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Abstract

An overview of remote sensing research in hydrometeorol-
ogy, with an emphasis on the major contributions that have
been made by United States Department of Agriculture-
Agricultural Research Service (USDA-ARS) scientists, is pro-
vided. The major contributions are separated into deriving
from remote sensing (1) hydrometeorological state variables
and (2) energy fluxes, particularly evapotranspiration which
includes plant water stress. For the state variables, remote
sensing algorithms have been developed for estimating land
surface temperatures from brightness temperature observa-
tions correcting for atmospheric and emissivity effects, esti-
mating near-surface soil moisture from passive microwave
remote sensing, determining snow cover from visible and
snow water equivalent from microwave data, and estimating
landscape roughness, topography, vegetation height, and
fractional cover from lidar distancing technology. For the
hydrometeorological fluxes, including plant water stress,
models estimating evapotranspiration have been developed
using land surface temperature as a key boundary condition
with recent schemes designed to more reliably handle par-
tial vegetation cover conditions. These research efforts in
estimating evapotranspiration with remotely sensed surface
temperatures have been utilized by ARS researchers in the
development of the Crop Water Stress Index and Water
Deficit Index for assessing plant water stress. In addition, the
development of the Thermal Kinetic Window and Crop Spe-
cific Temperatures have revealed the dynamic interactions
among foliage temperature, plant species, and the physical
environment. ARS researchers continue to develop new and
improved remote sensing algorithms for evaluating state
variables and fluxes. Moreover, they are involved in new re-
search directions to address science questions impeding hy-
drometeorological research. These include investigating the
utility of combining multifrequency remote sensing data for
improved estimation of land surface properties, and incorpo-
rating remote sensing for evaluating the effects of landscape
heterogeneity on atmospheric dynamics and mean air prop-
erties and resulting feedbacks on the land surface fluxes.
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Introduction

A major focus of remote sensing research in hydrometeo-
rology by Agricultural Research Service (ARS) scientists
has been to develop instrumentation, algorithms and mod-
els for estimating hydrometeorological states and fluxes,
including plant stress/condition. The primary set of state
variables include land surface temperature, near-surface
soil moisture, snow cover/water equivalent and landscape
roughness and vegetation cover. The hydrometeorological
fluxes are primarily soil evaporation and plant transpira-
tion or evapotranspiration, which is also related to plant
stress or condition and snowmelt runoff. ARS researchers
have attempted to quantify the components of the water
and energy balance equation using remote sensing methods
with the main purpose of estimating crop water use. This
is because water availability is probably the most common
limiting factor to crop growth and yield. The water balance
is commonly expressed as follows:

AS/At=P —ET - Q (1)

where AS/At is change in storage in the soil and/or snow

layer, P is the precipitation, ET is the evapotranspiration,
and Q is the runoff. The energy balance equation for most
agricultural landscapes, except for tall forests, is typically
written as follows:

BRy—G=H+LE (2)

where Ry is the net radiation, G is the soil heat flux, H is
the sensible heat flux, and LE is the latent heat flux, all in
W m™2. The quantity Ry — G is commonly referred to as the
available energy, and ET and LE represent the same water
vapor exchange rate across the surface-atmosphere interface,
except that ET is usually expressed in terms of depth of
water over daily and longer time scales, namely, mm day .

This paper will describe some of the major contribu-
tions of ARS scientists in providing important state vari-
ables using remote sensing and modeling schemes for esti-
mating components of the water and energy balance.
Particularly noteworthy are the methods using remote
sensing pioneered by ARS scientists for assessing crop
water stress. In addition, ARS scientists are making impor-
tant contributions in new research directions that are
emerging to address difficult problems in hydrometeoro-
logical research.

Remote Sensing of Hydrometeorological States

Land Surface Temperature

Land surface temperature is the result of the equilibrium
thermodynamic state dictated by the energy balance be-
tween the atmosphere, surface, and subsurface soil and the
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efficiency by which the surface transmits radiant energy
into the atmosphere (surface emissivity). The latter de-
pends on the composition, surface roughness, and physical
parameters of the surface, e.g., moisture content. In addi-
tion, the emissivity generally will vary with wavelength
for natural surfaces. Thus, to make a quantitative estimate
of the surface temperature, we need to separate the effects
of temperature and emissivity in the observed radiance.
Airborne/and satellite-based radiometers measure what is
commonly called a “brightness temperature” derived from
the radiance reaching the sensor. This brightness tempera-
ture must be corrected for atmospheric attenuation of the
surface radiance considering the impact of surface emissiv-
ity, before it can regarded as an estimate of the land sur-
face temperature.

The relationship between land surface and brightness
temperature from an aircraft- or satellite-based sensor is
usually expressed in terms of the radiation balance: i.e.,

Lsgn = Lsyre - 7 + Lyt (3)

where L is the radiance from the jth waveband channel of
the radiometer, L/gy is at-sensor radiance, L/sypr is the sur-
face radiance, L/47)1 is the upwelling atmospheric radi-
ance, and 7 is the atmospheric transmission. Values of
Lsryn and 7 can be calculated using atmospheric radiative
transfer codes, such as LOWTRAN5 (Kneizys et al., 1980).
This permits the upwelling radiance at the surface, which
yields the land surface temperature, to be computed from
the following expression:

Lsypr =€’ Lgp\V, Te) + (1 —&’) - Iy (4)

where ¢ is the surface emmisivity, Lgg(A), Tg) is the Planck
equation for the radiation from a black body, and A’ is the
central wavelength for the jth channel of the radiometer.
The value of I/,7y, can also be determined from atmos-
pheric radiative transfer codes. The remaining problem is
to relate these radiances to the surface emissivity without
direct knowledge of the land surface temperature, Tsyps.

It was recognized early on by ARS scientists, in the ap-
plication of satellite remote sensing for land surface tem-
perature estimation, that simpler operational methods other
than radiative transfer codes were needed (Price, 1983).
Moreover, due to the lack of adequate atmospheric profile
observations, the development of alternative approaches
such as so-called “split-window” methods would be more
operationally applicable (e.g., Price, 1984). These split win-
dow methods employ two channels at slightly different
wavelengths A' and A? in Equations 3 and 4 to essentially
eliminate (using a few approximations) the need for esti-
mating the atmospheric transmission and radiances. How-
ever, split-window methods are sensitive to uncertainty in
the emissivities in the two channnels; for example, at a
brightness temperature 300 K, a difference &' — &* ~ 0.01
can yield an error in land surface temperature of ~2 K
(Price, 1989).

While improvements in radiative transfer codes con-
tinue, such as LOWTRAN7 (Kneizys et al., 1988), ARS led
studies (Perry and Moran, 1994) indicate that atmospheric
corrections to satellite brightness temperatures can still
lead to errors in excess of 2 K, unacceptable for most hy-
drometeorological applications. There is continued im-
provement in the development of these codes for estimat-
ing atmospheric transmission, namely MODTRAN (Berk
et al., 1998), but the lack of adequate atmospheric profiling
data and uncertainty in the surface emissivity will con-
tinue to be limiting factors.

Until recently, methods for estimating surface emissiv-
ity from remote sensing were empirical. With the launch of
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NASA’s Earth Observing System Platform, Terra, in Decem-
ber 1999, multispectral thermal-infrared data from the
Advanced Spaceborne Thermal Emission Reflectance
Radiometer (ASTER; Yamaguchi et al., 1998), a technique
has been proposed to extract both land surface temperature
and emissivity. This approach makes use of an empirical
relation between the range of emissivities and the mini-
mum value from a set of multichannel observations. It is
termed Temperature Emissivity Separation or TES
(Gillespie et al., 1998).

ARS scientists have evaluated TES using a prototype of
ASTER, the airborne Thermal Infrared Multispectral Scan-
ner (TIMS), over heterogeneous landscapes in West Africa
and in the U.S. Southwest (Schmugge et al., 1998;
Schmugge et al., 2001). In addition, using TIMS data col-
lected in the U.S. Southern Great Plains, ARS scientists de-
veloped a technique using the spectral variation of emis-
sivity to discriminate between bare soil fields and fields
containing senescent vegetation (wheat stubble). Such a
separation is not possible with visible and near-infrared
data alone and is an important distinction when assessing
surface energy balance using remotely sensed temperatures
(French et al., 2000).

