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Abstract

Two new shape measures for quantifying the degree of convexity are described.
When applied to assessment of skin lesions they are shown to be an effective indi-
cator of malignancy, outperforming Lee et al.’s OII scale-space based irregularity
measure. In addition, the new measures were applied to the classification of mammo-
graphic masses and lung field boundaries and were shown to perform well relative
to a large set of common shape measures that appear in the literature such as
moments, compactness, symmetry, etc.
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1 Introduction

In image-based computer-aided diagnosis of suspected pathologies, classifica-
tion is commonly determined by their colour, density, texture, morphology, etc.
This paper focuses on the last characteristic, namely outline shape. Ideally, a
shape measure should be non-parametric (i.e. free from tuning parameters),
simple and efficient to implement and compute, robust, and invariant to trans-
formations such as rotation, translation, and scaling. The starting point for
the work described here was the paper by Lee et al. [16] on developing a mea-
sure of irregularity which they applied to skin lesions in order to differentiate
benign melanocytic nevi from malignant melanomas. They worked with an
extensively set of 40 lesion borders with extensive ground-truth. each of which
was assessed by fourteen dermatologists on a four point scale. Figure 1 shows
the skin lesion data as originally presented in [16], but reordered according
to each lesion’s mean ground-truth score. While Lee et al. demonstrated that
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irregularity was a reasonable indicator of malignancy, examination of figure 1
also suggests that convexity is a strong factor.

Computing Lee et al.’s irregularity measure (OII) requires indentations and
protrusions to be localised, which is a fairly involved process. It is a curvature
scale-space filtering approach, and therefore smooths the boundary at multiple
scales, identifying zeros and extrema of curvature at each scale (the latter an
extension of the standard curvature scale-space). These points are tracked and
connected over scale. Two separate collections of hierarchical data structures
of indentation segments and protrusion segments are then generated in which
the nesting of multiple fine scale structures within coarser scale segments is de-
scribed. Since the smoothing process reduces the curvature values a threshold
is required to identify and eliminate flat sections, which effectively provides
the stopping condition for defining the roots of the segment trees. For each of
the indentation/protrusion segments the area which is filled/removed by the
smoothing process is determined. Either the maximum or the sum of these
normalised areas is used as the irregularity measure.

In contrast, there are several standard convexity measures in the literature
that are more straightforward, in particular two based on the convex hull of
the boundary polygon P . Either the ratio of areas or perimeters can be used;
we will denote the measures by CA = area(P )/ area(CH(P )) and CL =
perimeter(CH(P ))/perimeter(P ), where CH(P ) is the convex hull of P .
Following on from this, we propose two new convexity measures in this paper:
the first based on convexification: CF

A , C
FT
A and the second on contained lines

CF . These measures are then evaluated as indicators of lesion malignancy
alongside a large set of other shape measures from the literature as well on
two other classification tasks involving mammographic masses and lung field
boundaries.

2 Measuring Convexity by Convexification

In this section we describe a novel method for measuring convexity which has
as its genesis a polygonal convexification process arising from a problem set by
Paul Erdös [6]. Given a simple (non-intersecting) polygon, let its concavities
(“pockets”) be simultaneously reflected about their corresponding edges in
the convex hull (their “lids”) – this is the flip operation. Does repeating this
process converge in a finite number of steps to a convex polygon? First, it was
shown that to avoid self-intersection the pockets should only be flipped one at a
time. Second, that only a finite number of flips are required for convexification,
but that the number of flips required is not bounded by any function of n,
the number of vertices. This led to a modification in which the pocket is
flipped and also has the order of its vertices reversed (a flipturn) – whereas
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flips preserve the order of edges around the polygon, flipturns preserve their
slopes. In contrast to flips, Aichholzer et al. [1] show that any simple polygon
can be convexified by at most n2−4n+1 flipturns. More historical details are
given by Toussaint [29].

The basic steps of convexification are straightforward as illustrated in figure 2.
The initial polygon is shown in figure 2a. The pocket is drawn in bold, and its
lid as the dashed line. The results of applying a reflection of the pocket about
the lid (i.e. a flip) is shown in figure 2b. When the order of the vertices is also
reversed this is equivalent to rotating the pocket 180◦ about the midpoint of
its lid, and produces a flipturn, see figure 2c.

