
Zurich Open Repository and
Archive
University of Zurich
Main Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2013

Semi-automatic Generation of Metamodels from Model Sketches

Wüest, Dustin; Seyff, Norbert; Glinz, Martin

Abstract: Abstract—Traditionally, metamodeling is an upfront activity performed by experts for defining
modeling languages. Modeling tools then typically restrict modelers to using only constructs de-fined in
the metamodel. This is inappropriate when users want to sketch graphical models without any restric-
tions and only later assign meanings to the sketched elements. Upfront metamodeling also complicates
the creation of domain-specific languages, as it requires experts with both domain and metamodeling
expertise. In this paper we present a new approach that supports model-ers in creating metamodels for
diagrams they have sketched or are currently sketching. Metamodels are defined in a semi-automatic,
interactive way by annotating diagram elements and automated model analysis. Our approach requires
no metamodel-ing expertise and supports the co-evolution of models and meta-models.

DOI: https://doi.org/10.1109/ASE.2013.6693130

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-88828
Published Version

Originally published at:
Wüest, Dustin; Seyff, Norbert; Glinz, Martin (2013). Semi-automatic Generation of Metamodels from
Model Sketches. In: IEEE/ACM International Conference on Automated Software Engineering, Silicon
Valley, California, 11 November 2013 - 15 November 2013, 664-669.
DOI: https://doi.org/10.1109/ASE.2013.6693130

https://doi.org/10.1109/ASE.2013.6693130
https://doi.org/10.5167/uzh-88828
https://doi.org/10.1109/ASE.2013.6693130

Semi-automatic Generation of Metamodels
from Model Sketches

Dustin Wüest, Norbert Seyff, Martin Glinz
Department of Informatics, University of Zurich, Switzerland

{wueest,seyff,glinz}@ifi.uzh.ch

Abstract—Traditionally, metamodeling is an upfront activity
performed by experts for defining modeling languages. Modeling
tools then typically restrict modelers to using only constructs de-
fined in the metamodel. This is inappropriate when users want to
sketch graphical models without any restrictions and only later
assign meanings to the sketched elements. Upfront metamodeling
also complicates the creation of domain-specific languages, as it
requires experts with both domain and metamodeling expertise.

In this paper we present a new approach that supports model-
ers in creating metamodels for diagrams they have sketched or
are currently sketching. Metamodels are defined in a semi-
automatic, interactive way by annotating diagram elements and
automated model analysis. Our approach requires no metamodel-
ing expertise and supports the co-evolution of models and meta-
models.

Index Terms—Sketch, model, metamodel, inference, semi-
automated, end-user.

I. INTRODUCTION
With the advent of model-driven engineering (MDE), mod-

els have become the main artifacts in a tool-supported, model-
centric development process [4]. Such an approach requires
models to be machine-processable and transformable. Conse-
quently, the corresponding modeling languages need to be de-
fined precisely. Graphical modeling languages, on which we
focus in this paper, are typically defined by a metamodel [2].

The standard way of using a modeling language is to define
the language first, i.e., experts must create a metamodel for a
new language before modelers can use the language for creat-
ing actual models [18]. This allows the creation of powerful
analysis and transformation tools required for MDE.

However, in the early phase of development, for eliciting,
creating and sketching initial ideas, engineers want and need
freedom in choosing notations adapted to their needs – be it in
the form of domain-specific languages (DSLs), by back-of-an-
envelope style sketches, or both. Standard modeling languages
such as UML are not well suited for that purpose. Instead, we
need languages that can be flexibly defined and used in a way
that they are well adapted for the specific problem at hand.

The traditional paradigm of upfront metamodeling breaks
down here: Modelers want the flexibility to draw model ele-
ments regardless whether or not a pre-defined metamodel pro-
vides such elements [21]. DSL designers want to draw sample
models in a new DSL with full tool support before formally de-
fining model elements in a metamodel.

At the same time, however, there is still a need for evolving
such flexibly created models into a form that allows formal
analysis and transformations. That means that metamodels
must be created at some point. Metamodeling tools such as
MetaEdit+ [27] and MetaBuilder [12] provide some relief by
making the task of formally defining a DSL easier and faster,
but they still require upfront metamodeling. Today, modelers
who need flexible modeling capabilities frequently use white-
boards for sketching [5][19]. This is done at the expense of lat-
er re-creating the sketched models manually in a more formal
modeling language in order to feed them into an MDE chain.