There are some inherent difficulties in the processing
of thermal-infrared data that limit its utility for estimat-
ing hydrometeorological fluxes (Moran, 2000). However,
research being conducted by ARS scientists has greatly
enhanced the potential application of land surface tem-
perature from satellite for ET estimation and crop water
stress. Remote sensing field experiments investigating
the utility of land surface temperatures for estimating ET
have been lead by ARS scientists over agricultural crops
in Maricopa Farms, Arizona (MAC I-1V), over grazinglands
in USDA-ARS experimental watersheds in Arizona (Walnut
Gulch Watershed, Monsoon ’90) and Oklahoma (Little
Washita Watershed, Washita’92 ’94), and at the USDA-ARS
Jornada Experimental Range in New Mexico (JORNEX
’96-°00).

ARS scientists continue to have an active role in devel-
opment of algorithms to derive land surface temperatures.
A recent example using ASTER satellite imagery encom-
passing the USDA-ARS Grazinglands Research Facility in El
Reno, Oklahoma is displayed in Plate 1. The spatial distri-
bution of land surface temperature, Tsypr, reflects some
significant differences in land-cover conditions at this time
of year (September), with large areas of bare soil and wheat
stubble from harvested winter wheat fields and grasslands
used for cattle grazing, and with small areas of irrigated
crop lands and water bodies. This type of spatially distrib-
uted information is very useful for evaluating spatial pat-
terns of ET over large areas.

El Reno ASTER NDVI: 4 Sept. 2000
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Plate 1. An image of Tsygpr derived from ASTER over the
USDA-ARS El Reno Grazinglands research facility on 04
September 2000. Spatial resolution is 90 m.
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Near-Surface Soil Moisture

Passive microwave remote sensing instruments are capable
of measuring the surface soil water content, and can be im-
plemented on trucks, aircraft, and spacecraft for repetitive
large-area observations. The amount of water present in a
soil determines its dielectric properties. The dielectric
properties, along with other physical characteristics such
as surface roughness, determine the microwave signal ema-
nating from the soil. Efforts championed by ARS scientists
have been underway for some time to develop passive
microwave remote sensing as a tool for measuring and
mapping surface soil water content (Jackson and
Schmugge, 1989). Remote sensing cannot replace ground-
based methods for providing high quality profile data at a
point. Its advantage is in mapping conditions at regional,
continental, and even global scales.

It was recognized early on in research in this field that
instruments operating at low frequencies (less than 6 GHz)
provide the best soil moisture information. At low frequen-
cies there are fewer problems with the atmosphere and
vegetation, the instruments respond to a deeper soil layer,
and there is a higher sensitivity to soil water content. The
footprint of a passive microwave sensor will increase as
frequency decreases. Current and near future satellite sys-
tems can provide only coarse resolution data (greater than
50 km). New antenna technologies under development will
improve this resolution to 10 km within the next decade.
The existing data interpretation algorithms for passive data
are well tested for bare soil and vegetation and can be ap-
plied to a wide range of conditions (Jackson et al., 1995).

Passive microwave methods measure the natural ther-
mal emission of the land surface using very sensitive de-
tectors. The most useful microwave waveband in the L,
whose frequency is 1 to 2 GHz, or a wavelength of about
21 cm. A general advantage of low frequency microwave
sensors (as opposed to visible and infrared) is that observa-
tions are essentially unaffected by atmospheric attenuation
even in the presence of clouds. In addition, these measure-
ments are not dependent on solar illumination and can be
made at any time of the day or night.

The measurement provided is a brightness tempera-
ture, Tp, similar to thermal-infrared observations and in-
cludes contributions from the atmosphere, reflected sky
radiation, and the land surface. However, compared to the
thermal-infrared wavelengths, atmospheric effects are neg-
ligible at frequencies greater than 6 GHz. Galactic and cos-
mic radiation contribute to sky radiation and have a
known value that varies very little in the frequency range
used for soil water content observations, yielding a Tsxy of
about 4 K. The brightness temperature of the surface is re-
lated to its emissivity, physical temperature and contribu-
tions from the intervening atmosphere, yielding an expres-
sion similar to Equation 4: i.e.,

Tg=emTp+ (1 —&p) - Tsxy (5)

where ), and Ty, are the emissivity and physical tempera-
ture representing some effective depth in the soil surface
layer (typically, a 0- to 5-cm depth in the L band) and
therefore must be distinguished from the emissivity and
surface temperature defined for the thermal-infrared wave-
lengths (Schmugge, 1990). Because the second term in
Equation 5 will be on the order of 2 K, it is usually ne-
glected, thus yielding after rearranging

If T\, is estimated independently, emissivity can be deter-
mined. This can be done using surrogates based on satel-
lite surface temperature, air temperature observations, or
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forecast model predictions. A typical range in ¢, is about
0.9 for a dry soil to about 0.6 for a wet soil comprising the
0- to 5-cm layer (see below).

The basic reason microwave remote sensing is capable
of providing soil water content information is this large di-
electric difference between water and the other soil compo-
nents. Because the dielectric constant is a volume property,
the volumetric fraction of each component must be consid-
ered. The computation of the mixture dielectric constant
(soil, air, and water) has been the subject of several studies,
and there are different theories as to the exact form of the
mixing equation (Schmugge, 1980; Dobson et al., 1985). A
simple linear weighting function is typically used.

There are five steps involved in extracting soil water
content using passive microwave remote sensing. These
are normalizing microwave brightness temperature to emis-
sivity, removing the effects of vegetation, accounting for
the effects of soil surface roughness, relating the emissivity
measurement to soil dielectric properties, and, finally, re-
lating the dielectric properties to soil water content. ARS
scientists have developed techniques needed in all five
steps of the process.

Vegetation reduces the sensitivity of the retrieval algo-
rithm to soil water content changes by attenuating the soil
signal and by adding a microwave emission of its own to
the microwave measurement. The attenuation increases as
frequency increases. This is an important reason for using
lower frequencies. As described in Jackson and Schmugge
(1991), at lower frequencies it is possible to correct for veg-
etation using a vegetation water content-related parameter.

In studies reported in Jackson et al. (1982) and Jackson
and Schmugge (1991), it was found that a functional rela-
tionship between the optical depth and vegetation water
content, w, could be applied. The vegetation water content
can be estimated using a variety of ancillary data sources.
One approach is to establish a relationship between w and
a satellite-based vegetation index such as the Normalized
Difference Vegetation Index (NDVI) as described in Jackson
et al. (1999).

The emissivity that results from the vegetation correc-
tion is that of the soil surface. This includes the effects of
surface roughness. These effects must be removed in order
to determine the soil emissivity, which is required in the
inversion from microwave brightness temperature to soil
moisture. One approach to removing this effect is a model
described in Choudhury et al. (1979) that yields the bare
smooth soil emissivity, with model parameters assigned
based upon land use and tillage (Jackson et al., 1997a).

The contributing depth of the soil is a function of the
microwave frequency or wavelength. There are well known
theories describing the reflection resulting from a soil pro-
file with uniform or varying properties (Njoku and Kong,
1977). The computations involve a nonlinear weighting
that decays with depth. Some modeling studies have sug-
gested that this dominant depth is a function of the fre-
quency (one-tenth the wavelength) (Wilheit, 1978). Field
experiments, many of which have been conducted by ARS
scientists (Jackson and Schmugge, 1989), suggest that the
contributing depth is about one-fourth the wavelength.
Thus, for the L band, the effective depth is on the order of
5 cm.

A problem with passive microwave methods is spatial
resolution. For a given antenna size, the footprint size in-
creases as frequency decreases and altitude increases. For
satellite designs at L band, this might result in a footprint
as large as 100 km. Recent research has focused on the use
of synthetic aperture thinned array radiometers which
could decrease the footprint size from satellites to 10 km
(Le Vine et al., 1994).
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To a large degree, research and applications utilizing
microwave sensors are dependent on the instruments that
have been available. As the need for soil water content
studies has developed, some new instruments have
emerged. ARS scientists have been and continue to be di-
rectly involved in the development of current and near fu-
ture microwave sensors operating from ground, aircraft,
and satellite platforms.

