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Abstract: Die transösophageale linksventrikuläre 
Elektrokardiographie ermöglicht die Evaluierung der 
elektrischen ventrikulären Desynchronisation im   
Rahmen der kardialen Resynchronisationstherapie der 
Herzinsuffizienz. Das Ziel der Untersuchung besteht  in 
der präoperativen Abschätzung des transösophagea-
len interventrikulären Delays bei Vorhofflimmern und 
kardialer Resynchronisationstherapie.  
Bei Patienten mit Vorhofflimmern, Herzinsuffizienz 
New York Heart Association Klasse 3,0 ± 0,2  und 
QRS-Dauer 159,6 ± 23,9 ms wurde das fokusierte 
transösophageale  linksventrikuläre EKG abgeleitet. 
Die kardiale Resynchronisationstherapie  Responder 
QRS-Dauer  korrelierte mit dem transösophagealen 
interventrikulären Delay bei Vorhofflimmern.  
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Einleitung 

Bei Patienten mit Herzinsuffizienz (HF), Links-
schenkelblock und reduzierter linksventrikulärer     
Ejektionsfraktion sind das Ausmaß der elektrischen 
ventrikulären Desynchronisation und die Lage der 
implantierten linksventrikulären Elektrode von        
entscheidender Bedeutung für den Erfolg der kardialen 
Resynchronisationstherapie (CRT) mit biventrikulärer 
Stimulation bei Sinusrhythmus. Die intrakardiale und 
transösophageale linksventrikuläre Elektrokardiogra-
phie ermöglichen eine Abschätzung des elektrischen 
interventrikulären Delays.  
CRT Responder mit 170 ± 31 ms mittlere QRS-Dauer 
zeigten ein verlängertes transösophageales          
elektrisches interventrikuläres Delay größer 40 ms und 
ein mittleres interventrikuläres Delay von 81± 25 ms. 
Bei CRT Nonresponder mit 174 ± 10 ms mittlere QRS-
Dauer betrug das signifikant verkürzte transösopha-
geale interventrikuläre Delay im Mittel 30 ± 11 ms [1]. 
Die auf den posterioren linken Ventrikel fokusierte 
transösophageale linksventrikuläre Elektrokardiogra-
phie und temporäre transösophageale linksventrikuläre 
Stimulation können zur Verbesserung der   Patienten-
auswahl vor CRT beitragen [2]. 
Das Ziel der  Untersuchung besteht  in der präoperati-
ven Abschätzung des  elektrisc hen interventrikulären 

Delays bei CRT Responder und CRT Nonresponder 
mit Vorhofflimmern.  
 
       
Methoden 

Bei 17 Patienten mit Vorhofflimmern (Alter  61,2 ± 11,5 
Jahre, 16 Männer und 1 Frau), Herzinsuffizienz New 
York Heart Association Klasse 3,0 ± 0,2 , linksventriku-
läre Ejektionsfraktion 24,9 ± 5,6 % und QRS-Dauer 
159,6  ± 23,9 ms wurde das interventrikuläre Delay als 
Intervall zwischen Beginn des QRS-Komplexes im 
Oberflächen EKG und Beginn des linksventrikulären 
Potentials im transösophagealen linksventrikulären 
EKG  bestimmt. Das telemetrische intrakardiale     
interventrikuläre Delay wurde zwischen Beginn des 
rechtsventrikulären Potentials im rechtsventrikulären  
EKG und Beginn des linksventrikulären Potentials im 
linksventrikulären EKG vermessen. Die präoperative 
linksventrikuläre Elektrokardiographie erfolgte mit Hilfe 
des Osypka TO Katheters in Höhe der maximalen 
linksventrikulären Deflektion (Abb. 1). Das intralinks-
ventrikuläre Delay wurde zwischen Beginn und Ende 
des linksventrikulären Potentials im transösophagealen 
linksventrikulären EKG bestimmt.  
 

 
Abbildung 1: Elektrische ventrikuläre Desynchronisati-
on bei Vorhofflimmern und dilatativer Kardiomyopathie. 
Das transösophageale interventrikuläre Delay (linke 
Seite) beträgt 112ms und das telemetrische intrakardi-
ale interventrikuläre Delay 40ms (rechte Seite).         
LV - linksventrikuläres Potential, RV – rechtsventrikulä-
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res    Potential, I, II, III, aVR, aVl, aVF, V1-V6 - Ober-
flächen EKG, ESO bipolar – bipolares transösopha-
geales linksventrikuläres EKG, LVE - intrakardiales 
linksventrikuläres EKG, RVE – intrakardiales rechts-
ventrikuläres EKG.  
 
Bei 15 Patienten wurde ein CRT-Defibrillator und bei 2 
Patienten ein CRT-Herzschrittmacher implantiert. 
Postoperativ erfolgte die individuelle  hämodynamische 
CRT Optimierung des VV-Delays zwischen rechts-
ventrikulärer und linksventrikulärer Stimulation mit der 
Medis Cardiosreen Impedanzkardiographie.  
 
 
Ergebnisse 

Bei 11 CRT Responder mit Vorhofflimmern betrugen 
das transösophageale interventrikuläre Delay 68,7± 
22,9 ms, das transösophageale intralinksventrikuläre 
Delay 76,5 ± 17,4 ms und die QRS Dauer 161,6 ± 22,2 
ms. Die CRT Responder QRS-Dauer korrelierte mit 
dem transösophagealen interventrikulären Delay 
(r=0,60, P=0,0499) (Abb. 2).   
 

 

Abbildung 2: Elektrische ventrikuläre Desynchroni-
sation bei kardialen Resynchronisationstherapie    
Responder mit Vorhofflimmern,  r, P – Pearson      

correlation coefficients 

 
Bei 6 CRT Nonresponder mit Vorhofflimmern betrugen 
das transösophageale interventrikuläre Delay 50,3± 
33,9 ms, das transösophageale intralinksventrikuläre 
Delay 93,2 ± 31,4 ms und die QRS Dauer 155,8 ± 28,7 
ms. Die CRT Nonresponder QRS-Dauer korrelierte 
nicht  mit dem transösophagealen interventrikulären 
Delay (Abb. 3).   
Die CRT Responder verbesserten sich in der New 
York Heart Association Klasse von 3,1 ± 0,2 auf 2,1 ± 
0,3 (P < 0,001) während 16,3 ± 13,7 Monaten CRT mit 
hämodynamisch VV-Delay optimierter biventrikulärer 
Stimulation.   

 

Abbildung 3: Elektrische ventrikuläre Desynchroni-
sation bei kardialen Resynchronisationstherapie          

Nonresponder mit Vorhofflimmern 

 
Diskussion 

Die auf den posterioren linken Ventrikel fokusierte 
transöophageale linksventrikuläre Elektrokardiographie 
ermöglicht bei Patienten mit Herzinsuffizienz und    
Vorhofflimmern die präoperative Messung des    
elektrischen interventrikulären Delays und intralinks-
ventrikulären Delays. 
Das transösophageale interventrikuläre Delay lässt 
sich möglicherweise intraoperativ als Mindestzielwert 
zur Positionierung der linksventrikulären Elektrode 
benutzen und ist ein einfach anwendbarer Parameter 
zur Abschätzung der elektrischen ventrikulären Desyn-
chronisation bei Vorhofflimmern. Das elektrische   
interventrikuläre Delay lässt sich möglicherweise zur 
Vorhersage von CRT Responder und CRT Nonreson-
der nutzen.    
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Abstract: Das Ausmaß der elektrischen ventrikulären 
Desynchronisation bei reduzierter linksventrikulärer 
Funktion ist von Bedeutung für den  Erfolg der Resyn-
chronisationstherapie der Herzinsuffizienz mit biventri-
kulärer Stimulation. Das Ziel der Untersuchung besteht  
in der nichtinvasiven Messung der elektrischen inter-
ventrikulären Desynchronisation mit und ohne ischä-
mische Herzerkrankung bei kardialen Resynchronisa-
tionstherapie Respondern. Bei Patienten mit 25,3 ± 7,3 
% reduzierter linksventrikulärer Ejektionsfraktion und 
166,9 ± 38,5 ms QRS-Dauer wurde das transösopha-
geale  linksventrikuläre EKG abgeleitet. Die QRS-
Dauer  korrelierte mit dem interventrikulären und links-
ventrikulären Delay bei Resynchronisationstherapie  
Respondern mit nicht-ischämischer Herzerkrankung.  
 

Keywords: Biventrikuläre Stimulation, kardiale Resyn-
chronisationstherapie,   ischämische Herzerkrankung, 
linksventrikuläre Desynchronisation, interventrikuläres 
Delay  

 
 
Einleitung 

Bei Patienten mit chronischer hochgradiger Herzinsuf-
fizienz und reduzierter linksventrikulärer Ejektionsfrak-
tion kleiner 35 % sind das Ausmaß der elektrischen 
interventrikulären Desynchronisation, die Lage der 
implantierten linksventrikulären Stimulationselektrode 
zum Ort der spätesten linksventrikulären Erregung und 
die Optimierung des atrioventrikulären Delays bedeu-
tend für den Langzeiterfolg  der kardialen Resynchro-
nisationstherapie (CRT) mit biventrikulärer Stimulation 
[1, 2].  
Das Ziel der  Untersuchung besteht  in der präoperati-
ven nichtinvasiven Bestimmung des transösophagea-
len elektrischen interventrikulären Delays und links-
ventrikulären Delays bei CRT Respondern mit ischä-
mischer und nicht-ischämischer Herzerkrankung.  
 
       
Methoden 

Bei 31 Patienten mit ischämischer und nicht-
ischämischer Herzerkrankung (Alter  62,5 ± 11,4 Jah-
re, 27 Männer und 4 Frauen), Herzinsuffizienz New 
York Heart Association Klasse 3,0 ± 0,2 , linksventriku-
läre Ejektionsfraktion 25,3 ± 7,3 %, QRS-Dauer 166,9  

± 38,5 ms und interatrialem Delay 70,7 ± 23,5 ms 
(n=18) wurden das interventrikuläre Delay als Intervall 
zwischen Beginn des QRS-Komplexes im Oberflächen 
EKG und Beginn des linksventrikulären Potentials im 
transösophagealen linksventrikulären EKG und das 
linksventrikuläre Delay als Intervall zwischen Beginn 
und Ende des linksventrikulären Potentials im transö-
sophagealen linksventrikulären EKG bestimmt. Das 
interatriale Delay wurde als Intervall zwischen Beginn 
und Ende des linksatrialen Potentials im transösopha-
gealen EKG bestimmt. 
 

 
 
Abbildung 1:Transösophageale elektrische ventrikuläre 
Desynchronisation mit 96 ms interventrikuläres Delay 
und  78 ms linksventrikuläres Delay bei Sinusrhyth-

mus, ischämischer Herzerkrankung und Resynchroni-
sationstherapie Responder.  IVD – interventrikuläres 

Delay, LVD – linksventrikuläres Delay, LA – linksatria-
les Potential,   LV – linksventrikuläres Potential,            

I, II, III, aVR, aVl, aVF, V1-V6 - Oberflächen EKG, 
ESO12, ESO34 – distales bipolares   transösophagea-
les linksventrikuläres EKG, ESO56, ESO78 – proxima-

les bipolares transösophageales linksatriales EKG. 
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Die bipolare transösophageale Elektrokardiographie 
erfolgte mit Hilfe des Osypka TO4 Katheters in Höhe 
der maximalen linksventrikulären Deflektion oder des 
Osypka TO8 Katheters in Höhe der maximalen links-
ventrikulären und linksatrialen Deflektion (Abb. 1). Bei 
24 Patienten wurde ein Boston CRT-Defibrillator, bei 6 
Patienten ein Medtronic CRT-Defibrillator und bei 1 
Patient ein St. Jude CRT-Defibrillator implantiert. Post-
operativ erfolgte die individuelle  hämodynamische 
CRT Optimierung des atrioventrikulären Delays und 
des interventrikulären Delays zwischen rechtsventriku-
lärer und linksventrikulärer Stimulation mit der Medis 
Cardiosreen Impedanzkardiographie.  
 
 
Ergebnisse 

Bei 19 CRT Responder mit nicht-ischämischer Herzer-
krankung betrugen das transösophageale interventri-
kuläre Delay 78,1± 25,2 ms, das transösophageale 
linksventrikuläre Delay 77,6 ± 21,7 ms und die QRS-
Dauer 175,8 ± 43,5 ms. Die nicht-ischämische Herzer-
krankung CRT Responder QRS-Dauer korrelierte mit 
dem transösophagealen interventrikulären Delay 
(r=0,75, P<0,001) und transösophagealen linksventri-
kulären Delay (r=0,51, P=0,02) (Abb. 2).   

 

Abbildung 2: Elektrische ventrikuläre Desynchroni-
sation bei kardialen Resynchronisationstherapie    

Respondern mit nicht-ischämischer Herzerkrankung. 
IVD – interventrikuläres Delay, LVD – linksventrikulä-

res Delay, QRSD – QRS-Dauer,  r, P – Pearson           
correlation coefficients 

 
Bei 12 CRT Responder mit ischämischer Herzerkran-
kung betrugen das transösophageale interventrikuläre 
Delay 71,8± 18,0 ms, das transösophageale links-
ventrikuläre Delay 71,3 ± 18,9 ms und die QRS-Dauer 
152,8 ± 24,3 ms. Die ischämische Herzerkrankung 
CRT Responder QRS-Dauer korrelierte mit dem 
transösophagealen linksventrikulären Delay (r=0,75, 
P=0,005) (Abb. 3).   

Die CRT Responder verbesserten sich in der New 
York Heart Association Klasse von 3,0 ± 0,2 auf 2,0 ± 
0,3 (P < 0,001) während 19,4 ± 17,0 Monaten CRT mit 
hämodynamisch atrioventrikulär und interventrikulär 
optimierter biventrikulärer Stimulation.   

 

Abbildung 3: Elektrische ventrikuläre Desynchroni-
sation bei kardialen Resynchronisationstherapie    

Respondern mit ischämischer Herzerkrankung, IVD – 
interventrikuläres Delay, LVD – linksventrikuläres 

Delay, QRSD – QRS-Dauer,  r, P – Pearson           
correlation coefficients 

 
Diskussion 

Die auf den posterioren linken Vorhof und/oder linken 
Ventrikel fokusierte transösophageale linksatriale 
und/oder linksventrikuläre Elektrokardiographie ermög-
lichen bei Patienten mit Herzinsuffizienz, ischämischer 
und nicht-ischämischer Herzerkrankung die präopera-
tive Messung des elektrischen interatrialen, interventri-
kulären und linksventrikulären Delays. 
Das transösophageale interventrikuläre und links-
ventrikuläre Delay sind einfach anwendbarer Parame-
ter zur präoperativen Abschätzung der elektrischen 
ventrikulären Desynchronisation und lassen sich mög-
licherweise zur Vorhersage von CRT Responder nut-
zen.    
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Abstract: With ECG imaging it is possible to reconstruct
cardiac electrical activity noninvasively from measurements
of the electrocardiogram (ECG). To facilitate the recon-
struction, an MRI- or CT- based model of the body is re-
quired, which is represented as a volume conductor. A
mathematically ill-posed problem is solved to reconstruct
the cardiac sources from potentials collected on the body
surface. To obtain a body surface potential map (BSPM)
electrodes are ideally placed allover the entire thorax. In
practical applications, however, the number of electrodes
is limited and the placing is subject to constraints. We in-
vestigate the effect of different electrode setups on the ill-
posedness of the inverse problem. In particular, electrode
setups are chosen to comply with constraints for female pa-
tients in the catheter lab.

Keywords: ECG imaging, BSPM, inverse problem

Introduction
We explore ECG imaging as a method to reconstruct car-
diac transmembrane voltages (TMVs) noninvasively from
BSPMs [1], with the specific application scenario being
the localization, characterization and monitoring of ectopic
foci. The imaging of premature ventricular contraction
(PVC) has previously been investigated clinically in terms
of activation times [2] and epicardial potentials [3].
For ECG imaging BSPMs need to be recorded as an in-
put to the inverse problem algorithm that reconstructs the
TMVs in the ventricular myocardium. For a clinical vali-
dation study, intracardial signals were recorded simultane-
ously with the BSPM in a catheter lab.

Methods
While ideally, the BSPM would be acquired on the entire
thorax, the following constraints applied in the study:

• Limited number of electrodes: BSPM signals were
acquired with an 80-channel ECG device by BioSemi
B.V. Electrodes are arranged in 4 strips of 12 active
electrodes each plus 4 strips of 8 active electrodes
each.

• Requirement to leave space for standard ECG
leads: In the clinical setting, standard Einthoven and
Wilson leads had to be derived for patient monitoring.

Space for the related electrode patches is required be-
low and around the left breast.

• Limited flexibility of electrode strips: Electrode
strips cannot always contact the skin with all their elec-
trodes. For female cases, it is assumed that the two
electrodes below the breasts are out of touch for ver-
tical placement of the strips. Also, it is assumed that
electrodes have bad contact with the skin in the areas
above the sternal notch and clavicle.

• Limited access to the sides: Access to the sides of
the thorax is limited due to the arms, which are not
represented in the model of Fig. 1. Also, in general
the breasts and the Wilson leads contribute to a limited
access to the upper sides.

• Inaccuracy of the model: For ECG imaging, the
model of the thorax is obtained from pre-interventional
imaging. During the intervention, the patient is placed
in exactly the same manner and coregistration is per-
formed to map the electrodes on the pre-interventional
model. To reduce the modeling error, electrodes are
preferably applied on the upper breasts and over the
thorax center. A placement of electrodes in peripheral
areas is avoided since the geometrical shape is less re-
producible here and the model has greater uncertainty.

• Access to electrodes for localization: It is assumed
that electrodes are localized using a camera system that
needs visual access to the area of interest. Electrodes
can therefore not be placed on the back of the patient.

• Limited representation of the lower body: As mod-
els are obtained from thorax scans that are acquired
during breathhold, imaging time is limited, and there-
fore also the imaged thorax volume. For most patients,
models end above the navel, and electrodes placed be-
low cannot be considered.

Given the requirements, the following three electrode se-
tups are tested on an MRI-based dataset of a female pa-
tient against an ideal setup of 160 equally spaced electrodes
(FULL160) (see Fig. 1):

• VERT: Electrodes are placed vertically, accepting that
for most female patients two electrodes are lost in each
strip right below the breasts. The more dense 12-lead
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FULL160 VERT HORstomach HORsides

Figure 1: Setups: sum of first 5 singular vectors (each normalized after building the absolute value).
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Figure 2: Decay of singular values sigmai over index i

strips are placed over the heart, two 8-lead strips are
placed on the right half of the thorax, two are placed
on the left and right sides of the thorax, with three elec-
trodes lost due to the model being cut off at the navel.
Altogether, 11 out of 80 channels are lost.

• HORstomach: Electrodes are placed horizontally, ac-
cepting that a placement on the lowest part of the
breasts must be avoided. The 12-lead strips are placed
in the upper part of the body, which is assumed to pro-
vide the most signal information, with 2 electrodes of
each strip being lost since the strips are too inflexible
to extend to the sides of the body. This is easier on the
stomach, where the 8-lead strips also sample signals
from the sides. 8 of the 80 channels are lost.

• HORsides: Electrodes are placed as in the HORstom-
ach setup, with the difference being that two 8-lead
channels are placed on the sides of the thorax as in the
VERT case. 14 of the 80 channels are lost.

For each setup, the singular value decomposition of a lead
field matrix A is computed, which represents how single
point TMV sources x in the heart are mapped onto the tho-
rax as BSPM b, and the singular values σi in S are plotted.

Ax = b, svd(A) = USV (1)

Results
Singular values for the VERT setup decay slowest among
the realistic setups (Fig. 2). The HORstomach and HOR-
sides setups show a decay that is significantly stronger, with
that of HORsides again cutting off significantly earlier.

Discussion
Given the constraints assumed in this study, the VERT
setup yields the greatest singular values, which means the
inverse problem in ECG imaging is least ill-posed. For best
results, this setup should be preferred among the realistic
setups. Compared to the ideal case FULL160, the VERT
setup misses singular values from index 55 on. These are
all at or below a 10−6 order of magnitude. Taking into
account that σ0 ≈ 10−1 these signals can only be identi-
fied for a signal-to-noise ratio (SNR) of better than 100 dB.
Since this ratio is unrealistically good for a clinical environ-
ment, it can be concluded that the VERT setup is sufficient
to reconstruct all cardiac sources with the same accuracy
that would be achieved using the ideal 160-electrodes setup
given a specific SNR. Still, there are advantages using the
full setup. Given the SNR is worse than 100 dB, even if the
singular vectors from index 55 on cannot be measured, it is
then more likely that those singular vectors with lower in-
dex have components that are statistically dependent. Even
if the individual channels’ SNR is the same, the inverse so-
lution with the FULL160 setup is potentially more stable.
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Abstract: A new method to predict changes in a lead-field
matrix induced by conductivity variations of a single body
tissue is proposed. The approach is based on the princi-
ple component analysis (PCA) with three initial lead-field
matrices transformed to vectors as input. For each tissue
– blood, lungs, muscles and fat – a PCA was carried out.
Further, for each tissue the default conductivity value and
the conductivity varied by ±50% were used to calculate
the sample lead-field matrices. The results of the PCAs in-
dicate that for every tissue the first principle component
suffices to predict the conductivity-induced changes in the
samples. With an interpolation of the scores we addition-
ally show that the prediction is not bound to the sample ma-
trices but moreover every matrix within each conductivity
range is possibly estimated and conclusively predicted.

Keywords: inverse problem of electrocardiography, lead-
field matrix, tissue conductivities, PCA

Introduction

Overcoming the inverse problem of ECG imaging promises
better non-invasive cardiac diagnosis and real-time moni-
toring of the electrical activities of the heart. An early step
of the problem is to accurately determine the lead-field ma-
trix, which is part of the forward problem in ECG imag-
ing. It linearly connects the cardiac electrical activity to the
body surface potentials. The so-called forward calculation
of a lead-field matrix is time consuming with high compu-
tational costs. Further, its initial requirements are a human
body segmentation and accurate body tissue conductivities.
However, the literature values of these conductivities are
not consistent [1]. Changes in lead-field matrices due to
conductivity changes must be taken into account by repeat-
ing the time-consuming forward calculations.
In this work we used the principal component analysis
(PCA) to bypass these inefficiencies. The method discussed
in this paper is adopted from Weber et al. [2] in which
the influences of the conductivities have been studied in
the context of ECG forward calculations. The PCA method
reduces the dimensionality of a dataset without significant
loss of information.
As initial input for the PCA we generated three sample ma-
trices with a wide range of conductivities for one single tis-
sue. The result of the PCA allows us to simplify the recon-
struction by only using the first principal component. With
an interpolation of the conductivity-dependent PCA scores

all lead-field matrices within the chosen conductivity range
are easily reconstructed.

Methods
The computer simulations in this study use the Visible Man
dataset as model. In these simulations 64 electrodes are
used for measuring the body surface potential and a tetra-
hedron model with 2143 nodes is fitted into the ventricular
myocardium. Thus, each lead-field matrix is made up of
2143 columns and 64 rows. We varied the conductivity of
blood B, lungs L, muscles M and fat F which are all re-
ferred to as tissues. As initial conductivities for these tissues
the values from Gabriel et al. [3] (GG) were used. Further,
+50% and −50% of the respective GG value are used for
each tissue.
The so-called forward calculation calculates the body sur-
face potentials from the electrical sources in the heart cre-
ated using the bidomain model [4]. In order to determine
a lead-field matrix, one single forward calculation is exe-
cuted for every single myocardial node. In other words, ev-
ery node is subsequently turned on with all the others turned
off. The results of every node are overlaid and thus a lead-
field matrix is obtained. For a new set of conductivities the
whole procedure has to be repeated.
For each of the four tissues a PCA was applied separately.
We passed three lead-field matrices to every PCA as input
data. One of them was reused in every PCA. Thus, a to-
tal of nine lead-field matrices with different conductivity
compositions were calculated, so that every tissue has three
corresponding matrices with its conductivity set to ±50 %
and GG. In order to perform a PCA those three matrices
are transformed into long row vectors by putting every row
in-line. The PCA input matrix is made up of the transpose
of these three vectors as columns.
As the input data of the PCA only yields a minor degree
of freedom it is executed with a method based on the sin-
gular value decomposition. This more efficient method re-
sults in the first n− 1 principal components −→p j where n is
the number of input columns of the PCA. Additionally, the
PCA returns a mean vector x of the input matrix, variance
values λj for every principal component and a score ma-
trix S with score values sj,i for every principle component
j and input point i. For the three input points (σi = ±50%,
GG; n = 3) this method returns two principle components.
The reconstruction of the sample vectors −→x σi

is as follows:
−→x σi ≈ x+ s1,i · −→p 1 + s2,i · −→p 2 (1)
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Figure 1: Scores of the first principle component and their
interpolation.

Due to λ1 � λ2 as shown in the results only the first prin-
cipal component −→p 1 is considered from now on. Moreover
the true score values are replaced by a function of their in-
terpolation s(σi). Now the reconstruction not only allows
to calculate the sample vectors but any vector with the tissue
conductivity set in between ±50%.

−→x σi
≈ x+ s(σi) · −→p 1 (2)

Finally, the reconstructed vectors −→x are compared to their
real counterpart −→x ref with the relative error formula 3. As
the sample data, every −→x ref is calculated in a long-term
forward calculation.

errormatrix =
‖−→x −−→x ref‖2
‖−→x ref‖2

(3)

Furthermore, the angles of the first principle components
of the different PCAs are compared to estimate whether an
approach combining the conductivity interactions is reason-
able.

Results
The rate between the first and second principle component
variances λ1

λ2
of the respective PCA is 167, 760, 592 and

754 for blood, the lungs, muscle and fat.
Table 1 shows the relative errors of reconstructions within
a single tissue. These reconstructions use equation 2 with
the previously forward-calculated true scores or interpo-
lated scores according to the conductivity value.
The angles between the first principle components of all tis-
sues range from 57◦ to 114◦.

Discussion
This paper proposes a method to determine lead-field matri-
ces without the prior knowledge of the body tissue conduc-
tivities. It leads to a closed form formula with solely these
conductivities as variables. A corresponding lead-field ma-
trix can be obtained immediately with knowledge of real
conductivities.

Table 1: Relative errors of the PCA generated matrices with
single conductivity variation. The reconstructions used in-
terpolated (i) scores or true (t) scores.

-50 % -25 % GG +25 % +50 %
Blood 0.36%t 0.98%i 0.90%t 0.33%i 0.54%t

Lungs 0.13%t 0.35%i 0.33%t 0.16%i 0.21%t

Muscle 0.30%t 1.19%i 1.04%t 0.57%i 0.78%t

Fat 0.15%t 0.37%i 0.39%t 0.19%i 0.24%t

Table 1 shows the reconstruction errors of every tissue with
the true scores in the columns -50 %, GG and +50 %. This
small error is introduced by the negligence of all princi-
ple components except the first. The errors of the lungs
reconstruction are the lowest which is reasonable because
its rate between the first and second principle component
is the highest. The errors in column -25 % and +25 % of
table 1 cover an additional error which is caused by the in-
terpolation of the scores shown in figure 1. The heretofore
maximum error is 1.19 %. Thus, for one single tissue the as-
sumption is valid that any lead-field matrix within the sam-
ple range is reconstructed sufficiently with the first principle
component and interpolated score values.
The angles between the particular first principle compo-
nents are all larger than 56.91◦. Although these princi-
ple components are not strictly orthogonal, an approach of
combining the conductivity influences ought to be possible.
However, more profound investigations would exceed the
scope of this paper.
In conclusion, this method calculates lead-field matrices
more efficiently and is a promising approach to overcome
the large computational costs for conductivity adjustments
in clinical practice.
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Abstract: Creating transmural ablation scars in a reliable
way is a key issue in improvement of therapeutical pro-
cedures for cardiac arrhythmias. About one third of the
patients has to undergo several procedures till arrhythmic
episodes are successfully treated. Morphological features
of intracardiac electrograms might contribute to evaluate
scar transmurality during the ablation procedure. We an-
alyzed intracardiac signals before, during and after point-
wise ablation in patients with atrial flutter. Unipolar elec-
trograms of the distal electrode showed a relative decrease
in amplitude of the second extremum of up to 99 % with a
mean of 84±20.6 % after the endpoint of ablation.

Keywords: Intracardiac electrograms, catheter ablation,
cardiac arrhythmias

Introduction

Curing cardiac arrhythmias by catheter ablation of myocar-
dial tissue is a frequently used and reliable method. How-
ever, about 30 % of the patients have to be treated more than
once [1], as created scar tissue partially regains its physio-
logical conductivity during the healing process. Holes in
ablation scars occur due to healing of the scar borderzone
and small undamaged areas within the scar area. These are
frequently seen if scars are not completely transmural. Tis-
sue impedance across the scar as well as signal changes
have been investigated aiming at a robust criterion to pre-
dict transmurality of radio frequency (RF) ablation scars
during procedures. Otomo et. al have found relevant elec-
trogram parameters from intracardiac electrograms (IEGM)
recorded in pig atria before and after ablation [2].
Up to date clinical recording systems allow for a recording
of IEGM during the ablation process. In this work unipolar
and bipolar electrograms have been recorded during clinical
ablation procedures. Signal morphology was studied during
ablation in order to gain a better knowledge of morphologi-
cal changes in human remodeled atria.

Methods

Aquisition of clinical signals: In two patients who under-
went a routine RF-ablation procedure IEGMs were mea-
sured using a four electrode 7F ablation catheter (Blazer,
Boston Scientific, USA). Bipolar and unipolar EGM were
annotated during the procedure and afterwards one minute
segments were exported from the clinical recording system

( LabSystem PRO EP, Bard, USA). In our case the Wilson-
Central-Terminal lead (WCT) was used as a reference for
unipolar EGM. For bipolar EGM the distal electrode sig-
nal was subtracted from the corresponding proximal one.
Recordings were taken before, during and after point to
point RF-ablation for different catheter orientations. Atria
were paced from the coronary sinus catheter (CS 7-8) with
a cycle length of 600 ms. For each location up to three ab-
lation sequences of 20 s were applied. Intermitted ablation
was chosen to receive stable recordings for different stages
of scar creation. Signals were filtered with a clinical stan-
dard setting using a bandpass between 30-250 Hz.
Preprocessing: Recordings from seven catheter positions
(4 parallel, 3 non-parallel) were analyzed by an automatic
segmentation workflow. From each recording, a 20 s seg-
ment was extracted. For signals during ablation this coin-
cided with the ablation period. For signals before and after
ablation the annotation time stamp was used as a starting
point. In a first step signals were segmented into active and
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Figure 1: Active segments are automatically detected in a
bipolar signal before ablation (blue). Segmentation is indi-
cated by a step function (red), outlining the active segments.

inactive segments using an adaptive thresholding based on
the non-linear energy operator (see figure 1) [3].
Extraction of representative templates: For the two dis-
tal leads (MAP 1 and 2) of the ablation catheter unipo-
lar and bipolar EGM were studied. Representative tem-
plates were created in a stepwise approach. First activa-
tions were extracted, denoted by the active segments in the
pacing electrode signals. From the activation point the cor-
responding active segment for the bipolar (MAP 1/2) EGM
was marked. Also the unipolar electrograms for both elec-
trodes were extracted by cutting out segments of a length of
125 ms around the activation time of the bipolar signal. For
further alignment segments were correlated with an adap-
tive reference signal, which was initialized by the median of
all active segments and stepwise corrected with the mean of
all aligned segments. Changes over time were investigated
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by creating representative electrogram templates for 5 s sec-
tions as mean of corresponding aligned electrograms.
Evaluation of characteristic parameters: For a quantifi-
cation of signal changes during ablation, amplitudes in local
extrema were studied. Local extrema were marked using
the findpeaks function from Mathworks Matlab ([4]) with a
detection threshold of 75 % of the maximum positive and
negative amplitude. For each recording location electro-
gram templates were analyzed in a chronologic order.

