
Text Mining for Drug–Drug Interaction

Heng-Yi Wu1, Chien-Wei Chiang1, and Lang Li1,*

1Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University

Abstract

In order to understand the mechanisms of drug–drug interaction (DDI), the study of 

pharmacokinetics (PK), pharmacodynamics (PD), and pharmacogenetics (PG) data are significant. 

In recent years, drug PK parameters, drug interaction parameters, and PG data have been unevenly 

collected in different databases and published extensively in literature. Also the lack of an 

appropriate PK ontology and a well-annotated PK corpus, which provide the background 

knowledge and the criteria of determining DDI, respectively, lead to the difficulty of developing 

DDI text mining tools for PK data collection from the literature and data integration from multiple 

databases.

To conquer the issues, we constructed a comprehensive pharmacokinetics ontology. It includes all 

aspects of in vitro pharmacokinetics experiments, in vivo pharmacokinetics studies, as well as 

drug metabolism and transportation enzymes. Using our pharmacokinetics ontology, a PK corpus 

was constructed to present four classes of pharmacokinetics abstracts: in vivo pharmacokinetics 

studies, in vivo pharmacogenetic studies, in vivo drug interaction studies, and in vitro drug 

interaction studies. A novel hierarchical three-level annotation scheme was proposed and 

implemented to tag key terms, drug interaction sentences, and drug interaction pairs. The utility of 

the pharmacokinetics ontology was demonstrated by annotating three pharmacokinetics studies; 

and the utility of the PK corpus was demonstrated by a drug interaction extraction text mining 

analysis.

The pharmacokinetics ontology annotates both in vitro pharmacokinetics experiments and in vivo 

pharmacokinetics studies. The PK corpus is a highly valuable resource for the text mining of 

pharmacokinetics parameters and drug interactions.
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1 Introduction

Adverse drug reaction (ADR) is one of the major causes of morbidity and mortality 

occurring in clinical care every year. To investigate the crucial problem, the US Food and 

Drug Administration (FDA) found that more than 40 % of the US population is prescribed 

Corresponding Author: Lang Li, Address: 410 W. 10th Street, Suite 5000, Indianapolis, IN 46202 USA, Phone: 317-274-4332 
(office), lali@iupui.edu. 

HHS Public Access
Author manuscript
Methods Mol Biol. Author manuscript; available in PMC 2015 November 07.

Published in final edited form as:
Methods Mol Biol. 2014 ; 1159: 47–75. doi:10.1007/978-1-4939-0709-0_4.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more than four medications at a single time, which makes them more susceptible to ADR 

[1]. A literature search in Medline and Embase database from 1990 to 2006 showed that 

drug–drug interactions (DDIs) were held responsible for 0.054 % of the emergency 

department (ED) visits, 0.57 % of the hospital admissions, and 0.12 % of the re-

hospitalizations [2]. It is possible that drug interaction can be beneficial or detrimental. The 

use of multiple drugs might provide synergism such as increasing the efficacy of therapeutic 

effect, decreasing dosage but holding the same efficacy to avoid toxicity, or minimizing the 

drug resistance [3]. However, we have more interests in the investigation of negative 

interaction because pathological significance is often unexpected and hard to be diagnosed. 

To predispose DDI, the importance of high-risk factors like age, polypharmacy, and genetic 

polymorphisms should be carefully evaluated [4]. In the elder population, DDIs account for 

4.8 % of the hospital admissions, which is much higher than the proportion of DDI victims 

within the total population. The reason is directed to the abatement of liver metabolism or 

kidney function [5, 6]. Genetic polymorphism has profound influence on enzyme function, 

which might result in increased drug metabolism and absence of drug response. Evidences 

[7] suggested that patients affected by genetic polymorphisms will experience severe 

toxicities upon drug intake.

For economic aspect, the problem of DDI effect or co-medication effect has scaled such 

heights that it has even led to withdrawing of drugs from the market after approval. The 

1990s saw the withdrawal of more than 11 drugs as shown in ref. 8. In 2007, the 

biopharmaceutical industry invested roundabout $58.8 billion for the research and 

development as the withdrawing of drugs [9] is a major setback to the industry as the 

deployment of a single drug compound is estimated at $200 million.

1.1 Drug–Drug Interaction Mechanisms and In Vitro and In Vivo Drug Interaction Studies

DDI can result when a substance affects the activity of a drug or its metabolites when these 

two drugs are administrated at the same time. The simultaneous administration of two drugs, 

which causes synergistic or antagonistic effect, might lead to the alternation of medication 

effectiveness or some harming effects on patient body. Those potential influences on human 

body should be noticed to prevent from a high risk of multiple interactions because the 

number of approved drugs increases. To preclude the possibility of hazardous interaction, 

understanding the significant scientific principles or mechanisms of DDI is important.

Due to the continued growth in drug development and the insight into molecular biology, we 

come to realize that transporter and enzyme played an important role in drug elimination, 

which inspired a clue to dig the mechanisms surrounding DDI. In brief, there are two major 

molecular mechanisms of DDI, enzyme-based drug metabolism and transporter-based drug 

transportation [10]. If an enzyme that is responsible for the metabolism of one drug is 

induced or inhibited by another drug, then the clearance of original drug will be changed, 

which might result in being toxic or less effective. For transporter- based drug 

transportation, transporter is important to drug deposition. Drugs can be metabolized only 

after they are transported into liver cells. To understand how a transporter-mediated DDI 

happens, the knowledge of the transporter substrates and inhibitors can suggest potential 

DDIs [11].
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There are two basic types of drug interaction, pharmacokinetics (PK) and 

pharmacodynamics (PD). In short, PK investigates the activity of drug combinations with 

drug absorption, disposition, metabolism, excretion, and transportation (ADMET), which 

describes how these five criteria influence drug level (concentration). Pharmacokinetically 

speaking, potentiative or reductive combinations are, respectively, correlated to positive or 

negative modulation of drug transport, permeation, distribution, localization, or metabolism. 

Potentiative modulation of drug transport will enhance drug absorption via the disruption of 

transport carrier, increase drug concentration in plasma by inhibiting metabolic process, and 

stimulate or inhibit the metabolism of drugs into active or inactive form. On the other hand, 

reductive modulation provides contrasting perspectives to potentiative modulation. The 

reductive modulation of drug transport typically blocks drug absorption, decreases drug 

concentration in plasma, and reduces drug metabolism activity [12]. Those information 

brings to systematically investigate the physiological and biochemical mechanisms of drug 

exposure in multiple tissue types, cells, animals, and human subjects [13], which links 

preclinical and clinical phase of drug development. If the PK can be interpreted as the dose– 

concentration relationship, pharmacodynamics (PD) can be defined as the mechanism of 

drug action and relationship between drug concentration and effect. A drug's 

pharmacodynamics effect ranges widely from the molecular signals (such as its targets or 

downstream biomarkers) to clinical symptoms (such as the efficacy or side effect endpoints). 

