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a b s t r a c t 

Computer vision remains an under-exploited technology for assistive devices. Here, we propose a naviga- 

tion technique using low-resolution images from wearable or hand-held cameras to identify landmarks 

that are indicative of a user’s position along crowdsourced paths. We test the components of a system 

that is able to provide blindfolded users with information about location via tactile feedback. We assess 

the accuracy of vision-based localisation by making comparisons with estimates of location derived from 

both a recent SLAM-based algorithm and from indoor surveying equipment. We evaluate the precision 

and reliability by which location information can be conveyed to human subjects by analysing their abil- 

ity to infer position from electrostatic feedback in the form of textural (haptic) cues on a tablet device. 

Finally, we describe a relatively lightweight systems architecture that enables images to be captured and 

location results to be served back to the haptic device based on journey information from multiple users 

and devices. 

© 2016 Published by Elsevier Inc. 
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1. Introduction 

For most people, navigating familiar environments might seem

a very natural task that usually involves travelling along a path

that we have previously visited and learned. At other times, nav-

igation might require us to follow a new and unseen path, and

require planning and evaluation of possible directions of move-

ment. Traditionally, finding our way in unfamiliar environments re-

quired certain skills such as map or compass reading. External cues

also helped: signs, landmarks, directions from other people, etc.

Recently, due to the emergence of smartphones and other ‘wear-

ables’, we have devices that gather data, interpret it and provide

tools to assess one’s position; planning a route is almost immedi-

ate. Because these tools are increasingly available on a single de-

vice: the problem of navigation in outdoor contexts is reduced to

the simple act of following the indications of a navigation App on

a mobile device, or a “SatNav” [66] . 

The nature of the navigation problem in unfamiliar indoor en-

vironments might seem simpler than outdoors. Despite the fact

that, in global terms, we are restricted to moving over a small re-

gion of the surface of the earth, some buildings—universities, mu-

seums, government buildings, shopping centres, airports and so

on—can have vast internal dimensions. Even for sighted users, the

frustration of getting lost in indoor environments can be accentu-
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ted, perhaps because the immediacy and efficacy that is achieved

utdoors with automotive and naval navigation systems cannot be

asily matched with the existing tools for indoor navigation. 

Regardless of whether one is outdoors or indoors, navigation in

ighted humans relies heavily on the sense of vision [34,68] . When

ision is deteriorated or deprived, a person’s ability to navigate—

articularly in unfamiliar settings—is greatly diminished. Indeed, a

ignificant proportion of individuals who experience sight loss late

n life find navigation in unfamiliar environments challenging. This

ight be a key contributor to the fact that more than half (55%) of

he blind and partially sighted in the UK rarely venture outside of

heir homes [77] . 

Despite demonstrations of promising technology on small scales

f usage [40,42,45] , the white cane remains the most widely used

avigational aid. Helping blind and partially sighted people to nav-

gate in unfamiliar environments is a particular challenge. There

re several reasons for this, including immaturity of localisation

echnology in indoor settings, the cost of installing customised lo-

alisation technology, and the challenges associated with keeping

apping information up-to-date. 

As for the case of vehicular navigation, it is likely that the

olution to indoor navigation lies within not one, but rather a

ollection of approaches that work together. For reasons of both

recision (a statistical argument, based on acquiring independent

easurements) and redundancy (an engineering principle), several

ossible sources of localisation data, methods of user interaction

nd algorithms should be developed and evaluated separately. In

http://dx.doi.org/10.1016/j.cviu.2016.02.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.02.014&domain=pdf
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Fig. 1. The solid circles indicate the remit of this paper. We do not suggest that ei- 

ther visual sensing, tactile feedback or knowing one’s position on a map solves the 

indoor navigation problem. In this paper, we have deliberately selected one sensing 

technique, one mechanism of feedback and one inference technique of the many 

redundant components and subsystems that one would wish to have in a robust 

navigation device. Evaluating components in a combinatorial manner allows redun- 

dant and robust modules to be created systematically, with component-level per- 

formance characterisation. 
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his paper, our intention is to take one combination of sensor, one

ype of inference method and one type of user interface to provide

avigation information (see Fig. 1 ). 

Selecting elements of a complete solution in this way allows us

o isolate and characterise the performance of individual compo-

ents. To enable location cues to be acquired from many users of

he same space, we focus on the use of low-resolution video cam-

ras as navigation sensors. This is combined with relatively simple

lgorithms, and the principle of using data from many journeys as

n implicit reference system for one’s location within a building.

 full navigation system must compute possible paths as well as

ense location, but here we focus on inference of position. Finally,

eople tend to show a range of preferences when using interface

evices. We selected a haptic device to convey positional informa-

ion, and evaluated the accuracy of this device for indoor localisa-

ion. Taking the three components together, our prototype system

rovides a user with the ability to determine where they are on a

ap or floor plan, a sufficiently useful task in its own right. 

. Background on assistive devices: accessible technology 

.1. The impact of sight loss in navigation 

Clearly, the ultimate goal would be to prevent people losing

heir sight or to heal sight loss. In the absence of these achieve-

ents, both governmental agencies and charities have identified

hat support for independent living for people with visual impair-

ent is a priority. In the UK, for example, the leading sight loss

harity, the Royal National Institute of Blind people (RNIB), has

dentified two key aims [58] (slightly paraphrased for clarity): 
• more people should be able to make journeys safely and inde-

pendently; 
• more people should achieve independence through the use of

information technology and mobile technologies. 

The importance of navigation for visually impaired people fea-

ures prominently because of its impact on a person’s indepen-

ence. Studies have found that less than half (45%) of people with

isual impairment go out every day, a fifth do not go out more

han once a week, and nearly half (43%) would like to go out more

ften [22,58] . Additionally, a 2012 survey carried out during an ac-

essibility event organised between the RNIB and Android London

evealed that the most desired mobile application among members

f the blind and partially sighted community would be a naviga-

ion application with access to important information such as sig-

age or information panels, found mainly in written formats [59] . 

An engineering solution that supports navigational autonomy of

he user is needed. In the next sections, we will describe some

tudies that have approached the navigation problem from differ-

nt perspectives. 

.2. Non vision-based solutions for assistive navigation 

.2.1. Classical aids 

The two principal navigation aids for visually impaired people

emain the guide dog and the white cane. In addition to being

ood navigational aids in complex environments, guide dogs have

een recognised as being a source of companionship, helping to

ombat isolation. However, the cost of training dogs can be high

nd the potential to get lost remains, particularly along unfamiliar

outes. Also, obstacles that are above the height of the dog (such

s low-hanging branches) can present a hazard [43] . 

The other highly successful piece of navigation technology for

isually impaired people is the white cane [60] . Whilst it is known

o allow more independence, it does not provide information on

avigation on a spatial scale much greater than a stride length

42] . There are some navigation scenarios, such as those involv-

ng environments that are unfamiliar or too complex, which are

voided by some white cane users. Examples of these include

alking a route for the first time, using public transport, approach-

ng a building entrance or door to public transport. In particu-

ar, public transport usage remains extremely low among visually-

mpaired people, with just 11% of blind or partially sighted trav-

llers boarding a train or a bus regularly [52] . 

.2.2. Radio frequency systems 

The latest systems for accurate outdoor navigation rely on infor-

ation provided by satellite-based navigation systems, most com-

only the Global Positioning System (GPS). Systems based on GPS

ave changed the current concept of outdoor navigation. Some sig-

ificant attempts have been developed to target the needs of vi-

ually impaired people. For example, the Sendero Group’s Mobile

eo [63] system uses GPS to provide position and navigation direc-

ions through an accessible keyboard and a speech synthesis inter-

ace. BlindSquare for Apple mobile and tablet devices takes GPS a

tep further by using crowdsourced data for points of interest (via

ntegration with Foursquare services and data) and OpenStreetMap

or fine-grained street information [45] . However, even such cus-

omised systems lack the information sources or signal availability

ndoors to be used by people with visual impairment. For exam-

le, the signal strength that reaches devices indoors is relatively

eak—of the order of a tenth of a femtowatt [75] —and often unsta-

le. Because of this, a system that is reliant on GPS indoors would

rovide subpar navigation, give a poor user experience, and poten-

ially even compromise safety. 
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Several other projects have attempted to provide navigational

information indoors based on radio frequency technologies. Ac-

cording to the RNIB [77] , RFID, Wi-Fi and Bluetooth radio technolo-

gies can provide both accuracy and coverage indoors. Additionally,

body sensors employing ZigBee Radio Signal Strength Indicators

(RSSI) [21] have demonstrated the feasibility of wearable sensor

networks to provide navigation information. Such networks usu-

ally require some form of infrastructure to be deployed throughout

buildings. Signal transmitter locations then need to be tested, asso-

ciated with indoor mapping information, and subsequently main-

tained; a process that can be costly. 

Finally, Drishti , an integrated indoor/outdoor navigation system,

has been proposed [54] ; this uses Differential GPS (DGPS) for out-

door positioning and an ultrasound positioning device for indoor

location measurements. Although reporting sub-meter localisation

errors, the indoor subsystem requires the deployment of ultra-

sound transmitter “pilots”, and the user has to carry ultrasound

beacons and specialised hardware, making Drishti a technically fea-

sible but costly and currently impractical prototype. 

2.3. Tactile interfaces for the blind and partially sighted 

Today, there are two common sensory modalities that we use to

understand our surroundings: vision and, crucially for visually im-

paired users, hearing. Much load is already placed on these sensory

channels, and they may reach a point of saturation in busy envi-

ronments. Therefore, it is prudent to use another sensory modality

to convey information, and one that has been investigated since

the 1800s is touch. 

The very earliest documented example of converting visual cues

into tactile ones appears to be the Elektroftalm, created using a

single block of selenium [17] . The photoconductivity of this block

of material was used to convey a sensory stimulus to the fore-

heads of blind people, allowing them to distinguish between dark

and light. The simplicity of this approach is in stark contrast to

later attempts to transfer optical cues into tactile. For example,

Bliss [14] combined a tactile stimulator with an optical sensor to

allow the blind to understand their surroundings. The image found

by the optical sensor fell onto a 12 × 12 phototransistor array and

used a one-to-one mapping onto tactile stimulators. Each illumi-

nation of the phototransistor led to a vibration on the correspond-

ing tactile stimulator. Only crude images were produced and it was

found that not many visual objects were recognised reliably. How-

ever, Bliss identified that the results of this experiment may have

been subject to defects in the intensity of responses in the piezo-

electric units. 