Results
Bipolar electrograms: Recording bipolar signals is the
standard for clinical procedures. Before ablation these sig-
nals showed a biphasic morphology for parallel catheter ori-
entation relative to the tissue surface and a triphasic one for
the orthogonal case. For orthogonal signals a drop in am-
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Figure 2: Representative templates of catheter signals
for orthogonal catheter orientation: Unipolar distal (left),
unipolar proximal (middle), and bipolar (right). Colors in-
dicate time of recording: Before ablation (blue), during ab-
lation (yellow), after ablation (green)

plitude for the second extremum occurred during ablation
(Figure 2). Polarity of the extrema depends on the catheter
orientation relative to the propagation direction. Taking a
closer look at the parallel example signal, also a change in
amplitude can be seen (Figure 3). Although, the morpho-
logic pattern changes while ablating. In order to explain
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Figure 3: Representative templates of catheter signals for
parallel catheter orientation: Unipolar distal (left), unipo-
lar proximal (middle), and bipolar (right). Colors indicate
time of recording: Before ablation (blue), during ablation
(yellow), after ablation (green)

this behavior of the bipolar signal, its two components, the
two unipolar signals have to be regarded.

Unipolar electrograms: Unipolar distal EGM showed sim-
ilar changes for all catheter orientations, because the distal
electrode directly contacts the tissue for all cases. Proximal
EGM are strongly changing with orientation, which also in-
fluences bipolar EGM morphology. Table 1 displayes am-
plitude changes in unipolar distal EGM for the first two lo-
cal extrema occurring over time (polarities are dependent
of catheter orientation). Amplitude changes for the second
extremum reach up to 99 %, which results in a complete
absence of the positive deflection. Five of the seven cases
showed a drop greater than 93 %.

Table 1: Amplitudes (mV) for unipolar signals recorded by
the distal electrode: E1: First extremum, E2: Second ex-
tremum, B: Before ablation, P: Post ablation, RC: Relative
change, S: Recording location

S1 S2 S3 S4 S5 S6 S7
E1 B 0.92 0.43 0.89 0.54 0.42 1.29 0.40
E1 P 0.80 0.21 0.63 0.19 0.11 0.69 0.31
RC 0.12 0.49 0.29 0.65 0.74 0.47 0.23
E2 B 2.00 2.08 0.58 2.00 1.80 2.89 0.88
E2 P 0.15 0.02 0.23 0.03 0.01 0.23 0.45
RC 0.93 0.98 0.60 0.98 0.99 0.92 0.49

Discussion
Unipolar EGM showed reproducible changes in amplitude
during the ablation process. Amplitude of the second peak
of unipolar EGM might hold as criterion for scar transmu-
rality. It has to be investigated if this feature correlates with
the thickness of active myocardium directly underneath the
catheter. Also filter settings have to be evaluated, as the
commonly used 30 Hz highpass significantly alters signal
morphology. Adding metrics for signal morphology to clin-
ical recording systems may lead to improved outcome or
ablation procedures.
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Abstract: The inverse problem of ECG is the task of car-
diac source reconstruction from the measured body sur-
face potential maps (BSPM). It is ill-posed and therefore
requires regularization, which is usually applied uniformly
to the whole heart geometry. In order to improve the solu-
tion quality and localize potentials extrema we propose a lo-
cal regularization method: the weighting is done iteratively
according to the solution spatial content. The performed
test showed the ability of the new method to overcome over-
smoothing and to better reconstruct strong solution gradi-
ents.

Keywords: Inverse problem of ECG, Tikhonov local regu-
larization.

Introduction

The assumption of quasistaticity in the body volume con-
ductor leads to the Cauchy problem for Laplace equation.
Our values of interest, the transmembrane voltages (TMV),
build the source term for the Poisson equation valid in the
cardiac muscle tissue [1]. The problem of finding electrical
potentials in the heart is ill-posed, i.e. it is unstable with
respect to the measurement and modeling errors. Several
mathematical techniques exist to overcome this obstacle,
among them the most famous one is Tikhonov regulariza-
tion [2].

Methods

The idea of Tikhonov regularization is to introduce a stabi-
lizing parametric functional enforcing desired properties of
the sought solution:

x = argmin
x
{‖Ax− y‖2 + λ2‖Lx‖2}, (1)

where A ∈ Rm×n is the lead-field matrix, an operator
connecting the cardiac sources to the measurement points,
y ∈ Rm×1 - BSPM, x ∈ Rn×1 - TMV, λ - regularization
parameter, L ∈ Rp×n - regularization operator. In practice
the most common types of the matrix L are identity or the
matrices of spatial derivatives. In this work we used a finite
element discretized version of the Laplace operator (p = n),
thus requiring smoothness of our solution.
When using L2 norm in the regularization functional (1),
this minimization problem has a closed form solution:

x = (ATA+ λ2LTL)−1AT y (2)

The invertion in (2) can be efficiently done with use of SVD
(in case of L being an identity matrix) or GSVD in general
case [3]:

A = U [0, Σ] X−1, L = V [M, 0] X−1 (3)

where U ∈ Rm×m, V ∈ Rn×n - orthonormal matri-
ces, X ∈ Rn×n is a nonsingular matrix, Σ = diag{σk},
M = diag{µk}, k = 1, ...,m. The singular values σ, µ
are ordered in non-decreasing and non-increasing order re-
spectively and are normalized such that σ2

i + µ2
i = 1. The

generalized singular values of the pair [A,L] are defined as
γi = σi/µi, i = 1, ..., n.
Having performed this decomposition (must be done only
once), the solution can be represented by the following for-
mula:

x =
m∑
i=1

fi
uTi y

σi
xi (4)

where fi are filter factors. Their choice is the key differ-
ence between various regularization techniques and should
be done in such a way that the contribution from smaller
singular values σi in (uTi y/σi)xi is effectively filtered out
[3]. For the Tikhonov second order regularization given by
functional (1) the filter factors are:

fi =
σ2
i

σ2
i + λ2µ2

i

=
γ2i

γ2i + λ2
. (5)

From this formula it follows that the same amount of regu-
larization is applied for all solution components which leads
in general to the partial (geometrically) oversmoothing. The
method could be however improved by local regularization.
Instead of a single parameter λwe introduce a vector of reg-
ularization parameters λ = {λ1...λn} that would allow for
a different amount of weighting for each source point.
The initial estimate of the solution is obtained by (4) with
L-curve criterion for choosing an optimal regularization pa-
rameter [4]. Then based on the solution spatial derivatives
we iteratively update the regularization vector:

λk+1
i = λki ·

max(|Lxk|)
|Lxk|i

, i = 1, ..., n; k = 1, ... (6)

with i, k being vector components and iteration numbers
respectively. The problem (2) is solved for each iteration
to obtain the next estimate of x. The formula (6) implies
increasing the parameter λ for regions with small spatial
derivatives hence forcing the Laplacian to take smaller val-
ues, i.e. equalizing the respective solution components.
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Figure 1: The transmembrane voltages for one time instance of an extrasystole simulation

The areas possessing the strongest gradients are slightly
changed, since the corresponding parameters experience
only minor modifications.

Results
A result of such iterative procedure is given by Fig. 1. For
a simulated left ventricular extrasystole the reconstruction
was made for the time instance t = 20ms after its initia-
tion. As it can be seen, the Tikhonov reconstruction pro-
vides a good initial estimate of the true solution. Despite
the fact that the area with highest TMV values is well re-
covered, regularization in L2 sense smoothes equally the
whole domain, which can result in small derivatives over
the heart and, as a consequence, the correlation coefficient
of only 5%. After performing several times iterative local
reweighting these effects are flattened out and only the re-
gion of interest is remained. The correlation coefficients for
the first three iterations of the proposed method are 54%,
62% and 68% respectively.

Discussion
In this work we considered a local regularization for the in-
verse problem of ECG where all solution components could
have different weights.
Oster and Rudy proposed in [5] a regional regularization
which is based on the decomposition of BSPM into a set of
submaps for a spherical geometry using Legendre polyno-
mials, i.e. their method is operating in the space of mea-
surements. Johnson and MacLeod ([6]) investigated a local
GSVD based regularization varying the amount of smooth-
ness for sub-matrices of a global transfer matrix, these sub-
matrices represent different geometry regions. The most
similar to our method approach was implemented by Ah-
mad and Brooks in [7]. But in contrast to the present work
they weight the regularization matrix with the Laplacian of
the true solution taken from simulation.
For the case treated in this work the solution delivered by
Tikhonov regularization was of good quality and the iter-
ative procedure improved its main features. In our future
work we will analyze the behavior of the algorithm with
worse initial solution estimates; the question would be, how
to do weighting in a softer way, without overemphasizing

initial false extrema.
Another interesting aspect could be to investigate the neces-
sary number of iterations and find the connection between
the optimal number of iterations and optimal local weights
on the one hand and the amount of noise on the other. As the
noise is not commonly known in practice and there are al-
ways some modeling errors present, it would be interesting
to evaluate the performance of the algorithm with respect to
lower and upper bounds noise estimates.
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Abstract: In this study, an application of modeling smooth
patterns of signal power in the time-frequency domain is
presented. This novel technique called SnaGe was recently
developed and is applied to real EEG data here. In par-
ticular, its benefits for single trial analysis are highlighted.
Models of varying degrees of freedom are fitted to the cho-
sen data set, emphasizing the trade-off between goodness of
fit and interpretability.
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Introduction

The electroencephalogram (EEG) is the longest-studied
noninvasive technique to measure brain signals. In the last
decades, elaborate signal processing tools have been devel-
oped to automatically extract relevant information from the
data. This task is quite challenging, owing to the complex-
ity of the human brain. Indeed, each EEG measurement
represents merely a snapshot of brain signals, but which are
in fact varying: Even in a fixed experimental setting, the
obtained signals exhibit considerable intra-individual and
inter-individual biological variability. Yet, standard analy-
sis techniques, such as time-frequency decompositions, do
not appropriately account for this effect. For example, while
they allow to study the signals at different time/frequency
points, such precise information about regions of interest
is often not available, e.g. because of the inherent vari-
ability. Usually, information from many neighboring time-
frequency locations is therefore averaged, or the issue is
simply ignored and the locations are treated as being in-
dependent. Both strategies, however, are not satisfactory:
Either precise localization is lost, or the full potential of the
data is not used. Thus, there is a need for adaptive signal
representations which explicitly quantify the data patterns
generated by the underlying biological processes.
In a previous paper, the authors published such an abstract
representation called Smooth Natural Gaussian Extension
(SnaGe) model [1]. Similarly to the well-known bivari-
ate Gaussian function, this parametric model can be fit-
ted to power distributions in the time-frequency domain,
which are interpreted as images. Thereby obtained model
parameters form high-level descriptors (features) about the
data patterns. As these patterns may be too complex to be
captured by a Gaussian peak, SnaGe is designed to repre-
sent whole paths of prominent signal power in the time-

frequency domain. This path is essentially a smooth in-
terpolating curve, and a surface is defined by exponential
decay w.r.t. increasing distance from the path.
In this study, the previously developed and published tech-
nique is applied to a data set of real EEG measurements.
The promising ability to analyze single trial recordings is
demonstrated. To this end, an induced oscillation in the al-
pha band is investigated and the obtained high-level signal
characteristics are presented.

Methods
An exemplary data analysis by means of the SnaGe method
is carried out. The data set in this study stems from a
motor experiment. Participants were asked to press a but-
ton with their index finger in reaction to a visual stimulus.
EEG was measured at a sampling rate of 500 Hz from 128
channels according to the 10-20 system. Linked mastoids
formed the reference channel. Response-locked trials were
extracted, and after standard pre-processing, the signals are
transformed to the time-frequency domain by the Short-
Time Fourier Transform. The focus is on the investigation
of induced neural activity in a region of interest around the
alpha band (8–13 Hz), during the first four seconds after the
response. A relevant channel localized near the motor and
sensory-motor cortical area was selected for this demon-
stration. An example for a single trial signal is plotted in
Fig. 1. A prominent pattern of event-related synchroniza-
tion of neuronal activity is apparent in the visualization. In
order to analyze the oscillation in the alpha band, differ-
ent bivariate SnaGe models are fitted to the dynamic power
spectrum image.
One fundamental decision to be made is the model order.
While low-order models are robust to small perturbations
of the signal, they might not be able to represent increas-
ingly complex patterns. Higher-order models, on the other
hand, are more prone to over-fitting, but offer greater flexi-
bility. Therefore, in this study SnaGe models of order 5,6,7
and 8 are fitted. Also, as proposed in [1], the strategy of
iteratively refining models of low order to yield more and
more complex pattern representations can be useful for ro-
bust parameter extraction. Thus, in another experiment, an
initial 5th order model is refined multiple times, which re-
sults in an additional 8th order representation. Lastly, the
effects of taking into account a-priori knowledge about the
data are studied. Because it is known that the neural excite-
ment displays as a horizontal path of increased signal power
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in the time-frequency representation, paths going backward
in time should be punished. This behavior can be prevented
by adding a penalty term to the optimized cost function.

Results
Six SnaGe models are computed, whose predictions are
shown in Fig. 1. To objectively compare these results, the
goodness of fit is computed as the root mean squared error
(RMSE) between the preprocessed time-frequency data and
the models’ predicted images, see Table 1.
All six models are able to approximate the pattern in the
data, which is reflected by the overall low RMSE values.
In general, higher-order models produce better matches, es-
pecially concerning values of signal power. Although the
overall time-frequency distribution of signal power is al-
most always represented well, there are significant differ-
ences regarding the course of the modeled path (represented
by white lines in Fig. 1). In particular, the 7th-order model
and the refined model without regularization both exhibit
loops in the SnaGe path. While such results impair inter-
pretability as a path of instantaneous frequency, it is also
clear that the obtained models are optimal in terms of good-
ness of fit. Among the other solutions which are free of
loops, the 8th-order model is most accurate, followed by
the refined regularized 8-th order result.
After meaningful parameters are extracted, they can form
the basis for further analyses. As a simple demonstra-
tion, the mean frequency value along the modeled path is
computed here. To this end, the most accurate loop-free
model’s curve is densely sampled, resulting in a mean value
of 10.4 Hz. These observations are discussed in detail in the
following section.

Table 1: Goodness of fit (gof) according to root mean
squared error.

experiment gof
order 5 67.18
order 6 59.20
order 7 56.84
order 8 56.94
order 8 (refined) 55.59
order 8 (refined, regularized) 57.59

Discussion
The most accurate solutions were obtained by models of
higher order, owing to the pattern’s complexity. However,
the more flexible models tend do develop loops in their
paths, which shows that there usually is a trade-off between
interpretability and goodness of fit.
The SnaGe is built on several model assumptions, most im-
portantly it is designed for mono-component signals. This
assumption can often be justified by filtering or masking
other components, as it was done here by the application of
a region of interest. However, the target pattern will never

Figure 1: EEG single trial (top), time-frequency representa-
tion (2nd row) and several fitted SnaGe models (3rd to 8th
row: order 5,6,7,8,8(refined),8(refined and regularized).

be ideal in this sense, for example there seems to be a peak
off the main path of activation at 3000 ms / 9 Hz. Loops are
the only means to compensate for such violated model as-
sumptions and may be sources of over-fitting. In fact, this
shows the optimization algorithm’s strength to travel long
distances in parameter search space to obtain very differ-
ent, but in fact more optimal (w.r.t. the cost function, i.e.
RMSE) solutions.
It was shown that the SnaGe model is able to accurately
extract high-level features in the form of a time-frequency-
power path of neural oscillatory activity. The stated trade-
off can be controlled by adding penalty terms to the cost
function. SnaGe is an appropriate tool for single trial anal-
ysis, since it is able to automatically adapt to the distribu-
tion of signal power and thus takes into account the biolog-
ical variability. This suggests the method’s potential as a
measure of event related synchronization / desynchroniza-
tion (ERS / ERD). Also, derived high-level features such
as mean pattern frequency may be useful, for instance for
the objective discrimination of groups of subjects in applied
studies.
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Abstract:  We present a feasibility study of the novel system 
for EEG based neurofeedback. The proposed system can 
provide both continuous visual feedback on the computer 
screen and discrete reinforcement (movement of the NI 
LEGO Mindstorms robot) when the task is executed.  We 
have tested the NF system on 31 children subjects (6-15 
years). The subjects’ task was to increase their alpha band 
power by using the continuous feedback. When the power 
level reached the predefined threshold, the command was 
sent to the robot to make a step which was considered a 
successful task execution.  The preliminary results showed 
an overall increase of robot-activations during the course of 
the trials. 
 
Keywords: EEG, alpha rhythm, neurofeedback. 
 
Introduction 
Neurofeedback (NF) is a form of biofeedback during 
which the subjects train to voluntarily modulate their 
brain activity in terms of frequency, location or amplitude 
[1]. Slow cortical potentials (SCP) such as contingent 
negative variation or specific frequency band-power (BP) 
can be used in design of NF paradigms [2]. Previous stud-
ies have showed that increase of upper alpha BP by NF 
training resulted in enhanced cognitive control in healthy 
subjects [3]. Theta/beta training and SCP were found to 
be effective in treating attention-deficit/hyperactivity 
disorder (ADHD) in children [4]. Alpha NF was proven 
to be effective in treatment of depressive symptoms [5]. 
Sensory motor rhythm NF was used for improvement of 
motor skills or for enhancement of the lost/impaired mo-
tor function after stroke or brain injury [6]. Alpha rhythm 
NF could be used for training of relaxation or stress level 
reduction [7]. The goal of this study was to explore the 
alpha rhythm in the beginning stages of idle state when 
person is highly focused on the task of resting. For this 
purpose we have designed a novel system for NF consist-
ing of commercial EEG device, custom made NI Lab-
View based NF software and NI LEGO Mindstorms robot 
which we have tested in children subjects. 
 
Methods 
A. Experiments and data acquisition 
   1) Subjects: Thirty six subjects, all between 6 and 15 
years of age, took part in this study. Experiments were 
conducted at the Festival of robotics 2012 held in Bel-
grade, where children participated as volunteers in the 
tests.   

   2) Instrumentation and setting: Subjects were seated on 
a chair and a NI LEGO Mindstorms robot was placed on a 
table in front of them. EEG was recorded in bipolar con-
figuration, C3 referenced to C4, with two Ag/AgCl elec-
trodes placed according to International 10-20 standard. 
Ground electrode was located on the subject's forehead. 
Acquisition system used for EEG recording was PSYLAB 
EEG8 electrophysiology signal amplifier combined with 
PSYLAB SAM unit (Contact Precision Instruments, Lon-
don, UK). During the measurements the impedance was 
less than 5 kΩ. Gain was set on 20000, while the signals 
were hardware filtered in a range 0.1-40 Hz. All signals 
were sampled at 500 Hz using NI USB-6212 (National 
Instruments, Austin TX) A/D card. System is operating 
on-line using custom made NI LabView 2009 (National 
Instruments, Austin, Texas) software for EEG acquisition 
and processing, with algorithm for frequency BP calcula-
tion.  
 
B. Neurofeedback 
In this study alpha band ranging 8-13 Hz was used for 
NF. EEG is first band-pass filtered with 5th order Butter-
worth filter to extract the alpha activity. EEG band-power 
time course was estimated by squaring and averaging the 
band-pass filtered signal in a time window of 1 second 
with a 90% overlap between the two consecutive win-
dows. Subjects were provided with continuous visual 
feedback on the computer screen projection on the wall in 
front of them, in the form of a sliding bar whose size 
corresponded to the current alpha BP, refreshed for each 
time window. Second type of feedback, the control of NI 
LEGO robot, was implemented through operand condi-
tioning paradigm using discrete reinforcement. For each 
subject the reference power was determined before the 
trial, as the mean alpha power during the 10s of rest and 
the detection threshold (TH) was the reference value 
multiplied by 2. Whenever the EEG BP remained above 
the TH for at least 5 consecutive windows (corresponding 
to the dwell time of 500 ms), this was accounted as one 
detection. After the detection, the command was sent via 
bluetooth connection to the robot to make a step. There-
fore the number of steps that the robot made was directly 
proportional to the detection count i.e. to the retention 
time of EEG alpha power above the threshold. Subjects 
were instructed to relax while sitting still and try to move 
the robot. They were also informed that the continuous 
visual feedback in the form of a sliding bar can help them 
to achieve a result by trying to increase the bar value until 
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the robot starts moving. One trial per subject was record-
ed with duration of 45 seconds. 
 
Results 
The EEG signals were visually inspected for 
noise/artefacts and the noisy power-signals were omitted 
from further analyses, leaving signals from 31 subjects. 
Raw EEG was processed offline for obtaining the same 
BP time courses that were used for delivering the feed-
back online. These BP time courses were normalized 
from 0 to 1 and averaged over subjects, shown on figure 
1. This average shows higher amplitude bursts of alpha 
activity in the second half of the trial, possibly due to the 
presented feedback.  
For analyzing overall distribution of detections in time we 
have divided the single trial duration on three consecutive 
non-overlapping 15 second time intervals (TIn, n=1-3). 
The detection rate per each time interval (DR(TIn), n=1-3) 
was calculated using the following equation: 
 

31,/)()[%]( −== nDTInDTInDR
     

(1)
  

where D(TIn) was sum of all subjects’ detections in inter-
val TIn, and D was the total number of detections for all 
subjects. Obtained values for detection rates were: 
DR(TI1)=16,3%, DR(TI2)=29.8% and DR(TI3)=53.9%. 
These values indicate an increase of detection count dur-
ing the course of the trial. 

   
Figure 1. Grand average over 31 subjects of EEG alpha-

band power time courses for C3-C4 channel.  
 

 
Discussion 
In this study we have tested a feasibility of using NF 
software that we have developed in combination with a 
NI LEGO Mindstorms robot that we used as a means for 
providing interesting feedback for participants. Subjects’ 
motivation i.e. will to apply and effort to perform a task 
plays an important role especially in children. 
From the collected data we can conclude that the power 
fluctuations, possibly partly as a result of the both types 
of presented feedback, are in the form of alpha activity 
bursts rather than a steady increase of alpha BP. These 

bursts might have originated from attention shifts result-
ing in power drops, occurring when the discrete feedback, 
the robot movement, was presented. That could be ex-
plained by subjects’ eagerness to see the robot walk or 
distractions by the sound that the robot movements pro-
duced. The main advantage of the proposed system for 
NF in children is the robot-movement feedback, which 
was conceived to be interesting and motivating for the 
potential users to undergo the NF treatment. Additionally, 
the developed software can be used for providing feed-
back on other frequency bands of interest such as theta, 
upper alpha or beta, commonly used for NF.  
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Abstract: The phase-locking-value is one of the most pop-
ular measures to quantify bivariate phase coupling. Re-
cently, the use of more complex circular statistical meth-
ods for the quantification of synchronization has been dis-
cussed. Motivated by these new developments, the PLV is
compared with a simple and a multiple circular-circular
correlation coefficient. In the process, the reliability of the
three measurements is tested using simulated signals and
their applicability to real EEG data is demonstrated. Fi-
nally, advantages and disadvantages of the methods are dis-
cussed.

Keywords: Circular-circular correlation, EEG, synchro-
nization, phase coupling, phase-locking-value

Introduction
The synchronization of different physiological processes
represents an important issue in many biomedical research
fields. Coupling may not only occur within one physiolog-
ical system, as for instance the brain, but also between dis-
tinct systems, as heartbeat and respiration show [6]. Thus,
the quantification of such coupling is a crucial objective
in biomedical signal analyses and a lot of coupling mea-
sures have already been introduced [1]. However, many of
these measurements mix amplitude and phase information
and cannot quantify phase synchronization regardless of ex-
isting amplitude dependencies. To capture pure phase rela-
tionships, the instantaneous phases of the signals have to be
considered. The most popular measurement using this ap-
proach is certainly given by the phase-locking-value PLV
[3]. This measure calculates bivariate phase differences
and quantifies rotations and reflexions of the circular phase
variables. Recently, the benefit of more complex circular
statistical methods for the quantification of phase associa-
tions has been discussed and two multiple circular-circular
correlation coefficients have been presented [4]. But can
these more complex coefficients keep pace with the old-
established phase-locking-value? This question will be ad-
dressed in the present paper.

Methods
In the following, the PLV will be compared with the most
promising multiple circular-circular correlation coefficient,
namely the coefficient according to Jupp and Mardia r2m,JM

[4], and its simple counterpart r2s,JM [2]. In the process, the
two most important properties of a reliable coupling mea-
sure will be investigated. Firstly, it should take values close

to one if synchronous or phase-coupled signals are consid-
ered. Secondly, the values should draw near zero if asyn-
chronous signals are examined. To study these character-
istics in detail, a comparable set of synchronous and asyn-
chronous signals is required. To this end, 100 asynchronous
oscillators sk are simulated each consisting of 15 added
cosines with integer frequencies fi ∼ U(1, 30) and belong-
ing amplitudes Ai ∼ N(20/fi, 2

2). Subsequently, various
phase-coupled signals s(l)k are obtained to each oscillator sk
by inserting a pseudorandom phase shift αl ∼ U(−π, π).
An example for two such coupled oscillators s(1)1 and s(2)1

and an according asynchronous signal s(1)2 is illustrated in
fig. 1. To simulate various realizations of the same process,

Figure 1: Exemplary illustration of the simulated signals.

it is assumed that the amplitudes and frequencies of an os-
cillator remain stable, while its zero phases vary slightly
from trial to trial following a von Mises distribution with
ϕ0 ∼M(µ, 1) and µ ∼ U(−π, π). Finally, a normally dis-
tributed phase noisew(j) ∼ N(0, 0.12) is added to the zero
phases of the oscillators and they are superimposed with
some gaussian noise n(j, t) ∼ N(0, 52) since real biomed-
ical signals are commonly noisy. To estimate the instanta-
neous phases of the signals, the Hilbert transform is utilized.

Results
Obviously, a comparison of simple and multiple synchro-
nization measures is only partly possible. Whereas the PLV
and the simple coefficient can only take into account two
signals, the multiple coefficient requires at least three oscil-
lators of which two function as predictors. To assure max-
imal comparability, this additional second predictor is al-
ways chosen to be phase-locked to the first one. Unlike the
circular correlation coefficients, the PLV may only be uti-
lized in multi trial analyses. Thus, the performance of all
measures can only be compared in this kind of examination
in which the extent of synchronization is estimated for ev-
ery point in time. As the synchrony, or asynchrony, between
the oscillators remains stable over time, these estimates can
then be averaged. Tab. 1 shows the mean results for 100 ex-
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aminations as well as the belonging percentages of signifi-
cant tests. These tests are chosen according to the different
measurements and are performed with a significance level
of 0.01. Obviously, the PLV exhibits the highest values

Table 1: Results for simulated data.
measure synchronous asynchronous

value sig. tests value sig. tests
PLV 0.8985 98.71 % 0.1848 33.33 %
r2s,JM 0.8082 98.16 % 0.0205 01.46 %
r2m,JM 0.8436 98.45 % 0.0413 01.26 %

together with the greatest proportion of significant tests in
both conditions. Furthermore, the multiple correlations are
higher than their simple counterparts. Regardless of these
minor differences, all measurements provide good results
for truly phase-coupled signals: at least 98.16% of the tests
carried out indicate a dependency. Thus, the first quality
criteria, values close to one for synchronous signals, is ful-
filled by all measures. Unfortunately, these good outcomes
cannot be replicated for asynchronous signals. Although all
values remain below 0.1848, 33.33% of the phase-locking-
tests become falsely positive. In contrast, the percentage of
wrongly significant tests for the circular coefficients does
not exceed 1.46% and is even lower for the multiple coef-
ficient. Hence, the extent of phase-coupling may be over-
estimated with the phase-locking-value. The same pattern,

Figure 2: Estimated theta couplings (A-C) and according
percentages of significant tests (D-F). A: PLV, B: r2JM,s, C:
r2JM,m, D: PLV-tests, E: r2JM,s-tests, F: r2JM,m-tests.

comparable high overall values for the PLV, is observable
in an exemplary analysis of real EEG data. Here, a ran-
domly selected data set of an acoustic oddball experiment
is chosen that consists of 40 trials and 28 electrodes with
mastoids as reference. In accordance with current research,
induced theta oscillations following a P300 are examined
and fronto-central couplings are expected [5]. To this end,
signals are initially preprocessed in an appropriate manner
and theta is filtered out using a butterwort filter of passband
4-8 hertz. Subsequently, the instantaneous signal phases are
extracted using the Hilbert transform. As midline couplings
are expected, electrode Pz, and for the multiple coefficient
additionally CPz, is chosen as predictive variable and the
extent of synchronization with every other electrode is esti-
mated. This is done within a time segment from 500 to 3000
ms after target presentation in multi trial analyses. Fig. 2 A

shows the time-averaged results for the PLV, while picture
B illustrates the outcomes for the simple circular-circular
correlation coefficient and picture C the according values
for the multiple one. In addition, illustration D - F de-
pict the corresponding percentages of significant tests that
all capture the suspected fronto-central couplings. In con-
trast, only little up to low correlations with electrodes FCz
(0.3461) and Fz (0.2764) can be achieved with the simple
coefficient. However, the multiple correlations with these
electrodes (FCz: 0.6657; Fz: 0.5460) are even higher than
the corresponding PLVs (FCz: 0.5749; Fz: 0.5060) along
with more significant test results (FCz: 100%; Fz: 100%
versus FCz: 94.72%; Fz: 98.56%).

Discussion
In total, circular-circular correlation coefficients are well
suited to estimate phase-coupling in a reliable manner. Al-
though they take slightly lower values than the PLV to-
gether with less significant test results for simulated data,
they can keep pace with this traditional measure. Unlike
the PLV, they are even able to distinguish between truly
phase-coupled and just individually phase-locked signals.
Furthermore, they are not restricted to bivariate analyses
and can include an arbitrary number of predictive variables.
As the circular coefficients may also be utilized in single
trial analyses, a further evaluation of this new circular ap-
proach seems worthwhile. In the process, particular atten-
tion should be paid to the multiple coefficient since this
measure exhibited even higher midline coupling estimates
than the PLV.
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Abstract: For neurofeedback applications EEG frequencies
below 0.5 Hz including DC-offset are essential. Since ar-
tifacts from eye movement can be found in the same fre-
quency band of the so-called DC-EEG, these artifacts must
be removed for proper DC-EEG analysis. To remove arti-
facts from eye movement, simultaneous electrooculograms
(EOG) are recorded as an indicator. The clean EEG is
then found by subtracting the EOG from the measured EEG.
However, most approaches also remove the DC-part of the
EEG in the process. We propose an adaptive algorithm to
eliminate eye movement artifacts from an EEG in real-time
while maintaining the DC-offset utilizing a recursive least
squares approach.

