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Abstract

VT-ASOS is a framework for holistic and continuous cus-
tomization of system software on HPC systems. The frame-
work leverages paravirtualization technology. VT-ASOS ex-
tends the Xen hypervisor with interfaces, mechanisms, and
policies for supporting application-specific resource man-
agement schemes on many-core systems, while retaining the
advantages of virtualization, including protection, perfor-
mance isolation, and fault tolerance. We outline the VT-
ASOS framework and present results from a preliminary
prototype, which enables static customization of scheduler
parameters and runtime adaptation of parallel virtual ma-
chines.

1. Introduction

High-performance computing systems and virtualization
technologies were recently brought together. Virtualization
frameworks offer functionality that enhances HPC systems
with capabilities such as fault tolerance, workload migra-
tion, and customization of the application execution envi-
ronment, including shells, environment variables, runtime
libraries and operating system components [7, 10, 5]. Vir-
tualization facilitates holistic and targeted software devel-
opment, to better support parallel applications [11]. Other
well-known advantages of virtualiation that may benefit
specific HPC user groups are performance isolation, secu-
rity, and consolidation. While virtualization has served the
server computing domain well so far, HPC systems present
new opportunities and challenges for virtualization environ-
ments.

Several research groups are exploring the performance,
potential, and drawbacks of current virtualization technolo-
gies for HPC systems [8]. These studies seem to con-
verge to two conclusions. The first is that paravirtualiza-
tion frameworks are more suitable for HPC environments
than full system virtualization frameworks [11]. Paravirtu-
alization reduces overhead by replacing full hardware emu-
lation with a small set of abstractions for processor, mem-

ory, and I/O devices, and by using a direct communication
interface between virtual machines and the hypervisor. The
latter provides virtual machines with the capability to per-
form privileged operations through the hypervisor, while re-
taining close control over the resources allocated to them.
The second conclusion of ongoing research on virtualiza-
tion for HPC environments is that, though extensively stud-
ied, current paravirtualization frameworks still impose bot-
tlenecks for HPC applications. In particular, frequent con-
text switches between virtual machines and the hypervisor
and extensive data copying, hurt the performance of appli-
cations with high demands for I/O or communication [8].

VT-ASOS, an NSF-CSR project the acronym of which
stands for “Virtualization Technologies for Application-
Specific Operating Systems”, takes a performance-oriented
approach to virtualization for HPC systems. We pro-
posed VT-ASOS to deliver holistic optimization capabil-
ities to system software developers on emerging many-
core systems. We view VT-ASOS as a framework to en-
able higher performance for parallel applications, by re-
placing potentially suboptimal resource management poli-
cies in the system software components —user-level and
kernel-level schedulers, memory allocators, communica-
tion libraries and I/O device drivers—, with optimized
application-specific ones. VT-ASOS aims also at eliminat-
ing the noise introduced by system software during the ex-
ecution of parallel applications, and minimize the footprint
of the system software stack to the bare essentials, leaving
more resources available to user-level code.

The design of VT-ASOS is based on the premise that ex-
isting paravirtualization frameworks, such as Xen, can ex-
ecute parallel applications with small overhead compared
to non-virtualized frameworks, at least in tightly coupled
systems such as compute nodes with a few multi-core pro-
cessors. In this paper, we present an outline of the design
of VT-ASOS, and proceed to solidify the motivation behind
this research with results from paravirtualized execution of
OpenMP and MPI applications on state-of-the-art multi-
core processors. The results illustrate that the unmodified
Xen hypervisor supports Linux guests running HPC appli-
cations with little or no perturbation during their execution,
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Figure 1. VT-ASOS modules.

provided that virtual machines are aware of the implica-
tions of the mapping of threads to cores, and OS-induced
noise is minimized via proper control of the frequency of
timer interrupts in the hypervisor. We introduce extensions
of the shared-memory interface of Xen to enable adaptive
parallel execution, granularity control, and phase-aware op-
timization of parallel codes on multi-core platforms. The
extended interface enables higher performance for individ-
ual applications and provides opportunities for consolida-
tion of applications and improved hardware utilization on
HPC platforms.