It is possible for special situations to occur in which the lid is a proper subset
of a convex hull edge, which extends beyond the lid, as illustrated in figure 3a
(the complete edge of the convex hull is shown by bold dashes). The standard
flipturn rotates the pocket 180◦ about the midpoint of the lid (figure 3c).
Alternatively, the extended flipturn [1] treats the complete convex hull edge
as an extended lid; rotation of the pocket 180◦ about the midpoint of this lead
results in the polygon shown in figure 3d. In this paper we have used extended
flipturns.

A simple implementation in which the convex hull is recomputed from scratch
at each iteration would result in an algorithm that is linear per iteration. If
an appropriate data structure for online updates is used each iteration be per-
formed in O(log4 n) amortised time [1]. However, if only the final convexified
polygon using flipturns is required then this can be computed more efficiently.
Flipturns do not change orientations or lengths of edges, so that the edges of
the original polygon can be sorted by orientation in O(n log n) time and then
reconnected to form the convexified polygon.

Whereas flips and flipturns have previously only been considered as an inter-
esting computational geometry problem, in this paper we use the convexified
polygon to measure convexity in the same way as the more traditional convex
hull based method, namely the ratio of the areas of the original and convexified
polygons (denoted CF

A and CFT
A when using flips or flipturns respectively). An

alternative would be to use the number of flips or flipturns as an indication of
convexity – however this would discard information relating to the size of the
flips or flipturns. Since there are many possible different sequences of flips or
flipturns that will convexify a polygon it is important to ensure that the result
is stable. Aichholzer et al. [1] show that using flipturns all the sequences result
in the same final polygon, but there is no such guarantee using flips. To ensure
repeatability for similar shapes we standardise the order of flipping and flip-
turning. At each iteration the maximum deviation between each pocket and
its lid is determined, and the pocket with the largest deviation is selected for
flipping.
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The convex hull based measurements are very asymmetric in that they are
far less sensitive to intrusions than protrusions. This is demonstrated on a
circle which has spikes added or subtracted from it; see figure 4. The solid and
dotted lines in the graphs refer to the circles with protrusions and intrusions
respectively. It can be seen that convexity based on the area of the convex-
ified polygon behaves in a close to symmetric manner. The reason is that
any intrusions are quickly converted into protrusions by the convexification
process.

Another comparison between the measures is shown in figure 5. The rectangle
in the left-hand column has the notch in different locations. This shift has
no effect on the values returned by CA and CL, or by convexification using
flipturning. However, when just flips are applied the different notch positions
result in different convexified polygons. CF

A is maximal when the notch is
furthest from the centre of the rectangle. Since the maximum inscribed convex
polygon in the latter rectangle is larger than the maximum inscribed convex
polygons in the other notched rectangles then it could be argued that such a
convexity measure is appropriate.

3 Measuring Convexity by Contained Lines

There are many definitions of (perfect) convexity [3] and many of these can
be employed to generate measures of (approximate) convexity [18]. The one
used here is based on the set of all straight line segments L formed from all
pairs of points lying within a polygon P . Polygon P is considered to be convex
if and only if all the lines in L are completely contained within P . Given the
basic definition it is possible to adapt it in many ways to create more specific
or general concepts of convexity. For instance, if the straight lines are digital

(i.e. they are sampled on a grid) then digital convexity can be determined [12].
Another example would be to restrict the lines to lie in a single pre-specified
orientation, the so called O-convex set [7].

In this paper the requirement for L to be completely contained in P will be
relaxed. Instead it will be sufficient for a sufficiently large fraction of each line
in L to be contained. The motivation is to make the approach less sensitive
to minor fluctuations of the boundary which are often not significant, being
caused by noise, etc. Thus, for a desired fraction F , the new convexity measure
CF is simply given by the proportion of lines in L that have at least fraction
F of their length inside P . Therefore, for an appropriate value of F , CF will
be insensitive to even deep intrusions into the region if they are sufficiently
narrow.

In practice, this is computed by a Monte Carlo simulation in which a large
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number of lines are sampled from L. All our experiments use 105 lines as this
was found to provide satisfactory convergence. The first step is to generate a
random set of points in P . This is done by generating points inside the axis
aligned, minimum area rectangle that bounds P , and then discarding points
outside P . While the points could be generated by assigning their X and Y
coordinates independently from a random number generator, it is known that
this approach forms clusters in Euclidean space [27]. A more uniform sampling
of the space is provided by quasi-random low-discrepancy sequences such as
the Sobol sequence [20,28]. This technique is often used in Monte Carlo inte-
gration since avoiding wasteful samples due to clusters, and missing samples
due to voids, improves the convergence of the Monte Carlo estimation [28].

