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Abstract—Sparse sensor arrays can match the performance
of fully populated arrays using substantially fewer elements.
However, finding the array configuration with the smallest num-
ber of elements is generally a computationally difficult problem.
Consequently, simple to generate array configurations that may
be suboptimal are of high practical interest. This paper presents
a novel closed-form sparse linear array configuration designed
for active sensing, called the Concatenated Nested Array (CNA).
The key parameters of the CNA are derived. The CNA is also
compared to the optimal Minimum-Redundancy Array (MRA) in
numerical simulations. The CNA is shown to require only about
10% more elements than the MRA in the limit of large apertures.

I. INTRODUCTION

Phased sensor arrays are a critical technology in many
application areas including radar, wireless communication,
medical imaging, radio astronomy, sonar and seismology [1].
Key advantages of sensor arrays include spatial selectivity
and the capability to mitigate interference and improve signal
quality. A major factor determining the cost of these arrays
is the number of sensors, which may grow impractically high
for large apertures with uniformly spaced elements. Sparse
or thinned sensor arrays offer an attractive solution to this
problem. A sparse array can achieve the same degrees of
freedom (DOF) as a filled array with N elements, using only
O(
√
N) elements [2]. The DOF determine e.g. the achievable

point spread function in array imaging [3], the number of
resolvable sources in direction-of-arrival (DOA) estimation
[4], [5], or the beamforming capabilities of the array [6].
Mutual coupling may also be reduced due to the larger inter-
element distances in sparse arrays [7], [8].

Finding optimal sparse array geometries, such as the
Minimum-Redundancy Array (MRA) [9], is generally a com-
putationally hard problem, with no known polynomial time
solution. This has led to the development of several subop-
timal, but mathematically tractable array configurations [5],
[8], [10]–[12]. However, most of these geometries have been
developed for passive sensing (receive-only operation) and are
therefore not directly suited for active sensing applications.
Nonetheless, some exceptions exist. For example, optimal
sparse linear arrays with spatially separated transmitting and
receiving elements may be generated by simple interpolation
[13]. Furthermore, it has been shown that placing elements on
the convex boundary of an active planar array is effectively
equivalent to filling the interior of the array with virtual
elements [12], [14]. Although planar arrays are of considerable
practical interest due to their capability of beamforming in
both the azimuthal and elevational directions, linear arrays
also have value in many applications, as well as in developing
array processing methods and theory. In the past, some effort

has been put in finding sparse linear geometries with co-
located transceiver elements. In [15], the authors suggested
extending the mid-sections of MRAs with a certain structure
in order to create sparse arrays of increasingly larger aperture.
Unfortunately, the number of elements N in these Reduced
Redundancy Arrays (RRAs) scales linearly with aperture L,
although generally N ∝

√
L should be achievable. A related

case was studied in [16], [17], where MIMO arrays using
second-order statistics were considered. However, the resulting
optimization problem involved the difference sum co-array,
whereas linear processing and the sum co-array [2], [15] are
of main interest in this paper.

To address the aforementioned problems, this paper pro-
poses a novel linear sparse array configuration called the
Concatenated Nested Array (CNA) based on the Nested Array
in [5]. A low-complexity method is introduced for generating
the CNA for a desired aperture or number of elements. The
performance of the CNA is analyzed both in closed-form and
through numerical simulations. These analyses compare the
geometrical efficiency of the CNA with the MRA through
quantities such as redundancy and sparseness. The sum co-
array of the CNA is also proven to be gapless.

The paper is organized into four sections. Section II
provides a brief overview of the array processing model and
the necessary definitions and concepts. Section III introduces
the CNA and establishes its basic properties, such as aperture
and number of elements. Section IV numerically compares the
redundancy and sparseness of the CNA and MRA. Finally,
section V summarizes the central findings of the paper.

II. SIGNAL MODEL AND DEFINITIONS

A. Sparse arrays and the co-array

In this paper, a sparse array is defined as a thinned Uniform
Linear Array (ULA), i.e. an array whose elements are located
on a regular grid with unit distance d, the inter-element spacing
of the ULA. The task of sparse array design is to find a
geometry that uses fewer elements than the ULA, without
experiencing significant performance degradation.

The co-array is a virtual structure that arises in certain
array processing tasks, such as imaging or DOA estimation
[2]. Essentially, the co-array quantifies the spatial redundancy
of the used array geometry at a given wavelength of operation.
Under narrow-band, far-field assumptions, the grid of the
physical array is usually normalized to yield a set of integers
for sensor locations. As a result, the co-array of a linear array
may be represented as set of integer value pairs, which denote
the position and multiplicity of virtual array elements. When
the co-array contains every integer between its endpoints, it is
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called contiguous. A sparse array with a contiguous co-array
has the same number of DOF as the ULA of the same physical
aperture. The arrays considered in this paper are restricted to
those with contiguous sum co-arrays.

