection per-
formance for MIMO GLRT-LQ and MIMO OGD under K-dis-
tributed clutter is shown in Fig. 3. The SCR values in the -axis

Fig. 3. against SCR for Monte Carlo simulations where the texture has a
Gamma distribution with different parameters, with . (a) .
(b) .

are for only one single subarray. The clutter is more impulsive
for smaller values of . We see that when , MIMO
GLRT-LQ performs much better than MIMO OGD. This is be-
cause for MIMO OGD, the big variation of clutter power re-
sults in a high detection threshold to maintain the same .
The increase in threshold results in a drop in detection perfor-
mance. On the other hand, there is a normalizing term
in MIMO GLRT-LQ to take into account this variation. When
the clutter is less impulsive, it becomes more similar to Gaussian
clutter and the performance of both detectors tends to be sim-
ilar.

The performance results for clutter with Weibull-distributed
texture can be seen in Fig. 4. For this case, the clutter is more im-
pulsive for smaller values of . As expected, MIMO GLRT-LQ
performs much better than MIMO OGD when the clutter is im-
pulsive and almost the same when the clutter is less impulsive.
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Fig. 4. against SCR for Monte Carlo simulations where the texture has a
Weibull distribution with different parameters, with . (a)

. (b) .

In Fig. 5, we see that the new detector works slightly worse
than MIMO OGD under Gaussian clutter. This is expected since
MIMO OGD is the optimal detector under Gaussian clutter.
However, MIMO GLRT-LQ is much more robust as it main-
tains good detection performance for different types of clutter.

IV. ADAPTIVE MIMO NON-GAUSSIAN DETECTOR

A. Derivation

In the previous sections, we assumed that the covariance
matrix was known. However, it is usually unknown in reality.

Fig. 5. against SCR for Monte Carlo simulations where the clutter is
Gaussian, with .

Hence, we consider the adaptive version of the detector; i.e.,
the covariance matrix is replaced by its estimate

(14)

Under Gaussian clutter, the classical SCM is the ML estimate,
given by

(15)

where are the secondary data which
are independent and identically distributed. is the number
of secondary data used to estimate the SCM. SCM follows the
complex Wishart distribution, denoted as .

However, under non-Gaussian clutter,

we see that the SCM is no longer the ML estimate. Instead,
we consider the FPE [21]–[23]. In [23], it has been shown that
the FPE is unique up to a scalar factor. Here, due to the matrix
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normalization, the resulting FPE is unique and it is defined as
the unique solution of the equation

(16)

Due to the normalizing term in the denominator, the FPE does
not depend on the texture of the clutter. Moreover, the FPE is
the ML estimate when the texture is deterministic but unknown
[23]. In the case where the texture is a random variable, the FPE
is the approximate ML estimate [21], [22].

The FPE is computed using the following iterative algorithm:

(17)

The solution converges towards the FPE regardless of the
choice of the initial matrix as shown in [23]. One ob-
vious choice is which will give the normalized SCM after the
first iteration. Consequently, the detector is also matrix-CFAR
when the FPE is used [32].

More importantly, it has been shown in [24] that the asymp-
totic distribution of is the same as that of the SCM with

secondary data under Gaussian clutter.
1) and (Adaptive): As before, we begin

with the case where and . The dimension of the
received signal is . As there is only one received
signal and steering vector, let them be denoted simply by

and . The adaptive detector is given by

According to [26], under , considering Gaussian clutter
and using the SCM as the estimated covariance matrix,
can be expressed with a random variable which in turn de-
pends on another random variable

The distributions of the two variables are as follows:
and . The pdf of and

are defined in [27] as

(18)

(19)

Here, we consider instead non-Gaussian clutter modeled as a
SIRV. Using the FPE, can still be expressed with a con-
ditional random variable but with replaced by

. Hence, the distribution becomes with

where and
.

Using (18) and (19), we obtain the pdf of

where is the hypergeometric function as defined
in [27]

(20)

Letting , the pdf becomes

(21)
To obtain the , we integrate the pdf from to

Through a change of variable and the Euler
Transformation for hypergeometric functions [27, Eq. (15.3.4]),
we get

Authorized licensed use limited to: Jean-Philippe Ovarlez. Downloaded on January 25, 2010 at 18:44 from IEEE Xplore.  Restrictions apply. 



CHONG et al.: MIMO RADAR DETECTION IN NON-GAUSSIAN AND HETEROGENEOUS CLUTTER 123

Consider the hypergeometric function
, the derivative of is then

Using this derivative, we can obtain the final expression for

(22)

From (21) and (22), we see that the distribution of the detector
and the , respectively, depends only on and . This
means that the adaptive detector is also CFAR.

As , . Using the identity given by [27,
Eq. (15.1.8)], , we
see that, asymptotically, tends to

which is the same expression as that for the case where the co-
variance matrix is known and .

2) and (Adaptive): As be-
fore, we consider the product of all the individual detection tests
for each subsystem . The joint density function is
given by

As before, we consider the bijective function from
to

Due to the complexity of the above expression, the pdf of
and consequently has not been obtained analytically.

Instead, is computed empirically using Monte Carlo simu-
lations.