The j’th dimension of the n’th term xn in the Sobol sequence of points is
computed by taking the bitwise XOR of a set of “direction numbers” V j

i

xj
n = a1V

j
1 ⊕ a2V

j
2 ⊕ · · · ⊕ awV

j
w

where the coefficients ai are defined by n =
∑w

i=0
ai2

i, and the direction num-
bers are of length w bits. Full details of how the direction numbers are gener-
ated is beyond the scope of this paper. Briefly, they are chosen so that they
satisfy a recurrence relation using the coefficients of a primitive (irreducible)
polynomial (using modulo two integer arithmetic). In addition, to ensure low
discrepancy, Sobol [28] defined two properties that the integers initialising the
recurrence should satisfy. A different polynomial is used for each dimension.

The differences between random points and the low discrepancy sequence are
demonstrated in figure 6. Points sampled inside P using the Sobol sequence
are shown in figure 6a, and pairs are connected to form straight line segments
(see figure 6b). It is evident that using successive points in the sequence results
in a restricted set of generated line orientations. One solution is to add random
jitter to the coordinate values as shown in figure 6c using uniformly distributed
random offsets with maximum amplitude 10% of the bounding rectangle. This
provides a better distribution of orientations, but a less uniform distribution
over space. Alternatively, the required length of Sobol sequence can be gen-
erated first, and randomly reordered before points are paired to form line
segments (see figure 6d). For comparison, randomly generating the X and Y
coordinates produces a less uniform coverage of P (figures 6e&f). The com-
putational complexity of generating and testing each line is O(n) since both
testing for the inclusion of a point inside a polygon and testing for the inter-
section of a line and polygon are linear.

The new measure is compared against CA and CL for a circle of radius R
with a sinusoid of amplitude f ×R superimposed (one example was shown in
figure 6). The graph of convexity values in figure 7a shows that even requiring
the complete line to lie inside the polygon (C1) the measure is insensitive to
small fluctuations of the circle. For low amplitude sinusoids the points inside
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the sinusoid protrusions are visible to most of the circle, and so there are few
intersections with the polygon, yielding high convexity values. This holds for
values of f < 0.1, and then there is a drop-off in C1 values, ultimately dropping
below CA and CL which are seen to respond in a less linear manner (figure 7c).
C0.9 has the same behaviour as C1, but drops-off more slowly. Testing the
different sampling strategies in figure 7b indicates that they provide similar
performance, at least for this test data.

4 Experiments

This section describes two experiments to evaluate the effectiveness of the pro-
posed shape measures. For the classification of skin lesions they are compared
against Lee et al.’s [16] results since their data was available, making direct
comparison possible. Of course there has been much other work on automat-
ing the diagnosis of skin lesions. Much of this uses a large gamut of shape and
colour/radiometric features, but the focus of the research is often on other
aspects such as machine learning [4] or feature selection [9], although some
papers discuss the importance of various aspects of shape, such as irregular-
ity [2] and symmetry [26]. Although the new shape measures were developed
with this application in mind they describe general aspects of shape, and their
usefulness in other tasks was tested by applying them to another medical clas-
sification problem.

For comparison with the proposed convexity measures we have used the fol-
lowing shape measures from the literature, all of which are calculated from the
boundary (ignoring density/intensity information): rotation, translation, and
scale (RTS) geometric moment invariants, affine moment invariants [8], as-
pect ratio, compactness (perimeter2(P )/ area(P )), bilateral symmetry (the
normalised area of overlap between the region and a rotated version of it-
self), circularity [10] and several other convexity measures (CA, CL, Žunić
and Rosin’s [31] measure CZ , and Rosin and Mumford’s [25] measures CP ,
CQ and CS). In addition, various measures of ellipticity, rectangularity, and
triangularity, described in [24] were applied. Only those giving the best over-
all performance over the experiments are reported here: ellipticity calculated
using the least median squared error fitted ellipse, rectangularity calculated
using the minimum bounding rectangle, and triangularity based on the first
affine moment invariant.

The new measures were implemented as described above. In addition, in case
the convexification method is sensitive to fine detail or quantisation effects it
was run on both the raw boundary data as well as its polygonal approximation
generated using Lowe’s non-parametric algorithm [17]. Likewise, Žunić and
Rosin’s [31] convexity measure CZ and Rosin and Mumford’s [25] convexity
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measures CP , CQ and CS were applied after polygonal approximation using
Ramer’s [21] algorithm with a threshold of 2 pixels.