Classification of its therapeutic effects: It can be synergistic, additive, or antagonistic if the 

effect is greater than, equal to, or less than the summed effects of drug combinations [12].

As stated in the previous section, the complicated transporter– enzyme interplay in the 

deposition of drug leads to the difficulty for the identification of DDIs in drug 

administration and drug development. Thus, understanding the molecular mechanism 

underlying different types of drug interaction could facilitate the discovery of novel DDI. 

Recently, in vitro technologies can qualitatively provide an insight into the potential DDI 

based on the observation of enzyme kinetic parameters. Via ADME screening efforts as well 

as the assessment of CYP inhibition, the choice of test compound inhibiting the metabolism 

of one probe substrate for an enzyme in the in vitro experiment can be fulfilled to carry out 

the prediction of in vivo DDI. Wienkers and Heath [14] addressed the basic principles of in 

vitro inhibition prediction underlying the generation of in vitro drug metabolism data and 

suggested several factors that introduced error or uncertainty into a quantitative prediction of 

in vivo DDI based on in vitro-derived PK parameters. In ref. 15, three factors authors 

recommended for the ideal model to predict metabolic drug–drug interaction (M-DDI) 

should be an accurate measurement of the average increase in the area under the plasma 

concentration–time curve (AUC) of a victim drug following administration of a perpetrator 

drug, the plasma binding displacement interaction, and the impact of the concentration–time 

profile of the inhibitor. To evaluate the potential for M-DDI [15] developed an in silico 

software SIMCYP, which incorporates extensive data on demographics; disease states; 

anatomical, physiological, genetic, and biochemical variables; and input of information on 

in vitro drug metabolism and transport.
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1.2 Computational Drug Interaction Prediction and Drug Interaction Text Mining

1.2.1 Overview of Computational Drug Interaction Prediction—The evaluation of 

the potential risk of DDI is of importance in patient safety since DDIs can raise the danger 

of patients and the cost of healthcare system. According to the guidance for industry from 

the Food and Drug Administration [16], study design, data analysis, and implication for 

dosing and labeling are suggested to deal with drug interaction studies. When studying DDI 

for a new drug, it usually begins with in vitro study to determine whether a drug is a 

substrate, inhibitor, or inducer of metabolizing enzymes. The consequence of in vitro 

investigations can serve as an evidence to screen out the candidate potential drug pairs for 

additional in vivo study. To conduct an in vivo DDI study for an investigating drug, a 

quantitative analysis to mathematically describe the kinetics of drug metabolism involved in 

ADME process is needed. The basic model for the initial assessment of DDI based on in 

vitro and in vivo studies can be achieved by physiologically based pharmacokinetics 

(PBPK) modeling. From published in vitro experiments and in vivo studies [17 – 24] had 

developed Bayesian models and computational algorithms to construct PBPK models for 

DDI prediction.

Another common way to explore novel DDI is literature-based discovery. The hidden 

knowledge among information embedded in publications can be dug out through finding 

connections between articles. To this end, many researchers took advantage of some 

commercial or public databases as resource, such as Metabolism and Transport Drug 

Interaction Database (DIDB) [25], PharGKB [26], and DrugBank [27] which provided 

extensive lists of DDI information published in articles, clinical files, or biomedical research 

reports. Gottlieb et al. [28] proposed a computational framework INDI to infer and explore 

DDI by calculating similarity measurement between drug pair via diverse feature 

measurements, i.e., chemical based, ligand based, side effect based, annotation based, and 

sequence based. However, the problem of data inconsistency arose when using different 

databases. Some significant scientific evidences associated with DDI are limited or lacking 

in some existing databases. This deficiency is hard to prevent because the tasks of data 

collections are manually accomplished by different research groups or professional experts. 

To conquer this problem, employing the technologies from information retrieval (IR) or 

natural language processing (NLP) can be a solution to help extract data more efficiently 

and consistently.

1.2.2 Biomedical Text Mining—Text mining refers to the process of deriving high-

quality information from text, which relies on NLP. To translate the text into computer-

readable language, there are some basic steps of NLP [29], including sentence splitting, 

tokenization, part of speech, named entity recognition (NER), shallow parsing, and syntactic 

parsing. In this section, we do not go into the details of techniques for NLP tools. The 

attentions will be paid more on the tasks of corpus construction, IR, or information 

extraction (IE), which employs highly scalable statistics-based techniques to index and 

search large volume of text efficiently.

Extracting facts from texts is the goal of text-mining systems. The range of extraction tasks 

can be narrow from retrieving potentially relevant articles by sophisticated keyword search 

Wu et al. Page 4

Methods Mol Biol. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



or classifying papers into different ontological types (IR), recognizing biological entities or 

concepts in text, and detecting relations between biological entities (IE) and broader to 

document summarization or question answering (beyond IE) [30]. To fulfill those tasks in 

biomedical domain, NER is an initial processing step because the significant knowledge is 

usually centered on the mechanism of biological activities which are described by 

nominalized verbs and nouns within sentences. Therefore, identifying text that satisfies 

various types of information needs is an important first step toward accurate text mining. 

But how to utilize the identified entities for improving text mining is challenging. One 

solution to this problem is an annotated corpus. The corpus annotated with such information 

allows real usage within text to be taken into account. The annotated sentence then can be 

represented in syntactic and semantic format, which shows the different levels of scientific 

characteristics. However, the strategy of constructing corpus is diverse. It differs with the 

purpose of text mining task and the methodology we used in extracting information. Kim et 

al. [31] introduces GENIA corpus with linguistically rich annotations for biomedical 

articles. The value of GENIA corpus comes from its annotations. All biologically 

meaningful terms are semantically annotated with descriptors from GENIA ontology. 

Wilbur et al. [32] suggest the basic guideline and criteria of corpus construction and 

annotation task for facilitating the training components of IE system by using machine 

learning method. Another value of annotated corpus is being a gold standard that facilitates 

the evaluation of approach. The success of practical applications crucially depends on the 

quality of extraction results, which is against the access of gold standard reference.

1.2.3 Relationship Extraction—Within IE methods, we are more interested in 

relationship extraction. The goal of relationship extraction is to detect the prespecified type 

of relation between a pair of entities of given types. A relation is typically represented as a 

pair of entities, linked by an arc that is either directed or undirected. The arc is given a label 

usually corresponding to a semantic type. In biology, the type of entities can be very specific 

such as gene, protein, or drug, while the type of relationship can be referred from some 

particular verbs, including transcribe, repress, or inhibit.