For really solving the flexible modeling problem, we need
to interleave modeling and metamodeling activities and a tool
that supports the co-evolution of models and metamodels.
Combining sketching and metamodeling in a single tool is an
approach not well studied so far. In our own previous work, we
have developed the FlexiSketch approach [30][31] which al-
lows free interleaving of modeling and metamodeling tasks.

In this paper, we present how FlexiSketch step-wise and
semi-automatically generates metamodels for model sketches,
by inferring metamodel clues from existing model fragments
and interactively eliciting missing metamodel information.
Thereby, FlexiSketch enables modelers with no prior meta-
modeling expertise to annotate sketched model elements with
meanings and eventually produces a fitting metamodel.

The remainder of this paper is structured as follows. Sec-
tion II provides the objectives of our research and information
about FlexiSketch. Section III discusses FlexiSketch’s meta-
modeling capabilities. Section IV outlines first evaluation re-
sults. Section V presents related work. Section VI concludes,
discusses limitations and future work.

II. MODELING LANGUAGES AND FLEXISKETCH

A. Focus and Objectives of our Work
We are interested in generating definitions of concrete and

abstract syntax from a set of existing model sketches. Our goal
is enabling engineers to create a language syntax definition for
their early model sketches, such that

• these sketches can be formalized and re-used during
the development process of a software project,

• engineers don’t need metamodeling expertise,
• the tasks of modeling and metamodeling can be inter-

leaved.

664
Proceedings ASE 2013, Palo Alto, USA
New Ideas Track

DOI 10.1109/ASE.2013.6693130
© 2013 IEEE

We restrict the scope of our work to graphical, node-and-
edge style models. Typical examples for such diagrams are
class diagrams, component diagrams or activity diagrams in
UML. Also, graphical DSLs typically fall into this category.
This scope allows us to restrict the metamodel elements and
structure we need to consider, omitting complicated structures
such as deep inheritance trees that are hard to understand even
for experts.

We focus on collecting metamodel information, both auto-
matically by inference from existing model sketches and inter-
actively in a tool-guided dialog with the engineer. Producing
metamodels compatible with those of existing modeling tools is
beyond the scope of our current work. However, we intend to
generate metamodels that are sufficiently formal so that they
can be transformed into a format understood by a commercial
modeling tool.

B. FlexiSketch in a Nutshell
Our approach has been implemented prototypically in our

FlexiSketch tool [31]. It is available for Android OS tablet de-
vices and supports lightweight and flexible modeling. Having a
mobile tool allows to use it in-situ in various contexts.

On start-up, FlexiSketch tries to mimic a whiteboard. Most
of the screen is empty, inviting users to start sketching. User
drawings are converted into elements that can be manipulated
(e.g., moved, scaled, or deleted). FlexiSketch differentiates be-
tween symbols (nodes) and links (edges). Nodes may be drawn
or consist of imported images. The tool allows assigning types
to sketched elements by annotating them. These annotations
provide the basic structure of a metamodel. Graphical represen-
tations of user-defined types appear in a type library on the
right side of the screen. From there, users can create copies of
their elements by dragging them onto the drawing canvas.
Thus, the type library is a container for the user-defined con-
crete syntax. A sketch recognition algorithm processes the us-
er-drawn symbols. If the user draws a symbol that looks similar
to one from the type library, the tool asks in a small popup
window whether it is the same symbol type. A more detailed
description of FlexiSketch is given in [31].

Figure 1 shows a screenshot of the tool, showing a model
sketch. The top right symbol is currently selected (indicated by
a blue background and the visible context menu icons).

C. Using FlexiSketch – A Scenario
Engineers can use FlexiSketch to freely sketch their ideas

as node-and-edge type models without any well-formedness
constraints. If they decide to keep the resulting artifacts,
FlexiSketch provides them with an easy, user-friendly way to
add a metamodel to their sketches by annotating elements and
answering questions asked by FlexiSketch’s tool wizard. Once
all the metamodel information has been collected, the model
sketches and their metamodel(s) can be exported into an XML
file. This file can then be transformed such that the models can
be imported into other modeling tools, thus supporting an MDE
approach. This encourages engineers to include their early
sketches systematically into the software engineering process
and avoids costly and risky re-modeling of information origi-
nally documented in sketches.

