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Abstract—Traditionally, metamodeling is an upfront activity 
performed by experts for defining modeling languages. Modeling 
tools then typically restrict modelers to using only constructs de-
fined in the metamodel. This is inappropriate when users want to 
sketch graphical models without any restrictions and only later 
assign meanings to the sketched elements. Upfront metamodeling 
also complicates the creation of domain-specific languages, as it 
requires experts with both domain and metamodeling expertise. 

In this paper we present a new approach that supports model-
ers in creating metamodels for diagrams they have sketched or 
are currently sketching. Metamodels are defined in a semi-
automatic, interactive way by annotating diagram elements and 
automated model analysis. Our approach requires no metamodel-
ing expertise and supports the co-evolution of models and meta-
models.  

Index Terms—Sketch, model, metamodel, inference, semi-
automated, end-user. 

I. INTRODUCTION 
With the advent of model-driven engineering (MDE), mod-

els have become the main artifacts in a tool-supported, model-
centric development process [4]. Such an approach requires 
models to be machine-processable and transformable. Conse-
quently, the corresponding modeling languages need to be de-
fined precisely. Graphical modeling languages, on which we 
focus in this paper, are typically defined by a metamodel [2]. 

The standard way of using a modeling language is to define 
the language first, i.e., experts must create a metamodel for a 
new language before modelers can use the language for creat-
ing actual models [18]. This allows the creation of powerful 
analysis and transformation tools required for MDE. 

However, in the early phase of development, for eliciting, 
creating and sketching initial ideas, engineers want and need 
freedom in choosing notations adapted to their needs – be it in 
the form of domain-specific languages (DSLs), by back-of-an-
envelope style sketches, or both. Standard modeling languages 
such as UML are not well suited for that purpose. Instead, we 
need languages that can be flexibly defined and used in a way 
that they are well adapted for the specific problem at hand. 

The traditional paradigm of upfront metamodeling breaks 
down here: Modelers want the flexibility to draw model ele-
ments regardless whether or not a pre-defined metamodel pro-
vides such elements [21]. DSL designers want to draw sample 
models in a new DSL with full tool support before formally de-
fining model elements in a metamodel. 

At the same time, however, there is still a need for evolving 
such flexibly created models into a form that allows formal 
analysis and transformations. That means that metamodels 
must be created at some point. Metamodeling tools such as 
MetaEdit+ [27] and MetaBuilder [12] provide some relief by 
making the task of formally defining a DSL easier and faster, 
but they still require upfront metamodeling. Today, modelers 
who need flexible modeling capabilities frequently use white-
boards for sketching [5][19]. This is done at the expense of lat-
er re-creating the sketched models manually in a more formal 
modeling language in order to feed them into an MDE chain. 

For really solving the flexible modeling problem, we need 
to interleave modeling and metamodeling activities and a tool 
that supports the co-evolution of models and metamodels. 
Combining sketching and metamodeling in a single tool is an 
approach not well studied so far. In our own previous work, we 
have developed the FlexiSketch approach [30][31] which al-
lows free interleaving of modeling and metamodeling tasks. 

In this paper, we present how FlexiSketch step-wise and 
semi-automatically generates metamodels for model sketches, 
by inferring metamodel clues from existing model fragments 
and interactively eliciting missing metamodel information. 
Thereby, FlexiSketch enables modelers with no prior meta-
modeling expertise to annotate sketched model elements with 
meanings and eventually produces a fitting metamodel.  

The remainder of this paper is structured as follows. Sec-
tion II provides the objectives of our research and information 
about FlexiSketch. Section III discusses FlexiSketch’s meta-
modeling capabilities. Section IV outlines first evaluation re-
sults. Section V presents related work. Section VI concludes, 
discusses limitations and future work. 

II. MODELING LANGUAGES AND FLEXISKETCH

A. Focus and Objectives of our Work 
We are interested in generating definitions of concrete and 

abstract syntax from a set of existing model sketches. Our goal 
is enabling engineers to create a language syntax definition for 
their early model sketches, such that 

• these sketches can be formalized and re-used during
the development process of a software project,

• engineers don’t need metamodeling expertise,
• the tasks of modeling and metamodeling can be inter-

leaved.
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We restrict the scope of our work to graphical, node-and-
edge style models. Typical examples for such diagrams are 
class diagrams, component diagrams or activity diagrams in 
UML. Also, graphical DSLs typically fall into this category. 
This scope allows us to restrict the metamodel elements and 
structure we need to consider, omitting complicated structures 
such as deep inheritance trees that are hard to understand even 
for experts. 