B. Simulation Results (Adaptive)

The same parameters as before (Tables I and II) are used. To
study the effects of the estimation of the covariance matrix on
the detection performance, we consider two cases: and

Fig. 6. against SCR for Monte Carlo simulations with the adaptive MIMO
GLRT-LQ using FPEs and clutter with Gamma-distributed texture .

Fig. 7. against SCR for Monte Carlo simulations for both the adaptive
MIMO GLRT-LQ using FPEs and the MIMO AMF using SCM with Gaussian
clutter. against SCR for MIMO OGD is given as reference. .

to compute using the Fixed Point algorithm, and
compare them to the case where is known.

As a rule of thumb, it is considered that has to be at least
and this will give a loss of approximately 3 dB in detec-

tion performance [33]. On the other hand, has been
chosen to approach the asymptotic case where is known.

The FPE is obtained using (17) with ten iterations. However,
from an operational point of view, it suffices to compute the
estimate with four or five iterations to achieve a relative error
of [23].

As expected, when is large, the detection performance of
the adaptive detector tends towards that of the detector where
the covariance matrices are known (Fig. 6).

1) Under Gaussian Clutter (Adaptive): For comparison, the
MIMO Adaptive Matched Filter (MIMO AMF), the adaptive
version of MIMO-OGD, has been considered. It is obtained
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Fig. 8. against SCR for Monte Carlo simulations for both the adaptive
MIMO GLRT-LQ using FPEs and the MIMO AMF using SCM with K-dis-
tributed clutter. . (a) . (b) .

simply by replacing the covariance matrix in (13) by its esti-
mate

(23)

The SCM given in (15) is used in the MIMO AMF since it
is the ML estimate under Gaussian clutter. In Fig. 7, we have
the detection performance, under Gaussian clutter, of both the
adaptive MIMO GLRT-LQ using FPE and the MIMO AMF
using SCM. Even in this case, the estimation of the covariance
matrix does not affect the performance of the adaptive MIMO
GLRT-LQ much and it remains comparable to that of the MIMO
AMF.

According to [34], under Gaussian clutter, the AMF is ex-
pected to perform worse than Kelly’s Test [35] as the signal

Fig. 9. against SCR for Monte Carlo simulations for both the adaptive
MIMO GLRT-LQ using FPEs and the MIMO AMF using SCM and clutter with
Weibull-distributed texture. . (a) . (b) .

vector is not used in the estimation of the covariance ma-
trix. Kelly’s Test, for the case where , is given by

When is large, Kelly’s Test is similar to the AMF. How-
ever, when is small, the term is no longer negli-
gible and Kelly’s Test is more similar to the adaptive GLRT-LQ
test. Thus, in Fig. 7, we see that the performance of the adap-
tive MIMO GLRT-LQ is actually slightly better than that of the
MIMO AMF when .

2) Under Non-Gaussian Clutter (Adaptive): Figs. 8 and 9
show the detection performance for both the adaptive MIMO
GLRT-LQ with FPE and the MIMO AMF with SCM when
the texture has Gamma and Weibull distribution, respectively.
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As expected, the adaptive MIMO GLRT-LQ performs much
better than the MIMO AMF when the clutter is impulsive.
When the clutter is less impulsive, the detection performance
of both detectors is similar but the adaptive MIMO GLRT-LQ
still works better. Moreover, the MIMO AMF is more sensitive
to the estimation of the covariance matrix than the adaptive
MIMO GLRT-LQ. This is not surprising since the SCM is no
longer the ML estimate under non-Gaussian clutter.

V. CONCLUSION

The CFAR GLRT-LQ detector for detection under
non-Gaussian clutter has been extended to the MIMO case
where all subarrays are considered jointly as a system such that
only one detection threshold is used. Theoretical performance
for the new detector is also derived and validated using Monte
Carlo simulations. Detection performance is then analyzed
through simulations. Compared to the classical OGD detector,
the new detector shows significant improvements in detection
performance under non-Gaussian clutter especially in very
impulsive clutter. It has a slight loss in performance when the
clutter is Gaussian. This is expected since the MIMO OGD is
the optimal detector under Gaussian clutter. However, the ro-
bustness of the MIMO GLRT-LQ detector under non-Gaussian
clutter more than compensates this slight loss under Gaussian
clutter.

Next, the adaptive version of this new detector is considered.
The FPE is used to estimate the covariance matrix as the clas-
sical SCM no longer works under non-Gaussian clutter. The the-
oretical performance of the adaptive version is shown to be tex-
ture-CFAR and matrix-CFAR for the case where there is only
one subarray. On top of that, the detection performance tends
to that of the case where the covariance matrix is known when
the number of secondary data is large. Due to the complexity
of equations, the case where there is more than one subarray is
studied only empirically using simulations.

The detection performance of the adaptive non-Gaussian de-
tector using the FPE is then compared to the MIMO AMF using
the SCM through simulations. As expected, the new detector
performs much better under non-Gaussian clutter, especially
when the clutter is very impulsive and it has comparable per-
formance under Gaussian clutter.

The main conclusion is that it is always preferable to use the
adaptive GLRT-LQ with the FPE, whatever the clutter distri-
bution, because of the robustness of these tools with respect to
the covariance matrix and the texture. Even in the case where
the clutter is Gaussian for all subarrays, the covariance matrix
and clutter power for each subarray is expected to be different.
Hence it is still better to use the new non-Gaussian detector.
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