The advantages of ground-based systems include the
small sensor footprints (a few meters in size) and the abil-
ity to control and measure the target and to collect data
continuously. These systems are ideally suited to the study
of the fundamental relationships between microwave ob-
servations and target variables as well as observing time-
dependent hydrologic processes such as evaporation and
infiltration.

Jackson et al. (1997b) describe a typical dual frequency
(1.4 and 2.65 GHz single polarization) passive microwave
system installed on a boom truck. This system is capable
of obtaining either automatic continuous observation over
a single target or moving from one target to another to col-
lect specific data sets.

Aircraft-based microwave instruments are especially
useful in studies requiring the mapping of large areas.
They can also serve as prototypes of future satellite sen-
sors. In most cases, they will offer better spatial resolution
than satellite systems as well as more control over the fre-
quency and timing of coverage. In the case of passive mi-
crowave systems, there are no appropriate satellite systems
available for soil water content studies. Therefore, all
large-area research has utilized aircraft sensors. In the late
1980s the L-band Push Broom Microwave Radiometer
(PBMR) was used in several large area mapping experiments
involving NASA and USDA-ARS scientists (Schmugge et al.,
1992). During the 1990s, much of this work has used the
Electronically Scanned Thinned Array Radiometer (ESTAR).
ESTAR is an L-band horizontally polarized instrument that
can provide image products. It also is a prototype for a
new synthetic aperture antenna technology that can solve
the high altitude-spatial resolution problem described ear-
lier (Le Vine et al., 1994).

Satellite-based sensors offer the advantages of large-
area mapping and long-term repetitive coverage. Revisit
time can be a critical problem in studies involving rapidly
changing conditions such as surface soil water content.
With very wide swaths it is possible to obtain twice daily
coverage with a polar orbiting satellite. For most satellites,
especially if constant viewing angle is important, the re-
visit time can be much longer. Optimizing the time and
frequency of coverage is a critical problem for soil water
content studies. Currently, all passive microwave sensors
on satellite platforms operate at high frequencies (greater
than 7 GHz). A more recent option is the multiple fre-
quency Advanced Microwave Scanning Radiometer (AMSR)
satellite systems that will include a 6.9-GHz channel. AMSR
holds great promise for estimating soil water content in re-
gions of low levels of vegetation. AMSR is not the optimal
solution to mapping soil water content but it is the best
possibility in the near term. Based on the published results
and supporting theory (Wang, 1985; Choudhury and Golus,
1988; Owe et al., 1992; Ahmed, 1995; Njoku and Li, 1999),
this instrument should be able to provide soil water con-
tent information in regions of low vegetation cover, less
than 1 kg m~? vegetation water content. Research programs
are underway to develop and implement space-based sys-
tems with a 1.4-GHz channel which would provide im-
proved global soil moisture information.

Research on microwave remote sensing of soil water
content has historically focused on establishing accurate
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retrieval algorithms. The ability to apply this understand-
ing to large heterogeneous areas on a regular basis has
been the focus of much of the recent field experimenta-
tion involving ARS scientists. Washita '92 was a large-
scale study of remote sensing and hydrology conducted
by NASA and USDA-ARS using ESTAR over the USDA-ARS
Little Washita Watershed facility in southwest Oklahoma
(Jackson et al., 1995). Data collection during the experi-
ment included passive and active microwave observa-
tions. Data were collected over a nine day period in June,
1992. The watershed was saturated with a great deal of
standing water at the outset of the study. During the ex-
periment there was no rainfall and surface soil water con-
tent observations exhibited a drydown pattern over the
period. Surface soil water content observations were
made at sites distributed over the area. Significant varia-
tions in the level and rate of change in surface soil water
content were noted over areas dominated by different soil
textures.

Passive microwave observations were made on eight
days. The ESTAR data were processed to produce brightness
temperature maps of a 740-km? area on each of the eight
days. Using the soil water content algorithm developed by
ARS scientists (Jackson et al., 1995), these data were con-
verted to soil water content images. Gray-scale images for
each day are shown in Figure 1. These data exhibited sig-
nificant spatial and temporal patterns. Spatial patterns
were clearly associated with soil textures and temporal
patterns with drainage and evaporative processes. Rela-
tionships between the ground-sampled soil water content
and the brightness temperatures were consistent with pre-
vious results.

More recently, ESTAR collected data over a much larger
domain, mapping an area about 40 km east-west and about
260 km north-south as part of the 1997 Southern Great
Plains Experiment (SGP97). The area mapped encompassed
the USDA-ARS Little Washita Watershed, USDA-ARS Grazing-
lands Research Facility, and Department of Energy Atmos-
pheric Radiation Measurement (ARM) Cloud and Radiation
Test Bed (CART) Central Facility. SGP97 was designedand
conducted to extend surface soil moisture retrieval algo-
rithms based on passive microwave observations to coarser
resolutions, larger regions with more diverse conditions,
and longer time periods. The ESTAR instrument was used
for daily mapping of surface soil moisture over a one-
month period from mid-June to mid-July. Results showed
that the soil moisture retrieval algorithm performed the
same as in previous investigations (e.g., Washita '92),
demonstrating consistency of both the retrieval and the in-
strument.

Snow Cover and Water Equivalent

The occurrence of precipitation in the form of snow as op-
posed to rain typically causes a change in how a drainage
basin responds to the input of water. The reason for the
modified hydrological response is that snow is held in
cold storage on a basin for an extended period of time be-
fore it enters the runoff process. There is such a vast dif-
ference in the physical properties of snow and other nat-
ural surfaces that the occurrence of snow on a drainage
basin can cause significant changes in the energy and
water budgets. As an example, the relatively high albedo of
snow reflects a much higher percentage of incoming solar
shortwave radiation than snow-free surfaces (80 percent
for relatively new snow as opposed to roughly 15 percent
for snow-free vegetation). Snow may cover up to 53 per-
cent of the land surface in the northern hemisphere (Foster
and Rango, 1982) and up to 44 percent of the world’s land
areas at any one time. Snow cover and the equivalent
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Figure 1. Near-surface (~0 to 5 cm) soil water content
maps for the USDA-ARS Little Washita Experimental
Watershed facility derived from passive microwave data
collected on a series of days during Washita '92, June
1992. Spatial resolution is 200 m.

amount of water volume stored supplies at least one-third of
the water that is used for irrigation and the growth of crops
worldwide (Steppuhn, 1981). In high mountain snowmelt
basins of the Rocky Mountains, as much as 75 percent of
the total annual precipitation is in the form of snow (Storr,
1967), and 90 percent of the annual runoff is from
snowmelt (Goodell, 1966).
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Snow cover can be detected and monitored with a va-
riety of remote sensing devices. The greatest number of ap-
plications have been found in the visible and near-infrared
region of the electromagnetic spectrum. Because of the
Landsat and SPOT frequency-of-observation problems,
many users have turned to the NOAA polar orbiting satellite
with the Advanced Very High Resolution Radiometer
(AVHRR), which has a resolution of about 1 km in the 0.58-
to 0.68-um red band. The frequency of coverage is twice
every 24 hours (one daytime pass and one nighttime pass).
The major problem with the NOAA-AVHRR data is that the
resolution of 1 km may be insufficient for snow mapping
on small basins.

Despite the various problems mentioned, visible aircraft
and satellite imagery have been found to be very useful for
monitoring both the buildup of snow cover in a drainage
basin and, even more importantly, the disappearance of the
snow covered area in the spring. This disappearance or de-
pletion of the snow cover is important to monitor for
snowmelt runoff forecasting purposes. It has been recom-
mended by ARS researchers that the optimum frequency of
observation of the snow cover during depletion would be
once a week (Rango, 1985). Depending on the remote sens-
ing data used, it could be very difficult to obtain this fre-
quency. Certain snowmelt-runoff applications have been
possible with as few as two to three observations during the
entire snowmelt season (Rango, 1985).