III. METAMODELING IN FLEXISKETCH

In this Section, we give an overview on metamodel funda-
mentals in FlexiSketch, and then explain how we build meta-
models based on inference and tool guidance. We also show
how we minimize the versioning problem when associating
metamodels with existing and new sketches.

A. The Metamodel Structure in FlexiSketch

In FlexiSketch, the user can create symbols, links, and an-
notations as elements on the drawing canvas. Symbols and
links are TypedElements, i.e., the user can define types for the-
se elements. This creates a new SymbolType or LinkType class
in the metamodel. Annotations are used to add informal notes
to the sketched models. Furthermore, the meta-metamodel sup-
ports Attributes and Containments. Attributes can be used to
add fields with type-value pairs to a symbol or link type. A
containment gets created when a symbol is part of another
symbol, i.e. it is drawn inside another symbol. The containment
then stores the types of the symbols together with cardinalities
defining how many symbols of a particular type may be con-
tained in the symbol of the other type. Attributes and contain-
ments are not yet supported in the tool.

FlexiSketch does not store cardinalities directly for link
types. Instead, it stores them for ConnectionTypes, which is a
more flexible solution. While a link type is defined by just the
type of the link itself, we uniquely identify a connection type as
combination of the type of the link and the types of the two
connected symbols. If the link is directed, we have a start sym-
bol and an end symbol. A link type can have several connection
types, i.e., when the same link type is used to connect different
types of symbols. For example, a link type R may be used in
one case to connect a symbol of type A with a symbol of type
B, and in another case to connect a symbol of type A with a
symbol of type C. Accordingly, the tool generates two connec-
tion types, one for R(A, B) and one for R(A, C). The connection
type for R(A, B) defines that R points from a symbol of type A
to a symbol of type B. The cardinalities define (i) to how many
type B symbols a single type A symbol may have outgoing
links of type R, and (ii) from how many type A symbols a sin-
gle type B symbol may have incoming type R links.

Fig. 1. The FlexiSketch tool showing a user’s sketch.

665

B. Recognizing Elements on the Drawing Canvas

For the automated model analysis, we assume that the
various elements in a model are already categorized into nodes
and edges. This categorization is directly tied to how model
sketching works in the tool. Whenever the user starts drawing
and then stops for a certain amount of time, that drawing is
converted into a distinct symbol which is always a node. Links
(edges) can only be created by connecting two previously
drawn symbols. For that, the user draws a stroke, starting inside
one symbol and stopping inside another. The stroke is then
automatically converted into a link between the symbols.
Annotations are textboxes that are ignored for the metamodel
creation, since they contain text related to a concrete model.

C. Inferred and User-Defined Symbol Types

Symbols on the drawing canvas can be selected. Upon se-
lection, a context menu includes the option to assign a type (via
text input) to the symbol. Each type appears in the type library
together with its graphical representation, which is displayed
on the right edge of the screen. From there, new instances of
types can be created by dragging and dropping them on the
drawing canvas. This mechanism is an advantage of having a
single environment for both modeling and metamodeling. It
gives immediate feedback about all currently defined elements
of the language. As the type library allows to re-use defined
types, users can get motivated to assign types to elements, even
if they do not intend to perform metamodeling [31].

Once some symbols are defined, the type of similar sym-
bols can be inferred. A sketch recognition algorithm recognizes
similar, yet untyped symbols. As recognition errors are inevita-
ble, the tool does not automatically assign symbol types. In-
stead, it displays suggestions to the user in a small popup win-
dow. The user can either tap on suggestions or simply ignore
them, as they disappear after a couple of seconds. As long as a
symbol remains untyped, FlexiSketch internally uses a unique
identifier for the symbol type. This is not shown to the user, but
needed to distinguish untyped symbols from each other when
connection cardinalities are inferred.