In more recent times, there have been many advances in tac-

tile technologies. Users can experience tactile feedback in displays

through several cues, including piezoelectric sensors [51] , shape

memory alloys [73] , micromachined devices [39] and air jets [10] .

In addition, there are promising directions around the use of elec-

trorheological fluids (fluids that respond to electric fields by chang-

ing their viscosity) [51] . A common class of technique under explo-

ration is vibrotactile displays. These use a combination of microlin-

ear electromagnetic actuators and piezoelectric ceramics. However,

they do not seem to convey the frictional forces which visually

impaired users are attuned towards when exploring objects with

their fingers [28] . More recently, [29] explored a piece of technol-

ogy designed to enable visually-impaired users to find the distance

to an object, such as a wall, by distance sensors worn on the head.

In this arrangement, tactile cues were provided through vibrating

patterns in a hand-held device [29] . 

Tactile technologies are also being considered for several ap-

plications for a wider range of users (including those with and

without visual impairment), ranging from providing cues for pi-

lots in flight [66] to computer mice [4] . In addition, there have
een attempts at implementing tactile technologies into consumer

evices. For example, Motorola found that out of 42 subjects, 35

referred having a combination of vibrotactile feedback and vi-

ual cues [15] , an outcome supported by previous research [53] .

oupyrev and colleagues claimed that tactile interfaces were a “pe-

ipheral awareness interface”: they provide sensory stimulation on

 subconscious level, thereby taking cognitive load off the user.

urther uses of tactile technologies include training for surgery, in

hich it is sometimes necessary for a surgeon to be able to func-

ion under circumstances in which there is limited visibility [31] . 

For our purposes, the Senseg TM tablet is an apt modern exam-

le of a tactile display that allows a user to feel something akin to

rictional forces. The Senseg TM device passes a low current to an

solated electrode that applies a small attractive force to the skin

f the finger. By modulating this force, a device can convey the

ensation of different textures. This is a rather significant advance-

ent on the mechanical piezo solutions used by [14] . For the ex-

eriment described in this work, a Senseg TM tablet will be used to

est the information delivered as the result of an appearance-based

ocation query (see Section 6.3 ). 

.4. Computer vision for navigation 

.4.1. Methods for inferring geometry: SfM and SLAM 

The extended use, minimal cost and increasing quality of mod-

rn cameras have brought the use of visual information for assis-

ive devices a step closer to reality. The inclusion of high-quality

ameras in mobile devices, such as phones and tablets, has boosted

he familiarity of users with both the use of cameras and the idea

f camera-based mobile applications. 

One outcome of the proliferation of these cameras is the in-

reased interest and use of Structure from Motion (SfM) algo-

ithms. These are able to infer 3D models of city regions [2] from

hotographs taken by visitors to popular city landmarks. With such

mages acquired from the Internet [65] , bundle adjustment can

e used to reconstruct the 3D information about buildings within

ell-photographed locations, in addition to the camera pose of ev-

ry photograph. Hile and colleagues also crowdsourced location in-

ormation [30] through geotagged images from Flickr, then used

navely’s SfM algorithm [65] to perform camera pose estimation.

sing models of a scene constructed using bundle adjustment,

he position and pose of a camera from a sequence of new pho-

ographs taken with a mobile device can be used as a source of

visual” navigation information [72] . However, bundle adjustment

s an iterative error minimisation algorithm, and its computational

oad is still large for real-time use at scale. Furthermore, it is not

ntirely clear how the geometric information that is acquired from

uch models could be updated as aspects of a scene change. 

Recently, RGB-D devices, producing both colour images and

epth information, have shown promise for robotics. For example,

5] make use of an inexpensive RGB-D sensor to detect obstacle-

ree paths; both depth and colour information are used to infer the

resence or absence of obstacles. Potentially, this is a vital feature

or visually impaired people, as it extends the range of obstacle

etection provided by the traditional white cane. 

Another important branch of vision-based navigation tech-

iques is to be found in robotics. Visual Simultaneous Localisation

nd Mapping (SLAM) [24,37,46] provides a real-time reconstruction

f the scene by using either stereo cameras (stereoSLAM) or a sin-

le camera (monoSLAM). Although SLAM is often described for its

bility to infer a geometric model of a scene, it also estimates a

amera trajectory. The combination of the two is a powerful source

f navigation information. In addition, during subsequent journeys

long the same route, geometric information can be refined and

sed in camera pose estimates. 
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Some visual SLAM algorithms provide a navigation method suit-

ble for autonomous robots [37] . Such techniques normally rely on

tatic features from the scene that are subsequently matched be-

ore the trajectory is estimated. However, in real life conditions,

any detected features are dynamic, since they correspond to ob-

ects or elements of the scene that are moving (e.g. people). Addi-

ionally, SLAM algorithms, particularly visual monoSLAM [19] , rely

n the optic flow induced by ego-motion in order to infer scene

eometry and build up a map. In the presence of significant addi-

ional motion within the scene, SLAM algorithms can begin to fail. 

Amongst other relevant techniques that are SLAM-based is the

ork of Alcantarilla et al. [6,8] . They incorporate dense optical flow

stimation into visual SLAM in order to improve the performance

f algorithms in crowded and dynamic environments by detecting

he presence of objects that are moving relative to the world co-

rdinate system. Additionally, they developed a fast vision-based

ethod to speed up the association between visual features and

oints in large 3D databases [7] . This approach consists of learning

he visibility of the features in order to narrow down the number

f matching point correspondence candidates. Also of note is the

odification to SLAM to address the common problem of scale-

rift [67] . 

A SLAM-based solution that is closer to our approach was sug-

ested by [9] , who used a standard EKF-SLAM approach to track

IFT features. The SIFT features are simultaneously used to provide

emantic information (i.e. object recognition for obstacle avoidance

nd path recognition) about the environment. Apart from the fact

hat the authors do not test vision in isolation (that is, they enforce

racking), their method’s caveat is that instead of building a visual

ath with crowdsourced image descriptions or sensor signatures,

hey impose a known constraint on the “true pathway” for the lo-

ation of the detected features, and also as a prior for the tracking.

his constraint limits the scalability of the method; perhaps more

mportantly, it does not explore the accuracy of a location estima-

ion system based on crowdsourced visual information. 

One of the more recent developments is LSD-SLAM [23] , a

emi-dense tracking and mapping method that performs well in

ndoor settings. Instead of keypoints and descriptors, LSD-SLAM

ses semi-dense depth maps for tracking by direct image align-

ent. This is a remarkable step forward, as the semi-dense maps

llow computationally lighter frame-to-frame comparisons, to the

oint where odometry can be performed on a modern smartphone

61] . This system, as with most SLAM methods, relies on accurate

amera calibration and initialisation routines, and best results are

ften achieved under specific camera and lens combinations, such

s monochrome global shutter cameras with fish eye lenses [35] . 

.4.2. Appearance-based methods for inclusive visual navigation 

Appearance-based methods attempt to provide localisation

ithout keeping track of the coordinates of the robot/user or land-

arks in metric space. 

For example, [26] presents a Bag-of-Visual-Words (BoVW) ap-

roach to provide a “qualitative” recognition of the room their

obot is in. In summary, a set of features is extracted, a dictionary

s built, and using a voting system as a classifier, a label (class)

s assigned to each room. This is arguably not a SLAM method, as

here is no simultaneous localisation and mapping that is compa-

able to mainstream SLAM methodologies. In fact, there appears to

e no mapping beyond a table of the rooms visited. Secondly, the

ethod is only partially a topological localisation technique, since

here is no modelling of the relationships between rooms. How-

ver, one important contribution is the incremental approach to

uilding a database. Filliat, rather than relying on a given set of

ategories (the rooms), creates new categories on the fly based on

 decision made from the statistics of the visual words contained

ithin an image. 
FAB-MAP [18] and its popular open-source implementation

27] have been considered the state-of-the-art appearance-based

ethod for robot navigation. FAB-MAP relies on a dictionary of

ag-of-Visual-Words constructed from a database of Speeded Up

obust Features (SURF) features extracted from location images to

rovide matching between previously visited places as well as a

easure of the probability of being in a new, unseen location. The

rrival of SeqSLAM [44] brought additional robustness to the FAB-

AP paradigm. By enforcing sequential constraints to the image

atching front-end they were able to improve on OpenFABMAP,

specially in challenging situations such as nighttime or during

ain. To date, however, such appearance-based methods in a SLAM

ontext are more commonly used at large spatial scales in order to

ddress the loop-closure problem; its application is less common

n indoor spaces when operating at smaller spatial scales. In addi-

ion, there is little evaluation of the effect of matching ambiguity

hen using appearance-based techniques. 

The closest approach to the one described in the present work

s perhaps that of [62] . Schroth and colleagues made use of a

urely appearance-based method to provide localisation from im-

ge sequences acquired with mobile devices. However, their exper-

ments are closer to those of the object categorisation community,

here tests are performed in a batch fashion and performance

s reported as precision-recall or receiver operating characteristic

ROC) curves. Our view, however, is that localisation error distri-

utions are also a good illustrative metric of performance. In addi-

ion, their use of a 360 ° camera to produce a database for training

omewhat constrains the effectiveness of the system to the quality

nd richness of this database, almost ensuring poor results when

ertain conditions are not captured in the database, as demon-

trated by [44] . Crowdsourced training instances provide informa-

ion that can largely solve this issue [57] . Schroth et al. [62] also

uggested and developed a prototype client–server application, al-

hough using a different approach to the one we explore in this

aper: instead of performing all computation on the server, they

re-select some relevant visual words that are sent to the client

or matching. Whilst the work of Schroth et al. is relevant to that

eported here, the lack of an assistive context makes the challenges

ifferent. 

