
The “MIND” Scalable PIM Architecture

Thomas Sterling and Maciej Brodowicz

Center for Advanced Computing Research, California Institute of Technology
1200 E.California Blvd., MC158-79, Pasadena, CA, USA

MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer
architecture for high performance computing and scalable embedded processing. It is a
Processor-in-Memory (PIM) architecture integrating both DRAM bit cells and CMOS logic
devices on the same silicon die. MIND is multicore with multiple memory/processor nodes on
each chip and supports global shared memory across systems of MIND components. MIND is
distinguished from other PIM architectures in that it incorporates mechanisms for efficient
support of a global parallel execution model based on the semantics of message-driven
multithreaded split-transaction processing. MIND is designed to operate either in conjunction
with other conventional microprocessors or in standalone arrays of like devices. It also
incorporates mechanisms for fault tolerance, real time execution, and active power
management. This paper describes the major elements and operational methods of the MIND
architecture.

1. INTRODUCTION

The immediate future of commercial computing is challenged by the combined trends of
1) the disparity between memory bandwidth and processor known as the “memory wall”, and
2) the need to effectively exploit multicore processor chips. Processor clock speeds continue
to grow at a rate substantially greater than memory access rates, widening the gap between
processor execution rates and memory delivery bandwidths. At the same time, memory chip
capacity continues to track Moore’s law, increasing by about a factor of 4 every 3 years.
Together, these trends are accelerating the total time measured in processor cycles required to
touch every word on a memory chip. This imposes a hard barrier on the continued effective
performance gain for real world applications. The migration to multicore is a response to the
upper bound of effective use of increased number of transistors in single processor designs.
As the number of transistors have increased in ever more complicated processor designs (e.g.,
Intel Itanium2) the effective number of operations per transistor has continued to decrease. At
the same time, attempts to continue to increase clock rates have resulted in prohibitive power
consumption while sustained performance has not improved proportionally. Multicore
structures putting multiple processors on the same chip increase the number of operational
ALUs without increasing the clock rate or the degree of instruction level parallelism (ILP)
that the compiler needs to successfully exploit limited to single instruction stream issue.
MIND is a next-generation Processor in Memory (PIM) architecture that addresses both

challenges. It exploits the very high on-chip memory bandwidth of DRAM (or SRAM) dies to
attack the memory barrier while supporting a parallel model of computation through
innovative mechanisms to achieve scalable computing through a potentially large array of
custom multicore processors. This paper describes the MIND PIM architecture, its
microarchitecture organization, its parallel instruction set and execution model, and its
methods for delivering high reliability at low power.

MIND (Memory, Intelligence, and Network Device) is an advanced parallel computer
architecture for high performance computing and scalable embedded processing. It is a
Processor-in-Memory architecture (PIM) that exploits those semiconductor fabrication
processes capable of integrating both DRAM bit cells and CMOS logic devices on the same
silicon die. MIND is distinguished from other PIM architectures in that it incorporates
mechanisms for efficient support of a global parallel execution model based on the semantics
of message-driven multithreaded split-transaction processing. MIND is designed to operate
either in conjunction with other conventional microprocessors or in standalone arrays of like
devices. MIND can support conventional parallel programming practices including MPI and
OpenMP, or more advanced parallel programming models being explored such as UPC and
Co-Array Fortran. However, its rich support mechanisms for efficient parallel computing
lends itself to new programming models that can exploit its diverse capabilities for superior
efficiency and scalability. MIND reflects a global shared memory model without cache
coherence. Any element of a MIND component array can directly reference any part of the
system memory address space without software intervention, thus providing efficient single
system image.

MIND is intended for future systems that either incorporate a very large number of
components or for very long duration operation in remote regimes. To meet the reliability
requirements for both extremes, MIND employs a strategy of graceful degradation for fault
tolerance that allows individual elements of the MIND parallel system to fail while the rest of
the system remains functional. Mechanisms for fault detection and fault isolation in the
hardware are combined with runtime software for rollback, recovery, and restart of
application execution. MIND is power-aware, benefiting from the low-power attributes
intrinsic to the PIM while incorporating mechanisms for selectively controlling
deactivation/activation of sub sections of the global parallel array to adapt power consumption
to computer resource usage based on demand. Finally, limited real time response capability is
provided through thread priority scheduling and guaranteed local execution time of thread
operation.