Keywords: DC-EEG, neurofeedback, EEG signal process-
ing

Introduction
The method “slow cortical potentials” (SCP) is often ap-
plied for EEG-neurofeedback sessions. The principle is to
detect slow changes of the EEG signal’s baseline. Before
analysis, pre-processing of the signal has to be conducted,
especially to remove artifacts caused by eye movements.
Most algorithms remove the DC-offset before signal pro-
cessing. For example, methods for source separation like
principal component analysis (PCA) or independent com-
ponent analysis (ICA) need to subtract the mean of the sig-
nal.
Until now, as seen in [1], only the least squares (LS) ap-
proach has proven to sustain the offset if, during calibra-
tion, the ratio of EOG to EEG is high [4]. The obtained
parameters β1, β2, β3 (Eq. 1) are used for EOG elimination
for the rest of the signal.
A measured EEG signal consists of the following compo-
nents (see Eq. 1) [2].

sm(n) = st(n) + β1 · rv(n) + β2 · rh(n) + β0 (1)

In this context, n is the current sample, sm(n) is the mea-
sured EEG for one channel, st(n) is the true EEG without
noise or offset, rv(n) is the vertically measured EOG and
rh(n) is the horizontal EOG. These values can be measured
directly, but β1, β2 as well as st(n) and the DC-offset β0 are
unknown. A simple model for EOG and EEG interaction is
as follows, with s(n) the sought clean EEG with DC-offset
(Eq. 2):

s(n) = st(n) + β0 (2)

The most common approach is to apply least squares esti-
mation to the measured EEG in Eq. 1. Yet, the calculation

Figure 1: Adaptive filter structure

of least squares has numerical problems due to several ma-
trix inversions and cannot adapt after calculation.
Our idea is to implement a recursive least squares (RLS)
methodology oriented on the approach in [2] in order to
achieve real-time processing and adaptation.

Methods
In [2] an RLS algorithm is introduced, which eliminates the
influence of eye movements. The filters hv and hh of length
M replace the parameters βi. The described filter method is
modified as can be seen in Fig. 1. The original filter struc-
ture is combined with an additional filter hDC . In order to
obtain the EEG with DC-offset, hDC is later added to the
true EEG.
For further analysis an EOG vector r(n) and its filter vector
h(n) are introduced (see Eq. 3).

r(n) =

rv(n)rh(n)
1

 h(n) =

 hv(n)
hh(n)
hDC(n)

 (3)

The update is as follows (Eq. 4 - 7): k(n) is the correction
vector, st(n) is the estimated true EEG, R(n)−1 is the in-
verse of the correlation matrix.

k(n) =
R(n− 1)−1 · r(n)

1 + r(n)T ·R(n− 1)−1 · r(n)
(4)

ŝt(n) = sm(n)− r(n)Th(n− 1) (5)

h(n) = h(n− 1) + k(n) · ŝt(n) (6)

R(n)−1 = R(n− 1)−1 − k(n)r(n)R(n− 1)−1 (7)

The estimated EEG ŝ(n) with DC-level (Eq. 8) is:

ŝ(n) = ŝt(n) + hDC(n) (8)

Initial values are h(0) = 0 and R(0)−1 = 1
σ I .
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Figure 2: Estimation error for different initial DC-offsets
using RLS (actual baseline β0 = −4 x 10−4)

Correct parameterization of this RLS problem is crucial. In
[2] a filter length of M = 3 and initial value σ = 0.01 are
used. For our case, new parameterization was necessary.
We assumed σ = 10−5 with filter length M >= 3. This
method is not sensitive to the size ofM , unlessM is smaller
than 3 [2]. Since the estimation of the baseline showed an
oscillating behaviour, a moving weighted average filter with
fading memory was applied with ε = 10−3 as a forgetting
factor (Eq. 9).

ŝ(n) = ŝt(n) + ε · hDC(n) + (1− ε) · hDC(n− 1) (9)

In order to determine an initial baseline, a combined ap-
proach was introduced. First, the initial value for the base-
line was determined with LS (calibration) and then the EEG
was estimated with RLS (see Fig. 1).
A relative error (F) measurement was conducted (see
Eq. 10). Lower absolute values account for better estima-
tion.

F =

N∑
n=1
|ŝ(n)− s(n)|

N∑
n=1
|s(n)|

(10)

Results

The dataset was comprised of synthetic data. The dataset
consisted of a sine wave with f = 0.01 Hz, superimposed
with Gaussian noise and simulated EOG data with values
from [1].
For the use of the RLS method the initial offset had to be es-
timated; without calibration the offset can only be guessed.
The quality of estimation depends on this initial value as
can be seen in Fig. 2.
In a subsequent test, RLS and LS were applied with a pre-
vious calibration (C) period. Three minutes were taken for
calibration as at least 40 eye movements are necessary [3].
It is obvious that RLS with previous calibration through LS
performs better than the LS method on its own (see Tab. 1).
The RLS method with calibration estimates the DC-offset
more correctly than the LS method (see Fig. 3). Artifacts
from eye movements are removed by both approaches.

Table 1: Values for datasets with LS approximation and
RLS with calibration (3 min.)

Method F
C+LS 0.2303
C+RLS 0.0509

Figure 3: Comparison of LS and RLS with previous cali-
bration (3 min.)

Discussion
The algorithm proposed in this paper offers real-time com-
putation of eye-movement corrections sustaining the DC-
offset. The RLS method performed better than LS in our
simulation, but without the moving average filter it con-
verges too slowly for practical use. Filtering of the baseline
is therefore necessary. The approach with previous calibra-
tion is also promising because it can provide a more accu-
rate initial value for the baseline.
As a result, this method can be applied for SCP recordings
for neurofeedback in the future.
However, due to the limited data, further investigations have
to be performed to prove this approach.
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Abstract: A knowledge of arousals during sleep is impor-
tant to attain a deeper understanding regarding cardiovas-
cular diseases. Manual scoring is time consuming and not
always accurate. Automatic approaches are even worse
inter alia due to inaccurate learning data. This paper
presents an algorithm to improve the accuracy of manu-
ally scored data. Also a measure of quality is introduced
to judge the automatically estimated results.

Keywords: Arousal detection, validation, quality estimation

Introduction

An arousal is characterized by an abrupt frequency shift in
the EEG for from 3 s up to 15 s ([1]). Different studies (see
[2]) have shown that manually scored events differ not only
among scorers, but also between analyses of one scorer of
the same data. Reliable data is required to set up an algo-
rithm which determines the arousal as closely as possible.
This paper shows an algorithm to readjust the manually
scored starting time and to give a measure of its quality.

Methods

In this work, overnight polysomnographic recordings from
the Daphnet-Project1 are used. Different medical techni-
cians scored the records, but each record was only scored
once. Therefore, the following assumptions can be made:

1. The starting time of an arousal may differ from the true
beginning, in some cases several seconds are possible.

2. Misclassification of non-existent arousals can occur.

S = 446 segments with manually scored arousals, extracted
from 33 patients, are used. Each segment takes L = 40 s
and starts 20 s before and ends 20 s after the beginning of
an arousal. According to [3], arousals are well visible in the
frequency bands β1 (16 to 24 Hz), β2 (24 to 32 Hz) and γ
(32 to 48 Hz). In total, instantaneous power ofB = 2·3 = 6
EEG bands (from derivation C3-A2 and C4-A1) are used.
The beginnings of arousals are detected by a threshold
based algorithm. The thresholds are derived from the sta-
tistical properties of all segments.

1Daphnet-Project: Dynamical Analysis of Physiological Networks,
EU-Project 2006-2009, Ref. 018474-2, examination of patients suffering
from sleep apnoea, periodic leg movement and insomnia.

Determination of thresholds

Thresholds of power bands are used to ensure a qualitatively
good data basis. The following procedure is performed for
each power band b, where 1 ≤ b ≤ B.
The 0.7-quantiles of the segments are determined and visu-
alised in a histogram. A threshold τband (b) will be chosen
to separate the two essentially visible intervals at lower and
higher power. A 0.7-quantile implies that at least 70 % of all
power values are less or equal than the given quantile value.
Hence, no more than 30 %, or 12 s of the values of a 40 s
segment, exceed the quantile value which can be caused
by an arousal. Power bands for which the 0.7-quantile lies
above their associated threshold will be classified as bad,
meaning they are too much affected by artifacts.
Thresholds for arousal detection are empirically chosen
from the histograms of the corresponding values of good
power bands. The procedure is similar to the previous one.
τar (b) represents the found thresholds of the arousals in the
power band b.

Arousal detection

The thresholds τar (b) are applied to every segment in or-
der to detect possible arousals. Unfortunately, the actual
power during true arousals does not consistently exceed the
threshold τar (b). Therefore, threshold exceeding sections
are combined to one interval if the temporal gaps are less
than 2 s. Afterwards, all intervals with a duration of less
than 3 s or more than 15 s are discarded. Remaining inter-
vals, or so called blocks, must be tested if an arousal exists.
NON AROUSAL: If in all good bands of a segment no
blocks exist, the segment will be marked as “No arousal oc-
curred”. M0 is the set of all concerning segments.
AROUSAL: An arousal in a segment will be found if at
least one block in at least one good power band exists.
These segments form the set M1. To estimate the beginning
of the arousal, the median of all beginnings of blocks from
all good power bands with exactly one block is determined.
If only good power bands with more than one block exist,
all existing blocks will be taken into consideration. But, in
this case the quality of estimation is set to zero.

Quality of estimation

For a better evaluation of the estimated arousals, different
quality measures will be introduced.
Quality of segments are expressed by Eq. 1
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qseg. (s) =
n_good_band (s)

B
, (1)

where 1 ≤ s ≤ S and n_good_band (s) equals the number
of good power bands in segment s.

Quality of estimation as NON AROUSAL: The quality is
described with qnon ar. (s

∗) = qseg. (s
∗), with s∗ ∈M0.

Quality of estimation as AROUSAL: The quality of a
found arousal is the product of different quality measures
(see Eq. 2).

qar. (s
∗∗) = qseg. (s

∗∗) · q1 (s∗∗) · accuracy (s∗∗) , (2)

where s∗∗ ∈ M1. q1 (s∗∗) is the ratio between the number
of good power bands with exactly one block and the num-
ber of all good power bands within the segment s∗∗.
The accuracy weighs variations of possible beginnings of
arousals in different power bands. It uses the standard devi-
ation according to Eq. 3.

accuracy (s∗∗) = 1− std (block_begin (s∗∗))
S

. (3)

block_begin is a vector containing all beginnings of blocks
from power bands with exactly one block.

Results
The thresholds used are listed in Tab. 1. Tab. 2 shows the
absolute frequencies of the qualities of the segments and
of the not arousals detected. Two segments are completely
unusable, and not all power bands in all segments are good
enough for using. No arousals are found in 100 segments.
The quality of the classification is very high. The other
364 segments contain arousals. Whereas the quality of 29
segments is 0%, that of 117 segments is 16.67% and of
218 segments above 16.67%. A lot of segments contain
only one power band with one block. The other power
bands of the segments concerned contain more than one
block in many cases. Therefore, these are currently not
used to estimate the beginning of an arousal. This is
the reason for a peak at 16.67% ≈ 1/6. But a detailed
investigation shows that very often blocks in different
power bands exist which are located temporally close to
each other. These blocks must be identified and should also
be taken into consideration for estimating the beginning of
an arousal. The quality qis ar. (s∗∗) will rise and the peak
at 16.67% will be shifted to a higher value.

In Fig. 1, the histogram of the differences between the man-
ually scored and the automatically detected beginnings of
the arousals are visualised. A large number of automati-
cally detected arousals are located close by the manually
scored arousals. Most of the estimated beginnings lie in the
interval [−5, . . . , 5] s and correspond very well to the ex-
pected differences, determined from earlier spot tests. This
allows the conclusion that the algorithm performs well.

Table 1: Thresholds for power band quality estimation and
arousal detection of used bands β1, β2 and γ.

threshold β1/ (µV )
2

β2/ (µV )
2

γ/ (µV )
2

τband 35 30 50
τar 11 40 50

Table 2: Number of segments with qualities for segment
evaluation and the detection of NON AROUSAL.

quality / % absolute freq. of
qseg. (s)

absolute freq. of
qnon ar. (s

∗)
0.00 2 0
50.00 9 2
66.50 3 1
83.00 6 1
100. 00 445 96

Discussion
The algorithm used is well suited to estimate the beginning
of arousals of manually inaccurately scored EEG data. Fur-
thermore, a quality measure exists to judge the results. In
future work, the threshold decision will be replaced by a
probability based approach. Moreover, an algorithm will
be developed to accurately handle power bands with mul-
tiple blocks in order to identify the most likely blocks for
estimating the beginning of an arousal.
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Figure 1: Differences of beginnings of arousals.
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Abstract: An EEG helmet system is developed for mobile 

application of brain-computer interface (BCI). Capacitively 

coupled electrodes provide easy EEG measurement, with 

minimal preparation time. Replacing cables into a wireless 

connection improves mobility of the subject but leads to 

distorted and interrupted EEG signal by motion artefacts. 

Here we show the first approach to separate EEG signals 

and motion artefacts by use of a triaxial accelerometer and a 

triaxial gyroscope. The recorded data from the sensors will 

now be provided a basis for improvement of the EEG signal 

distorted by motion artefacts.  

 

Keywords: capacitive eeg, capacitive electrode, wireless 

interface, motion artefacts 

 

Introduction 

Electroencephalography (EEG) is a standard measurement 

application for brain activity measurement. Through an EEG 

measurement system a BCI can be realised, which interprets 

the measured brain signals and converts them into control 

commands [1]. Instead of resistive electrodes the capacitive 

electroencephalography (cEEG) uses capacitive electrodes 

and allows to record brain signals with very short preparation 

time. We developed novel helmet systems for BCI with 

capacitive electrodes for steering a remote controlled car [2]. 

Motion artefacts are the most significant contribution to be 

corrected measuring biosignals and BCI applications.  

 

Methods 

For measuring the EEG biosignals we use capacitive 

electrodes, which can be used also for capacitive electro-

cardiography (ECG) [3][4]. 

We built a helmet system with wireless connection to be 

able to move during EEG recording and to enable long 

recording sessions with maximum proband comfort. 

Our capacitive electrodes are integrated in an 8 channel 

cEEG helmet as depicted in Fig. 1. In this configuration, 

we measure 7 signal electrodes against one capacitive 

reference electrode at the forehead [5]. The sampling rate 

equates 500 samples per second. 

When measuring cEEG for BCI applications we often 

experience low signal quality due to motion artefacts. To 

characterize these interfering signals we integrated a tri-

axial-acceleration sensor and a triaxial-gyroscope in the 

top of the helmet. 

 

Figure 1: Wireless 8 channel cEEG helmet system 

 

As an example, we show an undisturbed signal of the OZ 

electrode (a) and two signals with motion artefacts, by 

nodding and shaking the head, of OZ (b) and O2 (c) elec-

trode in Fig. 2. All EEG signals are filtered by a digital 15 

Hz low pass filter, for BCI applications with steady-state 

visual evoked potentials (SSVEP) and alpha measure-

ments. 

 

 

 

Figure 2: Comparison of undisturbed EEG signal (a) and the 

signal influenced by motion artefacts (b, c) for electrodes 

situated at the visual cortex. 

 

(a) 

(b) 

(c) 
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Simultaneously to recording the cEEG we measured the 

signals of the triaxial-accelerometer and triaxial-

gyroscope to analyze the sources of motion artefacts in 

cEEG. In Fig. 3(a) we show the x- and z-axes of the gyro-

scope and in Fig. 3b the x- and y-axes of acceleration 

sensor, during nodding and shaking the head. The signals 

from Fig. 2(b), 2(c) and Fig. 3 were recorded in same 

measurement and can be considered in direct comparison. 

 

 

 

Figure 3: Signals of triaxial-gyroscope (a) and triaxial-

acceleration sensor (b), while nodding and shaking the head. 

 

The signals from the additional motion sensors can be 

used to detect motion artefacts. The simplest reaction on 

detecting motion would be to warn the user. But a cancel-

lation of the disturbing signals from the cEEG signals 

would be more desirable.  

Regardless, by using a digital bandpass filter we can 

measure an alpha wave signal, which is generated by 

closing the eyes. In Fig. 4 the signal of the O1 electrode 

are bandpass filtered from 9 – 10,5 Hz. During 40 s – 60 s 

and 82 – 102 s the eyes there closed. In this time span 

higher signal amplitudes can be detected. 

 
Figure 4: Bandpass filtered signal for alpha wave detection. 

 

Results 

The disturbing signals in the EEG signal are directly cor-

related to the motion artefacts recorded by the motion 

sensors. As we have shown in Fig. 2 a direct relation of 

motion signals to cEEG signals is not always of same 

signal strength in different electrodes. Depending on 

position and connection of the electrode and kind of 

movement the correlated signals show up in different 

capacitive electrodes with different strength. Compensa-

tion of the correlated time signals requires a more elabo-

rate analysis which is not correctly completed. 

By transfer from time domain to frequency domain by 

Fourier transformation, we can see that a lot of low fre-

quency contributions are registered. Unfortunately these 

distortions are in the same frequency band, as the used 

frequencies for BCI. Therefore the appropriable compen-

sation is required and will further improve the BCI analy-

sis during movement. Nevertheless, as shown in Fig. 4, an 

alpha wave can be measured in this setup with a bandpass 

filter. 

Due to the different information given by accelerometer 

and gyroscope, both sensors are required to improve the 

signal. 

 

Discussion 

Since we measure in a bipolar configuration, a correlated 

movement of the measuring electrode and the reference 

electrode would result in compensation. The movement of 

the electrodes in the helmet configure are not the same, 

but rather different. 

A simple subtraction of the motion signals is not suffi-

cient for the task to reduce the motion artefacts in EEG 

signal. The source of the electrically disturbing signal 

presumably is a variation in capacitance due to the motion 

of the head.  
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Abstract:  Microsleep (MS) and alpha burst (AB) patterns 

in the EEG of ten young drivers were detected. Their per-

centage within 1 min intervals was compared with inde-

pendent variables of drowsiness: 1) lane tracking perfor-

mance, 2) self-rating of sleepiness. In addition, the occur-

rence of both patterns immediately before crashes was in-

vestigated. Results offer remarkable differences. AB dis-

plays no time-since-sleep as well as no time-on-task effect. 

AB failed in predicting crashes. MS displays both effects 

and always occurred immediately before crashes.  

 
Keywords: EEG, pattern recognition, drowsiness, fatigue, 
microsleep, driving simulation, support-vector machines  

 

Introduction 

EEG is the most promising signal for reliable estimation 
of driver drowsiness due to the more or less direct assess-
ment to the origin, the driver’s brain. Various authors in-
vestigated this topic; mostly, EEG features were extracted 
followed by correlation analysis or analysis of variance [1 
and references therein]. Up to now investigations utilizing 
short-term pattern recognition account to a minority. Two 
decades ago, Kecklund and Åkerstedt proposed AB as a 
marker of drowsiness [2]; recently, this concept was taken 
up again [3]. Alternatively, recognition of MS utilizing 
spectral domain, state space features, and kernel classifi-
ers was proposed to quantify drowsiness [4]. We compare 
both pattern recognition methods based on the same data 
set and relate their output variables to two independent 
and broadly accepted variables in drowsiness research. 
 

Methods 

Study: was designed to investigate driving performance 
and subjects’ behaviour under high level of monotony and 
sleepiness. Monotony was supported by selecting very 
low traffic density (no car in lane, 1 car every 3 minutes 
in the opponent lane; road configuration: winding two-
lane road, undulating landscape). Subjects were instructed 
to keep in lane as best as possible and to avoid falling 
asleep. After returning from MS subjects were reminded 
that if driving performance becomes too bad the experi-
ment would be terminated. Experiments started at 1:00 
and ended at 7:40 AM, with time-since-sleep of at least 
16 h and 22:40 h, respectively. Within this time 7 driving 
sessions (length 40 min long) were carried out. 
Driving simulation: were conducted at our lab. Crashes 
have been defined as intervals where all 4 wheels were 
out of lane, no matter if the car went to the left or to the 
right. Incidents with 1 - 3 wheels out of lane were not 

included in further analysis. Lane tracking performance 
was measured by the standard deviation of the lateral 
position in lane (SdLat). 
When crashes appeared an extensive soundscape as well 
as video scene was played to increase the emotional im-
portance of these events. In addition drivers were warned 
by the observers.  
Subjects: 14 healthy young volunteers (age 22.4 ± 4.1 years, 
range 18 - 34) with driving experience for at least 1 year 
participated. 1 male and 2 female quitted because of simula-
tor sickness, 1 male quitted because of back pain. 
Data acquisition: 11 biosignals (EEG: F1, F2, C3, Cz, C4, 
O1, O2, A1, A2, com. av. ref.; EOG: vertical, horizontal), 3 
videos (driver’s head & pose, driver’s eyes, driving scene), 2 
car related time series (steering angle, lateral position in lane) 
were recorded. Subjectively experienced sleepiness was 
rated every 4 min during driving following suggestions of 
[5]. Subject’s response was given orally using the Karolinska 
Sleepiness Scale (KSS) [6].  
Visual Ratings: Two operators who watched the videos 
performed a first judgment of ongoing MS immediately 
during the experiments. Typical signs of MS are prolonged 
eyelid closures, slow roving eye movements, head noddings, 
slow drifting head movements, and major driving incidents. 
They were often followed by abrupt reactions. Several other 
signs were observed, but it has been decided not to solely 
rely on them. In all, we have found 2,290 MS (per subject: 
229 ± 67, range 138 - 363). During off-line scoring an inde-
pendent and trained rater refined the time of MS occurrence.  
Visual ratings were only utilized to select examples of MS 
and Non-MS out of the continuum of the recordings.  
MS detection: From EEG / EOG segments (length 6 s) of 
MS and Non-MS log spectral power densities (PSD) were 
estimated (modified periodogram) and summed in spectral 
bands (0.5 - 23 Hz, width 1 Hz) [4]. In addition delay-vec-
tor variances were estimated [7]. Support-Vector Machin-
es (SVM, Gaussian kernel) were trained on these data in 
order to discriminate MS and Non-MS. After empirical 
parameter optimizations an MS detector was constructed 
(accuracy 97.7 ± 2.1 %). Next, the MS detector was app-
lied consecutively to all data to detect EEG/EOG patterns 
which are similar to MS [8]. 
AB detection: 1 EEG signal (O1) was divided in overlap-
ping segments (1 s length, 75 % overlap) [3]. If PSD cul-
minated within extended alpha range (7 - 13 Hz) then the 
full width at half maximum (FWHM) was checked to be 
lower than two times the bandwidth of the Hamming win-
dow applied for spectral estimation. A polynomial model 
was fitted to the actual and to the mean PSD spectrum. 
Signal energy as the area above and noise energy as the 
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area below the fitted curve can be separated which is nee-
ded for amplitude normalization to compensate varying 
noise levels. Only EEG segments having signal energy 
within the FWHM of at least twice as large as the noise 
energy and having a relative peak frequency shift lower 
than 10 % were considered as AB [3] (Tab. 1). 

Table 1: Comparison of both pattern recognition methods. 

 AB detection MS detection 
processed signals  1 (EEG) 9 (EEG) + 2 (EOG) 

temporal resolution high (0.25 s) high (0.1 s) 

pattern duration 0.5 – 3.0 s 1.0 – 12.0 s 

pattern characterization in spectral domain in spectral domain 

pattern definition fixed adaptive 

pattern recognition 

method 

fixed decision rules 

with thresholds 

nonlinear discrimi-

nant functions 

signal/noise separation exponential fit none 

output variable pattern percentage per interval 

 

Figure 1: Mean and standard deviation of self-ratings of 
sleepiness on KSS, lane tracking performance SdLat, MS, 

and AB percentage versus time of day 

 
Figure 2: Mean and standard errors of pre-crash intervals 

containing detections of MS and AB (lower curve) 
 

Results 

Mean values of KSS, SdLat, and MS percentage correlate 
with time-since-sleep as well as with time-on-task, where-
as AB percentage remained unchanged across the night 
and within driving sessions (Fig. 1). AB percentage dis-

plays larger standard deviation during the first 4 driving 
sessions and lower variability during the last sessions 
where subjects report on high self-experienced sleepiness 
and perform worse with regard to the lane tracking per-
formance SdLat.  
For each crash it was investigated if at least one MS and 
one AB pattern was detected within pre-crash intervals of 
varying length (Fig. 2). The relative number of pre-crash 
intervals containing MS patterns NMS was always above 
90 %, but not so with AB patterns. There were many 
crashes where no AB was detected immediately before. 
 

Discussion 

This comparative investigation of two EEG pattern rec-
ognition methodologies found remarkable differences. 
AB pattern appeared relatively often and with low dura-
tion. They had no significant time on task as well as no 
time since sleep effect. This is in contrast to the temporal 
development of behavioral signs of drowsiness as well as 
with both independent variables of drowsiness. The in-
crease of AB percentage within the first half of the night 
might be interpreted as early indications of sleepiness. 
During the second half of the night where driver’s per-
formance dramatically deteriorated AB remained insensi-
tive. Moreover, the results of crash analysis showed that 
AB seemed to arise spontaneously and not strictly related 
to degradations due to drowsiness. This is in contrast to 
[3] where an increase of AB rate from 7 min-1 up to 12.8 
min-1 between the first and the last 20 min of driving was 
registered. An increase of AB duration from 0.62 s up to 
0.665 s was reported which we could not verify.  
In contrast, MS patterns turned out to be reliable forerun-
ners of crashes. In more than 95 % of all crashes MS were 
found immediately before. The MS concept has the poten-
tial to establish a gold standard of drowsiness evaluation.  
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Abstract:  Partial Directed Coherence (PDC) method and 
its extensions proved to be useful tools in analysing cou-
plings in multivariate dynamic systems. We introduced 
the normalised short time PDC method (NST-PDC), to 
investigate the dynamic behaviour of couplings. First 
simulated signals obtained from coupled oscillators were 
analysed and information about the dynamical behaviour 
of the virtual system achieved. Then, as a first prelimi-
nary test applying the NST-PDC method, we observed 
significant (p<0.05) coupling dynamics differences in 
pregnant woman with hypertensive disorders, by compar-
ing patients with preeclampsia and chronic hypertension. 
The NST-PDC is applicable for nonstationary time series, 
detects dynamical changes of coupling and might be us-
able for the analysis of time dependent cardiovascular 
couplings.  
 
 Keywords: Short Time Partial Directed Coherence, cou-
pling analyses, cardiovascular coupling 
 
Introduction 
In complex physiological systems linear and nonlinear 
time series analysis approaches are of increasing interest. 
In addition there is more and more evidence about the 
importance of investigating the dynamics of the cou-
plings. Linear methods favour the frequency domain 
representation of biological signals (characterization of 
connectivity between specific oscillatory components) 
while nonlinear methods study complex signal interac-
tions. Partial directed coherence (PDC) method [1] is 
among the most applied linear approaches in the fre-
quency domain. PDC is used to acquire and evaluate 
couplings, due to its capability to detect direct and indi-
rect causal information transfers between signals in mul-
tivariate dynamic systems. Taking into consideration that 
PDC method presupposes the stationarity of signals in the 
time interval nonstationary signal analysis applications 
cannot be performed. Further on, we cannot achieve in-
formation about the systems’ coupling dynamics. A num-
ber of solutions have been suggested for the problem of 
time-varying directional interactions analysis. Milde et al. 
[2] introduced a time-variant version of PDC that avoids 
misinterpretations in heart rate variability analyses and 
quantifies the partial correlative interaction properties 
between respiratory movements and respiratory sinus 
arrhythmia. The objective of this study was to introduce a 

new time frequency approach, the Normalized Short Time 
PDC (NSTPDC), in order to assess significant coupling 
dynamics information. First we carried out different tests 
with simulated signals from an ideal system of coupled 
oscillators. Then, as a first and preliminary medical ap-
proach we investigated the coupling dynamics between 
pulse intervals (PI) and systolic blood pressure time series 
in pregnant women with different hypertensive disorders.  
 
Methods  
The PDC based on an m-dimensional multichannel auto-
regressive model (MAR) is capable to detect couplings in 
multivariate dynamic systems. Based on the Fourier trans-
formation of the coefficient matrix A(f), the PDC is calcu-
lated from the two processes Xj and Xi [3].  
The absolute value of the tvPDC was defined by Baccala 
et al. [1] (Eq. 1). 
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where Aj(n,f) is the jth column of the matrix A(n,f) with n 
as window number and f as frequency. The normalization 
parameters achieved after applying the PDC normaliza-
tion are shown in Eq. 2.  
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for all mj ≤≤1 . Values between 0 and 1 provide in-
formation about the presence and strength of causal cou-
pling between the two time series Xi and Xj as a function 
of frequency f  [1, 4]. We implemented the new method 
NSTPDC in order to assess the coupling direction and 
strength between the two processes. A coupling factor CF 
is calculated as the mean value of Xj coupled with Xi di-
vided by the mean value of Xi coupled with Xj. We nor-
malized our results to a specific set of values leading to 
the normalized factor NF={-2,-1,0,1,2} (Eq. 3). The val-
ues {-2} and {2} represent a strong unidirectional cou-
pling (increased absolute values means increased cou-
pling strength) while {-1} and {1} denotes a bidirectional 
coupling and the master signal. Finally a value {0} means 
that there is either an equal influence for both directions 
or no coupling at all. The NSTPDC was achieved by 
means of a short time implementation with a Hamming 
window of 300 samples length and 50 samples overlap.  
For simulations of time series we used the Wolfram 
Demonstrations Project, “Coupled Oscillators” [5]. We 
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considered two simulated signals (Fig. 1a) from an ideal-
ized system with two oscillators coupled together by a 
third one. After applying the NSTPDC method we ob-
served that the first signal is the driving one (Fig. 1b). In 
the second simulation (Fig. 1c), we used the same signals, 
but the coupling was changed after 800 samples. After 
this change the second signal became the master signal 
and the first signal the slave signal (Fig. 1d).

 

⎪
⎩

⎪
⎨

⎧

≤≤=
≤<=−

>=−
=

⎪
⎩

⎪
⎨

⎧

≤≤=
≤<=

>=
=

−=
−=

)2/0(0
)5/2(,1

)5/(,2
)2/0(0
)5/2(,1

)5/(,2
),(

)(
)(

abandbMaxif
abandbMaxif

abandbMaxif
NF

baandaMaxif
baandaMaxif

baandaMaxif
NF

baMax
XXPDCmeanb

XXPDCmeana
ij

ji

 (3) 

200 400 600 800 1000
-0.5

0

0.5
First signal

frequency [Hz]

am
pl

itu
de

 [N
/m

2 ]

200 400 600 800 1000
-0.5

0

0.5
Second signal

frequency [Hz]

am
pl

itu
de

 [N
/m

2 ]

0 5 10 15 20

-2

-1

0

1

2

Normalization Ratio

no
rm

al
iz

at
io

n 
sc

al
e

number of windows  
a.                                     b.    

200 400 600 800 1000
-0.5

0

0.5
First signal

frequency [Hz]

am
pl

itu
de

 [N
/m

2 ]

200 400 600 800 1000
-0.5

0

0.5
Second signal

frequency [Hz]

am
pl

itu
de

 [N
/m

2 ]

0 5 10 15 20

-2

-1

0

1

2

Normalization Ratio

no
rm

al
iz

at
io

n 
sc

al
e

number of windows  
c.                                    d. 