However, there are some examples of assistive applications

f appearance-based methods. Ali and Nordin [9] developed an

ppearance-based method that uses SIFT features in order to con-

truct a weighted topological map of the environment stored in

 modified electronic white cane. During a query, the cane sub-

its SIFT features that are matched with the ones in the database.

he degree of similarity or “weight” between the matched images

llows direction instructions to be conveyed based on previous

nowledge about the environment. Nguyen et al. [47] combined

LAM with FAB-MAP to develop a mapping and visual localisation

ystem based on constructing a route map that contains a database

f images together with an odometry model. Their appearance-

ased method is limited to what FAB-MAP offers (SURF features),

ut to improve indoor reliability, they introduced markers that are

asier to distinguish along the route. [48] introduced a standard

alman filter SLAM approach to track the detected features in or-

er to improve the robustness of location estimation for a robotic

id for visually impaired users. 

Previous work [57] compared the performance of different

ppearance-based techniques for indoor localisation, extending the

se of these methods beyond loop closure, allowing for position-

ng on its own. Average absolute position errors of as low as 2

 were reported using an approach based on matching images

gainst crowdsourced journeys made along indoor corridors. This

echnique has some precedence in the literature, with [40] using

 database of keyframes registered with 2D positions and orienta-

ions that were later used in an “online” mode for servicing queries
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Fig. 2. Crowdsourcing indoor journeys (“visual paths”) from multiple users. Users 

A and B make the same journey at different points in time, but can associate their 

journeys through storing their visual paths on a server; other users C and D , make 

different journeys, but again can associate their experiences with each other. 
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that consisted of GIST and SURF descriptors. A state estimator

based on a Hidden Markov Model was also used for state predic-

tion, and to enforce spatio-temporal consistency. The authors, how-

ever, did not appear to test their system “in the wild”: for exam-

ple, the database images were post-processed to reduce for motion

blur. For this, they used an external inertial motion unit to capture

information about the roll and pitch angles of motion. 

In the next sections, we describe a BoVW approach to es-

timate a user’s position during indoor navigation by using im-

ages acquired from either hand-held or wearable cameras. Posi-

tion is estimated with respect to the distance travelled along one-

dimensional paths consisting of ambiguous corridors; this presents

a difficult use case for techniques such as SLAM, as will be shown

in later sections. 

2.5. Getting data into a navigation system: crowdsourcing 

As we saw in Section 2 , crowdsourced data is already enrich-

ing location information through social networking and person-

alised place recommendations (e.g. Foursquare); and through col-

laborative maps (e.g. OpenStreetMap ). Crowdsourcing sensor data

from mobile phones is providing a myriad of applications, from

detecting traffic congestions [12] to mapping the real mobile net-

work coverage based on thousands of individual signal strength

readings [50] . More relevant to the present work is the study by

[74] where indoor localisation is provided by matching inertial and

magnetometer readings to sensor signatures stored in a database

of crowdsourced data from previous users traversing the same

space. We are adding vision to this hypothesis, and we propose

two different scenarios for crowdsourcing of visual data: 

a) visual data, together with ground truth positioning, is incorpo-

rated into mapping information as part of an accessibility mea-

sure. There are tools available for this process that standardise

and accelerate the acquisition of visual data (see, for example,

[32] ). 

b) individual users contribute recordings of their indoor journeys

from wearable cameras and provide some contextual informa-

tion and ground truth via a Web or mobile application. 

These two scenarios are compatible in the sense that users

should be able to enrich public indoor maps through crowdsourc-

ing tools and benefit from the availability of this data through ac-

cessible Apps installed on their mobile/wearable devices. An illus-

tration of this scenario is depicted in Fig. 2 . 
Therefore, we consider first the role of an appearance-based

echnique for using low-resolution images from a hand-held or

earable camera as both a source of query information and a

ource of database (mapping, localisation) information. Images are

ompared in order to establish position, and this can be seen as a

eans of externalising visual memory [69] . 

. System overview 

A key contribution of this work is to explore the feasibility

nd usefulness of an App that provides a haptic interface for

ppearance-based indoor localisation. In Fig. 3 , we illustrate the

oncept: a blind or partially sighted user wants to travel from a

oint A to a point B in a building. They launch an App which starts

ollecting images from the camera of the Senseg TM tablet or from

 wearable camera paired with the tablet. These images are sent

o the server, which estimates the location of the user based on

n appearance-based visual localisation algorithm. The estimated

ocation is sent back to the user’s device where it is interpreted

nd conveyed in the form of a haptic cue over a pre-loaded floor

lan of that part of the building. The device can also show visual

eedback for sighted users, as illustrated in Fig. 7 . 

.1. The data sources 

As suggested in Section 1 , both the floor plan and a database

hat contains previously acquired views (see Fig. 2 ) must be avail-

ble. The former should be (politically) eas y to acquire, particularly

f it is considered as a means toward supporting accessibility. One

ption for the latter is described in Section 6.1 , but note that, as

hown in Fig. 1 , the necessary data can be acquired or inferred

hrough a variety of techniques. 

A key concern for such databases, and particularly those that

ould seek to acquire image or video information upon which to

ase navigation services, is the sheer quantity of information that

ould need to be stored, acquired and transmitted. This is where

he choice of processing technique can make a significant differ-

nce. Ideally, we should aim to capture, store and process visual

nformation using as small an image size as is practically feasi-

le to permit location recognition. We base the following calcu-

ations on uncompressed video, as most algorithms that generate

isual descriptors for object recognition currently operate outside

f the compressed domain. Furthermore, the range of descriptor

mplementations that we are able to choose from is dramatically

ncreased by working in the image domain. A 15 s video clip ac-

uired at normal walking speeds equates to just over 20 m of dis-

ance in real space. UMTS 3G mobile can run at up to 48 kB/s,

nough to perform uncompressed image transfer for a 208 × 117

ixels greyscale image—a location query—within 1 s. However, 1

B/s—the speed of EV-DO [13] —or 9.4 MB/s—the uplink speed of

TE 4G—is more than sufficient for acquiring crowdsourced low-

esolution video data through streaming. Beyond bandwidth, the

mount of storage required for these videos should also be con-

idered. We found that 60 s of low-resolution video footage at 25

ps occupied between 2 and 3 MB when compressed, with 20 such

ourneys, each of 60 s duration, coming in at under 50 MB. These

inimal storage costs are only achievable if the spatial resolution

f the image data is sufficiently low—significantly lower than that

sed by current computer vision techniques for localisation. We

bserved that, by eye, we were able to determine the location of

 person in a building based on 208 × 117 pixels greyscale video

ecordings from an equipped wearable camera. The question was

hether localisation could also be achieved by an algorithm at

uch low resolutions. 
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Fig. 3. Illustration of the usage scenario. The App installed on the user’s tablet submits queries taken from a coupled wearable camera or the tablet’s camera. A server 

sends location feedback, conveyed via tactile cues over a floor plan scaled to fit onto the device screen. The user is depicted with earphones to illustrate the use of multiple 

feedback interfaces; audio feedback was not implemented in this work, but see [15] for an example. 

3

 

t  

m  

b  

d  

(  

p

 

d  

o  

b  

f  

t  

w  

S  

i  

d  

t  

t

 

n  

t  

t  

b  

t  

o

 

a  

(  

t  

a  

o  

U

3

 

a  

t  

v  

a  

a  

S  

w  

c  

H  

d  

i  

d

 

r  

o  

t  

a  

f

4

 

I  

c  

i  

f  

t  

d  

t  

w  

p  

t  

a  

p  

f  

e  

G

4

 

b  

s  

g  

s  

c  

c  

c  

w  

M  

s  

w

4

 

o  
.2. Algorithm choice 

In previous work, image patch descriptors were evaluated for

heir ability to discriminate location [56] ; in this paper, we use two

ethods of image description: one designed to extend gradient-

ased indexing techniques, permitting both scalable location in-

exing and the representation of textures via a haptic device

Gabor-based), and one widely available technique with many im-

lementations (SIFT). 

We describe the algorithm choice for visual processing in some

etail in Section 4 . For the RSM dataset [55] , the inference of ge-

metry and camera odometry can operate in real-time on a mo-

ile device. However, running LSD-SLAM at the resolution required

or tracking to succeed can quickly deplete a device’s battery. Fur-

hermore, the use of several uncalibrated devices, a likely scenario

hen trying to crowdsource information, poses a challenge to LSD-

LAM. Perhaps more importantly, utilising several sources of nav-

gation information adds robustness, and allows routes to be up-

ated at low cost. This requires a repository of journey sequences;

he repository is therefore a key part of the architecture—and of

he algorithm—used in creating the prototype App. 

An indexing process considers all frames from multiple jour-

eys, using this to build a custom dictionary that can be used

o quickly search for matching frames, and which can apply dis-

ance measures between candidate BoVW descriptors. Metrics can

e used to pass information back to a server about relative dis-

ance based on previous journeys along the same route. We expand

n this in Section 4 . 

The data repository consists of the frames at both the original

nd compressed resolutions, and binary files for processed data

descriptors, dictionaries and encoded visual words). The sizes of

he binary files were small enough that we could efficiently store

nd retrieve the data from both file systems on a single disc and an

pen source distributed file system (GlusterFS) spread over three

buntu servers. 

.3. Interface device 

We chose to use the tactile interface of a prototype version of

n electrostatic device, the Senseg TM tablet. This tablet is a cus-

omised version of a Google Nexus 7 Android tablet, and can pro-

ide a fairly rich tactile experience. In order to provide a scal-

ble and real-time localisation service to a person, we utilised

 standard client–server model, with a customised App on the

enseg TM tablet as the client. A HTTP server was implemented

ith Node.js, which acted as a proxy for calling the localisation

ode. This generic, modular design allows us to both extend the

TTP server’s functionality, for example to include capturing of
ata for the dataset via another phone App, or to change the

mplementation of the HTTP server or localisation code indepen-

ently. 

We note that not only does the HTTP-based approach allow for

elatively fast communication over a building’s Wi-Fi network, but

ther network communication protocols are often blocked in insti-

utional networks. The server can also be extended to use HTTPS

nd can operate on either non-standard or standard ports (80/8080

or HTTP and 443 for HTTPS). 