To effectively extract relationship, analysis of sentence structure is necessary. The use of 

semantic processing or deep parsing techniques that analyze both the syntactic and semantic 

structure of texts can benefit relation extraction. Several approaches had been reported in 

literature to extract the relation of interest. Generally, there are three main approaches for 

relationship extraction: co-occurrence-based, rule-based, and machine learning based 

approaches. Muller et al. [33] employ co-occurrence-based method, which is the simplest 

way to capture relationships relying on co-occurrence of two entities to derive a relation. 

Rule-based approaches [34, 35] are to take advantage of linguistic technology to grasp 

syntactic structure or semantic meaning for understanding the relationship from the 

unstructured text. Feldman et al. [34] employed an NP1–verb–NP2 template to identify the 

relation between two domain-specific entities. Fundel et al. [35] constructed a set of domain-

specific rules and apply them to dependency parse tree to capture different forms of 

expressing a given relationship. Finally, classifiers using machine learning approaches such 

as support vector machines (SVM) [36] are often used for relation extraction. This method 

needs laborious efforts to define grammars or rules, and text in training dataset is manually 
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tagged by a human expert. This text mining method uses the training data to automatically 

learn the “rules” so it can mine wanted information or identify the necessary knowledge 

[37–40].

The comparison among different methods is not easy because each method obtains its 

inherited pros and cons. Co-occurrence method provides the highest recall but poor 

precision among three. A large amount of false-positive relations are returned whenever the 

sentence is sophisticated with more than two entities or two key entities co-occurred in each 

single sentence but it does not state their relationship. Thus, co-occurrence method is more 

suitable to use as a simple baseline method for performance comparison. Rule-based method 

achieves better precision in extracting binary relationships due to the more precise rule 

conditions for defining relationship. But when it meets the complex sentence with various 

coordinates and relational clauses, the performance turns down obviously [41]. In general, 

machine learning-based method performs the best among methods. As an evidence in 

BioCreative challenge [42], the frameworks using supervised machine learning algorithm 

outperformed the existing methods in detecting protein–protein interaction (PPI). One 

important advantage is that system can predict categories for unseen samples. However, this 

advantage is heavily relying on annotated corpus [43]. Therefore, it can also be a big 

disadvantage because of the need for huge learning set.

1.2.4 Literature Review for Extracting Drug–Drug Interaction—Different 

approaches had been developed for extracting biomedical relationships such as PPI. From 

the experience of previous researches centered on PPI [36 – 40], few approaches have been 

proposed to the problem of detecting DDI. To promote the development of DDI extraction 

tools, DDIExtraction 2011, the first challenge task on DDI extraction, was held in 2011 at 

Spain. In this workshop, they provided evidence for the most effective methods available to 

solve specific problems and reveal the performance on these problems. In competition, most 

participants proposed systems using classifiers SVM or RLS. Their choices verified that 

machine learning can outperform other methods in relation extraction. Observed from 

results, approaches based on kernel methods achieved better performance than the classical 

feature-based methods [44]. Thus, the advantages of kernel-based method using machine 

learning classifier are spotlighted in this workshop.

In literature, some articles are outstanding in DDI extraction. The co-chairs of 

DDIExtraction 2011 [43] proposed a hybrid approach, which combines shallow parsing and 

pattern matching to extract relation between drugs based on annotated corpus. It utilizes the 

proposed syntactic patterns to split the sentence into clauses from which relations are 

extracted by matching patterns. The ability of dealing with complicated sentence is the 

advantage of this method. Complexity can be diminished by separating a long sentence into 

simplified clauses and by the detection of the apposition and coordinate structure. But there 

is one gap in the extraction of DDI information if used in pharmacokinetics or 

pharmacogenetics articles. Only exploring DDI based on literal denotation will lead to the 

missing detection of actual DDI information due to the lack of scientific knowledge. In ref. 

45, DDIs are identified by aggregating gene–drug interactions which are extracted via rule-

based method. The extracted interactions are then normalized and mapped into their 

standardized ontology to form the semantics network. The network could be useful to find 
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potential DDIs. Differed from Percha et al. [45] who extracted DDI via the perspective of 

pharmacogenetics, Teri et al. [46] developed a method that combined text mining and 

automated reasoning to predict enzyme specific DDIs. In most situations, the extracted 

relations from the results of conventional relation extraction are not sufficient to derive DDI. 

By representing the general knowledge related to metabolism and interaction with the form 

of logic rules, DDI can be acquired in the reasoning phase.

2 Materials

For PK DDI text mining, the materials for the construction of PK ontology are prepared. A 

descriptor from specialized ontology can be used to describe the environment of PK 

experiments (in vivo and in vitro) and the nature of drug mechanisms (all drug metabolism 

and transportation enzymes.

For drug name, the dictionary is created using drug names from DrugBank 3.0 [27]. 

DrugBank consists of 6,829 drugs which can be grouped into different categories of FDA-

approved, FDA-approved biotech, nutraceuticals, and experimental drugs. The drug names 

are mapped to generic names, brand names, and synonyms. The environment condition-

specific in vitro PK experiment and their associated PK parameters are referred from [47 – 

50]. The materials for in vivo study are summarized from two textbooks [13, 51]. The 

information of tissue-specific transporters and enzymes with all their probe inhibitors, 

inducers, and substrates were collected from industry standard (http://www.fda.gov/Drugs/

GuidanceComplianceRegulatoryInformation/Guidances/ucm064982.htm), reviewed in the 

top pharmacology journal [16].