We focus on collecting metamodel information, both auto-
matically by inference from existing model sketches and inter-
actively in a tool-guided dialog with the engineer. Producing 
metamodels compatible with those of existing modeling tools is 
beyond the scope of our current work. However, we intend to 
generate metamodels that are sufficiently formal so that they 
can be transformed into a format understood by a commercial 
modeling tool. 

B. FlexiSketch in a Nutshell 
Our approach has been implemented prototypically in our 

FlexiSketch tool [31]. It is available for Android OS tablet de-
vices and supports lightweight and flexible modeling. Having a 
mobile tool allows to use it in-situ in various contexts. 

On start-up, FlexiSketch tries to mimic a whiteboard. Most 
of the screen is empty, inviting users to start sketching. User 
drawings are converted into elements that can be manipulated 
(e.g., moved, scaled, or deleted). FlexiSketch differentiates be-
tween symbols (nodes) and links (edges). Nodes may be drawn 
or consist of imported images. The tool allows assigning types 
to sketched elements by annotating them. These annotations 
provide the basic structure of a metamodel. Graphical represen-
tations of user-defined types appear in a type library on the 
right side of the screen. From there, users can create copies of 
their elements by dragging them onto the drawing canvas. 
Thus, the type library is a container for the user-defined con-
crete syntax. A sketch recognition algorithm processes the us-
er-drawn symbols. If the user draws a symbol that looks similar 
to one from the type library, the tool asks in a small popup 
window whether it is the same symbol type. A more detailed 
description of FlexiSketch is given in [31]. 

Figure 1 shows a screenshot of the tool, showing a model 
sketch. The top right symbol is currently selected (indicated by 
a blue background and the visible context menu icons). 

C. Using FlexiSketch – A Scenario 
Engineers can use FlexiSketch to freely sketch their ideas 

as node-and-edge type models without any well-formedness 
constraints. If they decide to keep the resulting artifacts, 
FlexiSketch provides them with an easy, user-friendly way to 
add a metamodel to their sketches by annotating elements and 
answering questions asked by FlexiSketch’s tool wizard. Once 
all the metamodel information has been collected, the model 
sketches and their metamodel(s) can be exported into an XML 
file. This file can then be transformed such that the models can 
be imported into other modeling tools, thus supporting an MDE 
approach. This encourages engineers to include their early 
sketches systematically into the software engineering process 
and avoids costly and risky re-modeling of information origi-
nally documented in sketches.  

III. METAMODELING IN FLEXISKETCH

In this Section, we give an overview on metamodel funda-
mentals in FlexiSketch, and then explain how we build meta-
models based on inference and tool guidance. We also show 
how we minimize the versioning problem when associating 
metamodels with existing and new sketches. 

A. The Metamodel Structure in FlexiSketch 

In FlexiSketch, the user can create symbols, links, and an-
notations as elements on the drawing canvas. Symbols and 
links are TypedElements, i.e., the user can define types for the-
se elements. This creates a new SymbolType or LinkType class 
in the metamodel. Annotations are used to add informal notes 
to the sketched models. Furthermore, the meta-metamodel sup-
ports Attributes and Containments. Attributes can be used to 
add fields with type-value pairs to a symbol or link type. A 
containment gets created when a symbol is part of another 
symbol, i.e. it is drawn inside another symbol. The containment 
then stores the types of the symbols together with cardinalities 
defining how many symbols of a particular type may be con-
tained in the symbol of the other type. Attributes and contain-
ments are not yet supported in the tool.  

FlexiSketch does not store cardinalities directly for link 
types. Instead, it stores them for ConnectionTypes, which is a 
more flexible solution. While a link type is defined by just the 
type of the link itself, we uniquely identify a connection type as 
combination of the type of the link and the types of the two 
connected symbols. If the link is directed, we have a start sym-
bol and an end symbol. A link type can have several connection 
types, i.e., when the same link type is used to connect different 
types of symbols. For example, a link type R may be used in 
one case to connect a symbol of type A with a symbol of type 
B, and in another case to connect a symbol of type A with a 
symbol of type C. Accordingly, the tool generates two connec-
tion types, one for R(A, B) and one for R(A, C). The connection 
type for R(A, B) defines that R points from a symbol of type A 
to a symbol of type B. The cardinalities define (i) to how many 
type B symbols a single type A symbol may have outgoing 
links of type R, and (ii) from how many type A symbols a sin-
gle type B symbol may have incoming type R links. 