. Visual processing for localisation 

We used an appearance-based search pipeline, shown in Fig. 5 .

t consists of a feature extraction process, followed by dictionary

reation and encoding. However, it is designed to support exper-

mentation with all stages of processing: in previous work we

ollowed the same pipeline to evaluate several feature extraction

echniques [56] , with a mix of single-frame and spatio-temporal

escriptors. We focussed on dense methods, as these were found

o perform better for indoor navigation [56] in the datasets which

e used for testing. Additionally, the distance metrics used in this

aper differ substantially from the retrieval literature as our inten-

ion is not to classify an object, but rather to assess similarity in

 dictionary space of frames that are also close to each other in

hysical space. In the following sections, we will describe the dif-

erent elements of the pipeline, including a discussion of how we

xtended the gradient fields of SIFT to support multi-directional

abor filtering, with a corresponding descriptor. 

.1. Preprocessing 

The incoming frames for both the database creation and query

ranch are first converted to greyscale. The images are then down-

ampled to size 208 × 117 pixels, which we found sufficient to

enerate reasonable localisation. Prior to the feature extraction

tage, the images were pre-smoothed at a scale of σ = 1 . 2 , which

orresponds to VLFEAT’s default keypoint scale s = 2 . This avoids

omputing a Gaussian scale space: the single scale of descriptor

alculation on a dense grid in which a single value of σ appeared

ell-suited to the goal of working with relatively small images.

ore information on these design choices, and a comparison of

parse versus Dense SIFT, and other descriptors, is discussed else-

here [56] . 

.2. Patch descriptors 

We used two different types of patch descriptors in our studies

f appearance-based localisation. One of these was optimised for
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speed in the client–server application, and the other was optimised

for accuracy of localisation. Both were used in the same BoVW

pipeline. The DSIFT descriptor [38,41] was selected for its wide

availability within many (operating system and software) environ-

ments; we used the implementation within the VLFEAT [70] li-

brary. We used a stride length of 3 pixels [56] . This produced

around 2, 0 0 0 descriptors per video frame, each descriptor repre-

senting a patch of roughly 10 × 10 pixels. 

We also sought to explore the best possible localisation perfor-

mance that was obtainable in a reasonable amount of computa-

tional time. To do this, we used a slightly longer descriptor based

on Gabor filtering, as explained in detail in our previous work [56] .

Multi-directional spatial Gabor filters are attractive for visual anal-

ysis because, amongst their many uses in computer vision, they

can be used to characterise image textures [1,33,76] and perform

face recognition [78] . Both of these are applications of computer

vision that hold potential for visually impaired users. Although we

did not use direct mapping of texture to tactile feedback in this

study, it is a feature that we plan to investigate in the future (see,

for example, the texture mapping work of [1] ). 

As spatial filtering is computationally expensive, we do not

wish to use both a gradient field descriptor (e.g. HoG or SIFT) and

texture filtering. It would be sensible to create descriptors that are

comparable with SIFT from the outputs of directional Gabor filter-

ing. In that way, the same convolution operation can be re-used for

both mapping of image texture to tactile textures and for location

recognition. These new descriptors were created by adding pool-

ing and sampling operators to the outputs of a Gabor filter bank

in order to construct descriptors that are applicable to BoVW tech-

niques [49] . We now describe the theoretical approach to the cre-

ation of the Gabor-based descriptors. 

4.3. Descriptors from Gabor filters 

Recognising that SIFT operates with vector fields of the form: 

�
 ∇ f (x, y ;σ ) = 

∂ f (x, y ;σ ) 

∂x 
�
 x + 

∂ f (x, y ;σ ) 

∂y 
�
 y 

= 

∂ f (i 1 , i 2 ;σ ) 

∂ i 1 
i 1 + 

∂ f (i 1 , i 2 ;σ ) 

∂ i 2 
i 2 (1)

= 

2 ⋃ 

k =1 

D k [ f (i 1 , i 2 ;σ )] i k (2)

where spatial dimensions ( x, y ) are now represented by modes i 1 ,

i 2 in the tensor notation of Kolda [36] , and Eq. (2) follows from Eq.

(1) because of the orthogonality of unit vectors � x and 

�
 y . D k is a

derivative operator along dimension (mode) i k . 

More generally, when the directional operators are not neces-

sarily partial derivatives, we may introduce the discrete spatial ori-

entation tensor at scale σ as: 

G σ = 

K ⋃ 

k =1 

O k [ f (i 1 , i 2 ;σ )] i k (3)

The operator O k is some form of discrete, directional spatial op-

erator. Eq. (3) generalises a two-dimensional gradient field at scale

σ ; it permits more than 2 directions of peak angular sensitivity,

and unlike the operator D k , there is no requirement that O k be

linear. 

Using oriented Gabor filters, an order 3 tensor G σ,λ is con-

structed by: 

G σ,λ � R + 

(
F 

{ i 1 ,i 2 } 
[ ∗] 

{ (∼,i 3 ) } 
K G 

)
(4)

where [ ∗] represents tensor convolution in the modes i 1 and i 2 
(see Appendix B ), and λ is a tunable spatial wavelength parameter.
 G is an order 3 tensor of dimension 7 × 7 × 8. The function R + (·)
s the one-sided ramp function applied element-wise to its tensor-

alued argument. i.e. for a tensor with elements a i 1 ,i 2 ,...,i N it creates

 tensor of the same order and size with the elements | a i 1 ,i 2 ,...,i N | .
he tensor K G holds antisymmetric Gabor functions, one direction

er slice of the third mode ( i 3 ); directions span the 2D plane. 

To create the descriptors from the order 3 tensor G σ,λ, a per-

uted tensor convolution ( Appendix B ) is applied between G σ,λ and

 pooling tensor P : 

 � G σ,λ

{ i 1 ,i 2 } 
[ ∗] 
{ i 3 } 

P (5)

he pooling tensor, also of order 3, defines 17 pooling regions with

espect to each location in image space, distributed in a radial and

ngular fashion across a patch; the values in this tensor are visu-

lised over a normalised neighbourhood of unit width and height

n Fig. 4 . The resulting order 4 tensor, D , may be reshaped [36] into

n order 3 tensor containing 136 slices along mode i 3 . Descriptors

re obtained by sampling D every 3 pixels along modes i 1 and

 2 , generating around 2,0 0 0 descriptor vectors per frame, each of

36 elements. This makes the number of descriptors comparable to

SIFT, a design goal that helps in planning storage demands, and

n interchanging modules. 

Both the pooling patterns and the Gabor parameters σ and λ
ere optimised on the PASCAL VOC 2007 database [25] for re-

rieval accuracy. No further optimisation was applied for the ex-

eriments on the RSM dataset as described in this paper. 

.4. BoVW pipeline 

In order to test the ability to localise position based on the vi-

ual structure of either a short sequence of frames or individual

rame information, we adopted a retrieval structure for efficient

apping of the visual descriptors, sparsely or densely populating

n image, into a single frame or vignette-level [57] representation.

he approach is based on standard retrieval architectures used

or image categorisation—the Bag-of-Visual-Words (BoVW) model—

nd is illustrated in Fig. 5 . 

For the vector quantisation, hard assignment was used to en-

ode each descriptor vector by assignment to a dictionary entry.

he dataset was partitioned by selecting N v − 1 of the N v video se-

uences of passes through each possible path. This ensured that

ueries were never used to build the vocabulary used for test-

ng the localisation accuracy. The dictionary was created by apply-

ng the k -means algorithm on samples from the video database.

e fixed the dictionary size to 40 0 0 (clusters, words); this allows

omparison with the work of others in related fields [16] . 

The resulting dictionaries were then used to encode the de-

criptors: both those in the database and those from queries. The

requency of occurrence of atoms was used to create a histogram

f visual words “centred” around each frame of the video sequence

visual path) in a database, and the same process was used to en-

ode each possible query frame from the remaining path. All his-

ograms were L 2 -normalised. 

.5. Localisation using “kernelised” histogram distances 

Once histograms had been produced for all the images in the

atabase we generated “head-to-head” distance comparisons be-

ween each pair of passes. In the image retrieval and object recog-

ition literature [71] , we call kernel matrices those that contain a

kernelised” version of a form of scalar products between the fea-

ure vectors (the histograms) of each element in one class against

ach element of another class. In other words, that scalar product

s in reality a distance metric, and in our case, the similarity of
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Fig. 4. Patterns of 17 spatial poolers consist of regions in a centre-surround organisation, with angular variation. These pooling weights were optimised on the PASCAL VOC 

2007 dataset for categorisation by an optimisation approach. Colours are chosen to alternate in order to allow spatial relationships to be visible; x, y spatial scales are relative 

to patch size. 
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0 0 0-dimensional histograms is performed for each query frame

gainst the database entries. 

Using n to denote the frame number, p is a particular journey

own a corridor, and q a specific query frame, the χ2 kernel ( Eq.

6) ) 

 χ2 (H q , H p,n ) = 2 

(H q · H p,n ) 

H q + H p,n 
(6)

and the Hellinger kernel ( Eq. (7) ) 

 H (H q , H p,n ) = 

√ 

H q · H p,n (7)

re common choices to compare query frames encoded by a BoVW

ncoded frame with a database containing several frames (here,

onsisting of different journeys, p and frames, n ). In this work we

hose the χ2 kernel, as it performed better on the task of path

ocalisation [56] . For a random subset of the N v − 1 videos cap-

ured over each path in the dictionary, the query is selected from

mongst the frames of the remaining journey. Each histogram, H q ,

epresenting a query frame results in N v − 1 separate comparison

atrices ( Fig. 6 ), each containing the distances of each database

rame histogram to the query in the form of matrix columns. 

We identified the best matching frame, ˆ n from pass ˆ p across all

f the N v − 1 vectors: 

 ( ̂  p , ̂  n ) = arg max 
p,n 

{ K χ2 (H q , H p,n ) } (8)

H p, n denotes the series of normalised histogram encodings, in-

exed by p drawn from the N v − 1 database passes, and n denotes

he frame number within that pass. The estimated “position”, L ,

f a query was that corresponding to the best match given by Eq.