3 Methods

To extract PK DDI by text-mining system, there are three noteworthy issues we should 

carefully deal with. (1) Recognition of drug name is one of the most salient issues in DDI 

text mining. Without satisfied performance in tagging drug name, false-positive or missing 

detection eliminates the accuracy of DDI results. Unlike gene's or protein's name, the 

representations of drug name are more sophisticated. The same drug may show in different 

documents with a number of ways, especially for metabolites of a compound [52]. The 

diversity of naming conventions perplexes the identification of drug names in 

pharmacokinetics articles. (2) Ontology is the main repository of formally represented 

knowledge for DDI text-mining system. The hierarchical repository provides a framework 

for knowledge integration and sharing, which give machine-readable descriptors of 

biomedical concepts and their relations. The challenge for ontology construction is to 

develop appropriate ontology resources and link them to adequate terminological lexicons 

[53]. (3) Corpus construction is essential to make text mining successful. It is not possible 

for a machine to capture useful information from text data written in natural language 

directly. To bridge the gap between text data and machine, corpus creates the accessibility 

for computer to read text data precisely [31, 54]. Another important issue within corpus is 

the scheme of biological annotation. The task of annotation can be regarded as identifying 

and classifying entities or sentences according to predefined categories. A well-defined 

scheme for annotation task is indispensable to corpus construction.
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An ideal system for PK DDI extraction should provide not only a comprehensive list of 

DDIs in a cost-efficient manner but also the mechanism behind interactions. In current DDI 

extraction methods, most researches extract DDIs centering on exploring the semantics of 

sentence. Given a sentence with at least two drugs, they analyze sentence structure and 

identify drug entities and trigger words (e.g., verbs like inhibit or induce) to accomplish this 

task. However, in most situations, complete DDI information is presented in complicated 

ways with more than a single sentence. More concrete DDI conditions such as experimental 

measurements might be mentioned in those sentences which only have a single drug. For 

instance, the way to express DDI information in pharmacokinetics articles is quite different 

from that in pharmacodynamics articles. The sentence only with a single drug frequently 

mentions its corresponding PK parameters or other measurements, which show the practical 

conditions for drug metabolism. The merit of those parameters gives the clue to determine 

inhibition or induction of DDI as well as provides a criterion to exam the reliability of found 

DDIs.

To meet the abovementioned issues, this chapter tries to propose a system to detect DDI 

information not only from narrative sentences but also in those sentences with a single drug, 

which contains possible DDI candidate. Besides detecting DDI pairs from sentence 

structure, considering PK parameter as an evidence to determine DDI is important in our 

strategy. In the following sections, we carefully discuss how the task of drug name mapping 

works, the construction of an integrated pharmacokinetics ontology and corpus for text-

mining system, and finally how to apply them in the text-mining system.

3.1 Drug Name Mapping

To detect the name by using NER, the performance of DDI extraction matters if the 

accuracy of drug name identification is not satisfied [52].

Drug names were created using the drug names from DrugBank 3.0 [27]. DrugBank consists 

of 6,829 chemicals with unique DrugBank ID which can be grouped into different categories 

of FDA-approved, FDA-approved biotech, nutraceuticals, and experimental drugs. The 

chemicals are mapped to generic names, brand names, and synonyms which results in 

36,433 unique DrugBank ID–name pairs. 315 names in DrugBank have less than 4 letters 

such as chloramphenicol, DB0046 has a synonym CAP, and cholecalciferol, DB00169 has a 

synonym CC. The words with less than four letters may cause bad NER; therefore, they 

were removed.

In addition, drug metabolites were also tagged, because they are important in in vitro 

studies. The metabolites were judged by either prefix or suffix: oxi, hydroxyl, methyl, 

acetyl, N-dealkyl, N-demethyl, nor, dihydroxy, O-dealkyl, and sulfo. These prefixes and 

suffixes are due to the reactions due to phase I metabolism (oxidation, reduction, hydrolysis) 

and phase II metabolism (methylation, sulfation, acetylation, glucuronidation) [55].

3.2 PK Ontology Construction

The motivation for ontology in biomedical text mining is to make sense of raw text. 

According to the defined concepts, properties, relationships, instances, and axioms for a 

given domain, raw text can be interpreted by the descriptors of ontology with a standardized 
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format and organized into hierarchical structure. Such advantages allow complex text to be 

represented with semantic and consistent manner [56].

The process of building ontology is a complex and tedious process. Various domain-specific 

resources and lexicons are required to satisfy the needs of a text-mining system using in a 

specific scope. According to the introduction of DDI mechanism we mentioned in 

Subheading 1.1, the domain of PK DDI is concerned with the process of drug disposition 

within the organism, the response of drug level, and the kinetics of drug exposure to 

different tissue types. Even in different experimental studies, DDI is defined with distinct 

measurements. However, no single system is currently capable of covering a complete 

domain for all aspects. For this reason, we introduce an integrated PK ontology which is 

composed of several components: experiment, metabolism enzyme, transporter, drug, and 

subject. In this work, the primary contribution is the ontology development for the PK 

experiment and integration of the PK experiment ontology with other PK-related ontologies.

Experiment specifies in vitro and in vivo PK studies and their associated PK parameters. The 

definitions and units for both in vitro or in vivo PK parameters and their corresponding 

experiment conditions should be included.

Within different types of in vitro PK experiments, different in vitro PK parameters are 

employed.

• Single-drug metabolism experiment includes Michaelis–Menten constant (Km), 

maximum velocity of the enzyme activity (Vmax), intrinsic clearance (CLint), 

metabolic ratio, and fraction of metabolism by an enzyme (fmenzyme) [47].

• Single-drug transporter experiment: PK parameters include apparent permeability 

(Papp), ratio of the basolateral to apical permeability and apical to basolateral 

permeability (Re), radio-activity, and uptake volume [57].

• Drug interaction experiment: IC50 is the inhibition concentration that inhibits to 50 

% enzyme activity; it is substrate dependent;and it does not imply the inhibition 

mechanism. Ki is the inhibition rate constant for competitive inhibition, 

noncompetitive inhibition, and uncompetitive inhibition. It represents the inhibition 

concentration that inhibits to 50 % enzyme activity, and it is substrate concentration 

independent. Kdeg is the degradation rate constant for the enzyme. KI is the 

concentration of inhibitor associated with half maximal inactivation in the 

mechanism-based inhibition; and Kinact is the maximum degradation rate constant 

in the presence of a high concentration of inhibitor in the mechanism-based 

inhibition. Emax is the maximum induction rate, and EC50 is the concentration of 

inducer that is associated with the half maximal induction [15].

• Type of drug interaction: There are multiple drug interaction mechanisms, 

including competitive inhibition, noncompetitive inhibition, uncompetitive 

inhibition, mechanism-based inhibition, and induction [15].

For in vitro experiment conditions, metabolism enzyme, transporter, and some other factors 

should be considered.

Wu et al. Page 9

Methods Mol Biol. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• Metabolism enzyme experiment conditions include buffer, NADPH sources, and 

protein sources. In particular, protein sources include recombinant enzymes, 

microsomes, and hepatocytes. Sometimes, genotype information is available for the 

microsome or the hepatocyte samples.

• Transporter experiment conditions include bidirectional transporter, uptake/efflux, 

and ATPase.

• Other factors of in vitro experiments include preincubation time, incubation time, 

quantification methods, sample size, and data analysis methods.

All these information can be found in the FDA website (http://www.abclabs.com/Portals/0/

FDAGuidance_DraftDrug InteractionStudies2006.pdf).