1) Sum co-array: The sum co-array appears in active array
processing applications, such as linear array imaging [2]. In
these cases, the support of the virtual array is given by the
pairwise sums of element positions di, i = 1, 2, . . . , N . The
support of the sum co-array is defined

CΣ = {dn + dñ}; n, ñ = 1, 2, ..., N. (1)

For a linear array of aperture L, Eq. (1) reduces to a set of
integers between 0 and 2L.

2) Difference co-array: The difference co-array arises in
applications employing second-order statistics, such as DOA
estimation [2]. The difference co-array is therefore primarily
of interest in passive array processing. However, since the
difference co-array conveniently captures the multiplicity of
different inter-element spacings present in the array, it can be
useful e.g. in assessing how much the array configuration is
subject to mutual coupling, a major source of non-idealities in
practical arrays. Similarly to Eq. (1), the support of the differ-
ence co-array is defined: C∆ = {dn −dñ}; n, ñ = 1, 2 ... N.
The difference co-array of a linear array spans the integers
between −L and L.

B. Postage stamp problem

The search of sparse linear arrays for active sensing is
a specific case of the postage stamp problem from number
theory. For a comprehensive review of the subject see [18].
The formulation of the postage stamp problem is briefly stated
as follows: Given k different stamps, the largest postage fare is
sought so that each smaller fare can be represented as the sum
of h or less stamps. The fare and stamps are assumed to have
integer values and the problem is often augmented to include
a stamp of value 0 as well. An additive h-basis is a candidate
solution to the postage stamp problem. Formally, an h-basis is
a set of k integers Ak = {0 = a0 < a1 < · · · < ak}, such that
0, 1, . . . , n can be represented as the sum of at most h (not nec-
essarily distinct) elements of Ak. A solution is called restricted
if ak = n/2, where n = n(h, k) denotes the largest possible
postage fare. Additionally, if a solution is extremal, then it
achieves the largest possible n for a fixed k. Finding extremal
restricted additive 2-bases is equivalent to finding active linear
MRAs. It should also be mentioned that finding restricted
difference bases [19] is the passive sensing counterpart of
finding restricted additive bases. The computational efforts for
finding extremal 2-bases are primarily based on branch and
bound tree searches with various pruning strategies [20]–[22].
The largest known restricted extremal 2-base produced by this
type of search is n(2, 47) = 734 [23].

C. Figures of merit of sparse arrays

1) Redundancy: The ratio of the theoretical maximum and
actual number of DOF of an array is quantified by redundancy.
The sum co-array of an active array with N co-located
transmitters (Tx) and receivers (Rx) cannot have more than∑N−1
i=0 (N−i) = 1

2N(N+1) unique elements, or DOFs. If the
aperture of the physical array is L, the sum co-array has 2L+1

unique elements in case it is contiguous. The redundancy of
an active linear array with co-located Tx/Rx elements and a
contiguous sum co-array may therefore be defined as [15]:

R =
1
2N(N + 1)

2L+ 1
=
N(N + 1)

4L+ 2
. (2)

Ideally R = 1, but for practical arrays R > 1. Different array
configurations may also be compared with each other in a
aperture independent manner using the asympotic redundancy:

R∞ = lim
N→∞

R = lim
N→∞

1

4

N2

L(N)
= lim
k→∞

1

2

k2

n(2, k)
, (3)

where the ratio k2/n is commonly seen in the literature on
additive bases [18]. The relationship between k, n and the array
parameters is N = k + 1 and L = n/2.

2) Element redundancy: The asymptotic ratio,

η∞ = lim
L→∞

N(L)

NMRA(L)
=

√
R∞

R∞,MRA
, (4)

quantifies the fraction of elements required by a given physical
array configuration with respect to the minimum possible
(i.e. the MRA) in the limit of large apertures. Although the
element redundancy η∞ contains the same information as the
asymptotic redundancy R∞, the interpretation of the former
is more immediate. The element redundancy is given as an
interval, since the asymptotic redundancy of the MRA is only
known to lie within a certain range (see section II-D2).