D. Inferred and User-Defined Link Types

Each link (edge) in the model represents a connection. Se-
lecting links and assigning types to them works in the same
way as for symbols. However, for the appearance of a link, the
user has to choose from a predefined set of options (arrow, no
arrow, solid line, dashed line, etc.). This allows the tool to
guarantee a 1:1 correspondence between semantic constructs
and graphical representations of links. If two links have the
same appearance, Flexisketch infers that they have the same
type, thus prohibiting symbol overload [20] for link types. As
soon as the user assigns a type to a link, all links with the same
appearance in the model automatically get the same type as-
signed. Conversely, FlexiSketch does not allow the user to as-
sign the same type to two links having different appearances,
thus preventing symbol redundancy [20] for link types. The re-
striction of having a 1:1 mapping between link appearances and
types also facilitates the inferring of connection cardinalities.

E. Inference of Connection Cardinalities
The user can define cardinalities for a connection type di-

rectly by selecting a link of that type on the drawing canvas and
using the context menu to set the cardinalities. For connection
types having no user-defined cardinalities, FlexiSketch auto-
matically infers them, using a closed world assumption: the in-
ference is based only on those links that have been modeled so
far. This means that the tool infers very restrictive cardinalities
in the beginning, starting with 1..1 when two symbols are con-
nected with a link. When more links of the same type connect
the same symbol with others, the cardinality rule is relaxed to,
e.g., 1..4. Thus, the tool never sets a cardinality to n; such gen-
eralizations must be done by the human user. Alternatively, the
inference algorithm could be changed such that n is inferred
whenever a cardinality is greater than 1.

The tool infers cardinalities whenever one of the following
events happens: (i) The sketched model is saved (the metamod-
el is saved as well); (ii) The user wants to set the cardinalities
of a connection type. Instead of presenting empty fields to the
user, they are pre-filled with the inferred cardinalities (unless
user-defined cardinalities already exist); (iii) The user locks the
metamodel (see Sect. III.G).

As described in Sect. III.A, a connection type is defined as
R(A, B), where R is the type of the link, and A, B are the types
of the connected symbols. To infer the cardinalities of a con-
nection type, FlexiSketch looks at all occurrences of R(A, B) in
the sketch. If a symbol of type A has less or more outgoing
links to symbols of type B than defined by the current mini-
mum and maximum outgoing cardinalities, the cardinalities are
automatically adjusted accordingly. The same is done for defin-
ing the incoming cardinalities.

Cardinalities and connection types can also change when
symbol types and/or link types are changed. A typical case is
when a single link type is used to connect many untyped sym-
bols. For each link, a connection type needs to be created, as
each connected symbol potentially has a different type and dif-
ferent cardinalities. When the user then assigns the same type
to several symbols, the according connection types are consoli-
dated into one, and the cardinalities are updated. Rules can also
get more restrictive when links are deleted. But cardinalities are
never set more restrictively than the values already defined by
the user. Deleting a link or a symbol from the drawing canvas
can also alter the list of connection types. If a connection type
has no more instances on the canvas, it gets deleted. However,
link types and symbol types that are defined by the user and
visible in the type library are never deleted automatically.

Fig. 2 shows an example. The tool manages two connection
types performs(person, activity) and performs(person, un-
known_type_1). The type unknown_type_1 indicates that the
user has not assigned a type to this symbol. For per-
forms(person, activity), the tool detects that one symbol of type
person is connected to at most one symbol of type activity,
while the other person has no connection. It therefore infers the
outgoing cardinalities 0..1. The incoming cardinalities are 1..1,
as each symbol of type activity has exactly one incoming per-
forms link from a person. The cardinalities for the other con-
nection type are identical. If the user now assigns the type

666

activity to the untyped symbol, the two connection types are
merged, because both now define the same connection: per-
forms(person, activity). Since a person is now connected to
multiple activities, the 0..1 cardinality rule is relaxed to 0..2. If
the user deletes one of the activity symbols, FlexiSketch checks
the rest of the sketch to see whether it has to set the 0..2 cardi-
nalities back to 0..1. This depends whether there is still another
person symbol in the sketch that is connected to more than one
activity symbol or not.