Differed from in vitro study, in vivo refers to experimentation using a whole, living 

organism such that its experiment condition and parameters are quite different. Within in 

vivo study, in vivo PK parameters, pharmacokinetics models, study designs, and 

quantification methods are the key components to investigate an in vivo experiment.

• All of the information for in vivo PK parameters is summarized from two text 

books [13, 51]. There are several main classes of PK parameters. Area under the 

concentration curve parameters are AUCinf, AUCSS, AUCt, and AUMC; drug 

clearance parameters are CL, CLb, CLu, CLH, CLR, CLpo, CLIV, CLint, and CL12; 

drug concentration parameters are Cmax and CSS; extraction ratio and 

bioavailability parameters are E, EH, F, FG, FH, FR, fe, and fm; rate constants 

include elimination rate constant k, absorption rate constant ka, urinary excretion 

rate constant ke, Michaelis–Menten constant Km, distribution rate constants (k12, 

k21), and two rate constants in the two-compartment model (λ1, λ2); blood flow rate 

(Q, QH); time parameters (tmax, t1/2); volume distribution parameters (V, Vb, V1, V2, 

Vss); maximum rate of metabolism, Vmax; and ratios of PK parameters that present 

the extent of the drug interaction (AUCR, CL ratio, Cmax ratio, Css ratio, t1/2 ratio).

• Two types of pharmacokinetics models are usually presented in the literature: non-

compartment model and one- or two-compartment models.

• The design strategies are very diverse: single arm or multiple arms, crossover or 

fixed-order design, with or without randomization, with or without stratification, 

pre-screening or no pre-screening based on genetic information, prospective or 

retrospective studies, and case reports or cohort studies. The sample size includes 

the number of subjects and the number of plasma or urine samples per subject. The 

time points include sampling time points and dosing time points. The sample type 

includes blood, plasma, and urine. The hypotheses include the effect of 

bioequivalence, drug interaction, pharmacogenetics, and disease conditions on a 

drug's PK.

• The drug quantification methods include HPLC/UV, LC/MS/MS, LC/MS, and 

radiographic.
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Metabolism enzyme—The cytochrome P450 (officially abbreviated as CYP) enzymes 

predominantly exist in the gut wall and liver. The CYP450 super family is a large and 

diverse group of enzymes that catalyze the oxidation of organic substances. The substrates 

of CYP enzymes include metabolic intermediates such as lipids and steroidal hormones as 

well as xenobiotic substances such as drugs and other toxic chemicals. CYPs are the major 

enzymes involved in drug metabolism and bioactivation, accounting for about 75 % of the 

total number of different metabolic reactions [58]. CYP enzyme names and genetic variants 

were mapped from the Human Cytochrome P450 (CYP) Allele Nomenclature Database 

(http://www.cypalleles.ki.se/). This site contains the CYP450 genetic mutation effect on the 

protein sequence and enzyme activity with associated references.

In the pharmacology research, probe drug is another important concept. An enzyme's probe 

substrate means that this substrate is primarily metabolized or transported by this enzyme. In 

order to experimentally prove whether a new drug inhibits or induces an enzyme, its probe 

substrate is always utilized to demonstrate this enzyme's activity before and after inhibition 

or induction. An enzyme's probe inhibitor or inducer means that it inhibits or induces this 

enzyme primarily. Similarly, an enzyme's probe inhibitor needs to be utilized if we 

investigate whether a drug is metabolized by this enzyme. Due to its importance, all the 

probe inhibitors, inducers, and substrates of CYP enzymes are also included in our PK 

ontology. All this information was collected from industry standard (http://www.fda.gov/

Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm064982.htm), reviewed 

in the top pharmacology journal [16].

Transporters are tissue specific. With different aliases, their tissue-specific transports and 

corresponding functions are different. Transport proteins are proteins which serve the 

function of moving other materials within an organism. Transport proteins are vital to the 

growth and life of all living things. Transport proteins are involved in the movement of ions, 

small molecules, or macromolecules, such as another protein, across a biological membrane. 

They are integral membrane proteins; that is, they exist within and span the membrane 

across which they transport substances. Their names and genetic variants were mapped from 

the Transporter Classification Database (http://www.tcdb.org). In addition, we also added 

the probe substrates and probe inhibitors and inducers to each one of the metabolism and 

transportation enzymes [16].

Drug names were created using the drug names from DrugBank 3.0 [27]. DrugBank consists 

of 6,829 drugs which can be grouped into different categories of FDA-approved, FDA-

approved biotech, nutraceuticals, and experimental drugs. The drug names are mapped to 

generic names, brand names, and synonyms.

Subject included the existing ontologies for human disease ontology (DOID), suggested 

Ontology for Pharmacogenomics (SOPHARM), and mammalian phenotype (MP) from 

http://bioportal.bioontology.org.

The PK ontology was implemented with Protégé [59] and uploaded to the BioPortal 

ontology platform.
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3.3 PK Corpus

Corpus is the key component to make NLP technologies successfully applied to text. To 

materialize text into computer-readable format, two types of annotations are needed, 

biological annotation and linguistic annotation [54]. Biological annotation belongs to event 

annotation, which identifies the location of biological information in the article. The scope 

of biological annotation can be narrowed down at single biological terms or broadened to 

include a whole sentence, which describes a biological event. Practically, event annotations 

are more complicated than term annotations. Term annotation only needs the terms to be 

annotated and hierarchically organized into categories. Unlike term annotation, an event has 

its own internal structure and it also involves biological entities (from term annotation) as its 

participants. Therefore, well-defined conditions to call biological events are required. On the 

other hand, linguistic annotation gives linguistic parsing such as POS or syntactic trees to 

know the type and role of term in natural language. The main purpose of linguistic 

annotation is to use it in the study of language through analysis of natural-occurring data. It 

involves computational methods and tools for analyzing linguistic pattern IR based on 

annotated corpora.

Most existing DDI extraction methods are designed to capture pairs of drugs that have the 

relation of interaction via semantic interpretation. There is one gap if we continue to use the 

same method for extracting DDI information from a pharmacokinetics perspective. The gap 

comes from the lack of knowledge to define a PK DDI. Pharmacokinetics parameters and 

knowledge from in vitro and in vivo DDI experimental designs, especially the selection of 

enzyme-specific probe substrates and inhibitors, should be considered. For instance, 

important pharmacokinetic parameters such as Ki, IC50, and AUCR have not been included 

in the existing text mining approaches to DDI. This kind of pharmacokinetic information 

may be particularly relevant when seeking evidence of causal mechanisms behind DDIs and 

as a complement to DDI text mining of patient records.