Snow on the Earth’s surface is, in simple terms, an ac-
cumulation of ice crystals or grains, resulting in a snowpack
which over an area may cover the ground either completely
or partly. The physical characteristics of the snowpack de-
termine its microwave properties; microwave radiation
emitted from the underlying ground is scattered in many
different directions by the snow grains within the snow
layer, resulting in a microwave emission at the top of the
snow surface being less than the ground emission. Proper-
ties affecting microwave response from a snowpack include
depth and water equivalent, liquid water content, density,
grain size and shape, temperature, and stratification, as well
as snow state and land cover. The sensitivity of the mi-
crowave radiation to a snow layer on the ground makes it
possible to monitor snow cover using passive microwave re-
mote sensing techniques to derive information on snow ex-
tent, snow depth, snow water equivalent (SWE), and snow
state (wet/dry). Because the number of scatterers within a
snowpack is proportional to the thickness and density, SWE
can be related to the brightness temperature of the observed
scene (Hallikainen and Jolma, 1986); deeper snowpacks gen-
erally result in lower brightness temperatures.

The general approach used to derive SWE and snow
depth from passive microwave satellite data relates back to
those presented by Rango et al. (1979) and Kunzi et al.
(1982) using empirical approaches and Chang et al., (1987)
using a theoretical basis from radiative transfer calcula-
tions to estimate snow depth from Scanning Multispectral
Microwave Radiometer (SMMR) data. As discussed in Rott
(1993), the most generally applied algorithms for deriving
depth or snow water equivalent (SWE) are based on the
generalized relation given in Equation 7: i.e.,

where A and B are the offset and slope of the regression of
the brightness temperature difference between a high scat-
tering channel (f;, commonly 37 GHz) and a low scattering
one (f;, commonly 18 or 19 GHz) of vertical or horizontal
polarization. No single global algorithm will estimate snow
depth or water equivalent under all snowpack and land-
cover conditions. The coefficients are generally determined
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for different climate and land covered regions and for dif-
ferent snow-cover conditions; algorithms used in regions
other than those for which they were developed and tested
usually provide inaccurate estimates of snow cover. Also,
accurate retrieval of information on snow extent, depth,
and water equivalent requires dry snow conditions, be-
cause the presence of liquid water within the snowpack
drastically alters the emissivity of the snow, resulting in
brightness temperatures significantly higher than if that
snowpack were dry. Therefore, an early morning overpass
(local time) is the preferred orbit for retrieval of snow-
cover information to minimize wet snow conditions. It is
also recognized that knowledge of snowpack state is useful
for hydrological applications. Regular monitoring allows
detection of the onset of melt or wet snow conditions
(Goodison and Walker, 1995).

Passive microwave data provide several advantages not
offered by other satellite sensors. Studies have shown that
passive microwave data offer the potential to extract mean-
ingful snow-cover information, such as SWE, depth, extent,
and snow state. SSM/I is a part of an operational satellite
system, providing daily coverage of most snow areas, with
multiple passes at high latitudes, hence allowing the study
of diurnal variability. The technique has generally all-
weather capability (although affected by precipitation at
85 GHz), and can provide data during darkness. The data
are available in near real time, and hence can be used for
hydrological forecasting. There are limitations and chal-
lenges in using microwave data for deriving snow cover
information for hydrology. The coarse resolution of passive
microwave satellite sensors such as SMMR and SSM/I (about
25km) is more suited to regional and large basin studies, al-
though Rango et al. (1989) did find that reasonable SWE es-
timates could be made for basins of less than 10,000 km?.

Another challenge is to incorporate the effect of chang-
ing snowpack conditions throughout the winter season.
Seasonal aging, or metamorphism, results in a change in
the grain size and shape, and this will affect the mi-
crowave emission from the snowpack. In very cold regions,
depth hoar characterized by its large crystal structure en-
hance the scattering effect on the microwave radiation, re-
sulting in lower surface emission and producing an over-
estimate of SWE or snow depth (Hall, 1987; Armstrong et al.,
1993). The increase in brightness temperature associated
with wet snow conditions currently prevents the quantita-
tive determination of depth or water equivalent because al-
gorithms will tend to produce zero values under these con-
ditions. The best way to view the seasonal variability in
microwave emission from the snowpack is to compile a
time series of satellite data spanning the entire season,
which can then be related to changes in the pack over the
season (Walker et al., 1995).

In Canada, a federal government program (Climate Re-
search Branch, Atmospheric Environment Service) has
been ongoing since the early 1980s to develop, validate,
and apply passive microwave satellite data to determine
snow extent, snow water equivalent, and snowpack state
(wet/dry) in Canadian regions for near-real-time and opera-
tional use in hydrological and climatological applications.
Goodison and Walker (1995) provide a summary of the
program, its algorithm research and development, and fu-
ture thrusts. For the prairie region a snow water equivalent
algorithm was empirically derived using airborne micro-
wave radiometer data (Goodison et al., 1986), and was
tested and validated using Nimbus-7 SMMR and DMSP SSM/I
satellite data (Goodison, 1989).

After ten winter seasons in operation, the Canadian
prairie SWE mapping program has successfully demon-
strated a useful application of SSM/I-derived snow-cover
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information for operational hydrological analyses. It is also
a cooperative program in that user feedback has served to
enhance the validation and the refinement of the sSsm/1
SWE algorithm (Goodison and Walker, 1995). One en-
hancement has been the development of a wet snow indi-
cator (Walker and Goodison, 1993), which overcomes a
major limitation of the passive microwave technique by
providing the capability to discriminate wet snow areas
from snow-free areas and hence a more accurate retrieval
of snow extent during melting conditions.

Because areal snow-cover extent data have been avail-
able since the 1960s, various investigators have found
many useful applications. A team of scientists from a va-
riety of U.S. government agencies developed plans in the
early 1980s for operational snow mapping by the U.S. Na-
tional Weather Service (NWs) for hydrological purposes.
In 1986, NWS adopted these plans and proceeded to de-
velop operational remote sensing products, mostly for
snow hydrology. The most widely distributed products of
the NWs National Operational Hydrologic Remote Sensing
Center (NOHRSC) are periodic river basin snow cover ex-
tent maps from NOAA-AVHRR and the Geostationary Opera-
tional Environmental Satellite (GOES). Digital maps for
about 4000 basins in North America are produced about
once per week and are used by a large group of users in-
cluding the Nws River Forecast Centers and individual
water authorities.

Very few hydrological models have been developed to
be compatible with remote sensing data. One of the few
models that was developed requiring direct remote sensing
input is the Snowmelt Runoff Model (SRM), involving ARS
researchers (Martinec et al., 1998). The SRM requires remote
sensing measurements of the snow covered area in a basin.
Although aircraft observations can be used, satellite-derived
snow cover extent is the most common. The SRM employs
the degree day approach to melting the snow cover in a
basin (Martinec et al., 1998). To date, this version of the
SRM has been tested on over 80 basins in 25 countries
worldwide.

Spain is also using NOAA-AVHRR snow-cover data for
the forecasting of snowmelt runoff volume during the
spring and summer months in the Pyrenees. Development
of subpixel analysis techniques (Gomez-Landesa, 1997) has
allowed snow-cover mapping on basins as small as 10 km?
using the AVHRR data. This approach could make NOAA-
AVHRR data more widely usable for hydrological applica-
tions after it is tested in different geographic regions.
Gomez-Landesa and Rango (1998) applied NOAA-AVHRR
snow-cover data as input to the Snowmelt Runoff Model
(SRM) for use in forecasting the seasonal snowmelt runoff
volume in the Pyrenees to assist in planning hydropower
production. More recently, Gomez-Landesa and Rango
(2000) compared snow-cover mapping of NOAA-AVHRR with
the higher resolution (250-m pixel) data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) on NASA’s
Terra satellite platform. Figure 2 shows the NOAA-AVHRR
and MODIS-derived snow cover for the Noguera Ribagorzana
Basin (572.9 km?) in the Central Pyrenees of Spain on
07 April 2000. The different gray levels correspond to differ-
ent percents of snow cover in each NOAA-AVHRR and MODIS
pixel. The correlation between AVHRR and MODIS snow
maps were on the order of 0.8 to 0.9 with good agreement
between the snow distribution with altitude obtained from
both instruments. The agreement was good even in very
small basins with an area of about 8.3 km? .