 Figure 1: Simulation of different couplings (left side: 
input signals; right side: coupling level diagrams)  
 
Next we generated couplings between the same signals 
but with different levels of superimposed noise (1%-10% 
of the signal’s amplitude). If the noise amplitude was 
greater than 10% the couplings were no longer visible.  
After these simulations we proved if NSTPDC would be 
able to find changes of couplings within cardiovascular 
systems. Here, we investigated the dynamic coupling 
between time series of beat-to-beat intervals (BBI) and 
systolic blood pressure (SBP) from 10 pregnant women 
with hypertensive disorders (5 with chronic hypertension 
- CH, mean age 31.2 years and 5 with preeclampsia – PE, 
mean age 26.8 years). The investigation conforms to the 
principles outlined in the Declaration of Helsinki. Local 
ethics committee approval and the informed consent of all 
subjects were provided. We calculated the mean value 
and dynamics standard deviation (DSD) of the NF from 
NSTPDC. For discrimination between the two groups we 
used the Mann-Whitney-U-test with p<0.05 as signifi-
cance level.  

Results  
The simulation study showed that changes in coupling 
could be clearly detected by NSTPDC. However, if the 
noise level exceeds 10% of the input signals a coupling 
cannot be observed. In the preliminary medical applica-
tion more dynamic changes of coupling BBI -> SBP were 
observed in CH (higher DSD, p<0.039) than in PE while 
the SBP->BBI coupling was not significant but a trend 
towards a higher dynamics in PE is noticeable. 
 
Discussion  
The NSTPDC method is an improvement of the standard 
PDC. It enables us to investigate signals with nonstation-
ary properties and allows the detailed investigation of 
coupling changes. In a simulation study that was only 
briefly described the change of coupling could be clearly 
demonstrated. However, the precision is a compromise of 
window length and coupling strength. This is part of an 
ongoing study. In the preliminary medical study we could 
show for the first time that the dynamics of coupling 
changes BBI -> SBP is much higher in CH than in PE. 
That means that in PE there is a much more constant drive 
from BBI to SBP. We speculate that this could be caused 
by a higher mental stress. However, this has to be vali-
dated by enrolling a much higher number of patients.  
In conclusion, the new proposed method NSTPDC is able 
to estimate couplings and their directions in nonstationary 
time series, it performs dynamic coupling analysis and 
might be useful in characterizing cardiovascular cou-
plings. 
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Abstract: Simultaneous biatrial electroanatomical map-
ping was performed in a 54 year old woman using two
64-electrode basket catheters. Local activation time (LAT)
maps were extracted retrospectively for single atrial excita-
tions during sinus rhythm using the non-linear energy op-
erator (NLEO). Considering both ampltiude and frequency
information, the NLEO has shown to be a reliable estimator
for the LAT. This paper presents an approach for creating
biatrial LAT maps using the NLEO for single atrial excita-
tions. The varying propagation pattern of individual beats
reveals the presence and location of supraventricular ex-
trasystoles.

Keywords: local activation time map, intracardiac signal
processing, nonlinear energy operator, supraventricular ex-
tra systole

Introduction
Electroanatomical mapping is an important tool in interven-
tional therapy of atrial arrhythmia. The LAT provides in-
formation about the propagation of the electrical excitation
during the arrhythmia. Mapping can be performed sequen-
tially on a point-by-point basis, but only if rhythm and pro-
pagation pattern are stable. Multielectrode basket catheters,
however, allow parallel mapping of a complete atrium for
individual beats.
Biatrial basket mapping has been demonstrated to be feasi-
ble for mapping premature atrial complexes [1]. More re-
cent work has drawn attention to studies which aim at iden-
tifying rotors and focal sources that might be responsible
for atrial fibrillation [2].
Since these catheters record up to 128 signals in biatrial
mapping, computer aided analysis and visualization pro-
vides an essential tool for the physician. In this paper
the non-linear energy operator (NLEO) is applied as a new
method to generate LAT maps for single atrial excitations.
The NLEO has already been demonstrated as a useful tool
in analysis of complex fractionated atrial electrograms [3]
and for wavefront analysis for circular catheters [4].

Methods
Clinical data from a 54 year old female suffering from
paroxysmal atrial fibrillation was analyzed retrospec-
tively. A standard 12-lead ECG was recorded. Using
an impedance based electroanatomical mapping system
(Ensite Velocity, St. Jude Medical), 126 intracardiac

electrograms were acquired simultaneously from two 64-
electrode basket catheters (Constellation, Boston Scientific)
in each atrium and a coronary sinus (CS) catheter. The
electrophysiological mapping system was used to generate
a 3D surface of the heart geometry.

Unipolar electrograms from 126 basket catheter electrodes
were exported for offline analysis. Bipolar electrograms
were computed for all neighboring electrodes on a spline.
The signals were filtered using second order butterworth
filters (highpass fc=30 Hz, lowpass fc=150 Hz). The geo-
metrical center point between both electordes was projected
onto the map surface and defined as point of measurement.
The nonlinear energy Ej at each timestep j from signal x
was computed as

Ej = x

2
j � xj+1xj�1, (1)

and the resulting NLEO signal was lowpass filtered at
24 Hz [3]. The filtered signal was interpolated on the whole
atrium and the time of its maximum value used as LAT. Ar-
eas more than 10 mm away from a measurement point were
excluded from visualization. Since each single beat is ana-
lyzed, no referencing to the CS signal was necessary.
Signals from two atrial activations during sinus rhythm (SR)
were selected for demonstration, the corresponding activa-
tions are numbered Fig. 1. For each activation, the signal
±250 ms around the activation was analyzed automatically.
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Figure 1: Continuous electrograms of lead I and an intracar-
dial electrogram from the lateral RA appandage. The two
numbered beats were chosen for demonstration.

Results
Two intracardiac signals from the right atrium (RA) and left
atrium (LA) are depicted in Fig. 2. The electrogram RA was
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recorded at the lateral RA appendage, signal LA at the high
anterior wall. The LAT detected by the NLEO is marked
with a red line. The LAT of signal RA was earlier than the
LAT of signal LA during beat 1 and later in beat 2. All
times were referenced to the first detected activation.−100 0 100 200
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Figure 2: Representative electrograms for beat 1 (left) and
beat 2 (right). Intracardiac signals were measured at the
lateral RA appendage and the high anterior wall in the LA.

Reconstructed LAT maps can be found in Fig. 3. The exci-
tation for beat 1 started close to the sinus node and propa-
gated down the RA. The earliest activation on the left atrium
was close to Bachmann’s bundle. Activation for beat 2
spread from the high anterior wall of the LA. Activation
of the RA progressed downwards.

Figure 3: LAT maps determined by the NLEO-based
method for beats 1 and 2 in RAO view. Early activations
are colored red and late activations blue, time given in ms.
Earliest point of activation was near the sinus node / su-
perior vena cava for beat 1 and near high anterior wall in
beat 2.

Discussion
Both maps show consistent activation patterns without vi-
sible artifacts or prominent zones of slow conduction. The
activation pattern of beat 1 was consistent with SR, whereas
the activation for beat 2 corresponded with a supraventricu-
lar extra systole located near the LA roof.
The total depolarization time was approximatelly 125 ms
for both beats, which was slightly higher than the literature
value of <100 ms [5]. The latest LAT close to the mitral
valve was found to be a ventricular artifact in both beats.
Previous work has demonstrated the feasibility of algo-
rithms to detect the location of atrial ectopic foci based on
P-wave morphology [6]. However, existing ablation lines
in the atria might alter the path of excitation, lead to unex-
pected activation patterns and thus present a drawback of

these methods. Direct measurement of LAT maps provides
a fast and reliable way in these situations.
The excitation pattern in SR could clearly be distinguished
from a SVES. However, detailed localization of the SVES
was not possible since the electrode positioning was not op-
timized for this purpose.
Since this map could be generated for every single beat,
the excitation wavefront could be monitored for every beat
individually and continuously. This could help to automat-
ically localize and statistically evaluate ectopic foci which
are known to be located also outside pulmonary veins [1].
A reliable high detail LAT map also allows to determine
local conduction velocity. Differences depending on wave
direction or stimulation parameters can thus be computed
and visualized during intervention.
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Abstract: Dynamic modeling of physiological time series

represents an auspicious approach in the arena of biomed-

ical signal processing. This study illustrates a new method-

ology for identifying dynamic models that is based on sta-

tionary stochastic processes. The method is applied to time

series extracted from the ECG. Simulations of the gained

models yield physiologically plausible results .

Keywords: Time Series, Modeling, State Space, Heart Rate,

ARMA

Introduction

Time series (TS) analysis represents a fundamental dis-

cipline of scientific and clinical practice in biomedical

signal processing. A very sophisticated subarea is the

investigation of TS including cardio-electric information

such as heart rate dynamics and ventricular repolarization

[1].

The majority of methods analyzing electrophysiological in-

formation have been primarily directed towards static pa-

rameters or dynamic models considering only brief TS ex-

tracts (<500 elements). In contrast, this study presents a

holistic dynamic approach of modeling physiological TS.

Thereby, the methods can be applied to a wide context of

biomedical applications.

Methods

Autoregressive-moving average (ARMA) processes are ca-

pable of modeling any stationary TS at arbitrary accuracy.

However, regarding physiological TS, the hypothesis of

stationarity usually has to be rejected by means of statistical

tests. Applying a finite number of suitable filter operations

provides modified TS which reasonably can be expected to

be stationary. The filtered TS are modeled using ARMA

processes which are subsequently transferred into a state

space representation. A subtle extension of the space

state model enables an elimination of the filtering influence

and therefore provides a dynamic model for the original TS.

Stationarity and Filtering: Evaluating stationarity for

measured TS is no trivial procedure. However, in many

cases a visual analysis of the TS plot permits initial

tendencies towards stationarity properties. As an example,

a linear trend provides clear evidence on instationarity.

A more tangible approach is based on the analysis of the

sample autocorrelation function (ACF), denoted r(k) [2].

A necessary condition for stationarity is r(k) → 0 for

k → N where N represents the number of elements of

the TS. In physiological TS the decay of r(k) is typically

performed very slowly with respect to k, which is a distinct

indication for instationarity. A differencing filter embodies

an appropriate approach for eliminating this type of insta-

tionarity. Each two consecutive elements are subtracted

yielding a filtered TS with improved stationarity properties.

Differentiating d times consequently supplies a TS that is

sufficiently stationary to be modeled by an ARMA process.

ARMA-Modeling: ARMA(p,q) models provide a par-

simonious description of a stationary stochastic process.

They are characterized by a Gaussian white noise process

ǫk ∼ N(0, σ2

ǫ ) and two summations, one for the AR and

the second for the MA part:

Yk =

p
∑

m=1

amYk−m + ǫk +

q
∑

n=1

bnǫk−n. (1)

In order to identify a model for a given TS the orders (p, q),
the parameters (am, bn) and the noise variance (σ2

ǫ ) must

be investigated.

Determining the model orders faces a trade off between a

strong adaption to statistical properties of the TS and the

principle of parsimony. For an initial appraisal the ACF and

the partial ACF (PACF) are evaluated and maximal orders

pmax and qmax are estimated. Conciliating the above men-

tioned trade off, a minimization of the Akaike Information

Criterion (AIC) then yields the orders p and q [2]:

AIC = log σ2

r +
2(p+ q)

N
. (2)

σ2

r is the residual variance between TS and an estimated

ARMA(p,q) model and therefore a measure of adaption.

The second addend penalizes high model orders.

Deploying the specified orders, the parameters am and bn
are estimated based on the prediction-error method. In a last

step, the noise variance σ2

ǫ must be determined. During a

literature research, no quantitative relation between σ2

ǫ and

the variance of Yk, denoted σ2

Y , could be found. However,

empirical tests suggested a linear dependence between the

two variances. Based on system-theoretical fundamentals,

a formula was derived quantifying the linear dependence:

σ2

Y =

∫ f/2

−f/2

∣

∣

∣

∣

1 +
∑q

n=1
bne

−j2πfn

1−
∑p

m=1
ame−j2πfm

∣

∣

∣

∣

2

df · σ2

ǫ . (3)

ARMA Model Diagnostics: Diagnostics represent a cru-

cial step of TS modeling [2]. The quality of adaption of a

model is assessed based on a comparison between statistical

properties of the TS and the model:
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• Visual comparison between the theoretical ACF of the

ARMA model and the empirical ACF of the TS

• Assessing whether the residuals represent a realization

of a white noise process

If the adaption is appraised to be not sufficient, a new

model with increased orders has to be identified.

ARMA and ARIMA Models in State Space: By intro-

ducing r=max(p, q) and setting am and cn to zero for

m=p+1,...,r and n=q+1,...,r a transformation into a com-

panion state space realization is viable. Applying a slight

extension eliminates the differencing influence of the initial

filtering by contributing d integrating operations. For d=1

the model is given by:

~xk+1 =



















0 0 . . . 0 −ar 0

1 0 . . . 0 −ar−1 0

0 1 . . . 0 −ar−2 0

...
...

...
...

...

0 0 . . . 1 −a1 0

0 0 . . . 0 1 1



















~xk+



















br − ar

br−1 − ar−1

br−2 − ar−2

...

b1 − a1

0



















ǫk

(4)

Yk =
[

0 0 0 . . . 0 1 1
]

~xk + ǫk. (5)

Formulas (4) and (5) represent a so-called autoregressive

integrated moving average (ARIMA) process.

Results

Based on a measured ECG, a RR interval TS containing

2954 elements was constructed. Using this TS the pre-

sented methodology is now illustrated. Since the ACF of

the TS shows a slow decay, the TS needs to be filtered.

The resultant TS represents values of ∆RR and is suffi-

ciently stationary to be modeled with an ARMA process

(d=1). Analyzing the ACF and PACF yields the maximum

orders (pmax, qmax) = (5, 5). Applying this, the AIC is

minimized for (p, q) = (1, 4) which yields the model:

Yk = 0.9Yk−1 + ǫk − 1.1ǫk−1 + 0.2ǫk−2 − 0.1ǫk−4. (6)

For descriptive representation, parameter values are

rounded to the first decimal place. Inverse application of

(3) yields an input noise variance of σ2

ǫ = 433.5(ms)2.

Conducting diagnostics raises no doubts on the validity of

the model. By using r=4 and d=1 the ARMA process is

transformed into ARIMA state space representation. For

validating the gained model, the subsequent illustrations

depict model simulation results (red). A simulation is ac-

complished by simply applying a realization of the input

noise process to the model. For comparison, the mea-

sured TS (blue) and the simulation results of an identified

(p, q, d)=(20, 20, 1) model (green) are also presented. It is

important to note that the objective is not to approximate the

measured TS, but to share its dynamics as exact as possible.

Fig. 1 suggests that both models provide a suitable repro-

duction of the original ∆RR dynamics. Recalling formula

(3), a correct reproduction of the ∆RR variance by the mod-

els is ensured. Fig. 2 confirms the ARIMA(1,4,1) model to
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Figure 1: TS of 50 measured and simulated ∆RR intervals.
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Figure 2: TS of 200 measured and simulated RR intervals.

represent a suitable description for the RR interval dynam-

ics. However, the ARIMA(20,20,1) model tries to assimi-

late inaccuracies originating from the empirical ACF/PACF

during the modeling procedure. Due to the integrating be-

havior of the ARIMA models these minor deficiencies will

lead to physiologically implausible results.

Discussion

The presented methodology allows a versatile dynamic

modeling of physiological TS only under the restriction of

inaccuracies when regarding finite TS. Simulations yielded

plausible results for parsimonious models. However, it is

necessary to be cautious when simulating extensive models

or long periods of time. Due to the integration of a power

signal, the ARIMA models generate TS with variances in-

creasing over time. The introduced models provide an enor-

mous amount of system characteristics to be analyzed. As

an example, the eigenvalues of the system matrix in formula

(4) involve direct significance to dynamic properties of the

generating physiological process. This information could

be applied on medical classification studies concerning car-

diac disease or drug safety.
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Abstract:  The standard parameter of heart rate variability 
(HRV) requires weak stationarity. We perform a nonpar-
ametric segmentation to HRV data of congestive heart 
failure patients as well as young and elderly healthy sub-
jects where the signal is split into stationary epochs. By 
finding stationary segments we are able to quantify the 
nonstationarity by means of statistical values of segment 
length and jump size. We found high correlations between 
the measures of nonstationarity and standard values of 
HRV and a connection to results of detrended fluctuation 
analysis. The segmentation applied to heart rate time 
series detects aging and pathological conditions effects 
on the nonstationary behaviour of the analyzed groups, 
promising to contribute in complexity analysis and 
providing risk stratification measures. 
 
Keywords: Heart rate variability, nonstationarity, seg-
mentation 
 
Introduction 
It has been a long time since studies on heart rate variabil-
ity (HRV) have become as popular as the many devices 
available to record the cardiac activity [1]. As reported in 
literature, several diseases, as myocardial infarction, and 
diabetic neuropathy, point to a connection between 
healthiness and heart rate complexity. Also, the effects of 
aging are known to present higher HRV in younger indi-
viduals, compared to elderly ones [1]. As a standard tool 
of HRV analysis, the spectral analysis relies on the as-
sumption of weak stationarity, where the mean value is 
constant and the covariance is only dependent on a time 
shift, but even in controlled environments, it is questiona-
ble whether the efficiency of such control ensures these 
conditions. The idea of the segmentation applied to time 
series is to provide patches of the signal where stationari-
ty is verified. Instead of testing only the difference for the 
mean [2], we perform a nonparametric segmentation [3], 
taking into account the whole distribution, with all mo-
ments, especially mean and variance. We also use the 
known amplitude-frequency coupling of the dominant 
short-term oscillation [4], the respiratory sinus-
arrhythmia, which connects the changes in the variance 
with the time-dependent covariance, implying nonstation-
arity. 
 

Methods 
For analysis, we consider 24 hours measurements of the 
electrocardiogram of three groups consisting of 15 young 
(YH; 11 females, 4 males, age 31±6 years) and 18 elderly 
subjects (EH; 11 males, 7 females, age 50±7 years), and 
15 patients suffering from congestive heart failure (CHF; 
11 males, 4 females, age 56±11 years) [5,6]. The series of 
time intervals between consecutive heart beats, the beat-
to-beat intervals, are extracted from the electrocardio-
grams. All resultant signals were filtered in order to avoid 
ectopic beats [7]. 
After that these time series are segmented as follows: 
given a segment of a time series, a sliding pointer is 
moved in order to compare the two fragments, on the left 
(L) and the right (R) side of the pointer i. Then one selects 
the position imax that maximizes the normalized Kolmogo-
rov-Smirnov (KS) statistics:  

( ) 2/1/1/1 −+= RLKSi nnDD  (1) 
where DKS is the distance between the cumulative distri-
butions of the samples in the left and the right fragment. 
After determining the position imax, one checks the statis-
tical significance (at a chosen significance level α=0.05) 
of a potentially relevant cut at imax by comparison with the 
result that would be obtained for a random sequence. The 
critical value is given by  

c
crit bnanD )(ln)(max −=   (2) 

where (a, b, c) is (1.52, 1.80, 0.14) in our case. The poten-
tial cut ticks the first stage if Dmax exceeds its critical 
value for the selected significance level. If each resulting 
segment is greater than a defined minimum L0, then the 
pointer is set and the procedure is recursively applied 
starting from the left patches until no patch is segmented. 
See Ref.[3] for further details. We performed the KS-
segmentation with L0=30 sample points in correspond-
ence to the defined higher edge frequency of the very low 
frequency (VLF) band of heart rate with 0.03 Hz [1] 
providing at least a half period of this frequency in each 
segment. 
 
Results 
 
To quantify the nonstationarity, we obtain statistical val-
ues of the segmentation, which include not only segment 
length and jump size but also more sophisticated ones like 
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the number of segments greater than 300, L>300, and %μ50 
(Fig. 1). L>300 corresponds to approximately 5 min, the 
shortest required segment length of HRV analysis and 
%μ50 reflects the percentage of differences of the mean of 
two consecutive segments |μi+1- μi|>50ms in an analogy to 
the standard HRV measure pNN50, the percentage of 
consecutive RR intervals differing by more than 50ms [1]. 

 
Figure 1: L>300 and %μ50 in the three groups 

 

 
Figure 2 Mean variance of the segments of given seg-
ments length. The scaling exponents are indicated by 

solid lines (CHF:0.6, EH:0.4, and YH:0.2). 

We found high positive correlations of about 0.9 between 
%μ50 and the overall standard deviation as well as a 
negative correlation around 0.8 between L>300 and the 
normalized very low frequency power, VLF/P, linking the 
segmentation outcomes to standard measures. 
In order to understand the scaling behaviour of the ex-
tracted trends in the time series, we compute the mean 
variance of the segments given a segment length (Fig. 2) 
which indicates a power function.  
 
Discussion 
In this paper we present the analysis of nonstationarities 
in heart rate by means of a nonparametric segmentation 
algorithm, being able to display differences between CHF 
and age-matched EH, as well as CHF and YH (Fig. 1). 
Also, differences between YH and EH can be detected, 
showing the aging effect in the loss of complexity of the 
heart rate (Fig.1).  

The high positive correlation between %μ50 and sdNN 
shows that the latter one is dominated by the large jumps. 
A negative correlation between L>300 and VLF/P could 
reflects the reduction of longer segments by means of 
respiratory disorders which are prevalent in 30% to 50% 
of patients with CHF.  
It is worth to mention here the similarity of Fig. 2 with 
plots given by detrended fluctuation analysis (DFA) [8]. 
In comparison to these results scaling exponent 0.6 in 
CHF indicates that random walk fluctuations dominate 
the dynamics of this group. For the EH and YH groups, 
the both exponents, 0.4 and 0.2, indicate power law corre-
lations associated to the interchange of large and small 
RR intervals. 
Through the outcomes of segmentation we have access to 
time characteristics of the signal that were no longer 
available, making possible a different approach to quanti-
fy nonstationarities in HRV analysis. Results are in 
agreement with previous knowledge and do not require 
arbitrary thresholds or excludes fragments of the time 
series. The individual risk stratification ability of this 
method relies in further applications to cardiological data 
bases. 
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Abstract: Heart Rate Turbulence (HRT) is the distinctive
response of the sinus rhythm of the heart to an isolated ven-
tricular ectopic beat (VEB). The quantification of this pro-
cess can be used to stratify the risk of sudden cardiac death
in patients with a history of acute myocardial infarction.
A sensitivity of around 30% has been achieved in different
studies. However, the large number of misleading results
of the method suggests that new and better risk stratifiers
could be developed. In this work, Holter ECG recordings
were used to analyze the morphology of the T wave during
the HRT in patients with chronic heart failure. The HRT
was characterized by newly introduced parameters. In ad-
dition, the comparison between normal T waves before and
after the VEB showed small but significant changes in mor-
phology. The morphological changes of the T wave could
be used for diagnostic purposes.

Keywords: Electrocardiogram, T Wave, Heart Rate Tur-
bulence, Morphology

Introduction
During a normal HRT, a sinus acceleration follows the com-
pensatory pause after the VEB. The initial acceleration is
then succeeded by a deceleration that finally stabilizes at
the original RR cycle length. The acceleration and deceler-
ation processes are quantified by the parameters Turbulence
Onset (TO) and Turbulence Slope (TS) [1]. Normal values
for these parameters are TO<0% and TS>2.5ms/beat. The
risk stratification class of a subject is 0 if both parameters
are normal. The stratification classes 1 or 2 are chosen de-
pending on the number of abnormal HRT parameters of the
patient. A variety of studies has been carried out to evaluate
the HRT parameters as risk stratifiers. In general, this pro-
cedure delivers a sensitivity of 30%, a specificity of 90%
and positive predictive value of 32% [1]. Thus, the amount
of false positives and false negatives is high and remains of
great concern.
In a previous work [2], a new interpretation of the HRT was
given. The HRT was characterized by a second order linear
time invariant system. In analogy to the theory of vibra-
tions, a damping coefficient d, together with a resonance
angular frequency !0, were introduced to quantify HRT. It
was stated that these two new parameters should deliver a
more global description of the HRT process.
Furthermore, the morphology of the first normal T wave
after the VEB was compared to the last normal T wave be-
fore it. A significant reduction in its amplitude could be ob-
served after the VEB. Furthermore, the amplitude of the T

wave did not return to the original value instantaneously, but
rather following an exponential trend. This phenomenon
was called Morphological Heart Rate Turbulence (MHRT).
New parameters were also defined to quantify MHRT. How-
ever, the diagnostic value of MHRT still remains unknown.
In this work, we studied MHRT in patients suffering from
chronic heart failure. Standard risk stratification parame-
ters gained from HRT were compared to the new parameters
presented in the previous and current studies [2].

Methods
Long term ECG monitoring was obtained from a specially
designed Holter device. The device records 3 channels at a
sample frequency of 256 Hz.
Signal processing: A complex signal processing work flow
is needed to carefully investigate ECG wave morphology.
First, the R peaks are detected in the ECG signal and their
corresponding QRS complexes are extracted and classified.
The VEBs suitable for HRT analysis are identified. Ac-
cording to HRT rules, 5 normal beats before the VEB and
15 after it are needed for a reliable analysis. Second, RR in-
tervals are measured for the QRS complexes in the vicinity
of each VEB. The HRT is then constructed and the parame-
ters TO and TS are calculated. Subsequently, the estimation
of the damping coefficient d and the resonance angular fre-
quency !0 is carried out.
Third, the T waves in the vicinity of each VEB are seg-
mented. A mean T wave is built for each beat and compared
to a template of the normal T waves. In this work, two mor-
phological features (MF) are introduced to measure how the
T wave changes in time and specially after the VEB. The
first feature (MF1) is related to the normalized energy of
the difference signal between T wave and template:

MF1(i) =

2 ·
1R

�1
T
i

(t) · Template(t)dt

1R
�1

(T
i

(t))2 + (Template(t))2dt
· 100% (1)

where T
i

(t) represents the ith T wave during the HRT and
i 2 {�5,�4, .., 15}. The second parameter (MF2) is the
correlation coefficient between the template and each of the
T waves:

MF2(i) =
cov{Ti(t),Template(t)}p

var{Ti(t)}·
p

var{Template(t)}
· 100% (2)
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Patient Nr. TO [%] ; TS [ ms

beat

] d ; !0 [s�1] MTO1 [%] ; MTS1 [
%
s

] MTO2 [%] ; MTS2 [
%
s

]

1 0.91 ; 0.18 1.03 ; 1.12 �0.32 ; 0.22 �0.29 ; 0.21
2 �0.01 ; 1.54 2.84 ; 0.36 �0.18 ; 0.05 �0.17 ; 0.11

Table 1: Exemplary MHRT analysis for two patients suffering from chronic heart failure

Notice that if the template and the ith T wave are exactly
equal, the parameters MF1 and MF2 are equal to 1.
MHRT processing: MHRT is quantified in an analogous
way to the HRT. Two MHRT parameters were introduced
for this purpose [2]. This definition can be applied for both
MF1 and MF2.

MTO
k

=

MFk(1)� 1
4

�1P
i=�5

MFk(i)

1
4

�1P
i=�5

MFk(i)

· 100% (3)

MTS
k

= MFk(2)�MFk(1)
RR(7) (4)

where k 2 {1, 2} and RR(7) denotes the RR interval length
(in seconds) of the beat number 7. MTO represents the ini-
tial perturbation in T wave morphology. MTS reflects the
speed at which the morphological perturbation returns to its
original value.
Figure 1(a) shows the HRT obtained for patient number 1.
The MHRT constructed for MF1 can be seen in figure 1(b).
The T wave obtained from beat number 7 and the T wave
template can be seen in figure 1(c). Even though the shape
of the displayed T waves is very similar, their morphology
is indeed different with a statistical significance of p < 1%.

Results
Table 1 shows the results for the MHRT analysis run in ex-
emplary manner for 2 patients. Using only the standard
HRT parameters TO and TS, patient 1 would be stratified
with the highest risk class 2. However, the damping coef-
ficient d of his HRT response is slightly greater than one.
This means, the HRT is slightly over damped. The MHRT
coefficients show an evident initial perturbation in T wave
morphology after the VEB but a fast restitution of origi-
nal shape. In contrast, patient number 2 is stratified with
HRT risk class 1. However, his damping coefficient d is
noticeable higher, what describes a far less responsive tur-
bulence. Furthermore, the MHRT coefficients show a mild
initial perturbation of the T wave morphology but a slower
restitution of original shape.

Discussion
The newly introduced HRT parameters d and !0 present
partially incompatible values with the ones delivered from
the standard HRT parameters. This could lead to new in-
formation about the health status of the patient. The MHRT
analysis contains also new and interesting information and
has to be studied in further detail to make definite conclu-
sions. It appears to the authors that the initial perturbation
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Figure 1: Analysis for patient 1. (a): HRT. (b): MHRT
displayed for MF1. (c): T waves after VEB and template.

in morphology (MTO) and the speed how it goes back to its
original value (MTS) a has some diagnostic value.
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Abstract: We propose applying the linear Granger Causal-
ity concept to very high-dimensional time series. The ap-
proach is based on integrating dimensionality reduction
into a multivariate time series model. If residuals of dimen-
sionality reduced models can be transformed back into the
original space, prediction errors in the high–dimensional
space may be computed, and a Granger Causality Index
(GCI) is properly defined. We provide a proof–of–principle,
and compare the results with the classical GCI.

Keywords: Granger Causality Index, Dimension reduction

Introduction

A basic problem in quantifying directed information trans-
fer is the consideration of effective connectivity in very
high–dimensional (HD) systems. Currently, HD systems
are transformed into a lower dimensional system, e.g. by
Principal or Independent Component Analysis (PCA, ICA),
and the connectivity structure of derived components is
studied. Here the drawback is that a revealed interaction
cannot be readily transferred back into the original HD
space. Thus, directed interactions between the original net-
work nodes are not revealed, which limits the interpretation
of identified interaction patterns. Granger Causality (GC)
is a suitable concept for assessing connectivity structures
between time series. One popular approach uses principles
of prediction [1], whereby application of a straightforward
generalization to general time series models is enabled, pro-
viding an appropriate definition of prediction errors. Instead
of analyzing interactions between derived components, a
large scale GC (lsGC) approach preserves the interpretabil-
ity of the original network nodes. The idea of that approach
is the integration of a dimension reduction into a multivari-
ate time series model, which allows computation of predic-
tion errors in the original HD space.

Methods

A D–dimensional, p–th order MVAR process is given by
Y(n) =

∑p
r=1 A

rY(n − r) + E(n), n = 1, . . . , N , with
AR–parameters Ar ∈ RD×D and a zero mean, uncorre-
lated noise process E. In the case of HD data, a simple AR
estimation is not possible as computational capacity rapidly
meets its limits. Thus, in a first stage PCA serves as a pre-

processing step for dimension reduction: X = WY, with
Y =

(
Y(1), . . . ,Y(N)

)
, the principal component (PC)

matrix X ∈ RD×N , and the mixing matrix W ∈ RD×D.
Let XC and WC be the reduced PC and mixing matrices
consisting of the first C rows of X and W, respectively.
XC(n) is now MVAR–modeled, and the modeled time se-
ries X̂C(n) is afterwards transformed back into the origi-
nal HD space via left multiplication of the pseudo inverse
WC+ of WC . The residuals of the whole model are then
gained by Ê = WC+

X̂C −Y. For GCI computations, the
processing of the reduced data Yd−, where the d-th row of
Y is deleted, can be performed in two different ways:

(a) Multi PCA (mPCA): for every Yd− a separate PCA is
performed, i.e. Xd−

m = Wd−
m Yd−, where Xd−

m and
Wd−

m are calculated anew by PCA for each d. Af-
ter reducing Wd−

m to dimension C and estimating the
corresponding AR model, the modeled series X̂d−

m (n)
can be calculated.