2. VT-ASOS Design

VT-ASOS is a paravirtualization framework for holis-
tic application-specific customization of system software
stacks. The framework enables a user to configure the soft-
ware environment of a many-core system with a minimal
set of highly optimized components for executing parallel
applications.

VT-ASOS extends the hypervisor of Xen [1]. The
VT-ASOS hypervisor provides components that enable:
i) customization of the mapping of virtual processors to
cores; ii) performance isolation between disjoint sets of
cores; iii) customization of parameters of CPU sched-
ulers or replacement of CPU schedulers altogether with
highly tuned alternatives for co-scheduling threads in par-
allel applications; iv) minimization of hypervisor and oper-
ating system interference during computation-intensive and
communication-intensive parallel execution; v) implemen-
tation of application-specific policies for data placement
and data transfers along the physical memory hierarchy.
The VT-ASOS hypervisor integrates a runtime hardware
performance monitoring infrastructure, which enables dy-

namic inference of workload properties by the hypervisor
and guest virtual machines, through statistical analysis of
samples collected from hardware event counters. Figure 1
summarizes the components of VT-ASOS. We outline the
principal components in the following subsections.

2.1. Custom core configurations

The introduction of multi-core execution in processors
affects parallel applications in subtle and non-trivial ways.
Parallel applications do not necessarily scale gracefully to
any number of cores on a multi-core system, whereas both
performance and energy consumption are very sensitive to
the mapping of threads to cores. System configurations with
the same degree of active concurrency have very different
performance signatures. Even applications that are immune
to the mapping of threads to cores often have very different
power signatures and optimized thread to core mappings
can yield substantial energy savings [2]. Moving from a
handful to a hundred processor cores in the near future will
only exacerbate these problems.

In VT-ASOS, the application’s concurrency and memory
locality patterns are directly communicated to the VMM
hypervisor, through the guest OS. Rather than tuning the
policies at the runtime or guest OS layer, the hypervisor it-
self computes an assignment of guest virtual processors to
cores that optimizes resource use. The hypervisor commu-
nicates continuously with the guest operating system and
adjusts at runtime the degree of concurrency exposed by
the guest and the mapping of guest virtual processors to
cores. The adjustment of the mapping of the application
to the system happens in response to either direct workload
measurements conducted by the guests and communicated
to the hypervisor, or through analysis of system utilization
and performance metrics conducted in the hypervisor. Our
current prototype follows the first approach.

2.2. Custom scheduling

The schedulers in hypervisors such as Xen, are primarily
designed for commercial server consolidation scenarios, in
which different guest domains are isolated from each other.
In such scenarios, achieving fairness and maximizing uti-
lization are paramount. Current schemes do not provide
gang scheduling, or any synchronization-aware scheduling,
both necessary features for parallel applications running on
multi-core systems. Moreover, the interaction between the
hypervisor’s scheduler and the schedulers of the guest do-
mains is not understood well, as is evidenced by the fre-
quent turnover of experimental scheduling algorithms in
these systems. In VT-ASOS, a guest domain’s scheduling
requirements (such as capacity and latency requirements
and synchronization and communication patterns) are di-



rectly communicated to and enforced by the hypervisor.
The hypervisor takes into account these requests to prior-
itize the threads of each application in strict accordance
with application-specific scheduling priorities. These prior-
ities are dictated by such events as inter-core/inter-processor
synchronization, network communication, and I/O. Further-
more, VT-ASOS uses adjustable frequencies of timer inter-
rupts to minimize operating system noise, while maintain-
ing responsiveness in applications with a blend of compute-
intensive and synchronization-intensive execution phases.