Landscape Roughness and Vegetation Cover

Roughness refers to the unevenness of the Earth’s surface
due to natural processes (i.e., topography, vegetation,
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MODIS Snow Map - April 7, 2000

Figure 2. NOAA-AVHRR and MODIS derived snow cover for
the Noguera Ribagorzana Basin (572.9 km?) in the Cen-
tral Pyrenees of Spain on 07 April 2000. The different
gray levels correspond to different percents of snow
cover in each NOAA-AVHRR and MODIS pixel.

erosion) or human activities (i.e., buildings, power lines,
forest clearings). Roughness affects transport of hydromete-
orological fluxes between the land surface and atmosphere
as well as below the surface, i.e., infiltration and water
movement. Roughness is often separated into different
complexities related to its effects on land surface-atmosphere
dynamics. The complexities are (1) vegetation and urban
roughness where the horizontal scale is relatively small,
(2) transition roughness between landscape patches (i.e.,
plowed field next to a forest), and (3) topographic rough-
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ness due to changing landscape elevations. These complex-
ities and scales have different effects on wind, heat, and
water movement and are difficult to measure in the field at
large scales. Lidar, synthetic aperture radar (SAR), digital
elevation models (DEM), and photogrammetry are among
the remote sensing techniques that have been used to mea-
sure landscape surface roughness properties over large
areas.

The need for accurate and rapid measurements and as-
sessments of land surface terrain features to estimate the
effects of land surface roughness on hydrometeorological
processes led to the application of lidar distancing tech-
nology by ARS scientists using an aircraft-based platform
(Ritchie and Jackson, 1989; Ritchie 1996). Satellite plat-
forms have also been employed (Harding et al., 1994).

The first applications of the airborne lidar altimeter
were to measure topography (Link, 1969) and sea ice rough-
ness (Robin, 1966). Lidar altimeters can measure long topo-
graphic profiles quickly and efficiently. An example of a
topographic profile is shown in Figure 3 using approxi-
mately 45 seconds of profiling lidar altimeter data collected
in the USDA-ARS Reynolds Creek Experimental Watershed.
The length of this profile is 3.5 km and was part of a 10-km
profile. The inset in Figure 3 shows the data at full resolu-
tion, making the vegetation canopy visible in greater detail.
Topographic, transitional, and canopy roughness can be de-
termined from this profile. Ease and speed of data collec-
tion would allow measurement of several profiles with a
minimum of extra survey cost. Rango et al. (2000) used
scanning lidar data to study morphological characteristics
of shrub coppice dunes in the USDA-ARS Jornada Experi-
mental Range situated within the Chihuahuan desert. They
calculated dune distribution, area, and volume from the
scanning laser data. Lidar measurements provide spatial
data necessary to understand the effects of topography at
all scales on roughness patterns of the landscape.

Detailed measurements of microtopography over dis-
tances of 1 to 2 meters to understand the development and
patterns of surface roughness using a profiling airborne
lidar altimeter for a bare agricultural field is shown in Fig-
ure 4 (upper profile). This profile shows the surface micro-
roughness superimposed on the overall topography mea-
sured with a lidar altimeter. A moving average filter was
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Figure 3. A topographic profile measured using an air-
borne lidar altimeter. The profile was made by block
averaging 16 lidar measurements. The insert shows a
100-m section at full resolution (no averaging).
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Figure 4. A bare soil profile measured in an agricultural
field. The lower profile was derived from the upper
profile (raw data) using an 11-measurement moving
average filter.

used to remove random and system noise (McCuen and
Snyder, 1986) and is shown with the lower profile in Fig-
ure 3. Microroughness of soil and vegetation has been
shown to influence rill development, germination, water
retention, infiltration, evaporation, runoff, and soil erosion
by water and wind (Zobeck and Onstad, 1987). Lidar al-
timeter measurements of microroughness of the landscape
surface can be used to understand and calculate the effects
of roughness on evaporation, soil moisture, runoff, and soil
erosion at field and landscape scales.

Entrenched erosional features need to be quantified to
estimate their effects on water movement and soil loss
across the landscape. Measurements of these features can
be difficult and time consuming using ground-based tech-
niques. Measurement of large erosional landscape features
can be made rapidly using airborne lidar data (Ritchie
et al., 1994). The shape and roughness of gullies and stream
channels can be defined (see Figure 5). The lower dotted
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Figure 5. A lidar altimeter measured stream cross sec-
tion. Lower dashed line represents the stream cross
section and upper dashed line represents the flood
plain cross section.

line in Figure 5 represents the maximum stage of this
stream channel cross section, but other stages could be rep-
resented and used to calculate the carrying capacity at dif-
ferent channel and floodplain stages. Data on stream bottom
roughness can also be used to estimate resistance to flow of
the stream. Channel and flood plain cross sections and
roughness allow better estimates of channel and flood plain
carrying capacity and resistance to flow. Data on channel,
gully, and flood plain size, roughness, and degradation can
help in the design, development, and placement of physical
structures to control and calculate flows.

Vegetation canopies are an important part of land-
scape roughness that are difficult to measure by conven-
tional techniques. Airborne lidar measurements provided
accurate measurements of canopy top roughness (Figure
6a), heights (Figure 6b), and cover (Ritchie et al., 1992;
Ritchie et al., 1993; Weltz et al., 1994). Scanning lasers
(Rango et al., 2000) can provide a three-dimensional view
of canopy structure needed to understand canopy rough-
ness. Lidar measurements of vegetation properties were
made at eight locations in the USDA-ARS Walnut Gulch
Experimental Watershed in Arizona (Weltz et al., 1994)
and used in an algorithm for estimating effective aerody-
namic roughness, an important parameter in ET models
(Meneti and Ritchie, 1994). These remote estimates
agreed with aerodynamic roughness calculated from mi-
crometeorological methods using tower-based measure-
ments (Kustas et al., 1994). Fractals calculated for lidar
data have also been used as a way to separate roughness
(Pachepsky et al., 1997; Pachepsky and Ritchie, 1998;
Ritchie et al., 2001) due to topography and vegetation
and to show seasonal patterns in roughness. This type of
information from lidar should provide more accurate pa-
rameter estimation for models computing hydrometeoro-
logical fluxes.

Remote Sensing of Hydrometeorological Fluxes

Evapotranspiration

One of the more common ways in estimating ET is to re-
arrange Equation 2, solving for the latent heat flux, LE, as a
residual in the energy balance equation for the land sur-
face: i.e.,

LE=Ry—-G—-H (8)
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Figure 6. A forest canopy (a) and tree heights (b) mea-
sured using an airborne lidar altimeter.
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where Ry is the net radiation, G is the soil heat flux, and H
is the sensible heat flux, all ususally in W m™2. The quan-
tity Ry — G is commonly called the “available energy;” re-
mote sensing methods for estimating these components are
described in Kustas and Norman (1996). Typically with re-
liable estimates of solar radiation, differences between re-
mote sensing estimates and observed Ry — G are within
10 percent.