Fig. 1.  The FlexiSketch tool showing a user’s sketch. 
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B. Recognizing Elements on the Drawing Canvas 

For the automated model analysis, we assume that the 
various elements in a model are already categorized into nodes 
and edges. This categorization is directly tied to how model 
sketching works in the tool. Whenever the user starts drawing 
and then stops for a certain amount of time, that drawing is 
converted into a distinct symbol which is always a node. Links 
(edges) can only be created by connecting two previously 
drawn symbols. For that, the user draws a stroke, starting inside 
one symbol and stopping inside another. The stroke is then 
automatically converted into a link between the symbols. 
Annotations are textboxes that are ignored for the metamodel 
creation, since they contain text related to a concrete model. 

C. Inferred and User-Defined Symbol Types 

Symbols on the drawing canvas can be selected. Upon se-
lection, a context menu includes the option to assign a type (via 
text input) to the symbol. Each type appears in the type library 
together with its graphical representation, which is displayed 
on the right edge of the screen. From there, new instances of 
types can be created by dragging and dropping them on the 
drawing canvas. This mechanism is an advantage of having a 
single environment for both modeling and metamodeling. It 
gives immediate feedback about all currently defined elements 
of the language. As the type library allows to re-use defined 
types, users can get motivated to assign types to elements, even 
if they do not intend to perform metamodeling [31]. 

Once some symbols are defined, the type of similar sym-
bols can be inferred. A sketch recognition algorithm recognizes 
similar, yet untyped symbols. As recognition errors are inevita-
ble, the tool does not automatically assign symbol types. In-
stead, it displays suggestions to the user in a small popup win-
dow. The user can either tap on suggestions or simply ignore 
them, as they disappear after a couple of seconds. As long as a 
symbol remains untyped, FlexiSketch internally uses a unique 
identifier for the symbol type. This is not shown to the user, but 
needed to distinguish untyped symbols from each other when 
connection cardinalities are inferred. 

D. Inferred and User-Defined Link Types 

Each link (edge) in the model represents a connection. Se-
lecting links and assigning types to them works in the same 
way as for symbols. However, for the appearance of a link, the 
user has to choose from a predefined set of options (arrow, no 
arrow, solid line, dashed line, etc.). This allows the tool to 
guarantee a 1:1 correspondence between semantic constructs 
and graphical representations of links. If two links have the 
same appearance, Flexisketch infers that they have the same 
type, thus prohibiting symbol overload [20] for link types. As 
soon as the user assigns a type to a link, all links with the same 
appearance in the model automatically get the same type as-
signed. Conversely, FlexiSketch does not allow the user to as-
sign the same type to two links having different appearances, 
thus preventing symbol redundancy [20] for link types. The re-
striction of having a 1:1 mapping between link appearances and 
types also facilitates the inferring of connection cardinalities. 

E. Inference of Connection Cardinalities 
The user can define cardinalities for a connection type di-

rectly by selecting a link of that type on the drawing canvas and 
using the context menu to set the cardinalities. For connection 
types having no user-defined cardinalities, FlexiSketch auto-
matically infers them, using a closed world assumption: the in-
ference is based only on those links that have been modeled so 
far. This means that the tool infers very restrictive cardinalities 
in the beginning, starting with 1..1 when two symbols are con-
nected with a link. When more links of the same type connect 
the same symbol with others, the cardinality rule is relaxed to, 
e.g., 1..4. Thus, the tool never sets a cardinality to n; such gen-
eralizations must be done by the human user. Alternatively, the 
inference algorithm could be changed such that n is inferred 
whenever a cardinality is greater than 1. 

The tool infers cardinalities whenever one of the following 
events happens: (i) The sketched model is saved (the metamod-
el is saved as well); (ii) The user wants to set the cardinalities 
of a connection type. Instead of presenting empty fields to the 
user, they are pre-filled with the inferred cardinalities (unless 
user-defined cardinalities already exist); (iii) The user locks the 
metamodel (see Sect. III.G). 