2.3. Custom memory management

Emerging architectures have widely non-uniform mem-
ory access times, even at the same level of the memory hi-
erarchy (e.g. DRAM or an outermost-level NUCA cache).
Parallel applications are sensitive to memory latency and
must therefore control the placement and movement of their
data in physical memory and caches. In a virtualized archi-
tecture, the underlying hypervisor must be involved in the
assignment of memory to guest domains. VT-ASOS ad-
dresses these problems by exposing information about the
physical layout of memory to the guest operating systems
through the hypervisor, effectively enabling guest applica-
tions to tune their data placement as if they were running
on a non-virtualized environment. As new multi-core ar-
chitectures move towards explicitly managed memory hi-
erarchies [4], functionality for application-specific memory
management becomes essential.

2.4. Current Prototype

The current VT-ASOS prototype extends xenstore —
Xen’s interface for hypervisor-guest OS communication—
with asynchronous notifications of scheduling events that
occur in guest operating systems and a mechanism for
streaming performance data from guest operating systems
to the hypervisor and vice versa. The extended xenstore
interface is used to dynamically adapt the concurrency
and mapping of virtual processors to cores. Adaptation
is implemented with application-specific algorithms. We
have tested VT-ASOS with an adaptation framework for
OpenMP codes, which enables dynamic concurrency throt-
tling and control of the mappings of threads to cores at the
granularity of parallel loops [2]. The VT-ASOS prototype
implements also a user interface for static customized con-
figuration of virtual machines. The interface can be used for
configuring cores and memory nodes, as well as for tuning
of scheduling parameters in both the guest operating system
and the hypervisor. We are using this interface in particular,
to tune the frequencies of the timer interrupts in Xen, and
minimize hypervisor noise.

Stream-2 Results
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Figure 2. STREAM-2 microbenchmark. The
four kernels FILL, COPY, DAXPY and SUM are
executed in virtualized and non-virtualized
mode.

3. Performance Analysis

We present preliminary performance results of VT-
ASOS components in HPC environments based on multi-
core processors, using microbenchmarks and parallel ap-
plications. Our performance analysis attempts to: i) as-
sess the overhead imposed by Xen in operations lying typ-
ically on the critical path of HPC applications; ii) explore
if VT-ASOS can support custom execution environments
for adaptive parallel applications, and what are examples
of static or dynamic optimizations that VT-ASOS enables
to improve throughput in HPC systems.

Our experimental platform is a compute node with a
quad-core Xeon 5335 processor. The processor is 64-bit and
boasts 32 KB of L1-D cache per core, 32 KB of L1-I cache
per core, and a 4 MB L2 cache per pair of cores sharing
the same socket. In the experiments, we used Linux 2.6.18
in native mode and in paravirtualized mode as a guest OS.
We used Xen 3.1.0, both unmodified and as a substrate for
VT-ASOS extensions, in our paravirtualized experiments.

3.1. Microbenchmarks

Figure 2 and Figure 3 illustrate the performance of na-
tive Xen with two microbenchmark suites. The STREAM-2
suite measures the bandwidth of the system across all lay-
ers of the memory hierarchy. The EPCC suite evaluates the
overhead of OpenMP constructs for spawning and manag-
ing parallelism and synchronization in OpenMP codes.

Xen imposes overhead mainly due to crossings (con-
text switches) between the guest OS and the hypervisor,



OpenMP Microbenchmarks
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Figure 3. OpenMP microbenchmarks.

as well as between the guest OS and the driver domain
(known as Dom0), which are needed whenever the guest
OS needs to execute privileged operations. The overhead
is prevalent during I/O operations, as the system needs to
perform multiple crossings (guest OS to hypervisor, hyper-
visor to driver domain, driver domain to hypervisor, hy-
pervisor to guest OS), in order to move data between ex-
ternal devices and memory [6]. Network communication
and I/O not-withstanding, Xen may impose context switch-
ing and hypervisor-induced overhead for updates to page
tables, guest process creation and management operations,
and guest-induced context switches.

Figure 2 illustrates that Xen does not penalize the band-
width of the memory hierarchy on the quad-core system.
We observe that neither the guest OS nor the driver domain
suffer penalties in raw memory performance due to paravir-
tualization. This result may not generalize to NUMA or
NUCA systems, where memory performance is sensitive to
the physical placement of data in memory. Xen’s support
for NUMA systems is still in an experimental stage and
NUMA memory layouts are not exposed to guest operating
systems.