The largest uncertainty in estimating LE comes from
computing H. In resistance form, the relationship between
H and the surface-air temperature difference is expressed
as (e.g., Stewart et al., 1994)

H=pcp, [(Tr(6) — Ta)/(Ra + Rex)] (9)

where T, is the near-surface air temperature, p is air den-
sity, Cp is the specific heat of air, R, is the aerodynamic re-
sistance, and Rgx is the so-called “excess resistance,”
which addresses the fact that momentum and heat trans-
port from the roughness elements differ (Brutsaert, 1982).
The radiometric temperature observations, Ty(6), at some
viewing angle 6, are converted from satellite brightness
temperatures and are an estimate of the land surface tem-
perature, Tspygr. Thus, Equations 8 and 9 offer the possibil-
ity of mapping surface heat fluxes on a regional scale if R,
and Rpy can be estimated appropriately. Rpx has been re-
lated to the ratio of roughness lengths for momentum, zg), ,
and heat, zop, and the friction velocity u- having the form
(e.g., Stewart et al., 1994)

Rex =k " In(zom/zop) u-" (10)
where k = 0.4 is von Karman’s constant. This definition
addresses the fact that momentum and heat transport from
the roughness elements differ, but is just one of several
that have been developed (e.g., Stewart ef al., 1994;
McNaughton and Van den Hurk, 1995). There have been
numerous efforts in recent years to apply Equation 10 and
hence determine the behavior of Ry or zoy for different
surfaces, but no universal relation exists (Kustas and Nor-
man, 1996). Large spatial and temporal variations in the
magnitude of zpy; have been found. Nevertheless, solving
for the LE with the approach summarized in Equations 8,
9, and 10 is still widely applied.

It is important to recognize the fact that satellite obser-
vations are essentially “instantaneous” or merely “snap
shots” of the surface conditions. For many practical appli-
cations, LE estimates at longer time scales, i.e., daily val-
ues, are needed. This was the impetus for an empirical
scheme for estimating daily LE, LEp, pioneered by ARS sci-
entists (Jackson et al., 1977) using observations of Ty(6)
and T, near midday or maximum heating: i.e.,

LEp = Byp — B(TrA0) — Ta )" (11)
where the subscripts i and D represent “instantaneous”
and daily values, respectively. The coefficients B and n
have been related to physical properties of the land surface
and atmosphere, namely, zy, and stability, respectively
(Seguin and Itier, 1983). Both theoretical and experimental
studies have evaluated Equation 11, lending further sup-
port for its utility as a simple technique for estimating LE,
(Carlson and Buffum, 1989; Lagouarde, 1991; Carlson et al.,
1995). In fact, studies have applied Equation 11 to meteo-
rological satellites for longer term regional ET monitoring
in the Sahelian regions and for France (Seguin et al., 1989;
Seguin et al., 1991).

However, a major drawback with these approaches
summarized above is that there is no distinction made be-
tween soil and vegetation canopy components. Hence, veg-

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

etation water use or stress cannot be assessed. Further-
more, as evidence from many previous studies, both the re-
sistances in Equation 9 and consequently the parameteriza-
tion in Equation 11 are not uniquely defined by surface
roughness parameters. In addition to experimental evi-
dence (e.g., Vining and Blad, 1992; Verhoef et al., 1997),
Kustas ef al. (2003), using a complex soil-vegetation-atmos-
phere-transfer (SVAT) model (Cupid; Norman and Camp-
bell, 1983), have shown the lack of a unique relationship
between Tp(0) and the so-called “aerodynamic” surface
temperature, T, (To is the temperature satisfying Equa-
tion 9 with traditional expressions for the resistances; see
Norman and Becker (1995)).

An alternative approach recently proposed considers
the soil and vegetation contribution to the total or compos-
ite heat fluxes and soil and vegetation temperatures to the
radiometric temperature measurements in a so-called
“Two-Source” Modeling (TSM) scheme (Norman et al.,
1995). This allows for Equation 9 to be recast into the fol-
lowing expression:

H = pCpl(Tr(0) — Ta)/Ral (12)
where Ry is the radiometric-convective resistance given by
Norman et al. (1995): i.e.,

Ry = (Tg(0) — TA)/(Tg — Ta)/Ra + (Ts — Ta)/(Ra + Rg)]. (13)

T¢ is the canopy temperature, T is the soil temperature,
and Rg is the soil resistance to heat transfer. An estimate of
leaf area index or fractional vegetation cover, f¢, is used to
estimate T and Tg from Ty(6): i.e.,

Tr(0) = (f0)TE + (1 — fo0))TH*

where fc(6) is the fractional vegetative cover at radiometer
viewing angle 0, and Rg is computed from a relatively sim-
ple formulation predicting wind speed near the soil sur-
face (Norman et al., 1995). With some additional formula-
tions for estimating canopy transpiration, and the dual
requirement of energy and radiative balance of the soil and
vegetation components, closure in the set of equations is
achieved. Through model validation studies, revisions to
the original two-source formulations have been made (Kustas
and Norman, 1999; Kustas et al., 2003).

Earlier studies recognized the need to consider frac-
tional vegetation cover on ET using information provided
in the Vegetation Index-radiometric temperature, VI-Tx(0),
space (Price, 1990). Price (1990) used an energy balance
model for computing spatially distributed fluxes from the
variability within the Normalized Difference Vegetation
Index NDVI-Ty(6) space from a single satellite scene. Price
(1990) used NDVI to estimate the fraction of a pixel covered
by vegetation and showed how one could derive bare soil
and vegetation temperatures and, with enough spatial vari-
ation in surface moisture, estimate daily ET for the limits
of full cover vegetation, dry and wet bare soils.

Following Price (1990), Carlson et al. (1990; 1994)
combined an Atmospheric Boundary Layer (ABL) model
with a SVAT for mapping surface soil moisture, vegetation
cover, and surface fluxes. Model simulations are run for
two conditions: 100 percent vegetative cover with the
maximum NDVI being known a priori, and with bare soil
conditions knowing the minimum NDVI. Using ancillary
data (including a morning sounding, vegetation, and soil
type information) root-zone and surface soil moisture are
varied, respectively, until the modeled and measured
Tg(6) are closely matched for both cases so that fractional
vegetated cover and surface soil moisture are derived.
Further refinements to this technique have been devel-

(14)
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oped by Gillies and Carlson (1995) for potential incorpo-
ration into climate models. Comparisons between mod-
eled-derived fluxes and observations have been made re-
cently by Gillies et al. (1997), indicating that
approximately 90 percent of the variance in the fluxes
were captured by the model.

In a related approach, Moran et al. (1994) defined theo-
retical boundaries in VI-(T(0)-T,) space using the Penman-
Monteith equation in order to extend the application of the
crop water stress index to partial vegetation cover (see
below). The boundaries define a trapezoid, which has at
the upper two corners unstressed and stressed 100 percent
vegetated cover and at the lower two corners, wet and dry
bare soil conditions (Figure 7). In order to calculate the
vertices of the trapezoid, measurements of Ry, vapor pres-
sure, T4, and wind speed are required as well as vegetation
specific parameters; these include maximum and minimum
VI for the full-cover and bare soil case, maximum leaf area
index, and maximum and minimum stomatal resistance.
Moran et al. (1994) analyze and discuss several of the as-
sumptions underlying the model, especially those concern-
ing the linearity between variations in canopy-air tempera-
ture and soil-air temperatures and transpiration and
evaporation. Information about ET rates are derived from
the location of the VI-(Ty(0)-T,) measurements within the
date and time-specific trapezoid. This approach permits
the technique to be used for both heterogeneous and uni-
form areas and thus does not require having a range of
NDVI and surface temperature in the scene of interest as re-
quired by Carlson et al. (1990) and Price (1990). Moran et
al. (1994) have compared the method for estimating rela-
tive rates of ET with observations over agricultural fields
and showed it could be used for irrigation scheduling pur-
poses. More recently, Moran ef al. (1996) have shown the
technique has potential for computing ET over natural
grassland ecosystems.

All these modeling schemes however, are susceptible
to errors in the radiometric temperature observations and
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Figure 7. The trapezoidal shape that results from the
theoretical relation using the Penman-Monteith equation
(Moran et al., 1994) between radiative temperature
minus air temperature (Tg(0) — T,) and a Vegetation
Index (NDVI). With a measurement of (Tg(6) — T,) at point
C, it is possible to equate the ratio of actual to potential
ET with the ratio of distances CB and AB (see text). This
is the basis for the Water Deficit Index (wDI) derived by
Moran et al. (1994) in the application of the Crop Water
Stress Index (cwsl) for partial canopy cover conditions.
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most require screen level meteorological inputs (primarily
wind speed, u, and air temperature, T4, observations)
which at regional scales suffer from errors of representa-
tiveness. Approaches using remotely sensed data for esti-
mating the variation of these quantities are being devel-
oped and tested (Bastiaanssen et al., 1998; Gao et al.,
1998). How reliable the algorithms are for different cli-
matic regimes needs to be evaluated.