As described in Sect. III.A, a connection type is defined as 
R(A, B), where R is the type of the link, and A, B are the types 
of the connected symbols. To infer the cardinalities of a con-
nection type, FlexiSketch looks at all occurrences of R(A, B) in 
the sketch. If a symbol of type A has less or more outgoing 
links to symbols of type B than defined by the current mini-
mum and maximum outgoing cardinalities, the cardinalities are 
automatically adjusted accordingly. The same is done for defin-
ing the incoming cardinalities. 

Cardinalities and connection types can also change when 
symbol types and/or link types are changed. A typical case is 
when a single link type is used to connect many untyped sym-
bols. For each link, a connection type needs to be created, as 
each connected symbol potentially has a different type and dif-
ferent cardinalities. When the user then assigns the same type 
to several symbols, the according connection types are consoli-
dated into one, and the cardinalities are updated. Rules can also 
get more restrictive when links are deleted. But cardinalities are 
never set more restrictively than the values already defined by 
the user. Deleting a link or a symbol from the drawing canvas 
can also alter the list of connection types. If a connection type 
has no more instances on the canvas, it gets deleted. However, 
link types and symbol types that are defined by the user and 
visible in the type library are never deleted automatically. 

Fig. 2 shows an example. The tool manages two connection 
types performs(person, activity) and performs(person, un-
known_type_1). The type unknown_type_1 indicates that the 
user has not assigned a type to this symbol. For per-
forms(person, activity), the tool detects that one symbol of type 
person is connected to at most one symbol of type activity, 
while the other person has no connection. It therefore infers the 
outgoing cardinalities 0..1. The incoming cardinalities are 1..1, 
as each symbol of type activity has exactly one incoming per-
forms link from a person. The cardinalities for the other con-
nection type are identical. If the user now assigns the type 
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activity to the untyped symbol, the two connection types are 
merged, because both now define the same connection: per-
forms(person, activity). Since a person is now connected to 
multiple activities, the 0..1 cardinality rule is relaxed to 0..2. If 
the user deletes one of the activity symbols, FlexiSketch checks 
the rest of the sketch to see whether it has to set the 0..2 cardi-
nalities back to 0..1. This depends whether there is still another 
person symbol in the sketch that is connected to more than one 
activity symbol or not.  

F. The Wizard – Interactive Guidance 
In addition to adding types and setting cardinalities by using 

the context menu icons of sketched elements, FlexiSketch pro-
vides a wizard that helps modelers to supply missing metamod-
eling information. The wizard can be consulted on demand. It 
is passive in order not to distract the user from the modeling 
task. The wizard can be especially useful when it is called be-
fore saving the finished model sketch to ensure that no meta-
model information is missing. Currently, the wizard consists of 
three steps: first it asks about types of unknown symbols, then 
about links, and finally about cardinalities for connection types. 
In each step, the wizard displays a separate page and question 
per element. 

In the first and the second step, the wizard identifies untyped 
symbols and links respectively. When it detects one, it shows it 
to the user on the drawing canvas. If needed, the tool scrolls the 
canvas to make the element visible onscreen and then high-
lights it with a blue background. At the bottom of the screen, 
the wizard asks the user to define the type. A definition can be 
skipped if the user does not regard the currently shown element 
to be relevant. As soon as the user assigns a type to a particular 
link, this type is automatically assigned to identical looking 
links. 

In the third step, the wizard looks for connection types 
where at least one of the four cardinalities is not marked as us-
er-defined (the state of a cardinality can be inferred or user-
defined). When it finds one, it randomly picks an instance of it 
(a link) on the drawing canvas. It highlights the link and the 
connected symbols and provides the options to set cardinali-
ties. Figures 3 and 4 show a screenshot of the wizard asking 
about cardinalities for a connection type from the inferring ex-
ample in Sect. III.E. The cardinality values in the fields (0..2 
and 1..1) were inferred by FlexiSketch and are now presented 
to the user. 