Figure 3 illustrates that Xen imposes a 2.0x–3.0x over-
head in operations that involve thread creation and man-
agement for the guest operating systems, whereas the over-
head for simple synchronization operations such as locks
and atomic accesses to critical sections is more affordable
(no more than 1.2x). This result indicates that the imple-
mentation of OpenMP in gcc incurs excessive hypervisor
calls and context switches during paravirtualized execution.
We are exploring techniques for reducing this overhead,
such as batch creation of threads and virtual processor co-
scheduling during synchronization operations, with assis-
tance from the hypervisor.

OpenMP Benchmarks
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Figure 4. OpenMP NPB performance.

MPI Benchmarks
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Figure 5. MPI NPB performance.

3.2. OpenMP Applications

Figure 4 and Figure 5 illustrate the performance of Xen
with OpenMP and MPI application benchmarks from the
NAS Parallel Benchmarks collection (NPB), in three set-
tings. The first setting uses an unmodified version of Xen.
The second setting uses a version of the Xen-VTASOS pro-
totype (Xen-static), which statically customizes the map-
ping of virtual CPUs to cores and tunes the frequency
of timer interrupts in the hypervisor, to minimize operat-
ing system noise while guaranteeing responsiveness during
synchronization operations. The Xen-static configuration
uses feedback collected off-line and communicated from
the guest virtual machines to Xen at boot time. The third
setting uses an enhancedversion of the Xen-VTASOS pro-
totype (Xen-adapt) which uses xenstore and asynchronous



notifications between virtual machines and the hypervisor
to perform phase-aware granularity control (i.e. tuning the
degree of concurrency exposed from virtual machines to the
hypervisor) and phase-aware mapping of threads to cores at
runtime, combined with application-specific tuning of the
frequency of timer interrupts.

We observe that customized static configuration of the
guest operating systems retrieves the performance loss due
to hypervisor interference. The overhead of Xen is notice-
able in applications with relatively frequent barriers and re-
duction operations. The adaptive version of Xen improves
the performance of parallel applications further than Xen-
static and beyond native Linux, thanks to performance-
aware and application-aware granularity control and map-
ping of threads to cores, in addition to the reduction of the
operating system and hypervisor noise. Sensitivity analysis
indicates that both adaptive execution and tuning of inter-
rupt frequency contribute significantly to the performance
gains in OpenMP applications. In MPI applications (Fig-
ure 5), runtime adaptation is not possible without modify-
ing the applications and the performance gains from con-
trolling interrupt frequency are limited and most visible in
communication-intensive codes.

4. Conclusion

VT-ASOS is exploring mechanisms, policies, and inter-
faces in virtualization environments, to support application-
specific customization of software on many-core HPC sys-
tems. Our early experience suggests that current hypervi-
sor designs are not intrusive for well-designed parallel ap-
plications, however the scalability of their mechanisms for
creating, scheduling, and synchronizing parallel computa-
tion may be limited to a few cores. Furthermore, hypervi-
sors lack the necessary flexibility to support parallel work-
loads with diverse execution signatures. Our research at-
tempts to move from passive hypervisors design to active
hypervisor designs, whereby the hypervisor provides a pre-
cisely tuned and adaptive hardware/software environment
for parallel applications. While VT-ASOS shares motiva-
tion and ideas with other virtualization platforms, such as
PROSE [3] and resource containers [9], it also departs from
these works in that it attempts to break down the abstraction
barriers between applications, libraries, operating systems,
hypervisors, and the bare metal.

Our current VT-ASOS research proceedsin three direc-
tions. The first is the acceleration and partial automation of
the static virtual machine customization process. The sec-
ond is the introduction of an interface that enables aware-
ness of the physical memory layout in guest operating sys-
tems. The third is the development of a more adaptable
hypervisor scheduler which leverages application feedback
throughout the scheduling process.
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