F. The Wizard – Interactive Guidance
In addition to adding types and setting cardinalities by using

the context menu icons of sketched elements, FlexiSketch pro-
vides a wizard that helps modelers to supply missing metamod-
eling information. The wizard can be consulted on demand. It
is passive in order not to distract the user from the modeling
task. The wizard can be especially useful when it is called be-
fore saving the finished model sketch to ensure that no meta-
model information is missing. Currently, the wizard consists of
three steps: first it asks about types of unknown symbols, then
about links, and finally about cardinalities for connection types.
In each step, the wizard displays a separate page and question
per element.

In the first and the second step, the wizard identifies untyped
symbols and links respectively. When it detects one, it shows it
to the user on the drawing canvas. If needed, the tool scrolls the
canvas to make the element visible onscreen and then high-
lights it with a blue background. At the bottom of the screen,
the wizard asks the user to define the type. A definition can be
skipped if the user does not regard the currently shown element
to be relevant. As soon as the user assigns a type to a particular
link, this type is automatically assigned to identical looking
links.

In the third step, the wizard looks for connection types
where at least one of the four cardinalities is not marked as us-
er-defined (the state of a cardinality can be inferred or user-
defined). When it finds one, it randomly picks an instance of it
(a link) on the drawing canvas. It highlights the link and the
connected symbols and provides the options to set cardinali-
ties. Figures 3 and 4 show a screenshot of the wizard asking
about cardinalities for a connection type from the inferring ex-
ample in Sect. III.E. The cardinality values in the fields (0..2
and 1..1) were inferred by FlexiSketch and are now presented
to the user.

G. Storing Metamodels and the Lock Mechanism
The co-evolution of models and metamodels imposes chal-

lenges when it comes to storing the metamodels and how the
versioning of metamodels should be handled [29]. In our case,
metamodels are undergoing an almost continuous evolution: as
a user changes the model, this in turn might also change the
corresponding metamodel. Earlier models that had the same
underlying metamodel might no longer be compatible with the
new metamodel version. We present two mechanisms to mini-
mize the synchronization problem between multiple model
sketches and the metamodel.

First, a metamodel is stored together with each sketched
model. This ensures that each model conforms to at least one
metamodel at any time. If two or more metamodels need to be
merged into one, we can create a common metamodel automat-
ically as long as the result is a generalized metamodel, i.e., the
merging can be achieved by only adding new meta-information
and relaxing existing rules (e.g., changing cardinalities from
1..n to 0..n). Such changes to a metamodel belong to the cate-
gory of so-called non-breaking changes [8]. Models conform-
ing to one of the merged metamodels will also conform to the
generalized metamodel. There are two more categories: break-
ing changes which are resolvable, and breaking changes which
are not resolvable. Several researchers [8][9][25] present ap-
proaches for handling such metamodel changes.

Second, we introduce a lock mechanism. Metamodels can
be saved independently from models. Once a metamodel is
thought to be final, it can be locked. Other users can load a
locked metamodel and start to sketch a model, but the lock dis-
allows any changes to the metamodel. Therefore it will not be
updated according to the model sketch. Instead, parts of the
model that do not conform to the metamodel will be highlight-

Fig. 3. The wizard highlights an instance of a connection type and asks
for the cardinalities.

Fig. 4. A close-up of the wizard window.

Type:
Activity Type:

Person

Type:
performs

Type:
unknown_type_1

Type:
performs Type:

Person

Fig. 2. Inferring example.

667

ed accordingly. This mechanism allows companies to leave
metamodels unlocked as long as they are building DSLs. They
can lock a metamodel to finalize their DSL, signaling modelers
that they now have to adhere to the metamodel (unless compa-
nies want to unlock it again for improving the DSL).

Finally, metamodels can be saved and exported at any point
in time. We illustrate this functionality with a small, sketched
class diagram fragment as shown in Fig. 5. The user has drawn
three boxes and assigned the type class to them. She connected
the box in the middle and the one on the right side with a link
and defined it as association. Then she connected the third box
with a link, changed its appearance to a line with an arrow
head, and defined it as inheritance. The user then defined the
cardinalities for the two connection types, and added some text
to one of the boxes. Figure 6 shows an excerpt of the corre-
sponding metamodel generated by FlexiSketch.