8) ; this position is always relative to that of another journey along

pproximately the same route; the accuracy and repeatability of

his in associating locations between passes was evaluated using

istributions of location error and Area-Under-Curve (AUC) criteria

erived from these distributions as we will see in Section 6 . The

ethod is illustrated in Fig. 6 . 
. A tactile interface for a client–server assistive localisation 

ystem 

We have described localisation systems that use visual input

o provide location information by matching queries against a

atabase of previously acquired images of the environment. We

ow describe how this information can be conveyed to blind

nd partially sighted users by means of a haptic interface. In

ection 6.3 we describe experiments to gauge the quality of the

aptic feedback for localisation. 

.1. The Senseg TM App 

The goal of the Senseg TM App was to convey localisation in-

ormation to visually impaired users. The Senseg TM device allows

ifferent textures to be felt at different locations and at a vary-

ng range of intensities, as specified by the programmer. It pro-

ides enough variation in textures to create discretely identifiable

bjects, and hence impart localisation information through haptic

eedback. 

.1.1. Overview of App 

We defined two important criteria for the App: 1) manual inter-

ention from the user should be minimised 2) the space available

or feedback should be maximised. To address the first criterion,

he App was programmed to take photos automatically at fixed in-

ervals. This removed the need for any buttons, allowing the map

o be scaled to fit the 7 inch screen of the Senseg TM device. Fig. 7

hows a screenshot from the App, with colour-coded information

o provide additional visual feedback: 

1. The yellow outline represents walls—the limits of the map—and

imparts the greatest intensity of haptic feedback. 

2. The grey lines form a grid system. A grid system was used for

two main reasons: 

(a) There need to exist distinct boundaries between haptic feed-

back positions to allow the user to differentiate between

them. 
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Fig. 5. Video sequences from wearable and hand-held cameras are processed using a customised BoVW pipeline. The pipeline illustrates the idea of comparing BoVW word 

encodings from individual query frames against a collection of frames from previous journeys. 
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(b) They allow the user to quantify how far they are from refer-

ence points. For example, here the map consists of 10 boxes

between the entrance and exit. Each box, therefore, repre-

sents 10% of distance between the start and the end of the

corridor. This allows the user to estimate their current lo-

cation by using relative distance between the start and end

points. 

The perimeter of the boxes have the “Edge Tick” haptic feed-

back assigned to them. 

3. The green box represents the user’s estimated position at any

given time. The whole area of the box has a “Grainy” texture

assigned to it. This allows users to identify their location along

their journey. 

4. The red box represents the location of the user’s touch on the

screen over any of the boxes in the grid. This was used to en-

sure that the App was registering touches correctly during ex-

periments. 
istances are measured in a normalised scale from 0 to 1—this

as used as a journey-relative distance metric (in our case be-

ween the beginning and the end of the corridor). The normalised

cale allows ready adaptation to different tactile screen geometries

nd methods of user-interaction. As a measure of distance travelled

long a desired path, it also easily conveys a sense of how fast one

s making progress along a planned route. The percentage bar at

he bottom of the App provides fine-grained distance information

or testing purposes. 

.1.2. Task flow 

The task flow of the user is to obtain location information as

hey progress along their journey. To accomplish this we integrated

he App with a server that takes images as input and outputs lo-

ation information. It would be inconvenient for visually impaired

sers to manually request localisation information, so a picture of
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Fig. 6. Matching locations by selecting maximum similarity kernel score between query and database frames. The scores may be obtained by comparing a BoVW encoding of 

a current query frame against all previous frames acquired from different journeys having similar start and end points. Because the frames are relatively small, comparisons 

and descriptor calculation for all frames can be rapid. 
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he user’s surroundings is taken automatically at fixed time inter-

als. This is then uploaded to the server which returns the nor-

alised journey distance. 

.2. Client–server integration 

Although the device running the App has a camera, the user

ould alternatively utilise a wearable camera, such as Google Glass ,

o ease the capturing of visual data. This would be paired with

he App on the haptic device. As the user navigates the environ-

ent, the camera takes low resolution pictures at regular intervals.

he intervals can be chosen to minimise processing/battery usage,

hilst still providing responses that are usable in real-time. Each

icture is sent to the HTTP server via a POST request to a spe-

ific URL endpoint. The HTTP server asynchronously saves the im-

ge and calls the appearance-based matching code. This code re-

urns the estimated location to the Senseg TM tablet via the HTTP
esponse. Under the assumption that the indoors area has a Wi-Fi

etwork, we have chosen to offload the computation to a server at

he cost of bandwidth [64] . This arrangement is supported by the

andwidth requirements of the appearance-based approach that

e settled on. This is because, in contrast to SLAM-based algo-

ithms, the appearance-based method appears to work with quite

mall images, requiring no more than ≈40 kB per greyscale image,

nd no more than 120 kB per colour image. 

. Experiments 

.1. RSM dataset acquisition 

A total of 60 videos was acquired from six corridors of a large

uilding. A LG Google Nexus 4 phone and a Google Glass (Explorer

dition) were used to capture videos. The Senseg TM tablet was not

sed in the creation of the dataset and was therefore only used



136 J. Rivera-Rubio et al. / Computer Vision and Image Understanding 149 (2016) 126–145 

Fig. 7. Senseg TM App screen. The yellow outline represents walls. The grey lines form a grid system for relative localisation. The green box identifies the user’s estimated 

location. The red box depicts the location of the user’s touch, and was used for debugging purposes. The horizontal scale at the bottom indicates relative position in the 

journey. The camera image is also displayed for debugging purposes. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

 

 

 

 

 

 

s  

f  

v  

a  

s  

 

c  
for capturing images for querying location. The main part of the

database contains just over 3.0 km of indoor navigation, all with

ground truth. For each corridor, ten passes (i.e. 10 separate walks)

were obtained. The Nexus 4 (running Android 4.4.2) acquired data

at approximately 24–30 fps at two different resolutions, 1280 ×
720 and 1920 × 1080 pixels. The Google Glass acquired data at

30 fps with a resolution of 1280 × 720 pixels. The length of the
equences varied from corridor to corridor. Acquisitions were per-

ormed at different times of the day and night, so that the lighting

aried quite significantly even in the same corridor. Activities (such

s cleaning or shifting of furniture) were unplanned, but are to be

een in some sequences. Occasionally, people appear in the videos.

A surveyor’s wheel, with a precision of 10 cm and error of ± 5%

m was used to record distances. This was wired to a Raspberry Pi,
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1 In reality, the App design uses the Android “Supporting Multiple Screens” API 

from the software development kit [20] , which establishes a density-independent 

pixel (dp) for its responsive and multi resolution design. For the case of our Nexus 

7 (2012) tablet, with a resolution of 216 ppi (85 ppcm), we used 100 × 50 dp, 

which converts to 150 × 75 pixels. 
ynchronised to network time. Timestamp data from the video was

sed to align ground truth measurements with frames. The dataset

s publicly available for download at http://rsm.bicv.org [55] . 

.2. Experiments on localisation: appearance-based methods versus 

LAM 

We compared the best performing appearance-based method

gainst the current state-of-the-art in SLAM for indoor sequences,

SD-SLAM. We first ran the LSD-SLAM code over the 60 video se-

uences of the RSM dataset and retrieved the results from the vi-

ual odometry engine in order to obtain position estimates for each

rocessed frame. This provided an estimate of the distance trav-

lled by a user, allowing comparison to the results we had for the

ppearance-based method. 

The cameras in our devices are quite different to those

uggested for use with LSD-SLAM (recommended: monochrome

lobal-shutter camera with fish eye lens); therefore, we had to

odify the standard LSD-SLAM software to recover from lost track-

ng when this happened. We adapted the semi-dense SLAM pa-

ameters for our conditions and data, specifically, to minimise in-

tances of lost tracking in medium resolution versions of the RSM

ataset, i.e. at a considerably higher resolution than the image re-

uired for the appearance-based approach. In Appendix D we pro-

ide the parameter values that we used for the experiments. 

.2.1. Measurements of performance 

In order to quantify the accuracy of estimating position along

hysical routes taken by a person with a hand-held or wear-

ble camera within corridors, we selected N v − 1 passes (complete

ideos) along single corridors contained; these were placed into

he journey database. We then randomly selected query images

rom the remaining pass. Using the ground truth, we were then

ble to get an estimate of the error in localisation. The same prin-

iple may be applied to LSD-SLAM; this allows us to test the repro-

ucibility of journeys along the same corridors when using differ-

nt cameras, and by using different inf erence techniques. We also

ummarised localisation errors in the form of an estimate of P (| ε|

 x ), which is explained in more detail in the following sections. 

.2.2. Cumulative distribution functions 

Estimating cumulative distribution functions (CDFs) over abso-

ute positional error allowed us to compare the error distribu-

ions of several appearance-based techniques [56] . We also as-

essed the variability in error distributions when 1 million per-

uted queries were performed by cycling through 10 0 0 permu-

ations of 10 0 0 randomly selected queries. This Monte-Carlo ap-

roach allowed us to get an impression of the stability of the

ppearance-based matching. All the results were generated with

ideos resized down to 208 × 117 pixels; these are also supplied

ith the dataset. We used this metric to compare the performance

f the best appearance-based method (the Gabor filter-based de-

criptor, [56] ) and LSD-SLAM. In Section 7 we describe the main

ndings of this comparison. 

.3. Blindfolded users with tactile sensing 

.3.1. Aim 

The aim of this experiment was to evaluate the quality of the

actile feedback when used with blindfolded users who were at-

empting to estimate their locations. Blindfolded users received

actile cues on the tablet that encoded an estimate of their position

long a specific journey relative to the start and end points. Given

everal location estimates conveyed through the Senseg TM tactile

nterface, this series of experiments assesses the accuracy of tac-

ile feedback for localisation through a user’s perception of his or

er position. 
.3.2. Experimental protocol 

Eighteen volunteers were asked to conduct the following steps:

1. Firstly, the volunteer was asked to ground his/her hands. 

2. The volunteer was then given some familiarisation tasks with

a Senseg TM demonstration App that shipped with the tablet

(“HapticGuidelines”). This App allows a user to gain familiarity

with the feel of the different textures provided within the local-

isation App. Volunteers were asked to determine which of their

fingers appeared the most sensitive to the haptic effects. They

were also asked to find the correct finger movement speed to

obtain the most feedback. 