G. Storing Metamodels and the Lock Mechanism 
The co-evolution of models and metamodels imposes chal-

lenges when it comes to storing the metamodels and how the 
versioning of metamodels should be handled [29]. In our case, 
metamodels are undergoing an almost continuous evolution: as 
a user changes the model, this in turn might also change the 
corresponding metamodel. Earlier models that had the same 
underlying metamodel might no longer be compatible with the 
new metamodel version. We present two mechanisms to mini-
mize the synchronization problem between multiple model 
sketches and the metamodel.  

First, a metamodel is stored together with each sketched 
model. This ensures that each model conforms to at least one 
metamodel at any time. If two or more metamodels need to be 
merged into one, we can create a common metamodel automat-
ically as long as the result is a generalized metamodel, i.e., the 
merging can be achieved by only adding new meta-information 
and relaxing existing rules (e.g., changing cardinalities from 
1..n to 0..n). Such changes to a metamodel belong to the cate-
gory of so-called non-breaking changes [8]. Models conform-
ing to one of the merged metamodels will also conform to the 
generalized metamodel. There are two more categories: break-
ing changes which are resolvable, and breaking changes which 
are not resolvable. Several researchers [8][9][25] present ap-
proaches for handling such metamodel changes.  

Second, we introduce a lock mechanism. Metamodels can 
be saved independently from models. Once a metamodel is 
thought to be final, it can be locked. Other users can load a 
locked metamodel and start to sketch a model, but the lock dis-
allows any changes to the metamodel. Therefore it will not be 
updated according to the model sketch. Instead, parts of the 
model that do not conform to the metamodel will be highlight-

Fig. 3.  The wizard highlights an instance of a connection type and asks 
for the cardinalities. 

Fig. 4.  A close-up of the wizard window. 

Type: 
Activity Type: 

Person

Type: 
performs

Type: 
unknown_type_1

Type: 
performs Type: 

Person

Fig. 2.  Inferring example. 
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ed accordingly. This mechanism allows companies to leave 
metamodels unlocked as long as they are building DSLs. They 
can lock a metamodel to finalize their DSL, signaling modelers 
that they now have to adhere to the metamodel (unless compa-
nies want to unlock it again for improving the DSL). 

Finally, metamodels can be saved and exported at any point 
in time. We illustrate this functionality with a small, sketched 
class diagram fragment as shown in Fig. 5. The user has drawn 
three boxes and assigned the type class to them. She connected 
the box in the middle and the one on the right side with a link 
and defined it as association. Then she connected the third box 
with a link, changed its appearance to a line with an arrow 
head, and defined it as inheritance. The user then defined the 
cardinalities for the two connection types, and added some text 
to one of the boxes. Figure 6 shows an excerpt of the corre-
sponding metamodel generated by FlexiSketch. 

IV. INITIAL EVALUATION RESULTS

We investigated to what extent FlexiSketch supports novice 
modelers in providing metamodel information for their model 

sketches. We conducted an experiment with 31 second term 
computer science students. The students had no prior meta-
modeling knowledge, and only little experience in modeling. 
After a tutorial in which the students learned about the tool 
functionalities, the students were assigned a use case modeling 
task. No introduction to metamodeling was given. However, 
the handouts stated that all model elements should be defined 
because the tool must be able to interpret the sketched dia-
grams. An online questionnaire completed the experiment. 

Results show that the students were able to correctly define 
symbol and relationship types. In contrast, many students made 
mistakes in the cardinality definitions. The reason was that the-
se students were thinking on the model level instead of the 
metamodel level, thus trying to assign cardinalities to individu-
al relations instead of relationship types. 

We performed this experiment with students to prove that 
FlexiSketch is easy to use and even modeling novices can gen-
erate metamodels with it. However, results suggest that users 
need at least some basic metamodeling knowledge in order to 
master metamodeling tasks that go beyond type assignment. 
Future studies will focus on requirements engineers, who are 
also the main target group of FlexiSketch. 

V. RELATED WORK 

We identified related work about sketching and design in 
software engineering as well as metamodel inference. Howev-
er, we are not aware of any work within the SE field that tries 
to combine a lightweight modeling approach (in this case mod-
el sketching) with a user-friendly metamodeling solution in a 
single tool. Most work about metamodeling focuses on the 
technical aspects, assuming that a metamodeling expert learns 
how to operate a formal modeling tool. The aspects of usability 
and user-friendliness are ignored.  