3.3.1 Corpus Construction—A PK abstract corpus was constructed to cover four 

primary classes of PK studies: clinical PK studies (n = 56); clinical pharmacogenetic studies 

(n = 57); in vivo DDI studies (n = 218); and in vitro drug interaction studies (n = 210). The 

PK corpus construction is a manual process. The abstracts of clinical PK studies related to 

the most popular CYP3A substrate, midazolam, were investigated [60]. The clinical 

pharmacogenetic abstracts were selected based on the most polymorphic CYP enzyme, 

CYP2D6. We think that these two selection strategies represent very well all the in vivo PK 

and PG studies. In searching for the drug interaction studies, the abstracts were randomly 

selected from a PubMed query, which used probe substrates/inhibitors/inducers for 

metabolism enzymes.

Once the abstracts have been identified in four classes, their annotation is a manual process 

(Fig. 1). The annotation was firstly carried out by three master-level annotators (Shreyas 

Karnik, Abhinita Subhadarshini, and Xu Han) and one Ph.D. annotator (Lang Li). They have 

different training backgrounds: computational science, biological science, and 

pharmacology. Any differentially annotated terms were further checked by Sara K. Quinney 

and David A. Flockhart, one Pharm D. scientist and one M.D. scientist with extensive 

Wu et al. Page 12

Methods Mol Biol. Author manuscript; available in PMC 2015 November 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pharmacology training background. Among the disagreed annotations between these two 

annotators, a group review was conducted (Drs Quinney, Flockhart, and Li) to reach the 

final agreed annotations. In addition a random subset of 20 % of the abstracts that had 

consistent annotations among four annotators (three masters and one Ph.D.) were double 

checked by two Ph.D.-level scientists.

3.3.2 DDI Annotation Scheme—A structured annotation scheme was implemented to 

annotate three layers of pharmacokinetics information: key terms, DDI sentences, and DDI 

pairs (Fig. 2). DDI sentence annotation scheme depends on the key terms; and DDI 

annotations depend on the key terms and DDI sentences. Their annotation schemes are 

described as follows.

Term-level annotation: Key terms include drug names, enzyme names, PK parameters, 

numbers, mechanisms, and change. The boundaries of these terms among different 

annotators were judged by the following standard.

• Drug names were defined mainly on DrugBank 3.0 [27]. In addition, drug 

metabolites were also tagged, because they are important in in vitro studies. The 

metabolites were judged by either prefix or suffix: oxi, hydroxyl, methyl, acetyl, N-

dealkyl, N-demethyl, nor, dihydroxy, O-dealkyl, and sulfo. These prefixes and 

suffixes are due to the reactions due to phase I metabolism (oxidation, reduction, 

hydrolysis) and phase II metabolism (methylation, sulfation, acetylation, 

glucuronidation) [55].

• Enzyme names covered all the CYP450 enzymes. Their names are defined in the 

Human Cytochrome P450 Allele Nomenclature Database, http://

www.cypalleles.ki.se/. The variations of the enzyme or the gene names were 

considered.

• PK parameters were annotated based on the defined in vitro and in vivo PK 

parameter ontology. In addition, some PK parameters have different names, such as 

CL = clearance, t1/2 = half-life, AUC = area under the concentration curve, and 

AUCR = area under the concentration curve ratio. Those terms need to be handled 

carefully because their formats are varied.

• Numbers such as dose, sample size, values of PK parameters, and p-values were all 

annotated. If presented, their units were also covered in the annotations.

• Mechanisms denote the drug metabolism and interaction mechanisms. Linguistic 

realization of those terms is usually presented in various contexts. The 

nominalization of the following terms, inhibit, catalyze, correlate, metabolize, 

induce, form, stimulate, activate, and suppress, is annotated with regular expression 

patterns.

• Change describes the change of PK parameters. The following words and its 

nominalizations were annotated in the corpus to denote the change: strong, 

moderate, high, slight, significant, obvious, marked, great, pronounced, modest, 

probably, may, might minor, little negligible, doesn't interact, affect, reduce, and 

increase.
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Sentence-level annotation: The middle-level annotation focused on the drug interaction 

sentences. Because two interaction drugs were not necessary all presented in the sentence, 

sentences were categorized into two classes:

• Clear DDI sentence (CDDIS): Two drug names (or drug–enzyme pair in the in 

vitro study) are in the sentence with a clear interaction statement, i.e., either 

“interaction” or “non-interaction”, or ambiguous statement (i.e., such as “possible 

interaction” or “might interact”).

• Vague DDI sentence (VDDIS): One drug or enzyme name is missed in the DDI 

sentence, but it can be inferred from the context. Clear interaction statement also is 

required.

DDI-level annotation: Once DDI sentences were labeled, the DDI pairs in the sentences 

were further annotated. Because of the fundamental difference between in vivo DDI studies 

and in vitro DDI studies, their DDI relationships were defined differently. In in vivo studies, 

three types of DDI relationships were defined (Table 1): DDI, ambiguous DDI (ADDI), and 

non-DDI (NDDI). Four conditions are specified to determine these DDI relationships. 

Condition 1 (C1) requires that at least one drug or enzyme name has to be contained in the 

sentence; condition 2 (C2) requires that the other interaction drug or enzyme name can be 

found from the context if it is not from the same sentence; condition 3 (C3) specifies 

numeric rules to define the DDI relationships based on the PK parameter changes; and 

condition 4 (C4) specifies the language expression patterns for DDI relationships. Using the 

rules summarized in Table 1, DDI, ADDI, and NDDI can be defined by C1 ∧ C2 ∧ (C3 ∨ 

C4). The priority rank of in vivo PK parameters is AUC > CL > t1/2 > Cmax. In in vitro 

studies, six types of DDI relationships were defined (Table 1). DDI, ADDI, and NDDI were 

similar to in vivo DDIs, but three more drug–enzyme relationships were further defined: 

DEI, ambiguous DEI (ADEI), and non-DDI (NDEI). C1, C2, and C4 remained the same for 

in vitro DDIs. The main difference is in C3, in which either Ki or IC50 (inhibition) or EC50 

(induction) was used to defined DDI relationship quantitatively. The priority rank of in vitro 

PK parameters is Ki > IC50. Table 2 presents eight examples of how DDIs or DEIs were 

determined in the sentences.

Corpus evaluation: Agreement measurement is one of the important steps in corpus 

construction, which carries out the assessment of reference standard quality. If there is little 

agreements among annotators, that means that the task of annotation is not reliable and the 

quality of reference standard is suspected. In this work, Krippendorff's alpha [61] was 

calculated to evaluate the reliability of annotations from four annotators. The frequencies of 

key terms, DDI sentences, and DDI pairs are presented in Table 3. Their Krippendorff's 

alphas are 0.953, 0.921, and 0.905, respectively. Please note that the total DDI pairs refer to 

the total pairs of drugs within a DDI sentence from all DDI sentences.