3. After the nature of the experiment was announced to each vol-

unteer, they were again given the haptic tablet with the lo-

calisation App already launched. Two red rectangles denoted

the start and end points and had specific—relatively intense—

textures. Each of these boxes had a screen size of 150 × 75

“tixels”, equivalent to the same number of pixels in the touch-

screen display. 1 According to the Nexus 7 (2012) specifications,

the screen resolution is 216 ppi (85 ppcm), and so the actual

height of each box corresponds to around 0.35 in (0.88 cm). 

The volunteer was then asked to search for four landmarks: 

(a) the beginning of the path, 

(b) an area with no haptic feedback, this was the area that

would represent the path that users had already traversed, 

(c) an area with haptic feedback, that represents the remain-

ing segment of the path. This feedback would be the same

“Edge Tick” texture described in Section 5 . 

(d) the end of the path, with highlighted haptic texture. 

4. The volunteer was then carefully blindfolded with a clean tissue

being placed between the blindfold and their eyes. The experi-

ment then began. 

5. Participants were given 20 tactile cues, each spaced 15 s apart.

In the time between the cues, they were asked to estimate and

announce their location estimate to the closest 10%; 0% was the

starting point of the journey and 100% was the end point of the

journey. 

6. After the first 100 trials (five users), it was found that partic-

ipants were finding it hard to distinguish their whereabouts.

This was found to be due to a build-up of static charge on the

surface of the screen. From then on, (for the next 13 users), the

screen was discharged after every two tactile cues. 

n the following section, the results of the experiments—described

bove—are presented and discussed. Since one aim of this work

as been to compare potential sources of error, we report the ex-

erimental outcomes of visual position inference and of ability to

onvey the inferred position separately, synthesising the implica-

ions towards the end of the section. 

. Results 

.1. Performance of vision algorithms 

In this section we compare the performance of an appearance-

ased method with a current state-of-the-art technique in indoor

ocalisation: LSD-SLAM. This section contains comparisons of re-

roducibility in location sensing within the same corridor on re-

eat journeys, comparisons of LSD-SLAM error performance within

ifferent corridors, and comparisons of LSD-SLAM and appearance-

ased methods through estimates of the distributions of localisa-

http://rsm.bicv.org
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Fig. 8. Localisation performance in LSD-SLAM; this shows that in different corridors, the accuracy of LSD-SLAM can change quite significantly. See the text for details of 

the SLAM parameters and the nature of the dataset, but note that these were obtained at an image resolution of 1024 × 576 pixels. At lower resolutions, loss of tracking 

dominated the experiments. The difference in the x and y axis labelling is because experiments in a) and b) are obtained from two different corridors with different lengths 

and different numbers of frames. (For interpretation of the references to colour in the text, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Cumulative distribution function values against localisation error in metres 

( ε). P (| ε| < x ), expressed as a percentage. From this table, the best appear- 

ance method achieves a probability of 90% of localising with an error be- 

low 2 m, whilst LSD-SLAM achieves just above a 50% accuracy level for that 

error boundary, and required larger images. In addition, the performance of 

LSD-SLAM was significantly worse (compare the columns of minimum perfor- 

mance) on some corridors and journeys. 

Appearance-based SLAM 

| ε| (m) Min( P ) Mean( P ) Max( P ) Min( P ) Mean( P ) Max( P ) 

0 .25 22 .18 23 .50 25 .18 5 .21 5 .92 6 .98 

0 .50 51 .70 53 .45 55 .35 14 .08 15 .14 16 .26 

0 .75 65 .78 67 .31 69 .08 21 .35 22 .75 24 .11 

1 .00 71 .25 72 .73 74 .28 28 .11 29 .40 30 .69 

1 .25 78 .98 80 .28 81 .96 34 .31 35 .64 36 .98 

1 .50 83 .76 85 .10 86 .31 39 .85 41 .26 42 .62 

1 .75 88 .36 89 .43 90 .40 45 .54 46 .92 48 .51 

2 .00 92 .13 92 .99 93 .80 49 .88 51 .32 52 .70 

2 .25 93 .46 94 .23 94 .86 53 .77 55 .27 56 .73 

2 .50 95 .36 95 .95 96 .61 58 .33 59 .88 61 .34 

2 .75 96 .50 97 .03 97 .56 64 .09 65 .64 67 .30 

3 .00 97 .84 98 .25 98 .59 67 .84 69 .59 71 .04 
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tion error over different distances; the last of these are also sum-

marised through AUC metrics. 

7.1.1. Performance of LSD-SLAM 

Fig. 8 (a) and (b) illustrate the localisation performance of LSD-

SLAM (blue) with respect to the ground truth (red). The two cases

that we show are selected to illustrate that accuracy of localisa-

tion can vary, depending on the specific corridor within the RSM

dataset (see Section 6.1 ). As can be seen from the figures, in the

better case, the absolute error is below 2 m. However, in some

cases, we found errors as high as 5 m. These errors were found

when operating at image sizes that allowed LSD-SLAM to function

without losing tracking. 

7.1.2. CDF comparisons 

In Appendix C , we describe the algorithm to generate the cu-

mulative distribution functions (CDFs) of localisation error. CDFs of

error allow us to characterise the distribution of the error in lo-

calisation, and could help identify the sources of error. From the

CDF, we can also immediately estimate the probability of localisa-

tion error being less than x m. This is a quantitative measure that

can be used during parameter optimisation, and as a bound on er-

ror performance. Secondly, the Area Under the Curve (AUC) of the

CDF can be used as a performance measure. 

As we can see from Table 1 , the appearance-based method us-

ing Gabor-based descriptors performed better than LSD-SLAM in

the RSM dataset. This does not imply that the technique that we

used replaces SLAM or its equivalents—but it is a different context

of usage. A user who is seeking to get from A to B may be more in-

terested to know that they are passing distinctive visual locations

than in mapping out route geometry. In the scenario we describe,

and in which we are comparing performance, the journey of a user

is assessed against those made by other people who have made the

same journey—location becomes journey-relative, not map-relative.

Such a usage scenario also means that loop closure may not be

possible. A final point to remember is that the cameras that are

used in capturing the journeys are not necessarily identical, and

certainly may be uncalibrated. 

Box and whisker plots that evaluate the reproducibility in lo-

calisation are presented in Fig. 9 . These illustrate the reproducibil-

ity within RSM corridors 1 and 3 (C1 and C3) for multiple “leave-

one-out” passes. The plots suggest that whilst LSD-SLAM yields

worse results in terms of error, it has a consistency in performance

that is comparable to that of the appearance-based method. Also,
he errors for LSD-SLAM rarely go beyond 5 m, with an average

f μe = 2 . 48 ± 2 . 37 m. Conversely, the appearance-based method

ontains some outliers; even so, for some sequences the error is of

he order or lower ( μe = 1 . 31 ± 0 . 39 m) than the best reported for

LAM. 

.1.3. Area-under-curve comparisons 

Using the ROC curves that can be constructed from the cumu-

ative errors shown in Table 1 , the AUC for the best appearance-

ased method ranged from 96.11% to 96.39%. For the case of LSD-

LAM, the AUC ranged from 89.71% to 90.61%. All queries were

gain performed by adopting the leave-one-journey-out strategy,

ut because of the high repeatability of results, we did not ap-

ly random frame-level sampling in the estimation of these per-

ormance measures. 

.2. Blindfolded tactile experiments 

Two remarks are in order regarding the haptic tablet device.

irst, the accuracy of the location feedback improved after dis-

harging the tablet’s screen with an electrostatic cloth at regular

ntervals. Fig. 10 a and b show the results for individual subjects;
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Fig. 9. Box-and-whisker plots depicting the errors obtained in two corridors, using either LSD-SLAM or appearance-based matching. The top row corresponds to the 

appearance-based result. The bottom row corresponds to LSD-SLAM. On each graph, the horizontal positions correspond to different journeys down the same corridor 

position-referenced against the remainder of journeys in the database. Each bar represents the statistics of 100 random image queries for that query. These graphs suggest 

that LSD-SLAM and an appearance-based approach are comparable in terms of reproducibility of localisation within the same corridor. Note, however, that much lower 

spatial resolution (less than 1/4 of the image size, in pixels) is used for the appearance-based technique than for LSD-SLAM. 

Fig. 10. (a) Errors in localisation using tactile feedback via the Senseg TM tablet. Results from individual subjects spaced along the horizontal axis. (b) Proportion of hits 

(correct estimates of the portion of the journey completed) together with the number of estimates provided by each subject. 
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ne can see a notable improvement in the users’ performance

hen the device was discharged between trials (summarised in

able 2 ). Secondly, with our device, haptic feedback could only

e discerned when the tablet was plugged into a USB charging

ort, i.e. when it was grounded. This currently limits its use as a

ortable device for providing haptic feedback. 

Allowing for these limitations, we can see from Table 2 that

here is a 58.18% hit rate and an average error of roughly 4 m. For

omparison, the grid size we used for a representative test corri-

or of 30.62 m long with discretised locations 10% apart is ≈ 3

. From Table 1 we can see that, using this size of tactile box,
he appearance-based method would give a correct estimate with

 mean probability of 98.25%, whilst SLAM would achieve 69.59%. 

During the experiment, the user placed their finger at either

he end or the beginning blocks, which were a different texture

“Grainy”) to the map position (“Bumpy”). The position was up-

ated on the map every 15 s, providing ample time for confident

stimates. However, most users found it helpful to count blocks

edge tactile feedback) from the current position to the end block

hrough the tactile feedback between these points. 

Another observation is the time participants took to estimate

heir location: users took an average of 11.28 s ( σ = 5 . 58 s) to
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Table 2 

Summary of the results of tactile feedback experiment. A precision metric can be calculated as prec = 

hits 
estimates 

. 