(b) Single PCA (sPCA): only one PCA is applied before
eliminating rows of Y, and modifications of the mix-
ing matrix W are used for the dimension reduction of
Yd−, i.e. W is reduced to Wd−

s ∈ RC×D−1 by elim-
inating the last D−C rows and the d-th column. Now
Xd−

s = Wd−
s Yd− serves for the AR parameter esti-

mation resulting in the modeled series X̂d−
s (n).

The residuals amount to Êd−
m/s = Wd−

m/s

+ · X̂d− − Yd−.
The lsGCI from d1 to d2 is then defined by γd2←d1 =

ln
(

Σ̂d1−
d2

/Σ̂d2

)
, where Σ̂d2

and Σ̂d1−
d2

are the d2-th diag-

onal entries of the covariance matrices of Ê and Êd1−.

Data
To compare the lsGCI with the conventional GCI, we con-
sidered a time series dimensionality that functions with both
approaches. We realized 50–dimensional stationary MVAR
processes of order two and various N between 125 and
1000. Thereby, the entire network structure was given by
five pairwise different internal networks N1, . . .N5 with
ten nodes each (Fig. 1). The corresponding AR-parameters
were chosen according to the AR-model of Baccala et al.
[2], Fig. 4, and were scaled by factor 0.5 to ensure the sta-
tionarity of the entire process. The internal networks Nk
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Figure 1: Network structure with five internal networks.

incorporate 20 directed edges by setting the associated first
order AR-parameter to 0.2. The in- and out–degree of each
node equals two. Finally, there are 20 randomly generated
directed edges from nodes of N1 to nodes of N2, from
nodes of N2 to nodes of N3, etc. (see Fig. 1). The added
Ed(n) were i.i.d. N(0,1) for all d and n.

Results
To evaluate the novel approach and to assess the effects of
methodological differences by applying PCA we used the
concept of ROC curves. Thereby (ls)GCIs serve as realiza-
tions of the test variable, and the status variable is defined
by the presence (positive) or absence (negative) of an edge.
First, the discriminative power of both PCA embeddings
was investigated for different time series lengths, and dif-
fering amounts of variance explanation. As shown in Fig.
2 the sPCA approach exhibited primarily larger areas un-
der the ROC curve (AUC). This finding was also con-
firmed for all other investigated time series lengths. Thus
all subsequent analyses were performed with the sPCA ap-
proach. Secondly, ROC curves were used to analyze differ-

Figure 2: AUCs for different dimension reduction degrees.

ing amounts of variance explanation. Fig. 3 depicts exam-
ples for N = 500 and N = 125. As expected for large N ,
the dimension reduction resulted in an inferior performance
depending on the number of components reduced. How-
ever, this performance is within acceptable limits for rea-
sonable dimensionality reductions (Fig. 3a). For small N ,
the embedded dimension reduction yielded a performance
increase (Fig. 3b). Finally, we considered the detection ac-
curacy after significance testing (Tab. 1) (α = 5%, adjusted
for multiple comparisons by False Discovery Rate).

Discussion
PCA is appropriate to extend linear GCI to HD time series.
It reduces HD into lower-dimensional (LD) time series of

Figure 3: ROC curves for N = 500 (a) and N = 125 (b).
The percentages specify the amount of variance explana-
tion; numbers in parentheses specify C.

Table 1: Sensitivities and specificities after significance
testing. The column ’%’ specifies the variance explanation.

N C % Sens. Spec.

500
50 100 70.5 97.7
41 90.6 70.0 97.6
27 70.3 65.4 97.6

125
50 100 0.4 97.8
35 90.7 4.1 97.7
21 70.8 6.8 97.5

PCs. LD time series are AR modeled, and the model resid-
uals are transformed back into the original HD space. This
transformation offers a better interpretability of results, en-
abling analysis of interactions between components of the
original time series vs. between derived components (PCs).
Alternative dimensionality reductions could also be consid-
ered if a back-transformation of the model residual from a
temporary LD to the original HD space is allowed. An em-
bedded dimension reduction appears to the quality of the
network identification when enough time series samples are
available, yet classical GCI still performs well. For shorter
time series an embedded PCA seems to result in an im-
provement, most likely due to smaller AR parameter ma-
trices and reduced estimator variances.
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Abstract:  The aim of our study was to reveal specific 
patterns of the heart rate variability (HRV) during pre-
ictal, ictal, and post-ictal periods in epileptic children. 
The continuous Morlet-wavelet transform was adapted to 
explore the time-frequency characteristics of the HRV 
(scalogram, linear and non-linear phase locking, and 
band-power analyses). The empirical mode decomposi-
tion was used to separate HRV components (e.g. blood-
pressure-related waves and respiratory sinus arrhyth-
mia). Their time-variant non-linear predictability was 
analysed (point prediction error). Timing and coordina-
tion of HRV components occurs 100 s before seizure onset 
producing a higher degree of synchronization and a high-
er predictability of HRV. The combined use of advanced 
linear and non-linear methods is crucial for this result.   
 
Keywords: children, epilepsy, heart rate variability, sig-
nal-adaptive decomposition, time-frequency analysis  
 
Introduction 

HRV analysis in epilepsy has been carried out with two 
major clinical objectives. One is to reveal causes for sud-
den unexpected death in epileptic patients. Another focus 
is using HRV analysis as a tool for automated seizure 
prediction. The pre-ictal, ictal and post-ictal HRV courses 
have been investigated by using time- and frequency-
domain features. Features of the time-frequency domain 
have received much less attention. Non-linear HRV anal-
yses are frequently applied also in epileptic patients. 
However, the methods are usually time-invariant (for 
stationary signals) and not frequency-selective. The aim 
of this study is to demonstrate that combinations of time-
variant, frequency selective, linear and non-linear analysis 
methods can be beneficially applied for HRV analysis in 
epileptic patients. Our working hypothesis is that phase 
properties of and between HRV components react sensi-
tively before EEG seizure occurs. This hypothesis is 
based on our findings with regard to EEG burst activity 
which is accompanied by strong phase coupling reactions 
[1]. Two rhythms are of particular interest: The Traube-
Hering-Mayer waves found in blood pressure, which 
occur also in the HRV (low-frequency range LF: 0.04 - 
0.15 Hz), and the respiratory sinus arrhythmia (RSA) 
(high-frequency range HF: 0.15 - 0.4 Hz). The HRV data 
were previously analysed (visual analysis of heart rate) 
and the results were published by Mayer et al. [2]. 

Methods 

Subjects and HRV computation: The HRV data of 18 
patients were analysed (median age 9 years 4 months, 
range 6 years 10 months to 18 years 0 month). Pre-
surgical evaluation was performed following a standard 
epilepsy surgery protocol. EEG and ECG data were rec-
orded referentially against Pz (filter 1 to 70 Hz; sampling 
frequency 256 Hz). Seizure onset and termination in the 
EEG were determined independently by two reviewers. 
EEG and ECG samples including 10 minutes epochs (5 
minutes before (pre-ictal state) and 5 min after the seizure 
onset (seizure and post-ictal state) were analysed. QRS 
detection was performed and used for the heart rate com-
putation. The low-pass filtered event series (LPFES) was 
utilized applying the French-Holden algorithm. The final 
HRV representations were down sampled to 8 Hz. 
Continuous Morlet transform (MWT) and derived time-
variant parameters: The frequency-dependent complex 
analytic signal of the HRV is computed by using the 
MWT. Power and phase information of the complex ana-
lytic signal can be extracted. The scalogram S and the 
phase-locked scalogram SPL were estimated. From S and 
SPL the mean band power for each sampling point is com-
puted for the frequency bands 0.04 - 0.15 Hz (LFP) and 
0.15 - 0.4 Hz (HFP) according to the task force standards. 
Amplitude-independent phase-locking effect were ana-
lysed by the phase-locking index PLI. Quadratic phase 
coupling (QPC) between both frequency bands given 
above are computed by using time-variant mean bi-
amplitude (mBA) and (normalised) mean bi-coherence 
(mBC) in the region of interest (ROI) [3].   
Empirical mode decomposition (EMD) and derived time-
variant parameters: The EMD decomposes the HRV into 
intrinsic mode functions (IMFs). EMD preserves non-
linear properties of the separated components.  Therefore, 
averaged time-courses of non-linear point prediction error 
(PPE) of the IMFs were calculated. The PPE computation 
procedure was described by Schwab et al. [4]. High PPE 
denotes low non-linear predictability and vice versa.  
Statistics: The non-corrected Rayleigh test (α=10%) was 
used to create a trigger threshold of strong phase-locking 
in a PLI time-frequency map. In order to estimate confi-
dence tubes of the mean time-courses of the extracted 
parameters a Bootstrap approach was used (1000 boot-
straps, sample size 600 s, lower bound 5% / upper bound 
95% percentile).  

Biomed Tech 2013; 58 (Suppl. 1) © 2013 by Walter de Gruyter · Berlin · Boston. DOI 10.1515/bmt-2013-4173
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Abstract: Patients suffering from schizophrenia have an 
increased mortality risk due to cardiovascular events that 
might be associated with cardiac autonomic dysfunction. 
The aim of this study was to analyse the inter-
dependencies between indices of autonomic regulation 
from heart rate and blood pressure variability, and 
spectral indices of Laser-Doppler-Flowmetry signals, 
reflecting the condition of the microcirculatory system. 
Therefore, we compared the correlation between indices 
in controls with indices in schizophrenic patients. We 
found that short term interaction between autonomic 
regulation and microcirculation decreases in 
schizophrenic patients compared to healthy controls 
while the permanently increased heart rate in patients is 
highly correlated with a periphery endothelial and 
sympathetic activation. 
 
Keywords: Laser Doppler Flowmetry, Spectral Analysis, 
Heart Rate Variability, Blood Pressure Regulation  
 
Introduction 
Several studies have documented an increased mortality 
risk due to cardiovascular events in patients suffering 
from schizophrenia [1, 2]. Some authors suggested that 
these events might be associated with cardiac autonomic 
dysfunction, specifically a decrease in vagal modulation 
and an increase in sympathetic activity. Bär et al. [3, 4] 
found a significant reduction of baroreflex sensitivity and 
heart rate variability as well as an increase of QT 
variability in schizophrenic patients indicating an 
autonomic imbalance. 
Recently the analysis of peripheral microcirculation by 
means of Laser Doppler Flowmetry (LDF) has revealed a 
significantly altered microcirculation in patients with 
acute schizophrenia compared to healthy subjects [5]. The 
LDF is a non-invasive technology that facilitates the 
study of microcirculation via spectral analysis of the LDF 
signal. Five relevant frequency subintervals were 
introduced for spectral analysis of blood flow signals [6, 
7]. Three of these intervals are associated with the local 
mechanisms of vasomotion, namely: the frequency band 
from 0.01-0.02 Hz (vascular endothelial activity), the 
frequency band from 0.02-0.06 Hz (neurogenic activity) 
and the frequency band from 0.06-0.2 Hz (myogenic 
response). The other two bands are related to the 
transmission of global hemodynamic alterations to 
microcirculation: from 0.2-0.6 Hz (respiratory activity) as 

well as from 0.6-1.6 Hz (cardiac activity). The aim of this 
study was to analyse the interdependencies between 
indices for the assessment of autonomic regulation, 
especially linear indices from heart rate and blood 
pressure variability, and indices from spectral analysis of 
LDF signals that reflect the condition of the 
microcirculatory system. Therefore, we compared the 
correlation coefficients between indices in healthy 
controls with indices in patients suffering from acute 
schizophrenia in order to figure out if pathologic 
alterations are detectable and if the interaction between 
autonomic regulation and microcirculatory regulation is 
impaired in schizophrenic patients. 
 
Methods 
In this study 37 healthy subjects (CON, mean age 
34.6±11.8 years, 21 males and 16 females) and 32 
patients (PAT, mean age 35.9±11.9 years, 16 males and 
16 females) were enrolled. The investigation conforms to 
the principles outlined in the Declaration of Helsinki. 
Local ethics committee approval and the informed 
consent of all subjects were provided. 
The LDF signals in two tissue depths (D1: 2mm; D2: 
6mm) as well as an electrocardiogram (sampling 
frequency 1600 Hz) and continuous non-invasive blood 
pressure (Portapres, TNO Biomedical Instrumentation) 
were recorded simultaneously. A post-occlusive reactive 
hyperaemia test was performed, i.e. a forearm ischemia was 
produced by a pneumatic cuff placed on the upper arm and 
inflated to 30 mmHg above systolic blood pressure. After 3 
minutes the cuff was deflated and registration of hyperaemia 
started. 
From ECG and blood pressure recordings, time series of 
beat-to-beat intervals (BBI), systolic blood pressure 
(SBP) values and diastolic blood pressure (DBP) values 
were extracted. From the BBI time series several indices 
from time and frequency domain were calculated 
according to the guidelines of the Task Force [8]. 
Additionally, comparable time domain parameters were 
extracted from SBP and DBP time series [9]. 
From the two LDF signals the Short Time Fourier Transform 
(STFT) was calculated and features in the three frequency 
subintervals reflecting local mechanisms were determined 
referring to endothelial, sympathetic and myogenic activity. 
The activities of the respiratory and cardiac subintervals 
were not included in this analysis since they refer to global 
hemodynamic processes. 
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Table 1: Significant correlations between indices of cardiovascular regulation and indices of local microcirculation 

 endothelial sympathetic myogenic 
 D1 D2 D1 D2 D1 D2 
 CON PAT CON PAT CON PAT CON PAT CON PAT CON PAT 

BBI_meanNN    ++    ++     
BBI_Shannon             
BBI_VLF/P +    ++        
BBI_LF/P     ++    ++    

BBI_LF/HF     +  +  +  ++  
SBP_Shannon            ++ 
DBP_meanNN     -        
DBP_Shannon  -          + 
+: positive correlation with |r|<0.4; ++: positive correlation with |r|>0.4; -: negative correlation with |r|<0.4 
 
A Spearmen rank correlation was performed between all 
indices for both groups respectively. The statistical 
significance level was set to α<0.05. 
 

Results 
The analysis revealed significant correlations between 
indices from linear HRV and spectral indices for all three 
subintervals in CON. The significant correlations are 
presented in Table 1. The endothelial end sympathetic 
components in D1 showed positive linear correlations 
with the index VLF/P (0.003-0.04 Hz) from BBI. 
Additionally, the sympathetic and myogenic activities are 
linearly related to the frequency parameter LF/P (0.04-
0.15 Hz) in D1 and the ratio LF/HF in both tissue depths. 
These correlations are not significant for PAT. In 
contrast, PAT showed high correlations between meanNN 
and the endothelial and sympathetic activity in D2. 
The Shannon entropies of SBP and DBP were positively 
related to the myogenic component in the patients group 
in D2. Furthermore, a negative linear relation between the 
mean of DBP and sympathetic activity in CON as well as 
between the Shannon entropy of DBP and the endothelial 
component in PAT were detected.  
 

Discussion 
The results of the control group show significant 
correlations between the central frequency parameters of 
BBI and their respective peripheral frequency intervals of 
microcirculation. Further on, a physiologic negative 
correlation between DPB_meanNN and sympathetic 
activity is found confirming known issues [10]. In the 
patient group these correlations disappeared completely, 
probably due to the impairment of the autonomic 
regulatory processes. Schizophrenic patients are 
characterized by a strong increase of heart rate and 
sympathetic activity. This is accompanied by a strong 
positive correlation between meanNN and the endothelial 
and sympathetic activity in this group. The patients 
additionally showed an increase in the Shannon entropy 
of SBP and DBP (p=0.02 from Mann-Whitney-U-test) 
compared to CON. The correlation of the myogenic 
component with these parameters might reflect a stronger 
local response to the variability of blood pressure. In 
conclusion the short term interaction between autonomic 
regulation and microcirculation decreases in 

schizophrenic patients compared to healthy controls while 
the permanently increased heart rate is highly correlated 
with the periphery (increased) sympathetic activation. 
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Abstract: International recognized research groups have
presented studies where EEG and EOG biosignals were
used to visualize and classify sleep stages. Based on these
state of the art fndings an automated detection and classif-
cation of sleep stages has been realized. Beyond that there
is a mandatory necessity for an automated classification
and estimation of vigilance and alertness during the wake
state. This paper presents recent work on a classification
model, implemented in a wearable device. Its application
opens the opportunity to calculate a quantitative vigilance
profile in real time, in real life situations. It has been shown
that the device is suitable to acquire necessary biosignals in
an unobtrusive way, and perform real-time vigilance clas-
sification.

Keywords: vigilance, wearable, EOG, signal processing

Introduction

In the presented project a mobile setup has been developed
which allows an uncomplicated and easy to assess long and
short term vigilance profile recording and therefore a real
time evaluation of the algorithms in real life situations. All
developed algorithms have been implemented in the pro-
totype processor platform. For a mobile setup, a compen-
sation of movement artefacts and a light-weight hardware
design as well as an easy self applicable sensor unit have
been developed. The algorithms and the setup have been
tested in first measurements. The algortihms integrated into
the mobile hardware allow a more precise and complete in-
sight into the alertness condition than current clinical test
methods for vigilance assessment. The vigilance profile is
based on physiological patterns respectively biomarkers in
the time and frequency domain. As a first reference for the
retrieved vigilance information the parameters from the ap-
proved alertness test have been used.

Methods

For developing the initial vigilance model and the algo-
rithms, we used data measured on persons doing the Mack-
worth Clock test (a classic clock test). The results of this
test setup have been presented earlier in Hanke et al.([1]).
For analysing the filtered EOG signals in time and fre-
quency domain, 20-seconds time windows (2560 samples)
with an overlap of 10 seconds (1280 samples) were used.
Due to the overlapping windows technique there are no
missed window pattern characteristics due to window tran-
sitions. After the filtering process, an Independent Com-
ponent Analysis (ICA) has been performed. Three signal

characteristics have been used for a further processing: the
preprocessed amplitude signal, the calculated velocity sig-
nal and the mean power of both EOG channels.
The introduced algorithms have been tested and validated
with 24h polysomnography data from the Sensation Euro-
pean Commission project1. The data has been recorded by
the Sensation project partners in the year 2004. As speci-
fication for the recordings the protocols from the SIESTA
project group2 have been used. Overall in this study 100
all-night polysomnographies and 50 daytime polygraphic
recordings under controlled conditions in 50 healthy sub-
jects across all adult age ranges, and 100 24-hour ambu-
latory recordings from another 50 subjects have been per-
formed. All recordings will consist of at least 16 channels
(EEG, EOG, EMG, ECG, respiration, and others). For the
EOG, a sampling rate of 200 Hz and a band pass filter of 0.1
to 40 Hz have been applied. For the 24h recordings 50 nor-
mal healthy controls have been recorded on two consecutive
24 hour periods.

Results
In the figure 1 the results of different analysis for the
recorded EEG and EOG data are displayed. The first graph
shows the results of a permutation entropy calculation for 4
EEG channels (fp1, c3, c4, o1) based on a paper of Olof-
sen et al. ([2]). The permutation entropy (PE) describesm
a frequency characteristic of the EEG signal. As the pa-
rameter is coming from the anaesthesia is seems like it is a
parameter which is calculated very much to a binary deci-
sion making. For the original purpose of decision making
for the diagnosis of being anaesthetised or not anaesthetised
this might be appropriate but for a detailed continuous vig-
ilance assessment the parameter might not be optimal. The
parameter shows in a good way epochs where the person is
asleep and epochs where the person is awake.
The two graphs in the second picture of figure 1 are show-
ing two different EMG values over time. Displayed is the
mean value of the tibialis and submental EMG channel. Es-
pecially the tibialis EMG channel measured at the tibia can
not count as artefact in the EEG. Therefore this EMG chan-
nel can be a possible correlation parameter for the EEG
and EOG vigilance results. Especially recovery or sleep-
ing phases are clearly indicated by the EMG measurements.
The last three pictures are showing the results of the am-
plitude, velocity and frequency analysis of the EOG chan-
nel. The EOG results are showing a clear differentiation

1Sensation - Advanced Sensors Development for Attention Stress, Vig-
ilance and Sleep/Wakefulness Monitoring

2http://www.thesiestagroup.com/index.php last seen: 19.05.2011
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Figure 1: Results from a 24-h EOG and EEG measurement.

between awake and sleeping phases. But also in the awake
phase the EOG seems to be a more clear indication for a vig-
ilance dynamic than the entropy from the EEG. Of course
this dynamic must be proven to reflect the vigilance with
further tests and a correlating parameter which is indicat-
ing vigilance. Such a parameter does not exist in these 24h
polysomnographic measurements.
For the purpose of data acquisition, a special dedicated
hardware device was developed. The device has been tai-
lored to be used in real life environments. The device called
"‘vigilance recorder"’ allows rechargeable battery powered
data acquisition of 2 EOG- und 6 EEG channels with 24bit
resolution and 250Hz sampling rate per channel, over a pe-
riod of up to 10 hours.
The data is preprocessed and can be streamed directly via
Bluetooth to a computer or a mobile device, or stored on a
microSD card respectively. Time information is provided
by a built-in real time clock.

Discussion
It can be assumed that all described parameters extracted
from EOG are useful to monitor the eye activity. Based on
state-of-the art research findings it can be concluded that
there is not just a single overall level of alertness as there
is no single parameter vigilance. There are several alert-
ness levels depending on which specific measure is consid-
ered and there are several parameters reflecting vigilance
behaviour. The miniaturization of the necessary hardware
and the more artefact resident combination of hardware de-
sign and software can bring the setup to applications like
sleep surveillance which can now be brought into a famil-
iar environment away from a clinical setting. This is also

important for future research to leave the measured persons
in an unobtrusive way in their daily live routine, which is
an important fact but difficult to realize with older setups.
The data aquisition is for the expert staff in a lot of applica-
tion less time-consuming but allows at the same time a more
precise measurement. The development of EEG and EOG
sensors and electrodes has been pushed in the last years and
made a step forward. This allows a better integration and
enhancement of mobile setups. With such system a data
aquisition can be performed outside the laboratory which is
highly important for the quantitative measurements.
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Abstract: In this work, we present and validate a software 

package for functional mapping of eloquent cortex using 

task-related changes in gamma activity recorded from 

subdural electrocorticography electrodes prior to resec-

tive brain surgery. The software is designed for use by 

non-experts in addition to traditional mapping proce-

dures such as electrical cortical stimulation (ECS) map-

ping. 

 

Keywords: Functional Mapping, Electrocorticography, 

Epilepsy, Electrical Cortical Stimulation, Gamma Activity 

 

Introduction 

Epilepsy is a disorder of the brain that impairs the quality 

of life of people by the effects of seizures or medication. 

For some of the patients, who are resistant to antiepileptic 

medication, surgical resection of the seizure focus can 

reduce or even cure epilepsy. Prior to the resection, the 

identification of eloquent cortex is important in order to 

minimize the possibility of functional deficits [1]. This 

has been done using several different approaches. 

Amongst them the most common is ECS [2]. While ECS 

is effective, it also has substantial problems [3]. We de-

signed and validated a clinical product based on published 

methods [4] that is reliable and easy to use as a tool for 

cross-checking or narrowing down the sites of interest. 

The system analyzes data acquired from ECoG electrodes 

for task-related changes in the gamma band (i.e., between 

60 and 170 Hz). 

 

System Architecture 

On the hardware side of the system, a synchronized array 

of high resolution multi-channel biosignal amplifiers 

(g.USBamp, g.tec Guger Technologies OG, Austria) is 

connected to the electrodes implanted in the brain of the 

patient. The amplifiers digitize the signals and transfer 

them to the recording computer. This computer has two 

screens, one for the patient that displays instructions for 

the tasks, the other for the operator, displaying the map-

ping results. See Fig. 1. 

The Montage Creator is used to create a schematic picture 

of the implanted electrodes. For this purpose, the software 

comes with a library of electrode grid shapes. The pro-

gram then generates a list pointing out how to connect the 

 
Figure 1: Hard- and software architecture  

of the cortiQ system. 

grids to the amplifier. The Paradigm Editor is there for 

efficient editing of the tasks the patient should accom-

plish. The contents of the tasks can be designed using 

images, audio files, text, or tactile stimulation. Also refer-

encing can be influenced, e.g., tasks vs. baseline or task x 

vs. task y. The Main Application provides the operator 

with a structured way of conducting the experiment with 

little need for input. After selecting the montage, raw data 

channels can be checked for data quality. Here, exclusion 

of noisy channels and re-assignment of ground and refer-

ence electrodes is possible. Then, the paradigm is selected 

and started. In real time, the results of the mapping are 

displayed according to the montage for each individual 

task and electrode as circles with different diameters. 

Additionally, the magnitude of the response is displayed.  

Signal acquisition, signal processing, and stimulus pres-

entation run as sub-processes in the background, and 

analyze the data according to methods that build on those 

described in [5]. 

 

System Validation 

Two epilepsy patients from Florida Hospital for Children 

(Orlando, FL, USA) participated in the experiments. They 

underwent surgery to place subdural ECoG electrode 

grids over different brain regions. Eloquent cortex of the 

patients was identified using ECS. The patients gave 

informed consent through a protocol reviewed and ap-

proved by the review board of the Florida Hospital for  
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Figure 2: Topographical result maps of patient 1 as displayed on the operator screen. 

 

Children. 

After the preparation, the electrode montages and the 

paradigm, data were collected with the g.USBamp ampli-

fiers at the bedside of the patients and processed by the 

cortiQ software in real time, gradually building the result 

in form of topographical brain maps that shows the task-

related differences in activity (see Fig. 2). 

The patients went through 3 repetitions of a paradigm 

which contained four tasks: open/close the left hand (task 

1), move the tongue (task 2), feel the touch which is ap-

plied to the palm of the left hand (task 3), listen to a story 

(task 4). Each task had a length of 15 seconds with 15 

seconds relaxation baseline in between. 

 

Results 

The outcome of the software is compared to the results of 

ECS mapping. Specifically, we counted the sites that 

were assigned to a particular function/area in the ECS 

procedure and checked whether the significant result 

values of the cortiQ software were at the same or at the 

next neighbor locations. Task 4 was not checked with 

ECS, so it was excluded from analyses. For both patients 

the error rates for tasks 1 to 3 reveal no false negative 

detections and the grand average of false positive identifi-

cations is 1.24 %. 

 

Discussion 

We demonstrated a clinical hardware and software system 

for cortical functional mapping of the eloquent cortex to 

be used prior to resective surgeries in epilepsy patients. 

Based on methods from previous research [4, 5], the re-

sults of the software are in the close neighborhood to 

locations determined by the well-established ECS proce-

dure. While ECS has been applied regularly over the past 

decades, it has some important drawbacks. We expect that 

cortiQ software should provide distinct benefits to map-

ping of eloquent cortex. Most importantly, the results 

from cortiQ mapping may be used to optimize subsequent 

ECS mapping. 
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Abstract: Electroencephalography (EEG) and magnetoen-
cephalography (MEG) provide an insight into neuronal pro-
cesses in the brain in a real-time scale. Brain activity can be
modeled in terms of a source distribution found by solving
the bioelectromagnetic inverse problem, e.g. using linear
source reconstruction methods. Such methods are particu-
larly suitable to be used on modern highly parallel process-
ing systems, such as widely available graphic processing
units (GPUs). The utilization of these capabilities paves the
way for online neuroelectromagnetic source imaging. We
present a system that, according to its modular scheme, can
be configured in a very flexible way using graphical build-
ing blocks. It allows to use different preprocessing algo-
rithms together with a linear source reconstruction method.
The algorithms use both CPU and GPU resources.

Keywords: EEG, MEG, Source Reconstruction, GPGPU

Introduction

EEG/MEG provides an insight into brain processes in a real
time scale, which is not possible with hemodynamic imag-
ing techniques as, for example, functional magnetic reso-
nance imaging (fMRI). A common method in EEG/MEG
analysis is distributed source localization, which is based on
modeling sources as equivalent current dipoles that densely
cover the space where activity is expected. See [1] for a
short overview.
Due to the high computational effort of source reconstruc-
tion, online was not possible so far. Modern high per-
formance computing frameworks, for example provided
by NVIDIA’s CUDA1, open new possibilities for online
EEG/MEG analysis. For example, a method recently pro-
posed in [2] is optimized for GPUs. Source localization re-
quires several preprocessing steps, e.g., artefact correction,
filtering, epoch separation and averaging. They require user
interaction, and are therefore usually performed offline. It
is not unusual that data is useless due to insufficient signal
quality, e.g., because of artifacts. Online processing could
not just overcome such problems, but also provides the vi-
sualization of brain activity during measurements, which is
interesting for both medical and researching applications.
We present an application that allows to set up and tune an
online processing chain, including source localization.

1http://www.nvidia.com/object/cuda_home_new.
html

Figure 1: Abstract structure of a module in OpenWalnut.

Concept and Implementation
To account for the requirements of high flexibility and ex-
tensibility, the basic idea of the concept is to split the signal
processing chain into separate functional units, i.e. mod-
ules, that can be put together. Each module is realized
in terms of a prototype that becomes part of a processing
chain after parameterization. This allows to set up and reuse
modules easily, even several times during the same mea-
surement. The module’s intended functionality is reflected
by a certain algorithm that can either be executed on the
CPU or on the GPU. The implementation of our concept
is based on OpenWalnut, a software for multi-modal brain
visualization [3]. This platform also follows a strict modu-
lar concept, where modules have so called input and output
connectors to interact with other modules. These connec-
tors can have any data type, only outputs and inputs that are
directly connected need to share the same data structure.
Whenever a module updates data at its output connector,
linked modules are scheduled to allow seamless process-
ing. Besides this useful architecture, OpenWalnut provides
an intuitive mechanism to select modules and put them to-
gether by means of graphical building blocks.
According to our concept and the architecture of OpenWal-
nut, the structure of a module is summarized in Fig. 1. It
is worth to note that each module has to provide desired vi-
sualization capabilities. On the one hand, this provides a
very high flexibility and also allows a relatively easy im-
plementation because of nonexisting dependencies or infor-
mation from other modules. On the other hand, already a
few sophisticated active visualizations can become compu-
tationally intractable and, besides that, drastically increase
the complexity of the user front-end. Therefore visualiza-
tion can be deactivated if desired.
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Results
So far, the following modules were implemented: Elec-
tromagnetic Measurement, FIR Filter, Epoch Separation,
Epoch Averaging, Source Reconstruction. Electromagnetic
Measurement serves as a collector that reads different data,
e.g. head models, from different files and provides a link
to EEG/MEG data. The FIR Filter module is used to filter
the signals according to lowpass, highpass, bandpass and
bandstop characteristic. It provides CPU and GPU execu-
tion of the filter algorithms. Epoch Separation splits the
continuous data stream according to stimulus information
into single epochs that range from a time point before to a
point after stimulus onset. Epoch Averaging allows to cal-
culate moving or total average of detected epochs. Source
Reconstruction estimates a source distribution according to
a linear source reconstruction algorithm, e.g. the minimum
norm method [4]. It is implemented for CPU and GPU.
To examine the feasibility of online processing, recorded
data was streamed through a pipeline of a bandpass filter
with an order of 200, an epoch separation/averaging and fi-
nally, a source reconstruction for EEG data with 244662
sources. For streaming we used a block size of 1s and
the epoch separation/averaging module was setup with a
pre/post stimulus time of -100/+200ms.
Tab. 1 shows the averaged processing time of each module
for a block of 1s. As can be seen, the processing time for
FIR Filter and Source Reconstruction drastically decreases
if the GPU is used. The total processing time for the CPU-
only2 case exceeds the block size by approx. 50 percent,
while the total time for GPU-supported3 processing is in
the range of less than 20 percent of the block size. A total
processing time less than the block size is necessary in or-
der to process incoming data in time, i.e. to provide online
capabilities. Given the setup presented here, this can only
be achieved using the GPU.