3) Sparseness: Eq. (2) does not take into account the dis-
tribution of redundancies, which may be of interest when con-
sidering, for example, the mutual coupling between elements.
From this point of view, the larger the displacements among
the elements are, the less mutual coupling is expected. It is
therefore reasonable to quantify the sparseness (or denseness)
of the array. The number of unit spacings in the array gives
a simple first-order approximation of denseness. Denoting
the multiplicity of element i in the difference co-array of a
given physical array by υ∆(i), the number of unit spacings
is given by υ∆(1) = υ∆(−1). In general, a configuration
a is considered sparser than b, if υ∆,a(j) < υ∆,b(j) and
υ∆,a(i) = υ∆,b(i) for i = 0, 1, . . . , j − 1.

D. Sparse array configurations

1) Perfect array: The perfect array (PA) is an ideal sparse
array that has a contiguous co-array and no redundancy. PAs
only exist for N ≤ 2 elements in the active case (and N ≤ 4 in
the passive case [9]), but they offer a closed-form expression
for L, N and R∞, whereas MRAs do not. These expressions
are convenient for establishing bounds on the maximum aper-
ture and minimum number of elements of realizable arrays.
The aperture of the PA is simply given by the number of
DOFs in the sum co-array: L = N(N + 1)/2. Consequently,
the number of elements is N = (

√
8L+ 1 − 1)/2 and the

redundancy, by definition R = R∞ = 1.

2) Minimum-Redundancy Array: Although generating
MRAs is difficult, bounds on their asymptotic redundancy have
been established. A lower bound on the largest integer n that
may be represented by a given extremal additive 2-base is
n ≥ k22/7+O(k) [20]. Conversely, for n sufficiently large it
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Fig. 1. Geometry of the Concatenated Nested Array (CNA). The CNA may be viewed as a Nested Array [5] and its mirror image placed in succession.

is shown in [24] that n < k2(1− 0.1513)/2. Combining these
two results with Eq. (3) bounds the asymptotic redundancy of
the (active) MRA as follows:

1.18 ≤ R∞ ≤ 1.75. (5)

MRAs may be generated for any number of elements N ≤ 48
using the tables precomputed in [22], [23]. In case several
configurations with the same redundancy and aperture are
available, the sparsest one (according to the definition in
section II-C3) is chosen.

3) Nested array: The Nested Array (NA) [5] is a low
redundancy sparse linear array configuration for passive sens-
ing, consisting of a dense and sparse ULA placed in suc-
cession. The inter-element spacings of the NA are given by
dDNA = {1(N1), (N1 + 1)(N2−1)}, where the notation x(y)

reads ”y repetitions of x”, and N1, N2 ∈ N denote the number
of elements in the two ULAs. The difference co-array of the
NA has the convenient property of being contiguous.

III. CONCATENATED NESTED ARRAY

A. Array design

The sum co-array of the Nested Array contains gaps, which
could limit its applicability in active sensing application. In
order to ensure sum co-array equivalence with the ULA, it
is proposed here to place two NAs in a sequence, such that
the second array is a mirror image of the first (Fig. 1). The
mirroring ensures that the resulting array, referred to as the
Concatenated Nested Array (CNA), has a contiguous sum
co-array. This enables the CNA to e.g. achieve the same
point spread function in imaging applications as the ULA of
equivalent aperture.

Proposition: The sum co-array of the CNA is contiguous.

Proof: See Appendix.

Next the CNA is formally defined. Given N1, N2 ∈ N, the
inter-element spacings of the CNA are given by

dDCNA = {1(N1), (N1 + 1)(N2−1), 1(N1)}. (6)

It follows from Eq. (6) that the aperture of the CNA is

L = 2N1 + (N1 + 1)(N2 − 1). (7)

Furthermore, the total number of elements is

N = 2N1 +N2. (8)

Eq. (7) and (8) can be used to formulate an optimization
problem for finding parameters N1, N2 that maximize the
aperture L for a given number of elements N :

maximize
N1,N2∈N

N1N2 +N1 +N2 − 1

subject to 2N1 +N2 = N. (P1)

B. Solution to relaxed problem

Although (P1) is an integer program with no general
closed-form solution, a bound on the maximum possible aper-
ture may be found under the relaxation that N1, N2 ∈ R+.
Solving Eq. (8) for N2 and inserting the result into Eq. (7)
yields

L = −2N2
1 + (N − 1)N1 +N − 1, (9)

which is a concave function that is straightforward to maxi-
mize. The optimal parameter pair of the relaxed problem is{

N?
1 = (N − 1)/4

N?
2 = (N + 1)/2,

(10)

which yields the maximum aperture achievable by the CNA:

L? = (N2 + 6N − 7)/8. (11)

Equivalently, the minimum number of elements for a given
aperture is

N? = 2
√
2
√
L+ 2− 3. (12)

Using Eq. (11) and (3), the asymptotic redundancy of the CNA
evaluates to R∞ = limN→∞

N2

4N2/8 = 2. It also follows from
Eq. (6), (10) and (12) that the number of unit spacings of the
CNA is υ∆(1) = 2N1 = (N − 1)/2 =

√
2
√
L+ 2− 2.