Table 1 shows the maximum and mean number of iterations for the convexifi-
cation process to converge to a convex polygon. It can be seen that although
there is no upper bound on the number of flips required, in practice several
hundred are usually sufficient for all the data tested in this paper (102 bound-
aries).

4.1 Skin Lesions

This dataset consists of 40 melanomas were extracted from 512 × 486 RGB
colour images selected from the image database collected from the Pigmented
Lesion Clinics of the Division of Dermatology in Vancouver, Canada. The
images were acquired from a hand-held camera placed directly on the patient’s
skin and lit by a ring of light [15]. Dark thick hairs were removed from the
images [14]. The resulting images were then filtered to remove noise, and
segmented to extract the lesion boundaries [15].

Following Lee et. al [16], the Spearman rank correlation values of the shape
measures against the mean expert ground-truth score were computed, and
were compared against Lee’s OII which produced a value of 0.88. Several of
the measures listed in table 2 provided an improvement over OII. The best per-
formances were from Rosin and Mumford’s [25] convex skull based convexity
measure CS (which uses the largest inscribed convex polygon rather than the
circumscribing convex polygon – i.e. the convex hull) scoring 0.954, followed
by their symmetric convexity measures CP and CQ.

1 Convexity measured
by contained lines, specifically C0.9 also performed well (scoring 0.933) which
implies that it is advantageous to be insensitive to narrow intrusions in this
instance. Surprisingly even the standard convexity measure CA scored higher
than OII. Although these convexity measures performed well, several others
did not in this application. For instance, the convexification approach was
found to be susceptible to fine details of the boundary, inflating the number
of flips or flipturns when applied to the raw pixel data. Although polygonal
approximation provided an improvement, the results for CF

A and CFT
A were

still poor. Likewise, CL and CZ only scored 0.4. Although Schmid-Saugeon et

al. [26] and others have emphasised the importance of symmetry in diagnosis
of lesions, it only received a score of 0.880, equal to OII, but worse than many
of those measures listed in table 2.

1 Note that Rosin and Mumford [25] described the slighter better results of CP and
CQ scoring 0.958 when the algorithm was applied directly to the complete boundary
data set without polygonal simplification.
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4.2 Mammographic Masses

As a second test, the shape measures are applied to a set of 54 masses from
mammograms, combining images from the MIAS and Screen Test databases [22],
see figure 8. Considerable analysis of this data has already been carried out
by Rangayyan et al. [22], who considered a variety of new and old shape
measures as well as several density based techniques (e.g. region based edge
profile acutance). Since this paper is restricted to shape, the proposed tech-
niques will only be compared against the former set of results. Rangayyan
et al. assessed the measures by classifying them as circumscribed/spiculated,
benign/malignant, and CB/CM/SB/SM, in two group and four group classi-
fication experiments. They used the BMDP “7M” discriminant analysis pro-
gram to carry out classification, and published percentage total classification
accuracy rates.

In our experiments classification was performed using a nearest neighbour
classifier. Mahalanobis distances were used, and so when only a single shape
property was used to build the classifier (as was the case of all our experiments
except for the last) this reduces to Euclidean distances. In order to produce
statistically correct and significant results the “632 bootstrap” [5,13] was em-
ployed to provide estimates of classification accuracy with minimal bias. This
operates by first training and testing the classifier on all the data (the design

set) of size N to produce an over-optimistic classification rate ra. Next, B
bootstrap samples of size N are drawn by sampling with replacement from
the design set. The classifier is trained on each bootstrap and tested on the
members of the design set not in the bootstrap. For the ith bootstrap sample
let the number of members tested be mi and the number correctly classified
be ni. Then the 632 bootstrap estimate is calculated as 0.368ra + 0.632rc,
where rc =

∑B
i=1

ni/
∑B

i=1
mi. Furthermore, an estimation of the error rate of

the estimate can be efficiently computed using the jackknife-after-bootstrap

approach. For computational convenience we use instead an equivalent but
less efficient two-deep nested approach for the jackknife in which multiple 632
bootstrap estimates are generated, and the standard deviation computed over
this set.