Conclusion
We have shown that the current system can principally
be used to reconstruct and visualize evoked brain activity
based on distributed source localization during EEG/MEG
measurements. Particular the usage of GPUs provides
promising resources that can be used to improve the sys-
tem further and to implement additional functions and al-
gorithms such as artefact detection and rejection.
We currently realize the physical link to an EEG/MEG sys-
tem (Neuromag Vectorview System, Elekta, Helsinki, Fin-
land) using the MNE C++ library4, which is hosted at the
MPI for Human Cognitve and Brain Sciences Leipzig.
Some issues need to be solved before the presented sys-
tem is finally ready for a productive use. For example, the
source reconstruction requires the recalculation of the in-
verse operator whenever the estimated signal-to-noise-ratio
(SNR) changes, which is basically the case whenever a new
epoch is detected. While this is currently ignored for prac-
tical reasons, a compromise to account for that could be to

2Intel Xeon E5620 CPU with 2.4 GHz
3NVIDIA Tesla C2070
4http://www.martinos.org/mne

Table 1: Averaged processing time for one block, all times
in milliseconds.

CPU-only GPU-supported
FIR Filter 86 31

Epoch Separation 2 2
Epoch Averaging 2 2

Source Reconstruction 1416 130
Total sum 1506 165

calculate a set of inverse operators in advance, where each
covers a certain SNR range. Thus, recalculation would be
replaced by the selection of an appropriate operator. Fur-
ther, the system currently requires that the Leadfield matrix
is available at the begin of a measurement. However, the ac-
tual EEG sensor positions are required for this calculation
which are unknown before the measurement. One possible
solution is to calculate a high resolution Leadfield matrix
based on virtual EEG electrodes that densely cover the head
surface. The Leadfield for the true sensor positions can than
be derived from Leadfield interpolation or nearest neighbor
selection. For MEG, a Leadfield matrix can be calculated
before the measurement under the assumption that the head
is centered in the device. To account for the head move-
ment, a method based on a simplified source model and a
minimum norm inverse algorithm could be an efficient so-
lution [5].
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Abstract: Multielectrode arrays are more commonly used to
investigate fundamental electrophysiological mechanisms
of cardiac cell monolayers. However, a problem for
investigating propagation direction dependent features such
as propagation velocity or field potential rise time may arise
through the presence of multiple active pacemaker centers
in a cultured cell layer. Therefore, we developed a novel
algorithm based on the spatial gradient of the wavefront’s
arrival time to extract information about the spatial and
temporal distribution of active pacemaker centers in the cell
layer. This information can be used to improve the analysis
of propagation dependent features.

Keywords: electrophysiology, multielectrode arrays, field
potentials, cardiomyocytes

Introduction

Cardiac cell monolayers cultured on multielectrode
arrays (MEAs) are commonly used for investigating
the electrophysiology of cardiomyocytes at tissue level
under normal or pathologic conditions [1]. Presence
of multiple active pacemaker centers in a cultivated
cell layer, however, causes problems in the investigation
of propagation-direction-dependent features, such as the
propagation velocity or field potential rise time [2]. This
likely changes the origin of excitation and, consequently,
changes the direction of wavefront propagation. The
analysis of these parameters requires accurate information
about the spatial distribution and temporal activation of
these pacemakers centers. To overcome this problem, an
algorithm was developed capable of extracting information
from experimental data in order to study wavefront
propagation characteristics of each single pacemaker center
separately.

Methods

Cell culture: Primary embryonic cultures of ventricular
cardiomyocytes from chicken were plated onto
high-resolution MEAs. This MEA comprises 60 electrodes
and is connected to a special data acquisition system
(Multi Channel Systems MCS GmbH, Reutlingen). The
extracellular signals were registered with a sampling rate
of 20 kHz per electrode and the cells were actively held at
a temperature of 37◦C. Besides the natural pacemakers,
artificial stimuli were also used to alter and conduct the

starting point of excitation.
Algorithm: The source of excitation of a single wavefront
is detected in registered data by calculating the spatial
gradient (two dimensional) of the wavefront’s arrival time
in the MEA. Algorithm 1 shows a pseudo code description
of the algorithm to estimate the spatial origin of the
pacemaker center from registered experimental data.

Algorithm 1 Pseudo code for excitation source detection
Require: Detected spikes of all field potentials for a single

wavefront moving across the array
Start

Get time stamps of each spike
Calculate gradient of the wavefront arrival time
for i = 1→ Number of Electrodes do

for j = 1→ Number of Electrodes do
il← Line equation (gradient, electrode i)
jl← Line equation (gradient, electrode j)
Pij ← il ∩ jl

end for
end for
Divide area into bins.
Count Pij (intersection points) for each bin.
return Source← bin with maximum Pij count.

End

The calculated information of the spatial excitation source
of each single wavefront propagation was further processed
to identify local clusters of active pacemaker centers on the
array. After locating each excitation source the temporal
activity was determined. To allow a visual inspection of the
quality of cluster separation, contour plots of each single
wavefront propagating across the MEA were generated
and superimposed on the information of the temporal
distribution of the single active pacemaker centers. A high
degree of inhomogeneity is a visual indicator for a false
detection.

Results
A dataset of a multiple pacemaker cell layer experiment
was analyzed to demonstrate the suitability of the proposed
algorithm. Properties of this dataset are summarized in
Table 1 .
Figure 1 shows the estimated spatial distribution of the
excitation sources outside the MEA’s area. The degree of
activity of each center is shown in Figure 2. Temporal
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Table 1: Dataset description
Property Value
Time of cultivation 3d
Active pacemaker centres n = 4
Artificial stimulus centres n = 1
Recording temperature T = 37◦C
Recording Time t = 200s
Number of excitations n = 169

activation patterns of each detected pacemaker center are
displayed in Figure 3. Figure 4 shows superimposed
contour plots for a visual quality check.

Figure 1: Detected areas of active pacemaker centers.
Number 1 to 4 are biological pacemaker centers where
number 5 indicates an artificial stimulus. The dashed line
marks the MEA’s area.

Figure 2: Degree of activity of multiple pacemaker centers.
The black circle symbolizes the Petri dish. The active
MEA’s area is marked by the black square (zoomed field).

Conclusion
The proposed algorithm provides detailed information
about the temporal and spatial distribution of active
pacemaker centers within a cell culture of primary
cardiomyocytes. Employing MEA technology this
information can be used for an investigation of wavefront
propagation-direction-depended features in field potentials
such as propagation velocity or field potential rise time [2].
This is crucial to obtain a better understanding of these
characteristics and thus of the underlying physiological
mechanisms.

Figure 3: Temporal activation patterns of the detected
pacemaker centers during the registration (id 1..4
physiological signals, 5 artificial stimulus).

Figure 4: Automatically separated wavefront propagation
patterns visualized as contour plots (red marks early
activation). Plot 1 to 4 originates from pacemaker cells
outside the active MEA’s area. Plot 5 shows an artificially
generated stimulus within the MEA’s area. Plot 1 comprises
n=41 excitations, plot 2 n=93, plot 3 n=3, plot 4 n=3 and
plot 5 n=29 of a total of n=169 registered excitations (Table
1).
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Abstract: Blood pressure (BP) is one of the most import-
ant cardiovascular parameters in nearly every care area. 
A method for continuous non-invasive arterial pressure 
(CNAP) monitoring is described. CNAP is especially 
designed for perioperative, critical and emergency care. 
It concentrates on the clinically important BP-
information such as absolute BP and BP-changes as well 
as physiological BP-rhythms and BP-waveforms, where 
other hemodynamic parameters like cardiac output (CO) 
and dynamic fluid management parameters (e.g. pulse 
pressure variation PPV) can be derived. For this kind of 
hemodynamic information, tailor-made mechanisms have 
been developed. Recent validation studies underline accu-
racy and clinical acceptance of the CNAP technology. 
 
Keywords: Continuous, non-invasive, blood pressure	
  
	
  
Introduction 

Up to now beat-to-beat BP monitoring has required inva-
sive placement of an intra-arterial catheter (IBP). Due its 
invasive nature, IBP is applied in less than 20% of surgi-
cal patients [1]. The remaining 80% are monitored with 
intermittent upper arm sphygmomanometers (NBP), al-
though discontinuous NBP is unable to track hemody-
namic instabilities in up to 40% of all cases [2].  
In addition, the concept of hemodynamic optimization 
using continuous BP and its derived parameters such as 
CO, PPV, etc. has shown an increase in medical outcome 
and thus has rapidly found acceptance in anesthesia and 

critical care [3]. Hemodynamic optimization could be 
performed in about 30% of all surgical procedures, if non-
invasive continuous BP information would be available 
[1]. Non-invasive BP monitoring with accurate BP tracing 
as well as high-fidelity waveform to obtain hemodynamic 
parameters would be of high clinical interest.  
However, patients in the OR, ICU or ER often receive 
high dose rates of vasoactive drugs to get their hemody-
namic status regulated. These drugs not only induce fast 
changes in BP but also change the vascular tone of the 
peripheral arteries. Such vasomotor changes have a sig-
nificant impact on the accuracy of BP in non-invasive 
technologies. Thus, older technologies have struggled 
with providing accurate values due to their lack of vaso-
motor artefact rejection [4, 5, 6]. CNAP was specifically 
designed to overcome these limitations. In this article the 
technological principles of CNAP and its advantages are 
briefly described and validation data is shown.  
 
Methods 

Continuous BP is measured with the help of a finger sen-
sor combining two methods: The “Vascular Unloading 
Technique” (VUT) [7] is used for BP-rhythms and BP-
waveforms and the new VERIFI-technology controls 
periods of slower BP-changes, where vasomotor tone may 
influence the measurement. Further, the resulting BP-
signal is scaled to an initial upper arm NBP (absolute BP) 
by means of a mathematical transfer function (Figure 1). 

 
Figure 1: Interaction between the measurement locations (upper arm cuff and finger sensor) and technological methods 
(NBP-calibration, VERIFI and VUT) used for different BP-information. 
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Upper arm cuff BP is the gold standard in clinical practice 
[8]. Due to its daily use in clinical routine it is obvious 
that the physician wants to obtain continuous BP that is as 
accurate as the gold standard. Thus, a mathematical cali-
bration to NBP is performed using a transfer function [9].  
VUT is a sound method for measuring BP rhythms and 
waveforms. Typical VUT methods use a single control 
loop [10], which has to deal with fast pressure increase 
and release in the cuff as well as with the tracking of BP 
changes for the stability of the system. In contrast to older 
methods, a number of interlocking control loops is used 
within CNAP. Each inner loop is responsible for a well-
defined characteristic of its underlying control mechanism 
and provides near-ideal conditions for the surrounding 
outer control loops. There are multiple loops for BP-
waveforms and a loop for slower BP-rhythms [11]. 
However, for BP-changes and long-term stability VUT is 
directly affected by changes in vasomotor tone. Thus, for 
the measurement of BP-changes, the so-called VERIFI-
algorithm has been designed: 
Vasomotor changes typically affect the long-term BP 
changes in a time range below physiological BP-rhythms. 
This time range is filtered out and the VUT system oper-
ates with the signal content of BP-rhythms and pulse 
waves only. Thus, the vasomotor effect is eliminated, but 
also all relevant information of BP-changes. For the resto-
ration, the VERIFI-algorithm inspects the waveforms on a 
beat-per-beat basis and identifies, if the control loop set 
point corresponds to mean BP. When there is a deviation, 
the system corrects the set point on an adaptive basis until 
the set point equals mean BP [9]. This "Vasomotoric 
Elimination and Reconstructed IdentiFication of the 
Initial set point" names the VERIFI-algorithm. 
The accuracy and clinical value of CNAP was tested in 
several international clinical trials shown in Tab. 1 and 2. 
 
Results 

Table 1: Differences of IBP and CNAP (BP-changes): 
Study  
(First Author) 

Care
Area 

Pa-
tients 

Bias 
mmHg 

SD 
mmHg 

Jagadeesh, 2012 [12] ICU 30 -0,04 2,05 
Neuner, 2012 [13] OR 100 -3,1 9,45 
Bias 2012 [14] OR 25 -1,8 10,3 
Ilies, 2012 [15] OR 90 -4,3 10,4 
Jeleazcov, 2010 [16] OR 88 -1,6 11 
Monnet, 2012 [17] ICU 47 5 11 

 
Table 2: Validation of BP-rhythms (PPV): 
Study  
(First Author) 

Care
Area 

Pa-
tients 

Bias  
% 

SD  
% 

Monnet, 2012 [17] ICU 47 -0,6 2,3 
Bias 2011 [18] OR 35 0,6 2,6 

 
Discussion 

Studies in Tab.1 show that CNAP provides BP traces in 
OR and ICU during daily routine within a clinically ac-
ceptable difference to IBP. PPV can accurately be derived 
from the CNAP-signal (Tab. 2). Further ongoing research 
shows accurate CO-estimation from pulse wave analysis 

(not shown). This high fidelity BP has technically become 
possible by combining VUT, NBP calibration and the 
VERIFI algorithm. The demonstrated accuracy, ease of 
use and non-invasive nature of the new CNAP technology 
allows clinicians to rapidly obtain all relevant BP infor-
mation. CNAP allows for a new standard in routine pa-
tient monitoring in such areas where continuous hemody-
namic information can clearly increase patient outcome.  
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Abstract:  With Toolboxes for Complex Systems we pro-
vide a compilation of innovative methods for modern 
nonlinear data analysis and modelling. These methods 
were developed during scientific research in the Interdis-
ciplinary Center for Dynamics of Complex Systems Pots-
dam, the Humboldt-Universität zu Berlin and the Pots-
dam Institute for Climate Impact Research (PIK). It pro-
vides analysis tools for recurrence quantification analy-
sis, nonlinear regression analysis, innovative filtering and 
processing of physiological data, coupling direction esti-
mations, wavelet spectrum and coherence analysis, time 
series graph estimation and more. 
 
Keywords: nonlinear data analysis, modelling, coupling 
directions, recurrence plot, wavelets  
 
Introduction 
The methods provided in TOCSY (TOolboxes for Com-
plex Systems) were developed during scientific research 
in the Interdisciplinary Center for Dynamics of Complex 
Systems Potsdam, the Humboldt-Universität zu Berlin 
and the Potsdam Institute for Climate Impact Research 
(PIK). The content is purely scientific and support may be 
provided by the respective authors. We ask you to cite the 
corresponding publication and the web site if you make 
use of our offer. 
 
Methods 
ACE – Nonlinear Regression Analysis 
Voss H, Kurths J: Reconstruction of nonlinear time delay 
models from data by the use of optimal transformations, 
Phys. Lett. A, 234, 1997, 336-344. 
 
Adaptive Filtering Procedure 
Wessel N, Voss A, Malberg H, et al.: Nonlinear analysis 
of complex phenomena in cardiological data, Herzschr. 
Elektrophys., 11(3), 2000, 159-173. 
 
COPRA – Constructing Proxy Records From Age 
Models  
Breitenbach SFM, Rehfeld K, Goswami B, et al.: COn-
structing Proxy Records from Age models (COPRA), 
Climate of the Past Discussion, 8, 2012, 2369-2408. 
 
Commandline Recurrence Plots  
Marwan N, Romano MC, Thiel M, Kurths J: Recurrence 
Plots for the Analysis of Complex Systems, Physics Re-
ports, 438(5-6), 2007, 237-329. 
 
 

Cross Recurrence Plot Toolbox  
Marwan N, Wessel N, Meyerfeldt U, et al.: Recurrence 
Plot Based Measures of Complexity and its Application to 
Heart Rate Variability Data, Phys. Rev. E, 66(2), 2002, 
026702. 
Marwan N, Romano MC, Thiel M, et al.: Recurrence 
Plots for the Analysis of Complex Systems, Physics Re-
ports, 438(5-6), 2007, 237-329. 
 
Identification of Coupling Direction 
Rosenblum MG, Cimponeriu L, Bezerianos A, et al.: 
Identification of coupling direction: Application to car-
diorespiratory interaction, Phys. Rev. E, 65, 2002, 
041909. 
 
K2 - Dynamical Invariants by Recurrence Plots 
Thiel M, Romano MC, Kurths J: Analytical Description 
of Recurrence Plots of white noise and chaotic processes, 
Applied Nonlinear Dynamics, 11(3), 2003, 20-30. 
 
NEXCF - Cross-correlation estimates for non-
equidistantly sampled time series 
Rehfeld K, Marwan N, Heitzig J, et al.: Comparison of 
correlation analysis techniques for irregularly sampled 
time series, Nonlin. Proc. Geophys., 18(3), 389-404, 
2011. 
 
DS Prolog 
Hübner S: Wissensbasierte Modellierung von Klassifika-
toren für Zeit-Frequenz-Muster in PCM-Daten, Logos 
Verlag, Berlin, ISBN 978-3-8325-1596-6, 2007. 
 
System Identification Tool  
Sitz A, Schwarz U, Kurths , et al.: Estimation of parame-
ters and unobserved components for nonlinear systems 
from noisy time series, Phys. Rev. E, 66, 2002, 016210. 
 
TIGRAMITE - Time Series Graph and Momentary 
Information Transfer Estimation 
Runge J, Heitzig J, Petoukhov V, et al.: Escaping the 
Curse of Dimensionality in Estimating Multivariate 
Transfer Entropy, Physical Review Letters, 108, 2012, 
258701. 
 
SOWAS – Wavelet Spectral and Coherence Analysis 
Maraun D, Kurths J: Cross Wavelet Analysis. Signifi-
cance Testing and Pitfalls, Nonlin. Proc. Geoph., 11, 
2004, 505-514. 
 
http://tocsy.pik-potsdam.de/index.php 
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Abstract: Stimfit is a free cross-platform software package
for viewing and analyzing electrophysiological data. It sup-
ports most standard file types for cellular neurophysiology
and other biomedical formats. Its analysis algorithms have
been used and validated in several experimental laborato-
ries. Its embedded Python scripting interface makes Stimfit
highly extensible and customizable.

Keywords: Electrophysiology, patch-clamp, data analysis,
biomedical data formats, free software.

Introduction

Electrical activity that arises from cellular and subcellu-
lar processes is commonly studied with intracellular tech-
niques (e.g patch-clamp or sharp electrodes) in repetitive
epoch-like events at high precision and temporal resolution.
A detailed study of the acquired electrical signals gener-
ally requires both fast data visualization and ready access to
complex analysis routines. We developed Stimfit1, an open-
source software package available for several operating sys-
tems, for fast and easy visualization of such recordings. Us-
ing the BioSig2 library as an optional backend for file I/O
[1], Stimfit supports more than 20 biomedical formats, in-
cluding those most commonly used in cellular electrophys-
iology (see Table 1). It features robust algorithms for anal-
ysis in neurophysiology (e.g. calculations of synaptic and
action potential latencies, rise and slope values, thresholds,
etc.). These measurements are indicated to the user by a
pair of cursors on the screen (see Figure 1) and are updated
upon navigation along the recording. In addition, detec-
tion routines of spontaneous events are also provided [2, 3].
An implementation of the Levenberg-Marquardt algorithm
[4] is used for fitting data to standard mathematical func-
tions (single and multiexponentials) and common models
in cellular neuroscience. Moreover, Stimfit is highly cus-
tomizable with an embedded Python shell giving access to
common scientific Python libraries such as NumPy or SciPy
[5]. In summary, we present a cross-platform analysis envi-
ronment that is easy to use and can be adapted to individual
experimental requirements with Python [6].

1Stimfit is available on line from http://www.stimfit.org
2BioSig is available on line from http://biosig.

sourceforge.net/

peakbase cursors

baseline

maximal slope of decay

peak cursors

threshold

maximal slope of rise

rise 20%

rise 80%

20 mV

half-maximal
amplitude

2 ms

Figure 1: Principal measurements obtained when base and
peak cursors are positioned on an action potential in a Stim-
fit session.

Table 1: File formats supported by Stimfit - only formats
relevant for cellular electrophysiology are listed. (*) indi-
cates support through biosig, (+) indicates improved sup-
port through biosig.

file type read write
Axon text yes yes
Axon binary v1 yes no
Axon binary v2 yes no
CFS binary yes(+) yes
HDF5 files yes yes
Axograph yes no
HEKA yes(+) no
Igor binary yes(*) yes
GDF yes(*) yes(*)
NEURON yes(*) no

Methods

Stimfit is written in C++ with some external libraries (see
Table 2) and extensions in Python. To create the GUI, the
wxWidgets library was chosen because it provides cross-
platform support [7]. The BioSig library has recently been
added to support additional biomedical data formats and
the GDF file format [8]. The source code can be compiled
with an ANSI/ISO C++ compliant compiler and has been
tested with the GNU compiler for GNU/Linux, Mac OS
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20 pA

50 ms

Figure 2: Fitting of an averaged excitatory postsynaptic cur-
rent to a biexponential function by least-square optimiza-
tion implementation in Stimfit.

X and with Microsoft Visual C++ 2008 R© for Microsoft R©

Windows. Alternatively, the the MinGW-cross-compiler
environment (MXE) [9] tool-chain can be used for building
the Windows version to avoid proprietary compilers. Some
regressions when using MXE, such as missing Python and
ABF support, will eventually be fixed in future releases.

Fast visualization by avoiding line plot redundancies
To efficiently plot data obtained at high sampling rates, two
algorithms are employed. A down-sampling algorithm is
used to reduce the number of lines plotted between two
pixel columns by choosing the maximum and minimum
sampling value within a column and plotting one single
line between them. An anti-aliasing algorithm is used to
connect pixel columns.

Event detection and fitting algorithms
Spontaneous or miniature synaptic events can be detected
by minimizing the sum of squared errors between a tem-
plate waveform and recording periods. To decide whether
an event has occurred, the user can choose between two
criteria: either the correlation coefficient between optimal
template and recording [3], or the ratio of template scaling
factor and noise standard deviation [2].

Python integration
To provide a customizable analysis platform, Stimfit in-
cludes a command-line Python interface to control the GUI
and access the analysis algorithms. In addition, the Python
shell gives access to the extensive ecosystem of scientific
libraries that are available for Python, such as NumPy or
SciPy. In addition, a stand-alone Python module (stfio)
allows users to read and write standard electrophysiology
file formats from Python without the Stimfit GUI.

Discussion
Robust algorithms for visualization and analysis are neces-
sary for our understanding of the electrical signals in neu-
roscience. A free software model facilitates reproducibil-
ity, one of the cornerstones of scientific progress. For that
reason, Stimfit is released under the GNU general public
license (GPL), and all its libraries and dependencies are re-
leased under free software licenses. Among all program-
ming languages under the GPL license, Python was chosen

Table 2: List of C++ external libraries.
library purpose
BioSig Biomedical file formats, input/output
boost Shared pointers and arrays
FFTW Fast Fourier transform for filtering
HDF5 Support to HDF5 file format
LAPACK Linear algebra, non-linear regression
levmar Non-linear regression
wxWidgets Graphical user interface
Python Python interpreter
wxPython Embedded Python shell

as a scripting language for Stimfit because of its widespread
use in neuroscience [10]. Thus, as an alternative to propri-
etary software solutions, Stimfit combines an intuitive user
interface with a general-purpose programable environment.
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Abstract: EEGLAB is a widely used open-source MAT-
LAB toolbox for analysis of electrophysiological data. Us-
ing EEGLAB, users can import various data formats, pre-
process data (filter, resample, average, epoch), visualize
data (signal browser, event-related potentials, power spec-
tra), perform independent component analysis (ICA), use
various time/frequency analysis methods such as event-
related spectral perturbation (ERSP) and inter-trial co-
herence (ITC). The extensible plug-in architecture enables
third parties to contribute additional functionality such as
source localization, connectivity estimation or the design of
online brain-computer interfaces.

Keywords: Biosignal analysis, MATLAB, software, open
source, GPL

Introduction
The EEGLAB signal processing environment, an open
source software project of the Swartz Center for Compu-
tational Neuroscience (SCCN) of the University of Califor-
nia San Diego (UCSD), began as a set of electroencephalo-
gram (EEG) data analysis tools for MATLAB (The Math-
works, Inc.). These tools were made publicly available by
Scott Makeig in 1997, which evolved into EEGLAB, which
was first released with a coherent structure and graphi-
cal user interface in 2001. More than ten years later, the
EEGLAB reference paper [1] has over 2,500 citations, the
opt-in EEGLAB discussion email list links over 6,500 re-
searchers, the EEGLAB news list has over 10,000 sub-
scribed researchers, and a recent survey of 687 research
respondents has reported EEGLAB to be the software en-
vironment most widely used for electrophysiological data
analysis. In addition, at least 35 EEGLAB plug-in tools
have now been released by researchers from many labora-
tories. EEGLAB is now a de facto standard supporting a
wide range of EEG and other electrophysiological research
studies with contributions from many researchers.

Data import and preprocessing
EEGLAB supports importing numerous different data for-
mats such as ASCII, MATLAB, BCI2000, Neuroscan,
Biosemi, ANT EEProbe, and BrainVision. In addition,
EEGLAB includes some functions from BioSig1 and Field-

1biosig.sourceforge.net

Figure 1: Signal browser showing 17 EEG channels with
colored event markers, control buttons, and a selected seg-
ment (green background between 26–27.4 s).

Trip2 that together provide support for many other data for-
mats.
Standard preprocessing methods available in EEGLAB in-
clude filters (FIR and IIR), epoch extraction, baseline re-
moval, resampling, and re-referencing. Furthermore, data
channels can be deleted or interpolated, and artifacts can be
removed using fully- or partially-automated methods (based
on channels or epochs).

Data visualization
Data can be visualized in a scrollable interactive view which
displays a specific number of channels in a specific time
range. Figure 1 shows this channel activities window with
event markers and a custom selection. This visualization is
particularly useful for manual artifact rejection, where the
user selects signal segments by clicking and dragging with
the mouse.

Independent component analysis (ICA)
A particular strength of EEGLAB is its seamless integra-
tion of independent component analysis (ICA). ICA algo-
rithms can be used to detect and isolate stereotypical arti-
facts (such as eye movements and electrocardiographic sig-
nals) mixed by volume conduction in EEG recordings. Fur-

2fieldtrip.fcdonders.nl
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Figure 2: Scalp maps for six independent components from
a 128-channel decomposition.

thermore, ICA algorithms are capable of separating biolog-
ically plausible dipolar brain sources. The default ICA al-
gorithm available in EEGLAB is extended Infomax [2], but
other algorithms including JADE3, FastICA4, and AMICA5

are also available in the core EEGLAB distribution or as
plug-ins. Most visualization functions and processing tools
are available for both channel and component data (for ex-
ample, ERP plotting, time/frequency plots, power spectra,
artifact rejection, data visualization), so it is straightforward
to work with either or both signal types. Figure 2 shows
scalp maps of selected independent components. Dipole
source localization of such maps is possible using DIPFIT2
(included) or the NFT6 [3] toolbox.

Time/frequency analysis
EEGLAB supports time/frequency analysis measures such
as (baseline or averaged) power spectrum, event-related
spectral perturbation (ERSP), inter-trial coherence (ITC),
and event-related cross-coherence. The SIFT7 toolbox of-
fers a wide range of additional connectivity measures.
ERSP visualizes event-related changes in the averaged
power spectrum in a broad frequency range relative to a
baseline interval. ITC measures the amount of event-related
phase-locked activity as a function of time and frequency,
whereas ERCOH calculates event-related coherence be-
tween two signals.

User interface
EEGLAB features a graphical user interface (GUI) use-
ful for new users and for exploring new data. However,
all functions are also accessible via the command line at
two different levels: (1) so-called pop functions are the ba-
sis of all GUI functionality and are also available through
EEGLAB’s command history, and (2) low-level functions
and data structures. MATLAB scripting is fully supported.

3bsp.teithe.gr/members/downloads/Jade
4research.ics.aalto.fi/ica/fastica/
5sccn.ucsd.edu/~jason/amica_web.html
6sccn.ucsd.edu/wiki/NFT
7sccn.ucsd.edu/wiki/SIFT

Documentation and support
EEGLAB is distributed under the GNU General Public Li-
cense, the complete source code is publicly available.
EEGLAB is based on (and therefore requires) the commer-
cial MATLAB software environment (version 7 or higher).
However, all dependencies on additional MATLAB tool-
boxes have been removed from the core EEGLAB distri-
bution (some advanced EEGLAB plug-ins may still require
specific MATLAB toolboxes).
Most EEGLAB functions also run under Octave, an open
source software environment compatible with MATLAB.
However, graphical output might not be fully functional.
EEGLAB documentation is freely available on the web8,
featuring a hands-on tutorial, an online workshop, a wiki,
frequently asked questions (FAQ), a bug report interface,
mailing lists for news and discussions, and a support
email account (these email addresses can be found on the
EEGLAB website).

Discussion
The functionality of EEGLAB can be extended with plug-
ins. Currently, the community has contributed around 35
EEGLAB plug-ins, ten of which are included in the core
EEGLAB distribution (for example, DIPFIT2 from Field-
Trip, BioSig data import, IIRfilt, and LORETA9).
Future development of EEGLAB will focus on supporting,
maintaining, and integrating important plug-ins. Major ex-
amples include the in-house developed toolboxes BCILAB,
SIFT, MPT, NFT, and MoBILAB [3]. EEGLAB core tools
will be strengthened (including improved source localiza-
tion, a wider range of ICA and beamforming algorithms,
and support for computations on high-performance clusters,
GPUs, and the cloud). Finally, a new web infrastructure will
be developed (including a new software hosting facility and
a comprehensive community website featuring more exten-
sive documentation and tutorials).
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Abstract: The number of medical imaging modalities and
bio-signal acquisition methods has increased dramatically
in the last years. Each is designed to answer a certain set of
questions or to explore certain features of living tissue. With
visualization, it is possible to combine these different types
of images and data to grasp their meaning in the context
of each other. Unfortunately, many existing visualization
tools are focused on certain modalities and signals. With
OpenWalnut, we provide a tool which is designed to be used
with different signals and modalities in combination with
each other. It aims at providing interactive rendering and
explorability with a clean data-flow-based interface. The
project is open-source and well documented and has yet
been extended and used by many groups and researchers. In
this short-paper, we provide a coarse overview of the prin-
ciples and focus-points of OpenWalnut.