Discharge MeanErr StdErr No. of trials No. of estimates No. of hits Precision 

Yes 2 .63 (m) 4 .04 (m) 260 231 136 58 .87 (%) 

No 9 .28 (m) 5 .34 (m) 100 44 24 54 .54 (%) 

Overall 4 .11 (m) 4 .33 (m) 360 275 160 58 .18 (%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

t  

o  

l  

a  

t

 

o  

f  

d  

u  

t  

n  

s  

c  

p  

m

 

p  

e  

t  

w  

e  

r  

t  

e  

p  

n  

W  

c  

s  

d  

i  

n

 

p  

a  

v  

t  

w  

b  

p  

a  

t  

o  

s  

b  

t  

s  

v  

c

A

 

P

complete the task. This might seem a long time in a real navigation

scenario. However, this experiment required the user to provide es-

timations on randomly selected locations, without any correlation

between the tactile cues. Another factor is that the experimental

protocol suggested a 15 s time for participants to provide estimates

of their location, which might seem long. During a typical real

journey which has been planned using the map, there would be a

predictable progression to the order of the cues once a journey has

started. Only if a trajectory change were to happen would a user

need to spend significant time finding their position on the map. 

A final comment is concerned with the large difference be-

tween the errors from the vision system and the errors in the user

interface. The vision subsystem had an average absolute error of

2.43% in the sequences of the tactile experiment. This represents

sub-metre accuracy of 0.75 m for a journey of 30 m in length. The

error of the haptic feedback is significantly larger than the error

of the live system’s algorithm. This suggests that an active spatial

“zooming” of the map needs to be included in order to reduce lo-

cation error from tactile feedback. 

8. Conclusion 

In this paper, we have described a prototype indoor visual lo-

calisation system which provides location information on a tactile

map. The proposed system is able to exploit data crowdsourced

from consumer-grade devices in order to build up its database. We

have also explored the use of image data from hand-held or wear-

able cameras to pinpoint a user’s position relative to other jour-

neys made along the same physical route. Information on the lay-

out of a route was provided to users through haptic cues via a

Senseg TM tablet (a Google Nexus 7 device modified to allow extra

haptic feedback). We found that the architecture of such a system

can be remarkably simple. We have also described the components

of our prototype: the algorithms for computer vision, the architec-

tural aspects of the App, and the client–server interaction. 

On comparing the performance of an appearance-based method

of localisation to one of the more recent SLAM algorithms, LSD-

SLAM, we were surprised to find that appearance-based local-

isation was at least as accurate as that of LSD-SLAM without

loop closure over distances of around 50 m. We also found that

appearance-based localisation was achievable with low resolution

images (208 × 117 pixels), as compared to LSD-SLAM (minimum

size 1024 × 576 pixels). This lowers the computational burden,

a potentially important factor in an assistive context, where the

power autonomy of devices is an important requirement. In ad-

dition, the modest image size requirements for appearance-based

localisation reduce the bandwidth and storage needed for crowd-

sourcing data. We found that 1500-frame sequences, sufficient for

a 50 m corridor at normal walking speeds ( ∼1 . 4 m/s), consumed

no more than 2 MB once compressed, meaning that the journey

segments required for localisation can feasibly be harvested from

several users who have made the same journey. 

We evaluated the accuracy of blindfolded volunteers to perceive

location via haptic cues presented on a map. This map was laid out

on a tactile display, with haptic cues to indicate boundaries and

also start and end points. We found that blindfolded users were

able to perceive their location on a map with a minimal amount of
ractice. This supports the hypothesis that the use of visual indica-

ors of map-relative position can be replicated by haptic technol-

gy. Specifically, this approach has the potential to allow a spatial

ayout and a user’s position to be conveyed via haptic feedback,

n approach that may be added to smartphone-based technologies

hat can be used by visually-impaired users to navigate indoors. 

Taking both the precision of the haptic device and the accuracy

f visual localisation into account, we suggested a technique to in-

er the error in localisation that reflects the limits of the haptic

evice and the position sensing technology. In effect, this allows

s to determine the error in localisation that a given grid size on

he tactile map may have for a specific journey. Whilst no tech-

ology system for localisation is without errors, using the CDF as

uggested in Section 7 allows sensible measures of accuracy to be

ited: this represents a step towards being able to characterise the

erformance of devices with haptic feedback for navigation in a

ore reproducible manner. 

In future work, we plan to extend two aspects of the work re-

orted in this paper: improving the visual processing and further

xploring the capabilities of mapping visual information onto hap-

ic devices. Generally speaking, the use of images captured with

earable cameras by a navigating person remains only superficially

xplored in the literature. Though power consumption and accu-

acy of detection remain key barriers to wide scale deployment,

hese barriers will be lessened over time. In addition to location

stimation, the possibility of using cameras to detect obstructions,

eople, and any deviations in the environment from previous jour-

eys, holds promise for richer assistive technology for navigation.

e also plan to integrate ground-plane detection using a wearable

amera in order to find irregularities in walking surfaces, or ob-

tructions out to around a 5 m distance. Finally, other sources of

ata, for example Wi-Fi signal strength, can play a key role in both

mproving the reliability of position estimation, and overall robust-

ess for cases such as failure of indoor lighting. 

On the haptic side, we plan to refine the mapping from floor

lans to tactile feedback. Returning to the Senseg TM platform as

n example, a variety of textures could be conveyed to a user by

arying the amplitude and temporal pattern of voltage pulses sent

o the haptic interface. By combining the flexibility of this device

ith prior work on mapping textures to haptic feedback, it should

e possible to improve the information conveyed to a visually im-

aired user by automatically translating visual information from an

ppropriately prepared map. In addition, a standard map format

hat contains hatches or textures to illustrate locations of steps,

r different types of rooms, could be mapped to different tactile

ensations on devices with the appropriate range of haptic feed-

ack. The wider implications for mapping visual structure to tac-

ile sensations extend—via the use of the same Gabor functions

uggested for appearance-based localisation—to features in the live

ideo feeds from a wearable camera, opening new possibilities for

onveying visual information into haptic cues for navigation. 
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Table A.3 

List of symbols. 

Symbol Meaning 

A , B General, arbitrary tensors of orders N A and 

N B used in definitions 

F Order 2 tensor denoting an intensity image 

K G 3 rd order Gabor kernel tensor 

K · where · is either χ2 or H , denoting “kernelised” distance measures. 

i 1 , i 2 , i 3 ... Tensor indices of increasing mode, where 

each i n takes integer values from 1 to I n , ∀ n 
D Descriptor tensor 

D k Partial derivative operator in direction k 

H · A histogram constructed from a query image or a series of database images 

L Likelihood function based on histogram comparisons 

K Number of modes along which a generalised directional operator is applied 

M Set containing the modes over which tensor convolution ( Appendix B ) is performed; when modes match for the two arguments, mode indices are given, 

else mode tuples are given 

N v Number of videos in the complete dataset being studied 

O k A generalised directional spatial operator in direction k 

P Pooling tensor (order 3 tensor for performing spatial pooling) 

P Set containing the modes over which permutations are performed in permuted tensor convolution ( Appendix B ) 

P Probability 

ε Error (used in distribution of errors) 

f ( x, y ) Image as an intensity function of continuous spatial coordinates 

n, p Frame number and journey number, respectively 

σ General spatial scale parameter; either for Gabor function or Gaussian scale-space 
�
 ∇ The “gradient” operator; maps scalar field to a potential field 

∂{·} 
x 

Partial derivative with respect to x 

�
 x , � y unit vectors in a Cartesian coordinate system (resp. i 1 , i 2 ) in Kolda’s notation. 

x Single spatial position variable. 

A 
M 

[ ∗] B Tensor convolution between equal-ordered tensors A and B ; (see Appendix B ). 

A 
M 

[ ∗] 
P 

B Permuted tensor convolution between A and B ; (see Appendix B ). 
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ppendix A. Symbols 

Table A.3 

ppendix B. Tensor convolution 

We have found it useful to adopt the definitions of [36] , in

hich the tensors are interpreted as multidimensional (multiway)

rrays. The authors also introduce or formalise operations upon

nd between tensors. In Kolda and Bader’s notation and nomencla-

ure, the meaning of a tensor is different to that of classical physics

nd stress-analysis, in which tensors are mathematical entities that

bey strict transformation laws. 

In Kolder and Bader’s (K&B’s) terminology, the order of the ten-

or is the number of dimensional indices required to address it;

or example, an order 5 tensor A may have addressable elements

 i 1 ,i 2 ,i 3 ,i 4 ,i 5 
, with each index varying from 1 to I n , n = 1 , 2 , 3 , 4 , 5

n integer steps; note that in contrast with the K&B notation, in-

ices are comma-delimited. Since each element of the tensor can

e restricted to be real-valued, we may consider A as lying in I 1 
I 2 × I 3 × I 4 × I 5 - dimensional real space. The mode of a tensor

efers to the tensor elements simultaneously addressed by one of

he indices, and is applied to refer to operations that involve, pos-

ibly non-exclusively, a particular one of the indices. Definitions of

ensor-vector and tensor-matrix products follow [36] , with tensor

ontraction as described in [11] and also [3] . 

In the following definitions, we will refer to the tensors A ,

 and C , where A ∈ R 

∏ N A 
n =1 

I n is of order N A , containing elements

 i 1 ,i 2 ,...,i N A 
, and B ∈ R 

∏ N B 
n =1 

J n is a tensor of order N B with elements

 j 1 , j 2 ,..., j N B 
, and C is of order N C . 

efinition 1 (Tensor convolution) . We denote the tensor convolu-

ion operator in modes M by the following: 
 

M 

[ ∗] B : ( A , B ) � −→ C 

here M is a set of |M| tuples representing paired indices of A

nd B over which the convolution is performed. These indices as-

ociate the modes of the tensors being convolved together; if sin-

le mode indices, rather than tuples ( ·, ·) are provided, then it is

nderstood that the modes are repeated for the second element of

 tuple. 