In the three classification experiments our accuracy for compactness was sim-
ilar to those obtained by Rangayyan et al. in the first instance, and sub-
stantially lower in the second two instances suggesting that the classification
results obtained from the shape measures are not inflated in this paper relative
to those of Rangayyan et al. 2

2 In a previous set of experiments we performed classification using Murthy et al.’s
oblique decision tree [19] with leave-one-out cross validation. This provided better
classification accuracies for compactness, that were identical to those obtained by
Rangayyan et al. in the first two instances, and only slightly lower in the third
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Rangayyan et al.’s [22] best shape measure results were achieved by: 1/ both
compactness and a Fourier based shape factor, with a percentage total classi-
fication accuracy of 88.9% for circumscribed/spiculated discrimination, 2/ the
Fourier based shape factor (75.9%) for benign/malignant discrimination, and
3/ both the Fourier based shape factor and compactness (64.8%) for the four-
way discrimination. Accuracies of the new measures described in this paper
are given in table 2, with B = 100 bootstrap samples, and 1000 iterations for
the jackknife. The maximum standard deviation in any of the classification
accuracies estimated by the jackknife over all the shape measures was 0.592,
which demonstrates that a high confidence can be assigned to the correctness
of the values in table 2. It can be seen that for two out of the three classifica-
tion tasks some improvements have been made by the new measures compared
to Rangayyan et al.’s results.

The convexification measures (CF
A and CFT

A ) had performed poorly on the skin
lesion data, but fared better on the mammographic data. In many instances,
performing a polygonal approximation of the data boosted the results. Figure 9
demonstrates the convexified polygons for some of the masses from figure 8.
Nevertheless, as table 2 shows, this measure is mostly outperformed by other
shape measures.

The results for the convexity measure based on contained lines (CF ) are often
good (i.e. better than those of Rangayyan et al.). There is not conclusive
evidence as to which is the best method for generating line samples, although
it is clear that the basic approach of connecting successive elements in the
Sobol sequence is not a good approach.

Although the standard convexity measure CA again performed reasonably it
was still outperformed by some of the new measures. While the other standard
convexity measure CL had performed poorly on the skin lesion data, and only
reasonably on the first two mammogram classification tasks it managed to
outperform all the other measures on the four-way discrimination task.

Interestingly, given the effectiveness of our convexity measures, later work by
Rangayyan et al. [23] concentrated on developing two new shape measures,
for convexity and irregularity. The first is based on the concave and convex
fractions of the boundary length. The second, so called spiculation index (SI),
forms a polygonal approximation of the boundary, and modulates the length
of each line segment by its narrowness (i.e. a function of the angle between
two adjacent segments). On the same data (but with one mass excluded) they
reported accuracies for the benign/malignant classification task of 74% for the
fractional concavity or convexity, and 79% for SI, the latter outperforming our

(61.11% rather than 64.8%). However, it was found that the classification rate de-
pended on the ordering of the data and included a probabilistic element to building
the decision tree, causing high variance in different runs of the classifier.
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methods. They did not report results for the other two classification tasks.

4.3 Chest X-rays

A final, small scale test is performed on eight pairs (left and right) of lung
field boundaries taken from chest radiographs [30], see figure 10. Ground truth
classification (normal or emphysematous) was provided by a radiologist. Tsai
et al. [30] achieved perfect classification using the level set function as a shape
descriptor, and using the EM algorithm to perform both classification as well
as estimation of the most representative shape contours for each class.

Here, for simplicity, we have applied the shape measures to each contour sep-
arately. That is, left and right lung pairs are not processed as single units, as
was done using the level set shape descriptor. Classification was performed in
the same manner to the mammogram example in subsection 4.2. The maxi-
mum standard deviation in any of the classification accuracies estimated by
the jackknife was 1.103, which again is small enough to indicate that the
values in table 2 are meaningful despite the small sample size. None of the
measures were able to produce 100% accurate classification, but nevertheless
some of the results were reasonable. Among the convexity measures, the con-
vexification method gave the best results, with CF

A effectively misclassifying
one lung pair out of the eight. Better accuracy was achieved by rectangularity,
effectively misclassifying a single lung out of the sixteen.

5 Conclusions

The importance of convexity in medical diagnosis has been noted many times,
which prompted the development of the new convexity measures described in
this paper. While for clarity we have concentrated on applying them as indi-
vidual shape measures, in practice their effectiveness would be enhanced by
using combinations of shape, texture, and colour features. Different discrim-
ination tasks are often sensitive to different features, and this was found to
be true in this case. Examining the four sets of classification accuracies shows
that there is no single shape measure that is uniformly the most effective –
and this is not necessarily to be expected. However, it is clear that the highest
ranking methods were generally convexity measures, which tended to out-
perform the standard feature descriptors (e.g. moment invariants, symmetry,
compactness/form factor, etc.).