A modeling framework has recently been developed
involving ARS scientists to addressed these limitations
(Anderson et al., 1997; Mecikalski et al., 1999) through an
energy closure scheme, Atmospheric-Land-EXcange-
Inverse (ALEXI) which employs the TSM approach (Norman
et al., 1995) to also address the non-uniqueness of the
radiometric-aerodynamic temperature relationship. ALEXI
uses the growth of the ABL, a quantity sensitive to heat flux
input to the lower atmosphere, and coupling this growth to
the temporal changes in surface radiometric temperature
from the Geosynchronous Operational Environmental
Satellite (GOES). Using temporal changes of brightness tem-
peratures, errors in the conversion to radiometric surface
temperatures are significantly mitigated. The use of an en-
ergy balance method involving the temporal-change of the
height of the ABL moderates errors that arise in schemes
that utilize the surface-air temperature gradient for esti-
mating the heat fluxes because the ALEXI model derives
local air temperature at an interface height of approxi-
mately 50 m.

Another much simpler scheme co-developed by ARS
researchers, which also uses the TSM framework, employs
the time rate of change in radiometric temperature and air
temperature observations from a nearby weather station in
a simple formulation for computing regional heat fluxes,
called the Dual-Temperature-Difference (DTD) approach
(Norman et al., 2000). Although this technique requires air
temperature observations, by using a time difference in air
temperature, errors caused by using local shelter level ob-
servations for representing a region are still reduced. More-
over, the scheme is simple; thus, it is computationally effi-
cient and does not require atmospheric sounding data for
initialization. Preliminary comparisons of regional scale ET
output over the central United States between DTD and the
more computational intensive and complex ALEXI scheme
show good agreement in the patterns (Kustas et al., 2001).

An example of application of the TSM approach for es-
timating daily ET is illustrated in Plate 2 for the September
2000 ASTER image of Ty(6) and NDVI computed from the
ASTER red and near-infrared reflectance data (Plate 2a).
Many of the low ET rates are from fields that are either
bare soil or contain wheat stubble from the summer winter
wheat harvests, which generally have the highest T(0) and
0 < NDVI < 0.1. Higher ET rates come from grassland sites
(NDVI > 0.2) with the highest rates over irrigated crop
fields and riparian areas along streams where NDVI = 0.4
and water bodies where NDVI = 0 (Plate 2a).

Crop Water Stress

Crop water stress is one of the most common problems in
agricultural production because soil water deficits occur at
some time during the growing season. Development of
methods that accurately assess the level of stress and the
impact on crop yield would provide more realistic assess-
ment of crop water stress. Of the suite of techniques avail-
able, leaf or foliage temperature has been considered one
of the more reliable because it is directly related to energy
exchanges in the plant. One of the first discussions of the
potential usefulness of plant temperature was made by
Tanner (1963). This was followed by research by Wiegand
and Namken (1966) and Ehler et al. (1978) demonstrating
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Plate 2. An image of (a) NDvI for the same scene as
Plate 1 at a 15-m resolution and (b) resulting daily ET
map at a 90-m resolution using the TsM formulation of
Norman et al. (1995).

that leaf temperature was related to plant moisture status.
These two groups used thermocouples and infrared ther-
mometers attached to leaves to obtain leaf temperatures.
Development of portable infrared thermometers that could
accurately measure foliage temperature prompted the fur-
ther development of the relationships between foliage tem-
perature and plant water stress.

Over the past 25 years there has been considerable
progress in the development and application of foliage tem-
perature as a tool for quantifying plant water stress. There
are a variety of terms that have appeared in the literature to
describe the relationship between plant water status and fo-
liage temperature. These terms include Stress-Degree-Day,
Crop Water Stress Index, Non-water Stressed Baselines,
Thermal Kinetic Windows, and Crop Specific Tempera-
tures, and represent the progression of understanding of the
physical and biological influences on foliage temperature.

Three different methods of utilizing foliage tempera-
tures to estimate water stress have been proposed:

(1) canopy-air temperature differences (Wiegand and
Namken, 1966), (2) comparison of foliage temperatures with
a well-watered field (Fuchs and Tanner, 1966), and (3) vari-
ability of surface temperature within a field (Aston and van
Bavel, 1982). Canopy-air temperature differences formed the
basis for the Stress-Degree-Day (SDD) and Crop Water Stress
Index (CwsI) concepts pioneered by ARS researchers. In the
late 1970s the SDD concept was evaluated by several differ-
ent ARS groups around the United States with mixed results.
For example, Walker and Hatfield (1979) found a linear rela-
tionship between the accumulation of SDDs during the grow-
ing season and crop water use and yield in kidney beans
(Phaseolus vulgaris L.). However, the concept promoted in-
vestigations to refine our understanding of the relationships
between plant water status and foliage temperature.
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The Idso-Jackson CWSI concept was considered an im-
portant breakthrough in the use of remote sensing for irriga-
tion management. Incorporating the energy balance compo-
nents into understanding the behavior of foliage-air
temperature relationships, Jackson et al. (1981) derived a
theoretical framework for the CwsI to show how foliage-air
tem-peratures would interact under a variety of conditions.
Jackson et al. (1981) derived the theoretical CWSI (CWSIy)
based largely from Monteith and Szeicz (1962) who related
canopy-air temperature differences, Tc— Ty, to the available
energy, Ry — G, the vapor pressure deficit, VPD, and aerody-
namic and canopy resistances, R4 and R, respectively: i.e.,

Ra(By — G) . v[1 + Re/RaAl

B VPD
A + y[1 + Rc/R,]

TC - TA =(
(15)

where A is the slope of the saturation vapor pressure-air
temperature curve, vy is the psychrometric constant, and
the vapor pressure deficit VPD = e*4, — e,, which is the
difference between saturated and actual vapor pressure at
T,4, respectively. By taking the ratio of actual transpiration
T for any R to the potential rate Tp where Rz = Rc¢p, a sim-
ple ratio of resistance expression is derived: i.e.,
T/Tp = (1 + Rcp/RA)/ (1 + Ro/Ry) (16)
where R¢p is the canopy resistance at the potential rate.
Jackson et al. (1981) defined the CwSIy, ranging from 0
(ample water) to 1 (maximum stress), as
To solve Equation 17, a value of R¢/R, is obtained by rear-
ranging Equation 15 and assuming G is negligible for a
full-cover canopy; hence,

Re _ YIRARN/ pCp1 —[(Tc = Ta) - (A + )] — VPD
Ra Y((Te — Ta) — [RaRn/pCpl)

and R¢/R, is substituted into Equation 17 to obtain the
CWsIy as a fuction of the canopy-air temperature difference.

Though Jackson et al. (1981) provided a thorough theo-
retical approach for computation of CWsI, the concept is
more universally applied using a semi-empirical variation
proposed by Idso et al. (1981) based on the “non-water-
stressed baseline.” This baseline is defined by the relation
between (T¢ — T4) and VPD under non-limiting soil mois-
ture conditions, i.e., when the plant water is evaporating at
the potential rate. Such non-water-stressed baselines have
been determined for many different crops, including
aquatic crops and grain crops, for both pre-heading and
post-heading growth rates (Idso, 1982). These derivations
have formed the basis for many of the current applications
of foliage temperature to assessment of crop water stress.
Hatfield et al. (1987) showed that there were differences
among 50 cotton (Gossypium hirsutum L.) strains in their
slope of the non-water stressed baseline, suggesting that
genetic variation exists between soil water deficits and fo-
liage temperature response.

The commercial applicability of cwslI is evidenced by
the commercial production of a handheld instrument de-
signed to measure CWSI, several commercial imaging com-
panies that are providing CWSI to farmers, and the multi-
tude of examples of application of this theory with airborne
and satellite-based thermal sensors combined with ground-
based meteorological information (see the review by Moran
and Jackson (1991)).