The PK corpus was constructed by the following process. Raw abstracts were downloaded 

from PubMed in XML format. Then XML files were converted into GENIA corpus format 

following the gpml.dtd from the GENIA corpus [31]. The sentence detection in this step is 

accomplished by using the Perl module Lingua∷ EN∷Sentence, which was downloaded 

from the Comprehensive Perl Archive Network (CPAN, www.cpan.org). GENIA corpus 
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files were then tagged with the prescribed three levels of PK and DDI annotations. Finally, a 

cascading style sheet (CSS) was implemented to differentiate colors for the entities in the 

corpus. This feature allows the users to visualize annotated entities. We would like to 

acknowledge that a DDI corpus was recently published as part of a text-mining competition 

DDIExtraction 2011 (http://labda.inf.uc3m.es/DDIExtraction2011/dataset.html). Their DDIs 

were clinical outcome oriented, not PK oriented. They were extracted from DrugBank, not 

from PubMed abstracts. Our PK corpus complements to their corpus very well.

3.4 DDI Text Mining

We implemented the approach described by [37] for the DDI extraction. Prior to performing 

DDI extraction, the testing and validation DDI abstracts in our corpus were preprocessed 

and converted into the unified XML format [37]. The following steps were conducted:

• Drugs were tagged in each of the sentences using dictionary based on DrugBank. 

This step revised our prescribed drug name annotations in the corpus. One purpose 

is to reduce the redundant synonymous drug names. The other purpose is only to 

keep the parent drugs and remove the drug metabolites from the tagged drug names 

from our initial corpus, because parent drugs and their metabolites rarely interact. 

In addition, enzymes (i.e., CYPs) were also tagged as drugs, since enzyme–drug 

interactions have been extensively studied and published. The regular expression of 

enzyme names in our corpus was used to remove the redundant synonymous gene 

names.

• Each of the sentences was subjected to tokenization, POS tags, and dependency 

tree generation using the Stanford parser [62].

• C2
n drug pairs from the tagged drugs in a sentence were generated automatically, 

and they were assigned with default labels as no-drug interaction. Please note that 

if a sentence had only one drug name, this sentence did not have a DDI. This setup 

limited us to consider only CDDI sentence in our corpus.

• The drug interaction labels were then manually flipped based on their true drug 

interaction annotations from the corpus. Please note that our corpus had annotated 

DDIs, ADDIs, NDDIs, DEIs, ADEIs, and NDEIs. Here only DDIs and DEIs were 

labeled as true DDIs. The other ADDIs, NDDIs, DEIs, and ADEIs were all 

categorized into the no-drug interactions.

Then sentences were represented with dependency graphs using interacting components 

(drugs) (Fig. 3). The graph representation of the sentence was composed of two items: (1) 

one dependency graph structure of the sentence and (2) a sequence of POS tags (which was 

transformed to a linear order “graph” by connecting the tags with a constant edge weight). 

We used the Stanford parser [62] to generate the dependency graphs. Airola et al. proposed 

to combine these two graphs to one weighted, directed graph. This graph was fed into a 

SVM for DDI/non-DDI classification. More details about the all paths graph kernel 

algorithm can be found in [37].

DDI extraction was implemented in the in vitro and in vivo DDI corpus separately. Table 4 

presents the training sample size and testing sample size in both corpus sets. Then Table 5 
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presents the DDI extraction performance. In extracting in vivo DDI pairs, the precision, 

recall, and F-measure in the testing set are 0.67, 0.79, and 0.73, respectively. In the in vitro 

DDI extraction analysis, the precision, recall, and F-measure are 0.47, 0.58, and 0.52, 

respectively, in the in vitro testing set. In our early DDI research published in the 

DDIExtract 2011 Challenge [63], we used the same algorithm to extract both in vitro and in 

vivo DDIs at the same time, and the reported F-measure was 0.66. This number is in the 

middle of our current in vivo DDI extraction F-measure 0.73 and in vitro DDI extraction F-

measure 0.52.

Error analysis was performed in testing samples. Table 6 summarizes the results. Among the 

known reasons for the false positives and false negatives, the most frequent one is that there 

are multiple drugs in the sentence or the sentence is long. The other reasons include that 

there is no direct DDI relationship between two drugs, but the presence of some words, such 

as dose and increase, may lead to a false-positive prediction; or DDI is presented in an 

indirect way; or some NDDIs are inferred due to some adjectives (little, minor, negligible).

4 Notes (Challenges and Possible Solutions)

As we have seen, there had been a number of approaches for DDI extraction research. 

Nonetheless, there are significant unsolved problems or difficulties when we apply those 

approaches in PK DDI text mining. According to our annotation scheme, the three-level 

annotation is designed to identify key terms, DDI sentences, and DDI pairs. From our DDI 

extraction error analysis, we found that major errors come from the challenges of 

annotations. Most missing detections result from the issue of drug name mapping in term 

annotation level. The reason to cause the errors classified into the third category is that the 

approach we use to extract DDI lacks the ability of co-reference resolution. Due to the 

omission of VDDIS in DDI sentence level, these kinds of errors happen. Finally, a major 

part of failure resulted largely from the long sentences with multiple drugs and PK 

parameters. To meet these three issues, we discuss the problem of errors and try to explore 

their possible solution in the following three subsections.

4.1 Issues in Drug Name Mapping

In term annotation level, most biological terms can be annotated with satisfied performance 

by using NER, except for drug name. The representations of drug names are diverse in 

pharmacology articles. The main reason to this issue comes from the naming convention of 

different drug companies. Each drug with the same generic name might have multiple brand 

names or synonym name. Due to the different backgrounds of authors, the preferences of 

name adoption are quite different. Among drug names, some really confuse NER tools by its 

confliction with other terms. For example, one of ketoconazole's synonyms (DB01026) is “2 

%” and a small molecule (db03951) is denominated with “16 g.” For the possible solution 

for this issue, we recommend to remove those terms from your dictionaries because few 

authors use those peculiar terms as drug names. Another issue in NER is to recognize 

acronym and abbreviation of drugs or other terms. There are no rules or exact patterns for 

the creation of acronym and abbreviation from their full form. To meet this problem, there 

are two possible solutions. First, parenthetical expression might be the solution to 

distinguish acronyms. By using Schwartz and Hearst's algorithm, it searches for parentheses 
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in text and limits context around brackets as a mark of term, such as single or more words, 

e.g., nevi-rapine (NVP) or human liver microsomes (HLMs). Otherwise, using FDA-

provided acronym and abbreviation database as another dictionary can be the second 

solution. This database can be downloaded at the following link: http://www.fda.gov/

AboutFDA/FDAAcronymsAbbreviations/ucm070296.htm.