IV. INITIAL EVALUATION RESULTS

We investigated to what extent FlexiSketch supports novice
modelers in providing metamodel information for their model

sketches. We conducted an experiment with 31 second term
computer science students. The students had no prior meta-
modeling knowledge, and only little experience in modeling.
After a tutorial in which the students learned about the tool
functionalities, the students were assigned a use case modeling
task. No introduction to metamodeling was given. However,
the handouts stated that all model elements should be defined
because the tool must be able to interpret the sketched dia-
grams. An online questionnaire completed the experiment.

Results show that the students were able to correctly define
symbol and relationship types. In contrast, many students made
mistakes in the cardinality definitions. The reason was that the-
se students were thinking on the model level instead of the
metamodel level, thus trying to assign cardinalities to individu-
al relations instead of relationship types.

We performed this experiment with students to prove that
FlexiSketch is easy to use and even modeling novices can gen-
erate metamodels with it. However, results suggest that users
need at least some basic metamodeling knowledge in order to
master metamodeling tasks that go beyond type assignment.
Future studies will focus on requirements engineers, who are
also the main target group of FlexiSketch.

V. RELATED WORK

We identified related work about sketching and design in
software engineering as well as metamodel inference. Howev-
er, we are not aware of any work within the SE field that tries
to combine a lightweight modeling approach (in this case mod-
el sketching) with a user-friendly metamodeling solution in a
single tool. Most work about metamodeling focuses on the
technical aspects, assuming that a metamodeling expert learns
how to operate a formal modeling tool. The aspects of usability
and user-friendliness are ignored.

The idea of bringing sketch interfaces and recognition into
play to foster creativity and facilitate design tasks is not new
[11]. [3] presents a generic approach to generating diagram edi-
tors which support and analyze hand drawings. Several other
researchers have incorporated a sketch interface into their semi-
formal modeling tools, e.g., MaramaSketch [14], InkKit [23],
and SketchREAD [1]. [16] gives a broad overview of similar
approaches. While some of these approaches might allow users
to alter the concrete notation, they only support predefined
modeling languages. In contrast, the Calico tool [19] focuses
on supporting an informal form of software design that heavily
relies on sketching. It provides some means of structuring the
sketches, but does not allow to formalize them. [10] and [28]
discuss a step-wise formalization of models. New modeling
languages can be created by linking artifacts of already existing
languages.

Several research tackles metamodel creation from model
examples, e.g., [13]. MARS [15] is a tool for reconstructing
missing metamodels for a given set of models. Cuadrado et al.
[9] propose an interactive, bottom-up metamodeling approach
similar to ours. But modeling and metamodeling cannot be per-
formed in the same tool. Cho et al. [7] focus on technical as-
pects of incremental and iterative metamodel definition by
providing model examples. User interaction and tool-support

Fig. 5. A minimalistic class diagram fragment.

...
 <Symbol>
 <type>Class</type>
 <attributes>

<labels> ... </labes>
 </attributes>
 </Symbol>
 <Link>
 <type>Association</type>
 <appearance> ... </appearance>
 <direction>bidirectional</direction>
 <connections>

<connection__1>
<from__element>Class</from__element>
<to__element>Class</to__element>
<from cardinalities>

<min>0</min> <max>-1</max>
</from cardinalities>
<to cardinalities>

<min>0</min> <max>-1</max>
</to cardinalities>

</connection__1>
 </connections>
 </Link>
 <Link>
 <type>Inheritance</type>
 <appearance> ... </appearance>
 <direction>unidirectional</direction>
 <connections>

<connection__1>
<from__element>Class</from__element>
<to__element>Class</to__element>
<from cardinalities>

<min>0</min> <max>-1</max>
</from cardinalities>
<to cardinalities>

<min>0</min> <max>1</max>
</to cardinalities>

</connection__1>
 </connections>
 </Link>
 ...

Fig. 6. Metamodel of the fully defined class diagram fragment from
Fig. 5.

668

are not discussed. Design guidelines for DSLs can be found in
[17] and [22]. [6] and [26] discuss design patterns for meta-
models. Regarding user guidance, Qattous et al. [24] demon-
strate that defining metamodel constraints with a by-example
approach outperforms a form-based wizard approach.