(18)
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Application of cwsI with satellite- or aircraft-based
measurements of surface temperature is generally re-
stricted to full-canopy conditions so that the surface tem-
perature sensed is equal to canopy temperature. To deal
with partial plant cover conditions, Moran et al. (1994) de-
veloped a Water Deficit Index (WDI) which combined mea-
surements of reflectance with land surface temperature
measurements as expressed by

WDI =1 — E4/ETp = [(Tr(0) — Ta)ops — (Tr(8) — TA)aunl/

[(TH(G) - TA)MAX - (TR[0] - TA]MIN]

where the subscript OBS is the observed surface-air tem-
perature difference, and subscripts MAX and MIN refer to
maximum and minimum suface-air temperature differ-
ences, respectively. The WDI is operationally equivalent to
the cwst for full-cover canopies, where Ty(0) = T¢. Graphi-
cally, wWDI is equal to the ratio of distances AC/AB in the
trapezoidal shape presented in Figure 7, where WDI = 0.0
for well-watered conditions and wDI = 1.0 for maximum
stress conditions. That is, the left edge of the Vegetation
Index/Temperature (VIT) trapezoid corresponds to Ty(0) —
T, values for surfaces evaporating at the potential rate; the
right edge corresponds to Ty(6) — T, values for surfaces in
which no ET is occurring.

Another promising approach for operational applica-
tion is the use of remotely sensed crop coefficients (the
ratio of actual crop evaporation to that of a reference crop)
for estimation of actual, site-specific crop evaporation rate
from readily available meteorological information (e.g.,
Bausch, 1993). This approach requires only a measure of
NDVI and is simply an improvement of an approach already
accepted and in use by farmers to manage crops, where
such improvements include increases in accuracy of the
evaporation estimates and, with use of images, the ability
to map within-field and between-field variations.

Variation of foliage temperatures within fields has
been used to indicate the onset of crop water stress. Heer-
man and Duke (1978) found that foliage temperatures of
corn (Zea mays L.) that were 1.5°C above air temperature
could be used reliably to schedule irrigations. Hatfield et al.
(1984) evaluated the variability patterns in grain sorghum
(Sorghum bicolor (L.) Moench.) and found that, when the
standard deviation of foliage temperature was less than
0.7°C, the soil water extraction was less than 50 percent of
the available soil water to the 1.5-m depth. The variance of
foliage temperature increased linearly when soil water ex-
traction increased above 50 percent of the available soil
water. Bryant and Moran (1999) used a different approach
to quantify variation of foliage temperature in fields and
proposed a histogram-derived Crop Water Stress Index.
They derived an index based on the deviation of the shape
of the histogram of a thermal image of foliage temperature
compared to the shape of histogram generated from the
mean and variance of thermal image data. To account for
differences in the mean foliage temperature, they normal-
ized the frequency of foliage temperatures. They stated
that a recently irrigated field would have a histogram close
to the normal distribution while a stressed field would de-
viate from this pattern. This approach is an extension of
the variability work conducted with handheld infrared
thermometers to the use of thermal images across a field.

In the past 15 years the development of the Thermal
Kinetic Window and Crop Specific Temperatures have re-
vealed the dynamic interactions among foliage tempera-
ture, plant species, and the physical environment. Wanjura
and Upchurch (2000) showed that they could effectively
use foliage temperatures to manage irrigation on corn and
cotton and increase the efficiency of water use on these

(19)
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crops. This concept was based on the development of Crop
Specific Temperatures that were defined from original ob-
servations by Burke et al. (1988) to show that leaf tempera-
tures of different species achieved an optimal range during
the day. Research by Mahan and Upchurch (1988) and Up-
church and Mahan (1988) revealed that plants operated
under a narrow range of leaf temperatures during the day
that was imposed by the amount of energy received on the
leaf and the species that dictated the stomatal conductance
or rate of water loss. Hatfield and Burke (1991) found that
plants (cotton; cucumber, Cucumis sativa L.; and bell pep-
per, Capsicum frutescens L.) had different foliage tempera-
tures throughout the day and that these temperatures were
specific to a given species. This research prompted the ex-
amination of the response of foliage temperature as being a
dynamic balance between the leaf characteristics, species,
and energy balance.

Concluding Remarks

Agricultural Research Service scientists will continue to
play a major role in remote sensing research in hydromete-
orology. Algorithm and model development with existing
and new remote sensing technologies for assessing hy-
drometeorological state variables and fluxes is considered
critical because this is the only technology available that
can ultimately provide the capability to monitor crop de-
velopment and yield using stress indicators and plant
water use over a range of spatial scales, from field, farm,
and watershed, up to regional scales. To attain this goal,
ARS scientists are making important contributions in some
of the new research directions to address science questions
impeding hydrometeorological research.

One area is in developing a framework for combining
multifrequency remote sensing information, from the visi-
ble to microwave wavelengths, for more reliable estimation
of vegetation and soil properties and states. There is em-
pirical and theoretical evidence that synthetic aperture
radar (SAR) backscatter in combination with optical data
(i.e., visible through thermal-infrared wavelengths) may
provide useful information about crop water stress (Moran
et al., 1997). At high frequencies (about 13 GHz), field ex-
periments have shown that the radar signal was particu-
larly sensitive to such plant parameters as leaf area index,
plant biomass, and percentage of vegetation cover. At low
frequencies (about 5 GHz), many studies have shown that
the radar signal is very sensitive to soil moisture, though
this sensitivity decreased with increasing vegetation cover.

In a related approach, remotely sensed near-surface
moisture from a passive microwave sensor has been used
in combination with optical data for estimating the soil
and vegetation energy balance (Kustas et al., 1998). The
model has been applied over a semiarid area in southern
Arizona (Kustas et al., 1998), and in the Southern Great
Plains in Oklahoma (Kustas et al., 1999). Comparison of
model-computed ET with ground- and aircraft-based obser-
vations showed good results, with discrepancies between
modeled and observed ET averaging about 15 percent. It is
also shown that it may be possible to simulate the daytime
fluxes with only a single microwave observation.

Another important area related to scaling up from field
to regional scales is the effects of landscape heterogeneity
on atmospheric dynamics and mean air properties and re-
sulting feedbacks on the land surface fluxes. This can be
captured in a modeling framework using Large Eddy Simu-
lation (LES). LES models simulate the space and time dynam-
ics of ABL turbulence and the interactions with the land
surface using a numerical solution of the Navier-Stokes
equations (e.g., Albertson and Parlange, 1999). However,
most studies to date addressing land surface heterogeneity
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using LES have described surface boundary conditions as
predefined fluxes with artificial variability or with spatial
variability defined to match the surface flux fields estimated
from experimental data at a particular site. The questions of
how the surface heterogeneity affects ABL heterogeneity, and
how the surface and air properties in turn affect the flux
fields that develop over a region with heterogeneous surface
properties are left unanswered in most LES studies.

The LES-remote sensing model recently developed by
Albertson et al. (2001) couples remotely sensed surface tem-
perature and soil moisture fields (2D) to the dynamic (4D)
ABL variables using the TSM scheme described earlier;
hence, separate and explicit contributions from soil and veg-
etation (i.e., two sources) to mass and energy exchanges are
included. This is a merger of active lines of research: the use
of remotely sensed land surface properties to study water
and energy fluxes, and the use of LES to study the impacts of
surface variability on ABL processes. This LES-remote sens-
ing model can run over about a 10-km? domain at relatively
high spatial resolution (about 100 m) with remotely sensed
vegetation cover, surface soil moisture, and temperature
defining surface heterogeneities governing atmospheric ex-
changes/interactions with the land surface. Typically, land-
atmosphere are either driven by a network of surface meteo-
rological observations, or use energy conservation principles
applied to ABL dynamics to deduce air temperature (Ander-
son et al., 1997). However, neither approach considers the
resulting impact/feedback of surface heterogeneity on atmos-
pheric turbulence and the resulting spatial features of the
mean air properties, particularly at the patch or local scale.
The predictions from the LES-remote sensing modeling
scheme will provide a benchmark for assessing the impact
of a range of surface heterogeneity features on land-atmos-
phere predictions neglecting such coupling.
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