Nevertheless, as the paper shows, there are many ways to compute a single
shape descriptor such as convexity [18], and these alternative measures have
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their specific characteristics, and can be more effective in one instance rather
than another. Unfortunately it is not possible to make a complete set of uni-
versal recommendations as to which of the methods and all their variations
is most effective. However, based on the presented experiments the following
conclusions can be drawn:

• Both of the two new convexity measures (convexification: CF
A , C

FT
A and

contained lines: CF ) were shown to be effective for some of the classifi-
cation tasks. In particular, improvements were made over Lee et al.’s OII
scale-space based irregularity measure [16] for the lesion data, and over
Rangayyan et al.s results [22] for two out of the three mammographic clas-
sification tasks.

• For the convexity by contained lines measure it appears that C0.9 is often
superior to C1. Despite testing several sampling methods it is not clear
which, if any, is best. In particular, the simple generation of random points
is not generally worse than the Sobol sequence based methods. This suggests
that a future area for investigation would be to try alternative sampling
strategies and to check on the convergence of the Monte Carlo simulation.

• The performance of the convexification method was inconsistent, and it is
not possible to say from these experiments which of the options (flips versus
flipturns; full pixel data versus polygonal simplification) are more effective.

Ideally the methods should be tested on more applications and on data sets
with a much larger set of images. Unfortunately such data is generally difficult
to acquire, especially with the desired ground truth necessary for evaluation. 3

Therefore, the approach taken in this paper has been to use the bootstrap
estimator to maximise the reliability of the obtained results.
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M. Overmars, B. Palop, S. Ramaswami, and G.T. Toussaint. Flipturning

3 For example, while the Digital Database for Screening Mammography
(DDSM) [11] provides a large dataset, the boundaries of the abnormalities in the
DDSM images are not publicly available.

11



polygons. Discrete & Computational Geometry, 28:231–253, 2002.

[2] E. Claridge, J.D. Morris Smith, and P.N. Hall. Evaluation of border irregularity
in pigmented skin lesions against consensus of expert clinicians. In Proc. Medical
Image Understanding and Analysis, pages 85–88, 1998.

[3] G. Cristescu and L. Lupsa. Classes of discrete convexity properties. Discrete
and Computational Geometry, 31(3):461–490, 2004.

[4] S. Dreiseitl, L. Ohno-Machado, H. Kittler, S. Vinterbo, and H. Billhardt. A
comparison of machine learning methods for the diagnosis of pigmented skin
lesions. J. Biomedical Informatics, 34(1):28–36, 2001.

[5] B. Efron. Estimating the error rate of a prediction rule: improvement on cross-
validation. J. of American Statistical Association, 78(382):316–331, 1983.

[6] P. Erdös. Problem number 3763. Amer. Math. Monthly, 42:627, 1935.

[7] E. Fink and D. Wood. Fundamentals of restricted-orientation convexity.
Informatics and Computer Science, 92:175–196, 1996.

[8] J. Flusser and T. Suk. Pattern recognition by affine moment invariants. Pattern
Recognition, 26:167–174, 1993.

[9] H. Ganster, P. Pinz, R. Rohrer, E. Wildling, M. Binder, and H. Kittler.
Automated melanoma recognition. IEEE Transactions on Medical Imaging,
20(3):233–239, March 2001.

[10] R.M. Haralick. A measure for circularity of digital figures. IEEE Transactions
on Systems, Man and Cybernetics, 4:394–396, 1974.

[11] M. Heath, K. Bowyer, D. Kopans, R. Moore, and P. Kegelmeyer Jr. The digital
database for screening mammography. In Proc. 5th Int. Workshop on Digital
Mammography, pages 457–460, 2001.

[12] C.E. Kim and A. Rosenfeld. Digital straight lines and convexity of digital
regions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
4(2):149–153, 1982.

[13] W.J. Krzanowski. Data-based interval estimation of classification error rates.
J. Applied Statistics, 28(5):585–595, 2001.

[14] T. Lee, V. Ng, R. Gallagher, A. Coldman, and D. McLean. DullRazor: a software
approach to hair removal from images. Comput Biol Med., 27:533–543, 1997.