The tensor convolution operator maps equal-order tensors, A

nd B to a tensor C by the following: 

 

M 

[ ∗] B = 

∑ 

i ′ m 1 

, . . . 
∑ 

i ′ 
M 

a i 1 ,i 2 ,...,i ′ m 1 ,...,i 
′ 
M 

,...,i N A 
×

b i 1 ,i 2 ,...,i n 1 −i ′ n 1 ,...,i n M −i ′ n M ,...,i N B 
(B.1) 

here M , takes the form of a set of tuples that associate indices

n A with those in B for the convolution: 

 (m 1 , n 1 ) , (m 2 , n 2 ) , ..., (m M 

, n M 

) } 
he order of the result, N C is equal to that of both A and B :

 C = N A = N B . however, we do not necessarily have to perform

 A = N B -dimensional convolution using this operator: we can per-

orm convolution in only some of the modes, with the modes that

articipate being indicated by the elements of M . The number of

bres in A and B must be the same for any dimensions that do not

articipate in the convolution. For the modes that do not partici-

ate in the convolution, the size of C along these modes remains

he same as for A and B ; for the modes that participate in convo-

ution, the size C is greater than that of A and B in the usual way

n which discrete convolution expands support. 

efinition 2 (Permuted tensor convolution) . We define the per-

uted tensor convolution operator in modes M permuted over the
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Algorithm 1: Calculation of the error distribution. 

Inputs : 

Database of kernels, K c,p,l 

c = 1 , 2 , ..., N c , // corridor index 

p = 1 , 2 , ..., N p // pass index 

Number of permutations, P 

Number of random queries, Q 

Outputs : 

Error Distribution, X 

// Compute localisation error for all possible queries 

for c ← 1 to N c do 

for p ← 1 to N p do 

// For each query frame in a pass ... 

foreach q : q ∈ P p do 

// Take the corresponding kernel computed by 

leave-one-out strategy and get closest 

neighbour 

ρ ← getClosestNeighbor (K) 

// Given the ground truth for that query, 

compute the error 

E c,p,q ← computeError (ρ) 

end 

end 

end 

k ← 1 

for i ← 1 to P do 

for j : j ← 1 to Q do 

e k ← randomSampling(E) 

k ← k + 1 
end 

end 

// Compute Cumulative Distribution Functions 

X ← computeCDF (e k ) 

A

 

K  

S  

k  

i  

m  
modes P as a mapping taking the form: 

M 

[ ∗] 
P 

: ( A , B ) � −→ C 

where M is a set of |M| tuples representing paired indices of A

and B over which the convolution is performed and P represents

the modes of A and B for which permutation is performed. 

The permuted tensor convolution operator maps tensor, A , to

an equal or higher-order tensor C by the following: 

A 

M 

[ ∗] 
P 

B = 

∑ 

i ′ m 1 

, . . . 
∑ 

i ′ 
M 

a i 1 ,i 2 ,...,i ′ m 1 ,...,i 
′ 
M 

,...,i p 1 ,i p 2 ,...i p P ,...,i N A 
×

b i 1 ,i 2 ,...,i n 1 −i ′ n 1 ,...,i n M −i ′ n M ,...,i π(q 1 | p 1 ) ,...,i π(q P | p P ) ,...,i N B 
(B.2)

where M , consists of the tuples: 

{ (m 1 , n 1 ) , (m 2 , n 2 ) , ..., (m M 

, n M 

) } 
and P by the tuples: 

{ (p 1 , q 1 ) , (p 2 , q 2 ) , ..., (p P , q P ) } 
The permutation operator π ( i | j ) denotes that the indices of the

tensor in a particular mode are permuted over the possible values

that that mode can take. The order of the result, N C , will depend

on the orders of the tensors A and B , and the modes participating

in the operator 
M 

[ ∗] 
P 

, according to: 

N C = min (N A , N B ) + |P| 
Generally, M ∩ P = ∅ . As for the case of M , if single elements are

given for P, it is understood that the second member of the tu-

ple is the same; where no corresponding dimension exists in one

argument, the ∼ denotes a null mode in the tuple. 

This permutation is not across modes, but within the possible

values that one mode can take. By way of example, given a defini-

tion of an order 2 tensor A of size 2 × 3 

A = 

[
1 2 3 

4 5 6 

]
(B.3)

and an order 3 tensor, B , of size 2 × 2 × 2 where 

B = 

[
1 1 

1 1 

] ∣∣∣∣
[

2 2 

2 2 

]
(B.4)

then the tensor C defined by 

C = A 

{ (i 1 ,i 1 ) ;(i 2 ,i 2 ) } 
[ ∗] 

{ (∼,i 3 ) } 
B (B.5)

is of order N C = 2 + 1 = 3 , and will be of size 3 × 4 × 2: 

C = 

[ 

1 3 5 3 

5 12 16 9 

4 9 11 6 

] 

∣∣∣∣∣
[ 

2 6 10 6 

10 24 32 18 

8 18 22 12 

] 

(B.6)

Appendix C. Algorithm for generating cumulative error 

distributions 

Algorithm 1 
ppendix D. LSD-SLAM parameters 

Parameter Definition Default Set to 

minUserGrad Minimal absolute image gradient for a 

pixel to be used at all. Increase if your 

camera has large image noise, decrease 

if you have low image-noise and want 

to also exploit small gradients. 

1.96 5 

cameraPixelNoise Image intensity noise used for e.g. 

tracking weight calculation. Should be 

set larger than the actual sensor-noise, 

to also account for noise originating 

from discretisation / linear 

interpolation. 

16 2.4 

KFUsage-Weight (∗) Determines how often keyframes are 

taken, depending on the overlap to the 

current keyframe. Larger: more 

keyframes. 

4 10 

KFDist-Weight (∗) Determines how often keyframes are 

taken, depending on the distance to the 

current keyframe. Larger: more 

keyframes. 

3 10 

( ∗) The values for the keyframe weights, KFUsage-weight and

FDist-weight were increased following the suggestions of LSD-

LAM authors. By increasing these weights the thresholds to take

eyframes are lowered, therefore more keyframes are taken, gain-

ng robustness against tracking at the expense of a larger map,

ore loop closures and slower processing. Although both affect the
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2 Not present in the volunteer’s copy. 
mount of keyframes that are selected, KFDistWeight is an indirect

eight applied to the distance between frames that has an influ-

nce in the keyframe selection threshold. KFUsageWeight on the

ther hand, directly modifies the keyframe selection threshold. 

ppendix E. Tactile feedback experiment protocol 

.1. Context 

The “Visual localisation with tactile feedback” project aims to

valuate the quality of the tactile feedback given by the Senseg

ablet in an indoor localisation for the visually impaired context.

hen navigating a physical path, the user receives a tactile cue

hat encodes an estimate of their position along that specific path,

elative to start and end point. Given several location estimate

eedback cues through the Senseg tactile interface, the goal of this

xperiment is to evaluate how accurate this tactile feedback is

ased on the user perception of the position they are. 

.2. Experiment protocol 

1. The user will be given some familiarisation tasks with the

Senseg demo that shipped with the tablet as Android applica-

tions. These will be: 
• Familiarise with the different textures with the app “Haptic

Guidelines”. 

2. The user will be given the following instructions: 

You have agreed to take part in the “Visual localisation with

tactile feedback” project experiment on tactile feedback quality.

The experiment consists of the following tasks: 

(a) You will be given the Senseg tablet you used previously to

get familiar with its tactile interface. 

(b) If you visually inspect the path, you will notice two red rect-

angles that denote starting and end point. These are tex-

ture highlighted. As you feel the screen with your finger

and move it over the path you will notice four haptic “land-

marks” or “events” that can be differentiated: 

i. the beginning of the path, 

ii. an area with no haptic feedback, this is the area that

would represent the area that users have already tra-

versed, 

iii. an area with haptic feedback, that represents the re-

maining segment of the path, 

iv the end of the path, with highlighted haptic texture as

event (i). 

(c) You will receive one tactile cue every 15 s, making up to 20

cues. 

(d) Upon the reception of the cue, it will be your task to an-

nounce an estimate of your location as a percentage of the

total distance. You will only provide estimates that are 10%

apart: 
• 0%: starting point of the journey, 
• 10% 

• 20%, 
• ... 
• 80%, 
• 90% 

• 100%: end point of the journey. 

(e) As agreed, you will blindfold yourself for this experiment.

Please, proceed to wear the blindfold now, the experiment

will start shortly. 

3. The experiment will start: 

(a) The user will receive 20 tactile cues corresponding to 20

randomised location estimates provided by the localisation

server. 
(b) The users’ announced estimates will be annotated next to

their corresponding index in the following table 2 : 

Trial index True location Estimated location 

1 0.8147 

2 0.9058 

3 0.1270 

4 0.9134 

5 0.6324 

6 0.0975 

7 0.2785 

8 0.5469 

9 0.9579 

10 0.1576 

11 0.4854 

12 0.8003 

13 0.1419 

14 0.4218 

15 0.7922 

16 0.6557 

17 0.0357 

18 0.9340 

19 0.3968 

20 0.2672 

Important note : The apparently high precision on location

(second column) allows us to extend the system to measure

accuracy that is relevant to pedestrian navigation, but over

journeys containing much larger spatial scales. 

.3. Informed consent form 

.3.1. Experiment purpose and procedure 

The purpose of this experiment is to evaluate the quality of the

actile feedback given by the Senseg tablet in an indoor localisation

or the visually impaired context. 

The experiment consists of two parts as detailed in the previous

ection. 

After the experiment, you will be asked to complete a feedback

orm. 

Please note that none of the tasks is a test of your personal

ntelligence or ability. The objective is to test the usability of our

esearch systems. 

.3.2. Confidentiality 

The following data will be recorded: estimates of the tactile-

ncoded position along a path based on Senseg haptic feedback. 

All data will be coded so that your anonymity will be pro-

ected in any research papers and presentations that result from

his work. 

.3.3. Finding out about result 

If interested, you can find out the result of the study by con-

acting the researcher Jose Rivera-Rubio, after 1 April 2015. 

His email address is jose.rivera@imperial.ac.uk. 

.3.4. Record of consent 

Your signature below indicates that you have understood the

nformation about the “Tactile feedback with Senseg” experiment

nd consent to your participation. The participation is voluntary

nd you may refuse to answer certain questions on the question-

aire and withdraw from the study at any time with no penalty.

his does not waive your legal rights. You should have received a

opy of the consent form for your own record. If you have further

uestions related to this research, please contact the researcher. 
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