C. General solution

Eq. (10) only produces integer valued solutions for every
fourth odd N . As a result, the fractional solutions to the relaxed
problem have to be projected to the set of integers. In order
to find these remaining solutions, the closest integer to N∗1 in
Eq. (10) is selected, i.e.{

N1 = d(N − 1)/4c
N2 = N − 2N1,

(13)

where d·c denotes rounding to the nearest integer and N2 is
the solution to Eq. (8). Eq. (13) produces all feasible solutions
to (P1). When a solution for a specific aperture L is required,
the CNA parameters N1 and N2 may be found by minimizing
the number of elements for a target aperture instead:

minimize
N1,N2∈N

2N1 +N2

subject to 2N1 + (N1 + 1)(N2 − 1) = L. (P2)

Relaxing the integer constraint to N1, N2 ∈ R+ and solving
(P2) for N1 yields

N∗1 =
1√
2

√
L+ 2− 1. (14)

Given L, the following two step optimization procedure may
be applied: Find the integer N1 ∈ {0, 1, . . . , b(L + 1)/2c}
(b·c is the floor operator) that i) has an integer-valued
pair N2 = (L − dN1c + 1)/(dN1c + 1) ∈ N and ii) is
closest to the ideal N∗1 computed using Eq. (14). If no such
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parameter is found, then a solution for aperture L does not
exist. This procedure produces solutions of lower quality than
Eq. (13), since it is possible to construct a CNA with larger
aperture using the same number of elements. Consequently,
only solutions to Eq. (13) are considered in the following.

IV. NUMERICAL RESULTS

In this section, the redundancy and sparseness of the CNA
and MRA are compared for L ≤ 400. MRAs up to L = 367
are taken from the tables in [22], [23]. A design with a low
redundancy and as few unit spacings as possible is desired,
since it requires fewer elements to construct and is expected
to be less susceptible to mutual coupling.

Fig. 2 shows the CNA and MRA configurations for L = 58,
which is the smallest common value among the considered
apertures for which the two solutions differ. In this case the
MRA has N = 18 and the CNA N = 19 elements. The MRA
is typically symmetric [22], [23], with a sparse mid-section
and more densely spaced elements in both ends. The CNA also
follows a similar pattern. In fact, the CNA is the MRA for all
overlapping solutions when L ≤ 58. The symmetrical physical
arrays in Fig. 2 give rise to the symmetrical contiguous sum
co-arrays shown in Fig. 3.

Fig. 2. Array configurations for aperture L = 58. The MRA has 18 and
the CNA 19 elements. In general, the MRA is symmetrical with a sparse mid
section. The CNA has a structure very similar to the MRA.

Fig. 3. Sum co-array of the array configurations in Fig. 2. Since the co-arrays
do not contain holes, the MRA and CNA have the same sum co-array support
as the ULA of equivalent physical aperture (L = 58 in this case).

Fig. 4 shows the redundancies of the generated CNAs
and MRAs. The CNA exceeds R = 1.8 at L ≈ 250 and
slowly converges towards its asymptotic value of 2. The MRA
achieves R = 1.6 for approximately the same aperture and
does not increase for the largest known instances, which is a
surprising property. Clearly, the lower bound on the asymptotic
redundancy R∞ > 1.18 given in Eq. (5) is quite loose and may
be empirically tightened to roughly R∞ ≥ 1.6.

Fig. 5 shows the number of unit spacings υ∆(1) in the
two arrays. In case of the CNA, υ∆(1) ∝

√
L as shown in

Fig. 4. Redundancies of the generated configurations. The redundancy of the
CNA converges towards its asymptotic value of 2, whereas for the MRA this
value lies approximately between 1.6 and 1.75.

Fig. 5. Number of unit spacings in the MRA and CNA. This quantity
increases ∝

√
L for the CNA, but changes erratically for the MRA.

section III-B. Although the MRA has a lower number of unit
spacings for all inspected configurations, this quantity seems
unpredictable. In particular, υ∆(1) does not monotonically
increase as a function of L, but sometimes abruptly decreases
and actually remains at υ∆(1) = 10 between L = 169
(N = 32) and L = 367 (N = 48). It would be interesting to
study how the quantity changes for MRAs of larger aperture.