VI. CONCLUSIONS AND FUTURE WORK

We have shown how FlexiSketch supports semi-automatic
step-wise creation of metamodels, without the help of meta-
modeling experts. Following our research objectives given in
Sect. II.A, we presented strategies on how to gather infor-
mation relevant for metamodel generation, using both automat-
ed model inferring and wizard-based user guidance. A key con-
tribution of our work is our technical solution, which has been
implemented in the FlexiSketch prototype. Experiment results
highlight that modelers are able to provide relevant metamodel
information when working with FlexiSketch.

FlexiSketch provides a lightweight and user-friendly ap-
proach to modeling and metamodeling. As we are mainly con-
cerned about gathering basic metamodel information, we do
not focus on building high-quality, sophisticated metamodels.
Readers who are interested in the latter are referred to
[6][22][17][26].

In its current version, FlexiSketch does not support attrib-
utes (just textboxes as child elements of other elements), the
nesting of symbols (containment), abstract classes, and inher-
itance in the metamodel. It also does not support any spatial in-
formation, e.g., there is no difference whether a symbol is
placed to the right or to the left of another symbol. Feedback
from practitioners about these missing properties suggests that
containment and attributes are strongly needed, whereas inher-
itance and spatial information are less important features.

We are working on extending FlexiSketch with the missing
features, especially attributes and containment, and plan to im-
prove the wizard for better user-guidance. An export function
will allow exporting the generated metamodels to MetaEdit+
[27]. We will also focus on the continuous use of FlexiSketch,
which requires novel features regarding metamodel versioning.
Other future work focuses on real-world case studies where
practitioners use FlexiSketch within their daily work.

REFERENCES
[1] C. Alvarado and R. Davis, “SketchREAD: a multi-domain sketch

recognition engine”, in 17th ACM Symp. User Interface Softw. Techn.
(UIST 2004), pp. 23–32, 2004.

[2] C. Atkinson and T. Kühne, “Model-driven development: a metamodel-
ing foundation”, in IEEE Software 20(5):36–41, 2003.

[3] F. Brieler and M. Minas, “Recognition and processing of hand-drawn
diagrams using syntactic and semantic analysis”, in Work. Conf. Adv.
Visual interfaces (AVI 2008), pp. 181–188, 2008.

[4] A. W. Brown, “Model driven architecture: principles and practice”, in
Software and Systems Modeling 3(4):314–327, 2004.

[5] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to the
whiteboard: how and why software developers use drawings”, in CHI
2007 Conf., pp. 557–566, 2007.

[6] H. Cho and J. Gray, “Design Patterns for Metamodels”, in Proc.
Compilation of the co-located workshops on DSM, TMC, AGERE!,
AOOPES, NEAT, VMIL, pp. 25–32, 2011.

[7] H. Cho, J. Gray, and E. Syriani, “Creating Visual Domain-Specific
Modeling Languages from End-User Demonstration”, in 4th Int’l.
Workshop Modelling in Softw. Eng. at ICSE 2012, pp. 22–28, 2012.

[8] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, “Automating
co-evolution in model-driven engineering”, in 12th Enterprise Distr. Obj.
Comp. Conf. (EDOC 2008), pp. 222–231, 2008.

[9] J. S. Cuadrado, J. de Lara, and E. Guerra, “Bottom-up meta-modelling:
an interactive approach”, in 15th MODELS Conf., pp. 3–19, 2012.

[10] J. R. Douglass, “Language of Languages for Flexible Development”, in
SPLASH Workshop on Flexible Modeling Tools, 2010. http://www.ics.
uci.edu/~nlopezgi/flexitools/papers/douglass_flexitools_splash2010.pdf
[last checkd 05/17/13]

[11] T. O. Ellis, J. F. Heafner, and W. L. Sibley, “The grail project: an
experiment in man-machine communications”, RAND Memorandum
RM-5999-ARPA, 1969. http://www.rand.org/content/dam/rand/pubs/
research_memoranda/2005/RM5999.pdf [last checked 05/17/13]

[12] R. Ferguson and A. Hunter, “MetaBuilder: the diagrammer's
diagrammer”, in 1st Int’l. Conf. Theory and Application of Diagrams,
pp. 407–421, 2000.