Keywords: visualization, medical data, bio-signals, open-
source, software

Introduction
In the course of the ongoing research into neurological dis-
eases and the function and anatomy of the brain, a large va-
riety of examination techniques has evolved. The different
techniques aim at findings for different research questions
or different viewpoints of a single task.
Considering the different applications, it is evident that for
many research areas only a combination of these techniques
can help answering the posed questions. To name only one
example, the combination of diffusion-weighted MRI and
functional MRI with an anatomical context provided by T1
MRI images is very common.
To be able to analyze the data measured by the different
techniques, a tool that can efficiently visualize the different
modalities simultaneously is needed. The software (called
OpenWalnut) we will present in this work aims at exactly
this task. It does not only allow to display the different
modalities together, but also provides tools to analyze their
interdependence and relations.
In the following, we will point out the focus-points of Open-
Walnut and its basic working principles.

Focus and Reasoning
As mentioned above, it is very crucial to handle a multi-
tude of different kinds of images and signals. Besides this,
there are several other criteria for visualization software,

especially in a scientific environment, which is our target
group of users. There are many visualization tools avail-
able which have their specific strengths and weaknesses
( [1, 2, 3, 4, 5, 6]), but none of them where able to com-
pletely fulfill our criteria. In this section, we point out these
criteria, building the fundamentals of OpenWalnut’s soft-
ware design and implementation.
Open Source: In a scientific environment, it is very impor-
tant to be able to re-produce results of other researchers and
to comprehend algorithms of others. With the help of open-
source software, this can be achieved. It provides a possi-
bility to share algorithms and calculation pipelines with oth-
ers in a common framework. Besides this, an open-source
framework allows for easy extension and adaption of exist-
ing methods to new problems. Thus, OpenWalnut is devel-
oped as free and open software to allow us and others to
work on a common framework.
General Purpose and Extensible: Very focused software
is not able to handle the above mentioned multitude of sig-
nal and image modalities. Additionally, in a research envi-
ronment, it is very often required to find new ways of solv-
ing a certain medical or neurological problem. To achieve
this, the used software must not limit the researcher in terms
of applicability of algorithms and in terms of easy program-
matic extensibility. OpenWalnut is two things in this con-
text: (1) a powerful visualization tool and (2) a powerful
programming framework which provides maximum flexi-
bility to the researcher. We even allow interfacing Open-
Walnut with the famous script language Python.
Re-using existing Tools: There are a lot of very powerful
tools and frameworks available for very different tasks. To
utilize certain strengths of these toolkits, a software needs to
interact with them instead of re-inventing them. OpenWal-
nut integrates several well-know toolkits like Eigen [7] and
OpenSceneGraph [8] and interfaces other tools more indi-
rectly, like FSL [9], teem [10], BioSig [11], NIfTI [12] or,
due to our Python bindings, numPy [13], and NiBabel [14].
This way, we make OpenWalnut even more extensible and
flexible.
Graphical User Interface: Most software aims either at
the visualization researcher or the neuro-scientist, with ac-
cordingly designed GUIs. OpenWalnut aims at both groups.
The neuro-scientist, who needs a usable tool to handle
and visualize its data and the visualization researcher, who
needs a powerful, programmable tool and flexible user in-
terface. To achieve this ambitious goal, OpenWalnut fo-
cuses on a clean and straight interface, which is centered
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around a data-flow network as shown in Figure 1. The
principle of using a data-flow networks is very common
to many image/signal processing tools, visualization tools
and even programming frameworks [15]. We avoid com-
plex and complicated GUI dialogs for algorithms, provide
useful default values for all parameters, direct and visual
feedback for parameter changes and allow to combine com-
plex data pipelines into containers, to hide their complexity.
Availability: The hurdle of using software which is not
available on your machine or operating system or which
needs to be compiled tediously for your system is very
hight. Thus, OpenWalnut focuses on portability and avail-
ability. We focus the three major operating systems in
use today (Linux, Windows and Mac OS) and provide
pre-compiled and packaged versions of OpenWalnut for
them. This makes OpenWalnut available for most of the
researchers directly.

Results and Conclusion
In the last section we gave a short insight into the criteria
that have driven and still drive the development of Open-
Walnut. Although there are many tools available for han-
dling and visualizing medical images and bio-signal data,
each has its advantages and disadvantages. We do not try
to re-invent the wheel, nor do we claim our project is su-
perior to the others. We created a tool which complies
to a certain set of criteria and tries to re-use as many as
possible of existing tools and frameworks. We have tar-
geted OpenWalnut at researchers in the medical and neuro-
scientific field and provide them with an open and powerful
tool to explore their data or to create new ways of visual-
izing them. The software is available at http://www.
openwalnut.org.
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Figure 1: The GUI of OpenWalnut. On The right, you see
the data-flow network and the properties (parameters) of the
module “Fiber Display”. You can also see the tool-buttons
in the title-bar of each dock. We strictly provide options
and operations only where they can be applied, making the
GUI more structured. The left part of the GUI contains
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Abstract: Providing millisecond-temporal resolution for
non-invasive mapping of human brain functions, Magneto-
/Electroencephalography (MEG/EEG) is predestined to
monitor brain activity in real-time. While data analysis to
date is mostly done subsequent to the acquistion process we
introduce here an acquisition and real-time analysis appli-
cation. Online feedback allows the adaption of the exper-
iment to the subject’s reaction creating a whole set of new
options and increasing time efficiency by shortening acqui-
sition and offline analysis. To build a standalone appli-
cation, we first designed MNE-CPP a cross-platform open
source Qt5 C++ library, which implements the validated
parts of our scripting toolboxes MNE-Python/MATLAB.
Based on MNE-CPP we built MNE-X, which allows real-
time acquisition, processing, and source localization.

Keywords: Real-Time, Magnetoencephalography, Elec-
troencephalography, Processing, Source Localization

Introduction

Real-time processing and source localization for
MEG/EEG enables possibilities for novel experimen-
tal paradigms and improves the efficacy of these methods
in clinical diagnosis where fast analysis procedures are
essential. Given that some information is processed during
the acqusition, the subsequent off-line analysis will be
facilitated and made faster. Such a real-time MEG/EEG
monitor has to be able to control the MEG/EEG hardware
to acquire data, as well as to be capable of processing
the acquired data online. Several application frameworks
[1, 2] to acquire as well as scripting toolboxes [2, 3, 4]
to analyse MEG/EEG data already exist. For designing a
standalone acquisition and processing application, such as
MNE-X, it is necessary to have a highly flexible library
which unites the acquisition and the analysis. Here we
want to introduce MNE-CPP, our new cross-platform
opensource Qt5 C++/CUDA library package. MNE-CPP is
designed as a basis for standalone applications and enables
the application programmer to make full use of the given
hardware capabilities and develop processing pipelines
with almost the ease of a scripting toolbox. MNE-CPP is
part of the MNE-Suite and can be freely accessed at:

https://github.com/mne-tools

Methods

MNE-CPP is a derivative of our scripting toolboxes
MNE-Python/MNE-MATLAB and consists of several sub-
libraries (Fig. 1). Except of the inverse sub-library, MNE-
CPP only depends on Qt5 [5] and the light-weight Eigen [6]
template library for linear algebra. This enables the user to
build MEG/EEG applications for almost any computational
device. PCs, tablets, smartphones and even embedded solu-
tions are supported.

Figure 1: Sub-libraries of MNE-CPP: helpers (orange), core
(green), specific tasks (blue to violet)

Besides the C++ implementation, the inverse library pro-
vides a GPU CUDA kernel for some algorithms, and relies
if GPU computing is wanted on NVDIAs nvcc compiler.

Figure 2: User interface of MNE-X
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MNE-X (Fig. 2) is built based on MNE-CPP. It is de-
signed for the daily clinical use and comes with several
real-time plug-ins, e.g. the averaging, source localization,
and frequency estimation toolboxes. Also the development
of further plug-ins, e.g., real-time Signal Source Separa-
tion (SSS)/ Signal Space Projection (SSP), is already in
progress.

Figure 3: Screenshot of the real-time stereoscopic 3D
(anaglyph red/cyan) source localization monitor. The dis-
play shows the localization of an auditory stimulus with an
applied moving average.

Here we also want to introduce our online source local-
ization toolbox, which, in addition to the localization al-
gorithms, provides a real-time 3D stereoscopic display (fig.
3)). The applied algorithm uses a region-of-interest forward
solution clustering and an adapted MNE [7] algorithm.

Results
MNE-X is able to control the MEG/EEG hardware to ac-
quire data. It also provides fast and effective algorithms to
process the acquired data online. It is designed as a cross-
platform opensource application and introduces a new plug-
in framework to easily adapt and extend the MEG/EEG
online analyzation capabilities. To realize MNE-X we de-
signed in a highly portable MNE-CPP library.

Discussion
By providing online feedback and increasing time effi-
ciency, MNE-X aims to improve the clinical value of
MEG/EEG by providing new experiment options and in-
tegragting them into fast diagnostic procedures. However,
more work is needed to address, e.g., the accuracy of on-
line source localization. Clinical and basic research studies
are needed to assess the benefits of MNE-X and to guide its
further development.
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Abstract:  Free software is an important tool in biosignal 
processing. The integration of several free toolboxes 
(FTB) for a data analysis task beyond the scope of a sin-
gle FTB is a multiplier of the time and cost saving effects 
of a single FTB. Open questions in relation to interopera-
bility shall be discussed. 
 
Keywords: free software, toolbox, interoperability, 
biosignal processing  
 
Introduction 
With the advent of powerful computers and microcontrol-
lers digital biosignal processing has become a ubiquitous 
ingredient in biomedical engineering. A multitude of 
highly specialized analysis methods and complex pro-
cessing chains have been developed. It is highly ineffi-
cient if methods or algorithms are coded from scratch for 
a research project.  Therefore the biosignal research 
community has followed the “Linux” or free software 
paradigm, i.e. the source code of the software must be 
accessible, and it is allowed to modify (expand) and redis-
tribute the software. These principles are very similar to 
the scientific process, where the next research steps are 
based on published previous research results. Despite the 
purely scientific benefit free toolboxes (FTB) are of inter-
est for industry to be able to evaluate a wide range of 
algorithms rapidly.  
 
Results  
Many reusable FTBs have been developed (e.g. see [1,2] 
for exemplary collections). Reusability relies on several 
requirements: The FTB is well maintained and easily 
accessible; it has a bug reporting system and a reasonably 
fast bug resolution chain; a help system; etc. As with 
scientific results proper credit needs to be given to FTB 
developers. 
A second level of reusability is achieved if FTBs can 
interact with each other or if at least a defined data ex-
change procedure exists. Examples for interoperability are 
given in Fig. 1. In a) FieldTrip [1] has an external directo-
ry containing the complete Biosig code. If a file-input-
output (fileio) operation reads data in a format supported 
by the Biosig, then FieldTrip branches to the exter-
nal/biosig directory to call a native Biosig function.   In b) 
an example for an even closer integration is given, where 
SPM8 [1] incorporates lower level FieldTrip directories to 
rely solely on FieldTrip functionality for certain types of 
operation.  
 

 
Figure 1: Examples for FTB interoperability (adapted from 

FieldTrip introductory material). a) FieldTrip uses the Biosig 
to read data in various formats. b) SPM integrates functional 

directories of FieldTrip for certain tasks. 
 
Discussion 
How does the hierarchical structure in Fig. 1 compare to a 
flat linear processing chain of  FTBs ? Should data ex-
change be managed either by a data structure within a 
programming language or by storing the data in a com-
mon file format ? What would motivate developers to 
support interoperability as a community goal ? How to 
improve the credit or citation system for processing 
chains of several FTBs ? 
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Abstract:  Consciousness is related to the brains ability to 

process information. This is inline with EEG studies ob-

serving decreased signal “complexity” under anaesthesia 

induced unconsciousness. In the present investigation, 64-

channel electroencephalogram (EEG) of 15 volunteers 

was analyzed during consciousness, propofol induced 

sedation and unconsciousness. Univariate EEG parame-

ters (spectral power, Higuchi fractal dimension, permuta-

tion entropy) and cortico-cortical information exchange 

in EEG based on symbolic transfer entropy (STE) were 

analysed to indicate effects of anaesthetics on the system-

ic information processing of the brain. The STE revealed 

affected interaction between frontal and parietal brain 

regions during unconsciousness.  

 

Keywords: Electroencephalogram, consciousness, anaes-

thesia, propofol, entropy 

 

Introduction 

Information processing in the human brain is an active 

field of research and is investigated with respect to specif-

ic paradigms [1]. It has been suggested that unconscious-

ness results from an impaired ability of the brain to inte-

grate information. Functional magnetic resonance imag-

ing (fMRI) studies on the effects of anaesthesia induced 

sedation and unconsciousness on the functional connec-

tivity (FC) of the resting brain reported a disintegration of 

higher cortical networks [2]. Further, electroencephalo-

graphic (EEG) studies indicated an uncoupling of electri-

cal coherence or suppression of long-range synchroniza-

tion during unconsciousness when compared to wakeful-

ness [3]. Beyond classical spectral power analyses of the 

EEG, new techniques were introduced to quantify the 

content of processed information. Approaches include 

state space methods such as fractal dimensions and in-

formation theoretic methods based on entropy analysis 

[4]. More recently, asymmetric multivariate analysis has 

facilitated the detection of directional interdependences 

from time series. Within the framework of ordinal signal 

analysis, symbolic transfer entropy (STE) was introduced 

to distinguish driving and responding subsystems in com-

plex non-linear dynamics and to detect asymmetry in their 

mutual interaction [5]. STE combines advantages of a 

stringent concept to infer the direction of interactions with 

robustness and performance of non-linear symbolic anal-

ysis. In contrast to the univariate EEG permutation entro-

py (PE) [6], which has been suggested as reliable non 

parametric measure of anaesthetic depth [7], STE may 

more specifically indicate effects of anaesthetics on the 

systemic information processing level of the brain. In the 

present investigation, the ability of STE to quantify corti-

cal processing in EEG during consciousness, propofol 

sedation and unconsciousness was evaluated. 

 

Methods 

Approved by the local ethics committee, 15 male volun-

teers (age 21-32 years) were enrolled into the study. After 

a resting period, volunteers were instructed to relax and 

close their eyes while 64-channel EEG recordings were 

performed under three conditions: After 15 minutes base-

line (BL condition) recordings, propofol was infused until 

loss of consciousness (LOC) using a target controlled 

infusion (TCI) pump (Open TCI, Braun Medical, Mel-

sungen, Germany). TCI concentrations were maintained 

stable for 15 minutes (LOC condition). After that, a phase 

of sedation was maintained during another 15 minutes at 

50% of the initial LOC concentration (0.5LOC condition). 

Standard monitoring parameters (electrocardiogram 

(ECG), blood pressure, respiratory frequency, pulse ox-

ymetry) were continuously measured with a Datex anaes-

thesia monitor (Datex-Ohmeda Division Instrumentation 

Corp., Helsinki, Finland) and recorded together with TCI 

concentrations. EEG recordings were performed using a 

64-channel electrode cap with equidistant electrodes 

(Easycap, Herrsching, Germany) and two 32-channel 

EEG amplifiers (Brain Products, Gilching, Germany). 

Basic artefact rejection (EEG with amplitudes exceeding 

250V), average reference and independent component 

analysis for blind source separation of non cortical signal 

components were performed.  

In the present study power spectral density in - (4-8Hz), - (8-12Hz) and -band (12-30Hz), Higuchi’s fractal 
dimension  (HD) [4], PE (dimension m = 5) [6] and STE 

[5] were analysed on all EEG channels at the end of the 

three conditions BL, 0.5LOC and LOC (signals of 10s 

length, zero phase digital filtered with 0.5-30Hz band-

width, 200Hz sampling frequency). STE indicates infor-

mation flow from system Y (time series y of length N) to 

system X (time series x of length N) through 

)1(.
)ˆ(

)ˆ,ˆˆ(
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Therefore, amplitude orders ii yx ˆ,ˆ  of sequences 

})1((,),(),({ lmixlixixxi    and iy  along x, y 

( })1(,,1{ lmNi   ) are analyzed with respect to 

embedding parameters m (dimension) and l (time lag). 

)( BAp  is the conditional probability that A occurs under 

condition B, ),( BAp  is the joint probability of A and B. 

The directionality index denoted by STE quantifies the 

preferred direction of flow between systems X and Y, i.e.  

XYYX   STESTESTE . (2) 

STE is expected to attain positive values for unidirection-

al coupling with X as the driver and negative values for Y 

driving X. Assuming 0STE,STE  XYYX , a value 

STE = 0 indicates balanced bidirectional coupling. STE 

was computed in all EEG channel pair combinations 

using a dimension m = 5 and a transfer delay  = 35-50 

ms mainly reflecting cortico-cortical information transfer 

in the EEG -band [1]. 

Discrimination of P, P, P, HD, PE and STE between 

BL, 0.5LOC (consciousness) and LOC (unconsciousness) 

was evaluated using the area under the receiver character-

istic curve (AUC) and 95% percentile bootstrap confi-

dence intervals (CI) at a corrected threshold of p < 0.05 

Therefore, parameters were averaged in frontal, parietal, 

temporal and occipital EEG electrodes.  
 

Results 

Fig. 1 shows value distribution of P, P, P, HD, PE and 

STE at (A) BL, (B) 0.5LOC and (C) LOC. Only results of 

frontal (P, P, P, HD, PE) and frontal-parietal (STE) 

EEG leading to highest AUC is reported. Power spectral 

density P, P, P did not indicate loss of consciousness 

(p > 0.05). In contrast, HD, PE and STE provided signifi-

cant separation of consciousness and unconsciousness as 

summarized in Tab. 1. 

 

Figure 1: Median and 50% interquartile range of frontal EEG 

parameters P, P, P, HD, PE and frontal-parietal STE 

during (A) BL, (B) 0.5LOC and (C) LOC. *: Significant 

separation of consciousness (BL, 0.5LOC) and LOC. 

In particular, during unconsciousness HD indicated a 

decrease of “dimensionality“ in EEG, and PE indicated a 

decrease of “information content”. Based on frontal-
parietal EEG, STE showed a reliable separation of con-

sciousness and unconsciousness, indicating a shift from 

predominantly fronto-parietal feedback (consciousness: 

STE > 0) to parieto-frontal feed forward “information 

processing” during LOC (STE < 0). This was induced by 

a decreased feedback ( YX STE ) during LOC (p < 0.05).  

Table 1: AUC including 95% CI at corrected threshold p < 

0.05 of HD, PE and STE for separation of consciousness 

(BL, 0.5LOC) and LOC. 

EEG parameter AUC (CI) 

HD  (frontal EEG)  0.89  (0.68-1.00) 

PE  (frontal EEG)  0.90  (0.69-1.00) 

STE  (frontal-parietal EEG)  0.99  (0.92-1.00) 
 

Discussion 

While EEG spectral analyses only showed weak effects of 

propofol, nonlinear analyses may provide additional in-

formation related to the dynamics of the brain. The ob-

served decrease of HD and PE in frontal electrodes of the 

EEG could indicate a decline of higher-level cortical 

information processing during unconsciousness [1]. To 

further address whether consciousness is related to the 

brains ability to process information between cortical 

areas, EEG STE was found to be an adequate measure. 

STE indicated that long-range frontoparietal communica-

tion pathways (corresponding to default and attention 

control networks in fMRI) may be particularly affected. 

In contrast to unconsciousness, during propofol sedation 

the information exchange seemed to be largely preserved. 

This supports the hypothesis that the transition from con-

sciousness to unconsciousness emerges from an on-off 

phenomenon [1] and is consistent with the reported per-

sistence of the default mode network during sedation [2]. 

As a mechanism based measure that reliably differentiates 

consciousness from unconsciousness in frontal-parietal 

EEG, STE represents a promising approach for future 

techniques in EEG monitoring the “depth of anaesthesia”. 
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Abstract:  Cardio-pulmonary coupling induces cardiogen-

ic oscillations to the respiratory signals, which appear 
most prominently in the expiration. We hypothesized that 

the analysis of respiratory system mechanics profits from 

the breathing phase-selective filtering of expiratory data. 
Using the gliding-SLICE method, intratidal dynamic 

respiratory system mechanics were analyzed without and 

with low-pass filtering (cut-off-frequency f=4 Hz) of ex-
piratory or inspiratory data separately. The quality of 

data analysis was derived quantitatively from the coeffi-

cient of determination (R2). The selective filtering of expi-

ration data eliminates negative side-effects of cardiogenic 

oscillations thus leading to a significant improvement of 

the analysis of dynamic respiratory system mechanics. 
 

Keywords: controlled mechanical ventilation, dynamic 

respiratory mechanics, cardiogenic oscillations 

  

Introduction 

Analysis of individual respiratory mechanics is used to 

guide the ventilator setting under conditions of lung pro-

tective mechanical ventilation in intensive care medicine 

[1]. In the last years the focus on the analysis in respirato-

ry mechanics concentrates on dynamic conditions [2], 

which mean that the analysis is performed during uninter-

rupted mechanical ventilation with the inspiratory and 

expiratory airflow rate being different from zero [3]. 

 

During inspiration the ventilator provides the mechanical 

energy for respiratory gas transport into the lungs. The 

mechanical energy stored in the elastic tissue elements of 

the respiratory system drives the passive expiration which 

is characterized by exponential flow decay. Thus, after an 

initial expiratory peak flow the flow rate is very low dur-

ing expiration. At low flow rates the transfer of mechani-

cal energy from the beating heart to the lungs known as 

mechanical cardio-pulmonary coupling becomes visible 

as cardiogenic oscillations (COS) superimposed on the 

respiratory signals pressure and flow. 

 

We hypothesised that filtering of the respiratory data 

obtained from the expiration phase would improve the 

analysis of intratidal respiratory system mechanics. 

Hence, the purpose of this study was to introduce the 

method of breathing-phase selective filtering and to test 

this approach by means of retrospective analysis of res-

piratory data from mechanically ventilated patients. 

Methods 

Patient data 

We retrospectively analyzed data from a multicenter-

study (28 patients with injured lungs, under volume-

controlled ventilation) and from two additional studies (3 

lung healthy patients and 3 with injured lungs, under 

pressure-controlled ventilation). For each patient, data 

streams were recorded at different positive end-expiratory 

pressure levels. 

 

Analysis of dynamic lung mechanics 

The volume-dependent respiratory system compliance 

was calculated using the gliding-SLICE method [4]. The 

gliding-SLICE method is based on multiple linear regres-

sion analysis (MLRA) to determine compliance Crsi, 

resistance Rrsi and the dynamic pressure base P0i for 

each slice by a least-squares fit of the equation of motion 

(see Eq. 1) to the pressure, flow and volume data of the 

respective slice i : 

 

irsi
rsi

PVRV
C

p 0
1

+×+×= &    (1) 

 

Quality test of the lung mechanics analysis 
The quality of the lung mechanics analysis, i.e., the 

“goodness” of the gliding-SLICE method was examined 

by calculating the coefficient of determination, R2, for 

each slice. 

 

Signal filtering 

Expiratory and inspiratory periods were filtered separate-

ly in order to test for the effect of breathing-phase selec-

tive signal filtering. Airway pressure, volume and flow 

rate signals were filtered for a breathing-phase when the 

R2 value was below 0.995.   

 

We took advantage of the differences in the frequency 

content between cardiogenic oscillations and breathing 

signals. Therefore we used a low-pass filter with a cut-off 

frequency of 4 Hz. 

 

Validation of filtering 

The gliding-SLICE method was applied to the filtered 

signals of airway pressure, flow and volume to re-

determine the values for compliance and resistance. Fur-

thermore, the “goodness” of fit was analyzed after filter-
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ing to verify if these re-determined parameters better 

adapted to the model (equation of motion). The quality of 

fit according to the R2-values was classified as “high” for 

R2 above 0.995, “medium” for R2 between 0.995 and 

0.990 and as “low” for R2 below 0.990. 

 

Results 

For 69% of the data streams from patients under volume-

controlled ventilation, the fit quality was already “high” 

before filtering and remained “high” after filtering. In 

28% of the cases the fit quality improved from “medium” 

and “low” to “high” after the application of the low-pass 

filter. In 3% of the cases the quality of fit remained con-

stant before and after the application of the filter. Low R2-

values were found accumulated in the lowest volume 

ranges. Particularly at the end of expiration, volume and 

pressure values underlied considerable disturbances 

which introduced an accumulation of high frequency 

signals. 

 

Fig. 1 gives a synoptic view over the quality of lung me-

chanics analysis without filtering (Fig. 1a) and after 

breathing-phase selective filtering (Fig. 1b) for the 25 

patients included in the multicenter-study. 

 

 
 

Figure 1: without filtering (a) and after breathing-phase 

selective filtering (b) for 25 patients from the multicenter-

study. Both 3D-diagrams show 270 data points, each relating 

to the quality (z-axis) of the gliding-SLICE lung mechanics 

analysis for each patient (x-axis) and PEEP level between 0 

and 28 mbar (y-axis). On the z-axis the quality of fit is dis-

played in 3 categories according to the absolute value for R2: 

“1” for low quality; red (R2≤0.990); “2” for medium quality; 

blue (0.990< R2≤0.995); and “3” for high quality; green 

(R2>0.995). 

 

The quality of fit, represented by R2, never became worse 

with filtering. On the contrary, the R2-value of every 

single slice within every single breath increased after the 

application of the low-pass filter. 

 

Discussion 
In this study we present a method for breathing-phase 

selective filtering of respiratory data obtained from pa-

tients under controlled mechanical ventilation. As the 

main result of our study we found a significant improve-

ment of the analysis of dynamic respiratory system me-

chanics on a breath-by-breath basis when expiratory but 

not when inspiratory data were filtered.  
 

Fluctuations in the expiratory phase can be seen where the 

airflow rate decays exponentially from an initial expirato-

ry peak flow towards zero flow. As a possible explanation 

we identified COS reflecting the mechanical cardio-

pulmonary coupling, i.e., the transfer of mechanical ener-

gy from the beating heart to the lungs [5].  

 

In conclusion, we were able to demonstrate that cardio-

genic oscillations interfere with the lung mechanics anal-

ysis during the expiration phase. Breathing-phase selec-

tive filtering of respiratory data limited to the expiration 

could significantly improve the quality of the breath-by-

breath analysis of dynamic intratidal lung mechanics. 
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Abstract: Blood pressure, blood vessel elasticity and pulse 
wave velocity are closely related in the cardiovascular sys-
tem. In this study an optical pulse detection method is dis-
cussed to easily assess online continuous blood pressure 
changes and determine the vascular stiffness according to 
the concept of global pulse wave velocity (gPWV). Experi-
ments were carried out under the condition of active physical 
exercises. The optical pulse wave signal at the index finger 
and ECG signal were recorded noninvasively and continu-
ously. As a reference blood pressure was manually measured 
intermittently using a cuff at the arm. The results of pulse 
wave analysis reveal that the change of the calculated gPWV 
shows good correlation with the simultaneously measured 
blood pressure changes. The static value of the gPWV repre-
sents the state of elasticity of blood vessels.    

Keywords: Blood Pressure, Pulse Wave, Pulse Wave Velocity, 
Vessel Elasticity 

 

Introduction 

It is well known that increased vascular stiffness will result 

in increasing the human blood pressure (BP), and increased 

vascular stiffness will lead to faster pulse wave velocity 

(PWV), too. Continuous monitoring of blood pressure 

changes and detection of vascular stiffness are of great im-

portance not only in clinical monitoring, but also in daily-

tracking of ill or old persons at home.  Because the PWV 

serves as a key indicator of both the arterial stiffness state 

and systolic blood pressure a good approach to estimate 

blood pressure changes and vascular status indirectly and 

continuously is the determination of the pulse wave velocity.  

Continuous detection of pulse wave velocity is currently 

determined either by using the pulse transit time between the 

simultaneously recorded ECG signal and corresponding 

peripheral pulse wave [1] or the pressure wave propagation 

time between the two positions along the extension of main 

arteries [2]. The common characteristic feature of these meth-

ods is that at least two different vital signals at two spatially 

separated detector positions are required. One crucial prob-

lem is the estimation of the correct distance. Here, a simple 

optical detection method using only the pulse wave signal at 

one peripheral detection position is analyzed in order to 

estimate the changes of blood pressure and the elastic state of 

blood vessels. 

 

Methods 

The method is based on the concept of global pulse wave 

velocity (gPWV) and the decomposition of the pulse wave 

into two components of Gaussian shape: the antegrade and 

retrograde contribution of the total pulse wave contour (cf. 

Figure 1) [3] [4]. 

 

      
Figure 1: Decomposition of the pulse wave contour 

 

The global pulse wave velocity (gPWV) and the global pulse 

transit time (gPTT) are defined as 
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with x: overall travel distance, T: mean travelling time, 

ch: empirical length correction factor (ch = 0.88), h: body 

height. 

 

In order to confirm the feasibility of the method, a data set 

consisting of index finger pulse wave, ECG, and blood pres-

sure was detected as function of time. Seven healthy volun-

teers (male and female) initially carried out exercises on a 

bicycle-ergospirometer (nSpire Health ZAN 600 USB CPX) 

with increasing power from 70 W to 200 W. Immediately 

after physical duty the volunteers’ ECG-signal and pulse 

wave were recorded over a time period of 10 minutes using a 

cardiovascular detector system with synchronized ECG- and 

optical pulse detection developed by ourselves (sampling 

rate: 200 Hz, 10 bit A/D resolution, 0.2 Hz high pass filter). 

The systolic blood pressure was detected simultaneously 
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with an osciallatory cuff-based clinincal blood pressure 

detection system (Philips IntelliVue MP30).  

 

On basis of  the collected  ECG- and optical pulse wave data 

different physiological parameters were calculated: 

 

- global pulse wave velocity (gPWV) and global 

pulse transit time (gPTT) from the detected pulse 

wave contours, 

- pulse transit time (PTT) between R-peak of ECG 

and pulse wave arrival at index finger. 

 

Results 

In order to test numerical accuracy and to reduce occasional 

effects the gPWV is calculated as an average value of several 

single pulses. Table 1 summarizes the correlation between 

global pulse wave velocity, calculated as an average of 6 to 

60 single pulses, and systolic blood pressure. The cuff-based 

blood pressure detection is of time averaging character, too. 

The averaging over an increasing number of single pulse 

waves distinctly improves the correlation between global 

pulse wave velocity and blood pressure. 

Table 1: Correlation between global pulse wave velocity 

(gPWV) and blood pressure (BP) for subject 1. 

Number of pulses Correlation gPWV-BP  

        60  0.9669  

        50  0.9650  

        40  0.9549  

        30  0.9428  

        20  0.9331  

        10  0.9203  

        6  0.9236  

Figure 2 shows the temporal behavior of global pulse wave 

velocity (gPWV), calculated as an average over 30 consecu-

tive pulse waves, and systolic blood pressure (SBP). It is 

evident, that changes in gPWV and SBP show a similar 

temporal behavior. 

 
 

Figure 2: Calculated gPWV (averaged over 30 pulse waves) 

and detected systolic blood pressure SBP of subject 1. 

 

Figure 3 represents the temporal behavior of the normalized 

calculated global pulse transit time (gPTT) and normalized 

detected pulse transit time (PTT), calculated as an average 

over 30 pulse waves of subject 1. 

 
 

Figure 3: Normalized gPTT and normalized PTT (averaged 

over 30 pulse waves) of subject 1. 

Under static condition (subject at rest) the gPWV represents 

the elastic state of the blood vessel [1][2], while gPWV meas-

ured under dynamic conditions is a surrogate of blood pres-

sure changes. 