[15] T. Lee, V. Ng, D. McLean, A. Coldman, R. Gallagher, and J. Sale. A multi-
stage segmentation method for images of skin lesions. In Proc. IEEE Pacific
Rim Conf. on Communications, Computers, and Signal Processing, pages 602–
605, 1995.

[16] T.K. Lee, D.McLean, and M.S. Atkins. Irregularity index: A new border
irregularity measure for cutaneous lesions. Medical Image Analysis, 7(1):47–
64, 2003.

12



[17] D.G. Lowe. Three-dimensional object recognition from single two-dimensional
images. Artificial Intelligence, 31:355–395, 1987.

[18] R.R. Martin and P.L. Rosin. Turning shape decision problems into measures.
Int. J. Shape Modelling, 10(1):83–113, 2004.

[19] S.K. Murthy, S. Kasif, and S. Salzberg. System for induction of oblique decision
trees. J. of Artificial Intelligence Research, 2:1–33, 1994.

[20] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vettering. Numerical
Recipes in C. Cambridge University Press, 1990.

[21] U. Ramer. An iterative procedure for the polygonal approximation of plane
curves. Computer Graphics and Image Processing, 1:244–256, 1972.

[22] R.M. Rangayyan, N.M. Elfaramawy, J.E.L. Desautels, and O.A. Alim. Measures
of acutance and shape for classification of breast-tumors. IEEE Transactions
on Medical Imaging, 16(6):799–810, 1997.

[23] R.M. Rangayyan, N.R. Mudigonda, and J.E.L. Desautels. Boundary modeling
and shape analysis methods for classification of mammographic masses. Medical
and Biological Engineering and Computing, 38(5):487–496, 2000.

[24] P.L. Rosin. Measuring shape: Ellipticity, rectangularity, and triangularity.
Machine Vision and Applications, 14:172–184, 2003.

[25] P.L. Rosin and C.L. Mumford. A symmetric convexity measure. Computer
Vision and Image Understanding, 103(2):101–111, 2006.

[26] P. Schmid-Saugeon, J. Guillod, and J.-P. Thiran. Towards a computer-aided
diagnosis system for pigmented skin lesions. Computerized Medical Imaging and
Graphics, 27(1):65–78, 2003.

[27] S.K. Sen, T. Samanta, and A. Reese. Quasi-versus pseudo-random generators:
discrepancy, complexity and integration-error based comparison. Int. J.
Innovative Computing, Information and Control, 2(3):349–4198, 2006.

[28] I.M. Sobol. A Primer for the Monte Carlo Method. CRC-Press, 1994.

[29] G. Toussaint. The Erdos-Nagy theorem and its ramifications. In Proc. 11th
Canadian Conference on Computational Geometry, pages 9–12, 1999.

[30] A. Tsai, W.M. Wells, S.K. Warfield, and A.S. Willsky. An EM algorithm for
shape classification based on level sets. Medical Image Analysis, 9:491502, 2005.
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2.28 2.28 2.50 2.57 2.64 2.86 2.86 3.14

3.21 3.28 3.57 3.57 3.78 3.86 4.00 4.00

Fig. 1. The full set of 40 skin lesion outlines from Lee et al. [16] reordered according
to the mean ground-truth score calculated from the individual scores provided by
14 dermatologists (drawn rescaled). A score of 1 corresponds to the healthiest lesion
while 4 indicated the most severely malignant.
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(a) (b) (c)

Fig. 2. One iteration of the convexification process: a) input polygon; b) after a flip;
c) after a flipturn.

(a) (b) (c) (d)

Fig. 3. One iteration of the convexification process: a) input polygon; b) after a flip;
c) after a standard flipturn; d) after an extended flipturn.
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Fig. 4. Measured convexities of circles with increasing numbers of spikes inserted
(solid lines in graphs) or removed (dotted lines). An example of such circles with six
spikes is presented in (a) & (b). Results of using the new convexification approach
are shown in (c), while the standard convex hull based measures are given in (d).
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Strategies for sampling: (a) 400 points generated using the Sobol sequence;
(b) line segments formed from sequential pairs of points in (a); (c) line segments
in (b) with added random jitter; (d) line segments formed from a randomised re-
ordering of points in (a); (e) 400 points with coordinates obtained from a random
number generator; (f) line segments formed from sequential pairs of points in (e).
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Fig. 7. Measured convexity values for a circle of radiusR with a sinusoid of amplitude
f × R superimposed. The solid line shows convexity values for polygons similar to
the one in figure 6, the dotted line shows convexity values for sinusoids with half the
frequency. In (a) are shown convexities computed using the basic Sobol sequence
for C1 and C0.9. The effect of the different sampling strategies is demonstrated in
(b). For comparison the standard convex hull based measures are given in (c).
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(a) (b) (c) (d)