A summary of the main properties of the CNA is given in
Table I. The parameters of the PA are listed as a reference, due
to the lack of closed-form solutions for the MRA. Table I also
shows the asymptotic element redundancy of the CNA, which
is roughly 1.1 times that of the MRA. For comparison, the
corresponding figure for the RRA (see section I) is not even
finite. In other words, the CNA requires asymptotically only
10%, and the RRA infinitely, more elements than the MRA.
Curiously, the difference between the MRA and PA is ≈ 22%,
although obviously the latter is not realizable in practice.

V. CONCLUSION

This paper presented a novel sparse linear array config-
uration for active sensing called the Concatenated Nested
Array. Closed-form expressions for the aperture, number of
elements and number of unit spacings in the array were
introduced. The CNA is simple to generate for any aperture
or number of elements. It also has a contiguous sum co-array,
which means that it has the same degrees of freedom as the
ULA of equivalent aperture. Consequently, the CNA may e.g.
attain any point spread function that the ULA can in imaging
applications. Since the CNA uses significantly fewer elements
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TABLE I. PROPERTIES OF THE CNA IN COMPARISON WITH THE PA AND MRA. THE CNA ONLY REQUIRES APPROXIMATELY 10% MORE ELEMENTS
THAN THE MRA. THE PA IS MOSTLY NON-REALIZABLE IN PRACTICE, BUT ITS PARAMETERS HAVE CONVENIENT CLOSED-FORM EXPRESSIONS.

Array config. Max. aperture, L Min. no. of elements, N No. of unit spacings, υ∆(1) Asymptotic redundancy, R∞ Element redundancy, η∞
Perfect Array (PA) (N2 +N)/2 (

√
8L+ 1− 1)/2 1 1 0.76− 0.79

Minimum-Redundancy Array (MRA) N/A N/A N/A 1.6− 1.75 1

Concatenated Nested Array (CNA) (N2 + 6N − 7)/8 2
√

2
√
L+ 2− 3

√
2
√
L+ 2− 2 2 1.07− 1.12

than the ULA, considerable cost reductions may be achieved.
In fact when the aperture grows large, the CNA requires
only approximately 10% more elements than the Minimum-
Redundancy Array.

APPENDIX
PROOF OF CONTIGUOUS SUM CO-ARRAY OF CNA

The sum co-array can be decomposed into the union of self
and cross co-arrays of two sub-arrays, which are acquired by
dividing the CNA at its geometrical midpoint into two non-
overlapping parts. It is shown next that the sum co-array of
the CNA is contiguous, since the union of the component co-
arrays is contiguous: Let the element positions of the sparse
array be encoded into a binary sequence b[i], i = 0, 1, . . . , L,
where b[i] = 1 if position i contains an element and b[i] = 0
if the position is empty. Sequence b may also be written
as the sum of the two sub-array sequences b1 and b2, i.e.
b[i] = b1[i]+b2[i]. Since the sum co-array, c, is the convolution
of transmitting and receiving elements [2], it follows that
c = b ∗ b = (b1 + b2) ∗ (b1 + b2) = b1 ∗ b1 +2b1 ∗ b2 + b2 ∗ b2,
where ’∗’ denotes convolution. In other words, the sum co-
array is the sum of the self co-arrays c1 = b1 ∗ b1 and
c2 = b2 ∗ b2, and the cross co-array c12 = 2b1 ∗ b2. Let
Ck = {i|ck[i] 6= 0} denote the support of co-array ck, i.e.
the positions in which it has non-zero values. Furthermore,
let C̃k be the contiguous support, i.e. the largest sequence of
successive integers in Ck. In the case of odd N , the CNA
has an element at L/2 and the contiguous parts of the three
component co-arrays may be deduced from the geometry to
be C̃1 = {0, . . . , L/2+N1}, C̃12 = {L/2+N1+1, . . . , 3/2L}
and C̃2 = {3/2L + 1, . . . , 2L}. Since C̃ = C̃1 ∪ C̃12 ∪ C̃2 =
{0, 1 . . . , 2L} = C, the sum co-array is contiguous for odd
N . Similarly, when N is even the component sub-arrays have
the contiguous ranges C̃1 = {0, . . . , L/2 + (N1 + 1)/2},
C̃12 = {L/2 + (N1 + 1)/2, . . . , 3/2L + (N1 + 1)/2} and
C̃2 = {3/2L+(N1 +1)/2, . . . , 2L}. Therefore the co-array is
contiguous also for even N . �
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