Discussion 

Global pulse wave velocity (gPWV) correlates well with 

systolic blood pressure (SBP), even though the correlation 

shows interindividual variation. The detection of gPWV can 

be used for continuous systolic blood pressure monitoring 

after an initial calibration. It is possible to monitor changes of 

systolic blood pressure with optical detection of the pulse 

wave at one peripheral detector position. Combined with the 

results of previous experiments [3] [4], gPWV at rest can be 

used to assess vessel elasticity. 

Additional experiments have to be carried out in order to 

improve the reliability of the method. 
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Abstract:  Autonomic dysregulation in patients suffering 

from major depression is expressed in cardiovascular 

regulation as well as in the pupillary light reflex. We used 

spectral analysis and unrest indices to uncover indica-

tions of autonomic imbalance in resting pupillographic 

recordings. Significantly increased unrest and mean pupil 

diameters were observed in depressed patients. Pupil-

lometric parameters correlated to symptom severity sug-

gesting clinical relevance.   

 

Keywords: autonomic regulation, heart rate, pupil diame-

ter, major depression 

 

Introduction 

Besides cardiovascular dysregulation, pupil sizes of pa-

tients suffering from major depression (MD) were found 

to reflect autonomic imbalance [1]. Pupil size is modulat-

ed by sympathetic and parasympathetic impacts. The 

objective of this study was to find indications of autonom-

ic dysfunction in resting pupillographic recordings and 

their relation to cardiovascular function. 

 

Methods 

Cardiovascular and pupillographic recordings of 23 MD-

patients and 23 matched controls were conducted using 

the MP150 polygraph (BIOPAC Systems Inc, Goleta, 

CA, USA). During the 20 minutes of measurement the 

room was absolutely quiet and fully shaded. To guarantee 

constant illumination level we used an indirect light 

source. An ellipse filling the whole 22 inch monitor was 

presented to enable focus movements within the acquisi-

tion window. Assuming participants to calm down at the 

beginning of the recording the first five minutes were not 

analyzed. 

ECG and blood pressure were band-pass filtered between 

0.05 to 35 Hz and digitized at 1000 Hz. Pupil size was 

assessed every 4 seconds by the infrared camera system 

RED 250 (SensoMotoric Inc., Boston, MA). Interruptions 

of pupillographic acquisition were substituted by interpo-

lating adjacent data points. Eye blinks expressed as sud-

den drops of pupil diameter were eliminated using wave-

let analysis. Affected segments were detected after signal 

decomposition using Daubechies wavelet of 10th order 

and replaced by linear interpolation.  

To analyse sympathetic and parasympathetic influence on 

pupil diameter fluctuation we exploited the different reac-

tion times. The rapid signal conduction of parasympathet-

ic pathways was demonstrated in pupil diameter modula-

tion enabling the discriminative interpretation of the pu-

pillary light reflex [2]. Vagal heat rate variability estima-

tion is also based on the slow sympathetic reaction. Re-

garding the pupillary light response reaction times of 

pupil size similar to cardiac modulation can be assumed. 

We defined intervals for low (LF: 0.01-0.25 Hz) and high 

(HF: 0.25-0.5 Hz) frequency components representing the 

two autonomic branches. Their ratio was calculated to 

estimate balance.  

Analyzing pupil size fluctuation we eliminated temporal 

mean. The Welch spectrum was estimated using a Black-

man window lasting 128 s with 95 % overlap. Pupillary 

unrest index (PUI) was calculated based on the algorithm 

introduced by Lüdtke et al. [3]. Briefly, deviation of mean 

values of 80 s segments is computed. Additionally 

RMSSD and baroreflex sensitivity by sequence method 

were calculated estimating cardiovascular autonomic 

regulation in time domain. 

Statistical analysis was conducted by a MANOVA of 

pupillary and cardiovascular parameters. If results were 

not normal distributed natural logarithmic transformation 

was performed. Spearman correlation was used to esti-

mate linear relation of assessed parameters and to symp-

tom severity assessed by Beck’s Depression Inventory 
(BDI).  

 

Results 

Cardiovascular indices confirmed our assumption of au-

tonomic imbalance suggesting diminished vagal activity. 

RMSSD and baroreflex sensitivity were reduced in MD 

patients (see Tab. 1).  

Patients had larger pupil sizes with higher unrest indices.  

Low frequency component and overall Spectral power for 

0.01 Hz ≤ f ≤ 0.5 Hz was increased in patients. In contrast 

high frequency power and LF/HF ratio were not signifi-

cantly higher. Mean diameter and unrest index of the left 

pupil were significantly correlated to symptom severity 

assessed by BDI. Spectral pupillometric parameters were 

not correlated with cardiovascular autonomic indices but 

with global calculation of pupillary unrest.  

Table 1: MANOVA of cardiovascular and pupillographic 

parameters (RMSSD: root mean square of successive heart 

beat intervals, BRS: baroreflex sensitivity, PUI: pupillary 

unrest index, DIA: mean pupil diameter, LF/HF: ratio of low 

and high frequency power of pupil size fluctuations, sub-

scripts r and l stand for right and left pupil, HR: heart rate) 

Parameter Controls Depressed Significance 

Heart rate [min-1] 65.5  75,8  p<0.01 

RMSSD [ms] 51.8 37,0 p<0.05 

BRS [ms/mmHg]   22.0  13.0  p<0.01 
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Parameter Controls Depressed Significance 

PUIl [mm] 0.093 0.140 p<0.01 

PUIr [mm] 0.097 0.139 p<0.05 

DIAl [mm] 3.82 4.26 p<0.05 

DIAr [mm] 3.65 4.20 p<0.05 

LF [ms²] 38.01 76.33 p<0.05 

HF [ms²] 12.97 24.67 n.s. 

LF/HF [%] 3.92 3.32 n.s. 

    

Discussion 

An elevated sympathetic activity of patients with major 

depression was shown in cardiovascular parameters. In 

pupillometric data we also found significant differences.  

An increased mean pupil diameter was already reported in 

studies analyzing pupillary light reflex and is generally 

related to sympathetic predominance.  

Pupillary unrest is commonly related to sleepiness [3]. 

Spectral power of pupil size fluctuations was increased in 

patients and highly correlated to PUI. This indicates an 

augmented daytime sleepiness in MD patients that is 

related to their symptom severity. An elevated low fre-

quency power suggests that especially sympathetic influ-

ence contributes to increased pupil fluctuations. High 

frequency power does not reflect parasympathetic attenu-

ation.  

Pupillary fluctuations by central autonomic regulation are 

not as intensively investigated as at the cardiovascular 

level. Maybe influences like cognitive load or sleepiness 

complicate estimation of autonomic impact. However 

pupillographic indices correlating with symptom severity 

but not with cardiovascular autonomic markers demon-

strate that pupillometry can give important information 

additionally to standard analysis.  
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Abstract: The recent development of healthcare systems has

provided a significant contribution to ambulatory patient

monitoring. In that context, signal quality and disturbances

induced by noise or motion artifacts play an important role

in the field of signal processing tasks. Especially the Photo-

plethysmogram (PPG) is very liable to movement artifacts

which severely hamper the extraction of vital parameters

like the heart rate or oxygen saturation. To record patient

movements, an innovative sensor system is proposed, which

acquires accelerometer data next to the PPG. As in Adap-

tive Noise Cancelers, we propose to use the acceleration as

reference to recover corrupted PPGs by means of the Blind

Source Separation. Sophisticated methods of ICA have been

used, resulting in a novel approach for artifact suppression

in the PPG that has been tested on laboratory datasets.

Keywords: Blind Source Separation, Motion Artifacts,

Body Sensor Network, ANC, ICA

Introduction

Transmissive PPG systems basically consist of a finger clip

which contains at least a red and infrared LED, emitting

light through the finger to a photodetector [1]. Additionally

equipping this finger clip with an accelerometer is a neat

way to acquire a movement reference signal which has al-

ready been proposed by different groups in the literature [2]

[3].

Prior to any signal processing tasks and their subsequent

evaluation, considerable effort is put in preprocessing pro-

cedures, aiming at the removal of unwanted signal disturb-

ances. As is well known, common filtering techniques

like lowpass and highpass filters fail in reconstruction tasks

when the components of signal and noise overlap in the fre-

quency domain or the noise has a non-stationary nature [4].

The Adaptive Noise Cancelation (ANC) as shown in Fig-

ure 1, constitutes a thoroughly tested approach in PPG pre-

processing, to cancel out unwanted signal components, that

correlate with the reference signal which itself is provided

by the accelerometer [2] [5].

These ANC implementations seem to achieve reasonable

results in terms of increased signal-to-noise-ratios (SNR)

of the reconstructed signal. In real applications however,

these algorithms still experience difficulties in their tasks of

reliable artifact suppression.

Alternatively, the more sophisticated method of Blind

Source Separation has been proposed as a powerful ap-

proach to noise reduction by means of separating the in-

dependent components of the acquired signals [4] [6].

PPG

ACC

Body

adaptive

Filter

disturbed PPG reconstructed PPG

reconstructionphysiological process

Figure 1: ANC with acceleration reference [5]

Methods

Independent Component Analysis

Basically, the ICA approaches try to find an estimated solu-

tion of the generative linear model

x = As (1)

where the observation vector x is described by an instan-

taneous mixture of the statistically independent sources

s [7]. The goal of ICA is to find the original sources by

estimating the inverse of the mixing matrix A. Stetson

assessed the performance of different ICA methods on

synthetically mixed pulse oximetry signals [8]. In the tests

conducted in the scope of our study, these instantaneous

models did not yield satisfying results.

Volmer [6] experienced similar problems and in turn

suggested to resort to the convolutive mixing model which

is consecutively solved by the SOBI algorithm [9]. Using

only the red and infrared channel as input for this ICA

model, Volmer was able to provide a robust method for

oxygen saturation measurement [6]. Using this approach

for pulse wave reconstruction in the time domain does

not provide very satisfying results though. Therefore, we

propose to feed the ACC signals to the convolutive mixing

model.

Experimental Setup

In the scope of this study, two transmissive pulse-oximetry

sensors have been used, which are part of a Body-Sensor-

Network (BSN) [3]. The sensor basically embodies an

MSP430F1611 microcontroller, equipped with a CC2500

Low-Power 2.4 GHz RF Transceiver for synchronization

and communication issues and an SD Card for mass data

storage. As initially mentioned, a 3-Axis ADXL330 Ac-

celerometer is built directly into the finger clip, serving as a

well located source for movement acquisition.

Biomed Tech 2013; 58 (Suppl. 1) © 2013 by Walter de Gruyter · Berlin · Boston. DOI 10.1515/bmt-2013-4190
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Figure 2: SNR results of raw PPG, ANC PPG and ICA PPG

As described in the previous chapter, the principal objec-

tive of this study is to present a convolutive ICA frame-

work to clean the PPG signals from motion artifacts. There-

fore, multiple measurements using two transmissive pulse

oximeters of 120 seconds duration have been conducted,

that contained various movement patterns to induce differ-

ent kinds of motion artifacts. During each measurement, the

right hand was exercising in the experiment, whereas the

left remained in a fixed position to provide a nearly undis-

turbed reference PPG. The PPG signal and the ACC signals

have been sampled at 200 Hz.

Results

In order to provide an objective assessment of the achieved

results, the SNR values of the estimated PPG signals with

regard to the respective reference signals have been calcu-

lated. The ACC reference input is calculated by the sum of

the ACC signals’ x-, y- and z-component. Figure 2 shows

the SNR values of the raw signal (black), the SNR of the

ANC PPG output (grey) and the SNR of the estimated PPG

by the proposed ICAmethod (white) for the different move-

ments. As can be seen, the proposed ICA method outper-

forms the ANC approach in terms of increased SNR values.

A visual impression of the noise cancelation is given in Fig-

ure 3, showing the reconstruction of the PPG signal which

has been disturbed by periodic back and forth movements

during the experiment.

Discussion

In this work, a novel method for artifact removal of trans-

missive PPG signals has been proposed. It was shown that

the performance of this new approach yields better results

than the methods proposed by using classical ANC algo-

rithms. This results in more robustness of physiological ap-

plications like pulse rate detection. It should be mentioned,

that compared to the ANC method the convolutive ICA ap-

proach demands higher computational load which might re-

quire more powerful architectures for mobile applications

as were presented in [10].

0 2 4 6 8 10 12 14 16 18 20

−0.1
0

0.1

PPG − corrupted

A
m

p
l.

0 2 4 6 8 10 12 14 16 18 20

−0.1
0

0.1

PPG − reference

A
m

p
l.

0 2 4 6 8 10 12 14 16 18 20

−0.1
0

0.1

PPG − reconstructed

A
m

p
l.

0 2 4 6 8 10 12 14 16 18 20
−1000

0

1000
ACC −> X+Y+Z

Time (sec)

A
m

p
l.

Figure 3: Noise Cancelation of corrupted PPG signal
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Abstract: We have developed two open source biosignal
processing applications used at both ends of the signal pro-
cessing chain, namely the signal acquisition server Sig-
nalServer and the signal visualization and analysis appli-
cation SigViewer. Both programs are cross-platform (that
is, they run under Windows, Mac OS X, and Linux operat-
ing systems), free open source software, and licensed un-
der the GNU General Public License (GPL). SignalServer
records raw data from various data acquisition devices and
sends the data over the network in a standardized format.
SigViewer reads many different biosignal formats and vi-
sualizes the contained multi-channel time series data. In
addition, SigViewer supports annotations via custom event
markers.

Keywords: Biosignal analysis, signal acquisition, software,
open source, GPL

Introduction

Open source software has numerous advantages over pro-
prietary applications, especially in the area of scientific
research and development. For example, researchers can
change and adapt the source code to fit their specific re-
quirements. Existing software components can be reused,
and bugs can be fixed in the source code by every user. De-
pending on the specific license used in a project, it is often
required to make any changes to the source code available
to the public again, using the same license as in the original
program. Such licenses are called copyleft licences. The
most prominent example for a copyleft license is the GNU
General Public License (GPL).
We have developed two biosignal processing applications
used at both ends of the signal processing workflow, namely
the signal acquisition server SignalServer and the signal vi-
sualization and analysis application SigViewer. Both pro-
grams are cross-platform (that is, they run under Windows,
Mac OS X, and Linux operating systems), free open source
software, and licensed under the GNU GPL1.

SignalServer

SignalServer (tools4bci.sourceforge.net/signalserver.html)
is a program to record data from various sources such as
biosignal amplifiers, data acquisition cards, joysticks, and
mice [1]. A frequently updated list of supported devices,

1Note that SigServer is actually dual-licensed under the GPL and a
commercial license.

Hardware devices:
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– EMG
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. . .

Figure 1: Concept of TiA communication between Sig-
nalServer (left) and clients (right).

which includes devices such as g.USBamp, g.Mobilab,
g.BSamp (g.tec medical engineering GmbH, Austria), and
BrainVision BrainAmp (Brain Products GmbH, Germany),
can be found on the project website. SignalServer pro-
vides an abstraction layer between hardware devices and
programs receiving the recorded data. To this end, data is
transmitted in a standardized format over the network via
TCP/IP or UDP.
SignalServer works (as the name suggests) as a server,
and one or more clients can connect to this server
to receive data. Communication between client and
server adheres to the protocol defined in the “TOBI
interface A” (TiA)2, as provided by the TiA library
(tools4bci.sourceforge.net/tia.html) [2]. Client and server
communicate over a TCP/IP control connection, which uses
plain text and XML messages inspired by HTTP. Data
is sent over a another dedicated TCP/IP or UDP connec-
tion. Figure 1 illustrates the communication between Sig-
nalServer and clients.
The program is written in the standard C++ programming
language and makes use of the Boost libraries3. Therefore,
SignalServer runs under Windows, Mac OS X, and Linux
platforms. However, since currently many hardware man-
ufacturers provide only Windows drivers for their devices,
SignalServer does not support data acquisition from some
devices under non-Windows operating systems.
Extensive performance and stability tests have already been
carried out [1]. The results showed that SignalServer has a
low CPU load (depending on the signals, between 0–13 %),

2arxiv.org/abs/1103.4717
3www.boost.org
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low memory footprint (again depending on the signals be-
tween 500 kB and 12 MB), and is stable over extended pe-
riods of time. The mean processing time is in the range of
µs, and the typical network delay is around 0.1 ms.
Recently, SignalServer was extended to transmit only spe-
cific user-defined channels and/or downsample raw data to
reduce network traffic and/or CPU load on the client side.
Furthermore, SignalServer can save its data streams directly
to GDF4.

SigViewer

SigViewer (sigviewer.sourceforge.net) visualizes biosignal
data streams such as EEG, EMG, EOG, ECG, and so on [3].
The application can load most biosignal formats provided
by a library of the BioSig project [4], including .GDF,
.EDF, .BDF, .CNT, .DAT (BCI2000), and .EEG (Brain
Products GmbH, Germany). In addition to displaying data,
SigViewer supports creating and saving annotations of ar-
bitrary data chunks. These annotations can be used to mark
segments in the data, for example to highlight artifacts in
the EEG. Subsequent data analysis can then make use of
these markers and exclude these segments from further pro-
cessing.
In addition to visualizing data streams and annotations (see
Figure 2 for a screenshot of the main window), SigViewer
can also display associated meta information stored with
the data files. Furthermore, SigViewer can compute and
display the power spectrum and the mean time course av-
eraged over selected epochs. The latter feature essentially
isolates event-related potentials (ERPs).

Figure 2: SigViewer’s main window (running under Linux)
showing five EEG channels with colored annotations and
visualization options (above signals).

SigViewer is written in C++ and uses the cross-platform
Qt 4 libraries5. Therefore, just like SignalServer, SigViewer
also supports the three major operating systems mentioned
above.

4arxiv.org/abs/cs.DB/0608052
5qt.digia.com

Discussion
Both applications, SignalServer and SigViewer, can be used
in the signal processing workflow typical for biosignal pro-
cessing, which consists of signal acquisition, signal pro-
cessing, and signal visualization parts. While SignalServer
unifies data streams from various harware devices by using
TiA, SigViewer visualizes recorded data offline and offers
numerous tools for signal analysis.
Both software projects are free and open source, and both
programs are cross-platform. SignalServer is dual-licensed,
so if the copyleft license cannot be used, a proprietary li-
cense is also available. Future work on SignalServer will
include the integration of new hardware devices and the
support of other interfaces used for (hybrid) brain-computer
interfaces (BCIs) [2], such as event markers used in BCI ex-
periments. These events, along with other metadata, can be
stored directly in a GDF file, for example.
The list of devices supported by SignalServer will be con-
tinuously updated in the future. Other possible extensions
include improved interoperability with other software plat-
forms and support for other file formats for storing incom-
ing data streams. SigViewer will receive new functionality
as requested by the community. Possible major extensions
include filtering of signals (high or low pass filters), com-
putation of ERDS maps, and improved editing of metadata
and event information.
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Abstract:  A method for calculating the instantaneous 
energy of extracellularly recorded action potentials using 
the analytic signal has been developed and tested. The 
energy is computed from the recorded signal with Hilbert 
filter based multi-resolution energy filters with optimized 
signal to noise ratio. The computed instantaneous energy 
is used for threshold based detection of action potentials 
in the signals.  
 
Keywords: Extracellular recordings, action potentials, 
spike detection, analytic signal, Hilbert filter 
 
Introduction 

To get an insight in the neuronal processing of infor-
mation in the brain, extracellular multi-neuron recordings 
with multiple electrodes, like tetrodes or heptodes, are 
commonly used. These recordings contain action poten-
tials (spikes) from different neurons at various distances 
and, unfortunately, artefacts and noise.  
Spike sorting is used to first separate spikes from noise 
and second to classify spikes into different clusters that 
correspond to different neurons. The extraction of spikes 
from raw signals is called spike detection. 
A common spike detection approach consists of the com-
putation of a signal representation that enhances the sig-
nal to noise ratio, like the instantaneous power or energy 
of the signal. Then a thresholding is applied and peaks 
above threshold are detected and marked as spikes. The 
next step is the alignment of the detected spikes for sub-
sequent clustering analysis. 
A commonly used method to detect the instantaneous 
energy of a signal is the Teager-energy-operator (TEO) 
or, modified for spike detection, the multi-resolution-TEO 
(MTEO) [1, 3].  
However, Vakmann showed that especially for wide-band 
and noisy signals the computation of the analytic signal 
with the Hilbert transformation is more robust than using 
TEO [2]. In addition, since the TEO has been developed 
for harmonic oscillators, it is unable to compute the ener-
gy for some important classes of signals, e.g. the expo-
nential function. Tests of the TEO for spike detection 
showed that many negative energy values occurred, 
which have to be eliminated by a low pass filter. This 
leads to a worsening of the, theoretically good, temporal 
resolution and, in combination with thresholding, a de-
crease of performance when overlapping or adjacent 
spikes are present. The spectral resolution is, due to the 
short operator duration, poor. 
Our focus lies on the improvement of the initial spike 
detection algorithm for a heptode spike sorting program. 

Methods 

We adopted the spike detection algorithm from Franke et 
al. [3], tested and improved its performance. This spike 
detection algorithm is based on the MTEO. 
We developed a multi-resolution energy filter (MEF) by 
adopting the multiresolution approach of the MTEO and 
replacing the TEO by a Hilbert filter approach.  
 
The analytic signal: The analytic signal is defined as [2] 

(t)je A(t)= v(t)j+u(t)=(t) �� , (1) 

where )]([v(t) tuH�  is the Hilbert transformed of )(tu , 

the recorded signal. The instantaneous energy is calculat-
ed with  

222
v(t)+u(t)(t)=(t) ���E . (2) 

The instantaneous amplitude of the analytic signal repre-
sents the envelope of the signal. 
One important property of the analytic signal is that its 
spectrum is zero for negative frequencies. Thus a straight-
forward method to compute the analytic signal is to set 
Fourier-components with negative frequencies to zero and 
to multiply other components by two. This is the multipli-
cation of the signal’s Fourier spectrum with two times the 
unit-step function [4]. To compute the analytic signal in 
the time domain a FIR-filter can be constructed by using 
the inverse Fourier transformation of the unit step func-
tion [5]. 
 
Hilbert bandpass filter: To improve the analytic signal 
based discrimination of spikes and noise, the signal is 
filtered by a Hilbert bandpass filter. This filter consists in 
the frequency domain of a sin2 tapered rectangular win-
dow. By multiplying it with two times the unit-step func-
tion, a Hilbert bandpass filter results. 
By means of tunable center frequency and quality factor, 
the spectro-temporal properties of the Hilbert bandpass 
filter can be adjusted to signal's characteristics. 
 
Multiresolution energy filter: The detection and decom-
posing/separation of adjacent and overlapping spikes can 
be improved, when the filter responses are as short as 
possible. This is best achieved by using short Hilbert 
bandpass filters that are not affected by adjacent spikes. 
To obtain optimally short filters for spikes of different 
duration, we constructed a multiresolution energy filter.  
However, extracellulary recorded spikes are in most cases 
biphasic. It is well known that the duration of the spikes is 
related to their spectral properties. Longer lasting spikes 
have more low frequency components while short lasting 
spikes have more high frequency components. We use 
these facts, by covering the overall bandwidth with over-
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lapping filters of adequate small bandwidths in combina-
tion with optimal lasting impulse responses. This ensures 
that virtually only adequate spectro-temporal match of 
spike and filter properties yield optimal spike detection 
properties. 
All filters have the same quality factor Q that is computed 
from the count of filters and the overall bandwidth. 
Signal’s energy is calculated from filter responses accord-
ing to equation (2) and the maximum of the filter re-
sponses is selected by a winner-take-all process for sub-
sequent threshold based detection.  
 

 
Figure 1: A) Segment from a simulated extracellular re-
cording. B) MEF-responses with optimized parameters 
and C) MTEO-responses with k-values of 3, 6 and 9. Red 
dots indicate true spikes locations. At 0.34 s, the respond 
of MEF to adjacent spikes is, with respect to temporal 
resolution, clearly superior to the response of the MTEO. 

 
Signal simulation: The simulated tetrode-signals for 
testing the performance of the spike detection algorithm 
consists of biphasic spikes of different length and simu-
lated noise. 
The duration of spikes ranges from 0.8 ms to 2.8 ms. 
Signals with spikes of just one duration were simulated 
and, especially, signals with a mixture of spikes of differ-
ent durations. There were no overlapping but adjacent 
spikes in the signal. 
Amplitude distribution and spectrum of the Gaussian 
white noise has been modified to be similar to noise pre-
sent in extracellular recordings. The spikes have been 
modelled with two Gaussian curves. 
 
Performance testing: The performance of spike detec-
tion has been analyzed via receiver operating characteris-
tic (ROC) and quantified by measuring the area-under-
the-curve (AUC) of the ROC-curve. 

Table 1: Values of the measured AUC of MEF with opti-
mized parameters and the MTEO with k-values of 3, 6 
and 9. Signal 4 contains a mixture of spikes of different 
durations from 0.8 to 2.8 ms. 

Signal 
ID 

Duration of 
spikes in signal 

in ms 

AUC for 
MEF 

AUC for 
MTEO 

1 0.8 0.94 0.91 
2 1.8 0.95 0.92 
3 2.8 0.90 0.90 
4 0.8 to 2.8 0.90 0.88 

 
Results 

Our preliminary results show, that the performance of the 
novel spike detection algorithm is equal or even better 
than the performance of the MTEO spike detector, each 
with optimal parameter sets (Table 1).  
The temporal response resolution of our MEF is better 
than that of the MTEO detector (Fig. 1). Notably, the 
detection of adjacent or overlapping spikes is easier and 
more robust compared to the MTEO detector. 
However, both filters, MTEO and MEF, tend to detect 
shorter spikes better than longer-lasting spikes. This may 
be due to trade-offs between parameter settings, signal 
properties and detection performance. 
 
Discussion and Conclusion 

We developed and tested a new spike detection algorithm 
based on the analytic signal that is superior to the MTEO 
spike detector. However, additional testing of its perfor-
mance with simulated and real signals containing over-
lapping spikes, tests concerning the robustness under 
several signal conditions and automatic parameterization 
will be addressed in future work.  
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Abstract:  Fluorescence microscopy is a common technique 

to investigate biological processes at a cellular level. In 

order to analyze the patterns of movement of subviral parti-

cles in cells, fluorescent proteins have been embedded in 

viral protein complexes. Fluorescence microscopy image 

sequences often contain many different particles, making the 

analysis a very time-consuming process. Therefore we 

started the development of an automated tracking of subviral 

particles present in fluorescence microscopy image se-

quences.  

 

Keywords:  Particle tracking, fluorescence microscopy, 

subviral particle, cell, image processing. 

 

Introduction 

Microscopy is a common technique to investigate bio-

logical processes at a cellular level. By the means of fluo-

rescence microscopy it is possible to visualize fluorescent 

proteins and more complex cellular structures containing 

these proteins. To achieve this, we inserted genetic se-

quences of fluorescent proteins into viral DNA. This 

approach allowed us to visualize the intracellular move-

ments of the fluorescent marked subviral particles. The 

resulting image sequences can be interpreted by special-

ists, who are able to distinguish these particles from regu-

lar cellular components. As there can be a lot of different 

particles in just one observed cell, it is in general not 

possible to manually track all of them. Thus it is of major 

interest to develop digital image processing algorithms 

that allow an automated tracking of each particle. 

 

Methods 

The automatic tracking of subviral particles pictured by 

means of fluorescence microscopy sequences requires 

several steps. However, even manual tracking of subviral 

particles is often only possible for some images. Particles 

get blurry or even invisible from one image to the next as 

they move through different layers of the cell or due to 

crossing some other fluorescence marked areas. This 

problem might be solved by using information from im-

age sequences. An initial guess of particle’s shape or 

velocity can be used to estimate the position of the parti-

cle by interpolation. A straightforward first step to make 

automatic tracking possible is to extract characteristics of 

particle movements and to use the estimated parameters 

for a subsequent analysis. 

 

The next step is to identify subviral particles given the char-

actersitics of their respective image representations. This 

improves the detection of a particle and, in addition, its iden-

tification. Many different mathematical methods can be used 

to extract features from images. However, there is no perfect 

method, since all methods have advantages and disadvan-

tages. Thus, we started to test some prospecting methods in 

order to develop an accurate and robust subviral particle 

tracking algorithm.  

 

The pixel intensity distribution of each particle can be ap-

proximated by a two dimensional Gaussian distribution. 

Using this ansatz a correlation with a Gaussian kernel can be 

used to enhance the contrast of the particles, to separate them 

from the noisy background and to adjust the kernel’s pa-

rameters.  

Thus the quality of subsequent analyses can be increased by 

fitting a rotated two dimensional Gaussian distribution func-

tion to each of the detected particles. A good method to 

extract size and alignment or rotation of the particles, corre-

sponding to size and alignment of the 2D Gaussian function, 

is principal component analysis (PCA). In further steps the 

PCA can also be used to extract optical features of the parti-

cles by eigenvalue and eigenvector based intensity distribu-

tion analysis. Using this information and the previously 

gained knowledge about the characteristics of the move-

ments of the particles, as an input for a currently developed 

algorithm, allows the identification of the particles in subse-

quent images. Here we report on initial results concerning 

trajectories and velocities of subviral particles that we ob-

tained by manual tracking. 
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Results 

 
Figure 1: Tracks of subviral particles (red: moving to the 

cell’s center, green: moving to the cell membrane ); rectan-

gle: enlarged single particle  

 

 
Figure 1 shows green and red colored trajectories of 

subviral particles in a renal cell captured by fluorescence 

microscopy. The trajectories have been plotted over the 

first image of the image sequence. The particles have 

been tracked manually in order to generate initial and 

reliable information about the particles, e.g. position and 

velocity.  

A problem concerning simple manual tracking is, that the 

position of the particles is limited to pixel size of the 

camera system. This leads with respect to the pixel size of 

the particles to uncertainties which we started to remove 

algorithmically by using PCA.  

Figure 2 shows the frequency distribution of the velocity 

of subviral particles for a sequence of 250 images ob-

tained by our PCA based analysis. Similar results were 

obtained for another sequence. 

Figure 2: Histogram of intracellular velocities of subviral 

particles. 

 

Discussion 

We are interested in biological processes at the subviral level 

and showed that fluorescence microscopy and image proc-

essing can provide interesting parameters. However, there 

are considerable variations between image sequences and 

subsequent images of an image sequence. Some are related 

to the movement optically marked subviral particles, but 

some are unwanted noise or artifacts, that might be removed 

algortihmically. Thus we started to develop an automated 

and robust algorithm for subviral particle tracking. Unfortu-

nately, the fluorescence of the subvrial particles is often 

weak. In addition, there are some unedifying general con-

straints in the settings for the image acquisition, e.g. a suffi-

ciently high signal-to-noise ratio requires often a long expo-

sure time, which is, on the other hand, disadvantageous with 

respect to temporal resolution. It is well known that a low 

temporal resolution leads to blurring and pseudo-jumps of 

fast moving objects. If, anyhow, the image quality is good, 

there are still some challenges that hamper the identification 

of subviral particles. The optical crossing of different parti-

cles or their movements over regions with high fluores-

cence levels, outshining the light up of the particles, make 

their tracking very difficult. Our first results indicate, that 

some of these challenges can be mastered algorithmically. 
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