Fig. 9. Examples of mammographic masses after convexification. Increased undula-
tion of the boundary results in a greater increase in convexified area relative to the
original polygon.
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method skin lesions mammographic lung fields

masses

max mean max mean max mean

CF all pixels 1404 674 1996 658 169 142

CF polygonal approximation 462 191 644 125 9 5

CFT all pixels 1983 500 1420 281 79 59

CFT polygonal approximation 446 178 598 120 8 4

Table 1
The maximum and mean number of flips and flipturns required for convexification
for the three data sets.
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method skin mammographic masses lung

lesions circ/spic mal/ben 4-way fields

c
o
n
v
e
x
it
y

C
F
A

all pixels 0.520 81.5 68.5 63.0 68.7

C
F
A

polygonal approximation 0.565 85.2 68.5 64.8 87.5

C
FT
A

all pixels 0.529 83.3 70.4 64.8 75.0

C
FT
A

polygonal approximation 0.565 92.6 53.7 50.0 75.0

C0.9 Sobol lines 0.928 83.3 48.1 42.6 50.0

C1 Sobol lines 0.786 81.5 57.4 48.2 43.7

C0.9 jittered Sobol lines 0.906 88.9 70.4 66.7 75.0

C1 jittered Sobol lines 0.778 87.0 64.8 59.3 50.0

C0.9 reordered Sobol lines 0.923 90.7 59.2 53.7 62.5

C1 reordered Sobol lines 0.829 87.1 51.9 46.3 43.7

C0.9 random 0.933 94.4 59.3 57.4 75.0

C1 random 0.863 87.0 51.9 50.0 25.0

CA 0.888 90.8 57.4 57.4 37.5

CL 0.453 85.2 74.1 68.5 25.0

CZ 0.462 79.6 70.4 64.8 50.0

CP 0.939 85.2 59.3 55.6 68.7

CQ 0.936 79.6 72.2 57.4 56.2

CS 0.954 83.3 55.6 46.3 68.7

m
is
c
e
ll
a
n
e
o
u
s

area 0.041 48.2 37.0 24.1 68.7

compactness 0.532 87.0 59.3 57.4 68.7

aspect ratio 0.076 61.1 57.4 20.4 0.0

1st RTS moment invariant 0.309 68.5 68.5 51.8 56.2

2nd RTS moment invariant 0.038 64.8 14.8 35.2 68.7

1st affine moment invariant 0.907 87.0 64.8 55.6 25.0

2nd affine moment invariant 0.435 51.8 50.0 25.9 62.5

symmetry 0.880 79.6 53.7 44.4 25.0

circularity 0.418 68.5 46.3 37.0 56.2

ellipticity 0.881 77.8 74.1 59.3 56.2

rectangularity 0.690 90.8 61.1 57.4 93.7

triangularity 0.757 85.2 68.5 57.4 43.7

Table 2
Results of using both new and published shape measures on three medical image
analysis tasks: 1/ the first column of figures gives absolute Spearman rank corre-
lation scores for the skin lesion data against the mean expert ground-truth score,
2/ the next four columns give correct classification percentages, estimated using
the bootstrap, obtained by the nearest neighbour classifier on i) three discrimina-
tion problems involving the mammographic data: circumscribed versus spiculated,
benign versus malignant, and a four way discrimination: CB/CM/SB/SM, and ii)
classification of lung boundaries as normal or diseased. In each column the top score
is underlined, and scores better than or equal to Lee’s OII or Rangayyan et al.’s [22]
shape measures are highlighted in bold.
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Fig. 5
Three versions of a rectangle with a notch are given in the left hand column. The
middle and right sets of polygons show the convexification sequence using flips and
flipturns respectively.

CB CM

SB SM

Fig. 8
Examples of the four classes of mammographic masses: circumscribed benign (CB),
circumscribed malignant (CM), spiculated benign (SB), spiculated malignant (SM);
they are drawn rescaled.

normal diseased

Fig. 10
Left and right lung field boundaries from chest radiographs classified as normal or
with emphysema disease.
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