4.2 Vague DDI Sentence Problem

In most DDI extraction approaches, CDDIS are considered to be candidates for the analysis 

of DDI extraction. Nevertheless, we found that the number of VDDISs amounts to one-tenth 

of CDDISs' quantity in Table 3. If we omit investigating those sentences, it means that up to 

10 % of true information is possibly missed. Although this problem also happens in many 

articles related to protein–protein or protein–gene interactions, it harms PK DDI articles 

more. It is because the interactions between proteins or genes are more often expressed with 

narrative ways while many of PK DDIs in text can be determined only with the 

measurements of ADME activities. Such omissions will highly increase the chance of 

missing detections, especially for the task of PK curation.

To retrieve VDDIS, human beings can easily recognize DDI information from VDDIS via 

the reference to other sentences. The process of determining the pronoun or the antecedent 

from its context is called co-reference resolution [64]. Some previous works [65, 66] had 

considered this problem on a pre-sentence basis and used it to explore neglected useful 

information in the same article. Grosz et al. [67] considered the feature of significant entities 

which are mentioned multiple times in context and its transitivity property to extract event–

argument relations. But no one has yet considered using it to improve the performance of 

DDI extraction. Here we would like to choose one appropriate approach among published 

co-reference resolution method to transform the VDDIS into CDDIS.

Bridging references arise when a reference to a noun phrase that is not directly mentioned is 

made. For an example sentence in PMID-17518508 (example 1), it does not mention that 

which drug is the CYP3A4 inhibitor in the sentence, but readers can figure out that it is 

ketoconazole from few sentences before. Another type of VDDIS is more challenging to 

determine because the noun phrase and pronoun are not even mentioned in the sentence of 

PMID-17909805 (example 2). The pronoun or the antecedent for inhibitor drug even does 

not show in this sentence, and its argument is located in few sentences behind, which makes 

it more difficult to find its co-reference.

Example 1—Co-administration of a potent CϒP3A4 inhibitor moderately increased 

cinacalcet exposure in study subject.

Example 2—The plasma clearances of docetaxel and midazolam were reduced by 1.7-and 

6-fold, respectively.

Centering theory [66, 68, 69] is a method to model the relations among focus of attention, 

choice of referring expression, and perceived coherence of utterances within a discourse 

segment. This approach should conquer the problem of example 1. As for the second 

example, it cannot be answered by only finding the co- reference of pronoun. Finding the 
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relation between an event and its argument across co-reference relations will really help find 

the argument of events. To achieve the cross-sentence event–argument relation, some 

previous works [67, 70] had been capable of identifying the event for intra-sentence 

argument. To handle the challenges in both examples, we are eager to look for a method 

which reaches the best performance.

4.3 Multiple Drug Pairs and PK parameters

The purpose of DDI-level annotation is to label drug pairs and PK parameters in text and 

conduct the relationships for DDI pairs. From the experience of evaluating corpus and the 

error analysis for DDI results, there are two challenges when extracting DDI. (1) Long 

sentences with multiple drugs significantly complicated syntactic structure and led to the 

most frequent faults of first category in Table 6. In fact, such sentences often occurred in the 

articles related to in vivo and in vitro experiments. Authors try to compare the intensity of 

drug interactions among different drugs and place their PK parameters as well as dose 

conditions after. (2) How to take advantage of PK parameters for DDI extraction is another 

challenge. In the previous works, machine learning-based approach deals with the task of 

extracting relations by classifying pairs of drug with/without DDI categories, while rule-

based or pattern-based method locates drug pairs as well as trigger words to build up a tree 

for determining their relationship. But, no one has yet considered using it to improve the 

performance of DDI extraction.

To overcome both the problem of multiple drugs and PK parameters and the challenge of 

utilizing PK parameters, simplifying sentence is an idea that came from Segura-Bedmar's 

method [43], which split the long sentences into clauses from which relations are extracted 

by a pattern matching algorithm. Such a simplification significantly improves the 

performance of dealing with long sentences. This inspires us to split a long sentence with 

different way. According to the characteristics of utterances in PK articles, the orders and 

locations of drug names and their corresponding PK parameters are parallelly located. The 

example in Fig. 3 shows that there are three different drugs interacting one drug followed by 

the corresponding fold change of AUC value. But when looking into its structure of 

dependent graph tree which is often used for machine learning- or rule-based pattern (Fig. 

4), we found that both drugs and PK values are connected with conj_and edge. It is not 

possible to differentiate which PK value is belonging to which drug. Thus, splitting the 

sentence according to drugs and PK parameters before machine learning-or rule-based 

pattern matching is necessary. Using example 3 as an instance, we hope that the sentence 

can break down into three sentences (examples 3.1, 3.2, and 3.3 in Fig. 4). This separation 

greatly simplifies the sentences' complexity and resolves the problem of matching PK 

parameters.

Example 3—Drug_A, Drug_B, and Drug_C produced increases in mean Drug_D AUC of 

150, 419, and 122 %, respectively.
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Fig. 1. PK corpus annotation flow chart
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Fig. 2. A three-level hierarchical PK and DDI annotation scheme
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Fig. 3. Sentence separation
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Fig. 4. Dependency graph tree of example 3
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Table 3
Annotation performance evaluation

Key terms Annotation categories Frequencies Krippendorff's alpha

Drug 8,633 0.953

CYP 3,801

PK parameter 1,508

Number 3,042

Mechanism 2,732

Change 1,828

Total words 97,291

DDI sentences CDDI sentences 1,191 0.921

VDDI sentences 120

Total sentences 4,724

DDI pairs DDI 1,239 0.905

ADDI 300

NDDI 294

DEI 565

ADEI 95

NDEI 181

Total drug pairs 12,399
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Table 4
DDI data description

Datasets Abstracts Sentences DDI pairs True DDI pairs

In vivo DDI training 174 2,112 2,024 359

In vivo DDI testing 44 545 574 45

In vitro DDI training 168 1,894 7,122 783

In vitro DDI testing 42 475 1,542 146
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Table 5
DDI extraction performance

Datasets Precision Recall F-measure

In vivo DDI training 0.67 0.78 0.72

In vivo DDI testing 0.67 0.79 0.73

In vitro DDI training 0.51 0.59 0.55

In vitro DDI testing 0.47 0.58 0.52
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