The idea of bringing sketch interfaces and recognition into 
play to foster creativity and facilitate design tasks is not new 
[11]. [3] presents a generic approach to generating diagram edi-
tors which support and analyze hand drawings. Several other 
researchers have incorporated a sketch interface into their semi-
formal modeling tools, e.g., MaramaSketch [14], InkKit [23], 
and SketchREAD [1]. [16] gives a broad overview of similar 
approaches. While some of these approaches might allow users 
to alter the concrete notation, they only support predefined 
modeling languages. In contrast, the Calico tool [19] focuses 
on supporting an informal form of software design that heavily 
relies on sketching. It provides some means of structuring the 
sketches, but does not allow to formalize them. [10] and [28] 
discuss a step-wise formalization of models. New modeling 
languages can be created by linking artifacts of already existing 
languages. 

Several research tackles metamodel creation from model 
examples, e.g., [13]. MARS [15] is a tool for reconstructing 
missing metamodels for a given set of models. Cuadrado et al. 
[9] propose an interactive, bottom-up metamodeling approach 
similar to ours. But modeling and metamodeling cannot be per-
formed in the same tool. Cho et al. [7] focus on technical as-
pects of incremental and iterative metamodel definition by 
providing model examples. User interaction and tool-support 

Fig. 5.  A minimalistic class diagram fragment. 

...
   <Symbol>
      <type>Class</type>
      <attributes>

<labels> ... </labes>
      </attributes>
    </Symbol>
    <Link>
      <type>Association</type>
      <appearance> ... </appearance>
      <direction>bidirectional</direction>
      <connections>

<connection__1>
<from__element>Class</from__element>
<to__element>Class</to__element>
<from cardinalities> 

<min>0</min> <max>-1</max>
</from cardinalities>
<to cardinalities>

<min>0</min> <max>-1</max>
</to cardinalities>

</connection__1>
      </connections>
    </Link>
    <Link>
      <type>Inheritance</type>
      <appearance> ... </appearance>
      <direction>unidirectional</direction>
      <connections>

<connection__1>
<from__element>Class</from__element>
<to__element>Class</to__element>
<from cardinalities>

<min>0</min> <max>-1</max>
</from cardinalities>
<to cardinalities>

<min>0</min> <max>1</max>
</to cardinalities>

</connection__1>
      </connections>
    </Link>
  ...

Fig. 6.  Metamodel of the fully defined class diagram fragment from 
Fig. 5. 
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are not discussed. Design guidelines for DSLs can be found in 
[17] and [22]. [6] and [26] discuss design patterns for meta-
models. Regarding user guidance, Qattous et al. [24] demon-
strate that defining metamodel constraints with a by-example 
approach outperforms a form-based wizard approach.  

VI. CONCLUSIONS AND FUTURE WORK

We have shown how FlexiSketch supports semi-automatic 
step-wise creation of metamodels, without the help of meta-
modeling experts. Following our research objectives given in 
Sect. II.A, we presented strategies on how to gather infor-
mation relevant for metamodel generation, using both automat-
ed model inferring and wizard-based user guidance. A key con-
tribution of our work is our technical solution, which has been 
implemented in the FlexiSketch prototype. Experiment results 
highlight that modelers are able to provide relevant metamodel 
information when working with FlexiSketch. 

FlexiSketch provides a lightweight and user-friendly ap-
proach to modeling and metamodeling. As we are mainly con-
cerned about gathering basic metamodel information, we do 
not focus on building high-quality, sophisticated metamodels. 
Readers who are interested in the latter are referred to 
[6][22][17][26]. 

In its current version, FlexiSketch does not support attrib-
utes (just textboxes as child elements of other elements), the 
nesting of symbols (containment), abstract classes, and inher-
itance in the metamodel. It also does not support any spatial in-
formation, e.g., there is no difference whether a symbol is 
placed to the right or to the left of another symbol. Feedback 
from practitioners about these missing properties suggests that 
containment and attributes are strongly needed, whereas inher-
itance and spatial information are less important features.  

We are working on extending FlexiSketch with the missing 
features, especially attributes and containment, and plan to im-
prove the wizard for better user-guidance. An export function 
will allow exporting the generated metamodels to MetaEdit+ 
[27]. We will also focus on the continuous use of FlexiSketch, 
which requires novel features regarding metamodel versioning. 
Other future work focuses on real-world case studies where 
practitioners use FlexiSketch within their daily work. 
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