[13] G. Gabrysiak, H. Giese, A. Lüders, and A. Seibel, “How Can
Metamodels Be Used Flexibly?” in ICSE Workshop on Flexible
Modeling Tools, 2011. http://www.ics.uci.edu/~nlopezgi/flexitoolsICSE
2011/papers/gabrysiak_flexitools_icse2011.pdf [last checkd 05/17/13]

[14] J. Grundy and J. Hosking, “Supporting generic sketching-based input of
diagrams in a domain-specific visual language meta-tool”, in 29th Int’l.
Conf. Softw. Eng., (ICSE 2007), pp. 282–291, 2007.

[15] F. Javed, M. Mernik, J. Gray, and B. R. Bryant, “MARS: a metamodel
recovery system using grammar inference”, Inf. Softw. Technol.
50(9–10):948–968, 2008.

[16] G. Johnson, M. D. Gross, J. Hong, and E. Yi-Luen Do, “Computational
support for sketching in design: a review”, Foundations and Trends in
Human–Computer Interaction 2(1):1–93, 2009.

[17] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S.
Völkel, “Design Guidelines for Domain Specific Languages”, in
OOPSLA workshop DSM, pp. 7–13, 2009.

[18] A. Kleppe, Software language engineering: creating domain-specific
languages using metamodels. Addison-Wesley, 2008.

[19] N. Mangano, A. Baker, M. Dempsey, E. Navarro, and A. van der Hoek,
“Software design sketching with Calico”, in 24th Int’l Conf. Autom.
Softw. Eng. (ASE 2010), pp. 23–32, 2010.

[20] D. L. Moody, “The physics of notations: toward a scientific basis for
constructing visual notations in software engineering”, in IEEE TSE
35(6):756–779, 2009.

[21] H. Ossher, A. van der Hoek, M.-A. Storey, J. Grundy, and R. Bellamy,
“Workshop on flexible modeling tools (FlexiTools2010)”, in 32nd Int’l.
Conf. Softw. Eng., (ICSE 2010), pp. 441–442, 2010.

[22] R. F. Paige, J. S. Ostroff, and P. J. Brooke, “Principles for modeling
language design”, Inf. Softw. Technol., 42(10):665–675, 2000.

[23] B. Plimmer and M. Apperley, “INTERACTING with sketched interface
designs: an evaluation study”, in CHI 2004 Conf., pp. 1337–1340, 2004.

[24] H. Qattous, P. Gray, and R. Welland, “An empirical study of
specification by example in a software engineering tool”, in 4th Int’l.
Symp. Empirical Softw. Eng. Measur. (ESEM 2010), 2010.

[25] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “Enhanced
Automation for Managing Model and Metamodel Inconsistency”, in
23th Int’l Conf. Autom. Softw. Eng. (ASE 2009), pp. 545–549, 2009.

[26] C. Schäfer, T. Kuhn, and M. Trapp, “A Pattern-based Approach to DSL
Development”, in Proc. Compilation of the co-located workshops on
DSM, TMC, AGERE!, AOOPES, NEAT, VMIL, pp. 39–46, 2011.

[27] J.-P. Tolvanen and S. Kelly, “MetaEdit+: defining and using integrated
domain-specific modeling languages”, in OOPSLA, pp. 819–820, 2009.

[28] B. Volz, M. Zeising, and S. Jablonski, “The open meta modeling
environment”, in ICSE Workshop on Flexible Modeling Tools, 2011.
http://www.ics.uci.edu/~nlopezgi/flexitoolsICSE2011/papers/volz_
flexitools_icse2011.pdf [last checked 05/17/13]

[29] G. Wachsmuth, “Metamodel Adaptation and Model Co-adaptation”, in
21st Eur. Conf. Obj.-Orient. Progr. (ECOOP 2007), pp. 600–624, 2007.

[30] D. Wüest, N. Seyff, and M. Glinz, “Flexible, lightweight requirements
modeling with FlexiSketch”, in 20th Int’l. Req. Eng. Conf (RE’12), pp.
323–324, 2012.

[31] D. Wüest, N. Seyff, and M. Glinz, “FlexiSketch: a mobile sketching tool
for software modeling”, in 4th MobiCASE Conf. , pp. 225–244, 2013.

669