The objective of this chapter is to give the reader an understanding of the MIND
architecture physical organization, the basic semantic elements and governing execution
model, and the principal mechanisms incorporated to support efficient parallel execution. The
next section provides an overview of the MIND-based system architecture, its primary
components, and their interrelationships. The most relevant examples of prior art architectures
that have influenced the MIND design are discussed in Section 3. Section 4 presents a high
level view of the ParalleX model of parallel execution that provides a methodology for
managing computation of application concurrency on the highly replicated elements of the
MIND components. Section 5 discusses the major semantic elements of the instruction set
architecture. Section 6 describes the component architecture. Section 7 describes the system
wide architecture of a MIND based system to define the key components and the alternative
organizations that can be supported, as well as the core building block, the memory/logic
“node”, which manages the execution of the application and of which many instances are

integrated on a single module (or chip). The remaining sections focus on the major individual
components of the MIND node: Section 8 describes the register organization, Section 9 the
wide ALU, Section 10 the thread manager, Section 11 the memory manager, and finally
Section 12 the parcel handler.

2. AN OVERVIEW OF THE MIND SYSTEM ARCHITECTURE

The MIND architecture involves three levels of structure. The top level is the system, an
ensemble of MIND components or “modules” and possibly other devices integrated by one or
more interconnection networks. The bottom level is the “node”, a bank of memory combined
with the necessary logic to perform message-driven (“parcel”) multithreaded execution. The
intermediate level is the MIND “module” that is a collection of MIND nodes tightly
connected by means of a local network and interrelated to the rest of the system by means of
one or more parcel interfaces that communicate messages between modules and to other
system components.

Figure 2.1. Heterogeneous system with
PIMs.

Figure 2.2. “Sea of PIMs”.

MIND systems may either combine MIND modules with other classes of components

(e.g., conventional microprocessors) to share the computation responsibilities or comprise an
array of only MIND modules with perhaps one or more external service support processors.
The former is illustrated in Figure 2.1 as a system of a cluster of microprocessors, each with a
heterogeneous memory subsystem of conventional DRAM chips and MIND modules. In this
class of MIND-based system, the microprocessors perform the compute intensive work and
the MIND modules are allocated data-oriented work as well as some overhead tasks. The
latter class of MIND-based system is sometimes referred to as a “sea of PIMs” system in
which the only active component is the MIND module. This kind of system could incorporate
many thousand MIND modules interconnected by a network such as a degree-6 toroidal mesh
topology as shown in Figure 2.2. Here too there are conventional microprocessors in the
system but only a very few and their only responsibility is to run certain parts of the operating
system such as job control and the file system, providing such high level external interface
services to the MIND array. In both cases, a special kind of message is employed to
communicate between MIND modules. Referred to as “parcels”, these messages move not
only data from one module to another but also commands, dictating actions to be performed

remotely. This supports a message-driven split-transaction model of parallel computation that
is intrinsically latency hiding for high efficiency.

The MIND module contains all the memory, logic, and communications interfaces
required to perform coordinated parallel computation. Organized as a set of interconnected
nodes, the module connects the nodes to the external parcel interfaces and to shared resources
accessible to all nodes on the chip. An incident parcel will be transferred from the external
parcel interface to the target node containing the destination data, invoking an action by that
node related to the selected data. Similarly, the module will route a parcel instigated by any of
its nodes to the appropriate parcel interface, directing it to the remote target module. The
module also provides access to its shared resources by its local nodes. Different module
designs can include different mixes of shared resources but may include one or more high
speed pipelined floating point units, large shared instruction cache, system configuration
tables, module status and control registers, and external real-time signal interface ports.

The MIND node is the core functional unit of the MIND module and system. It includes
main memory, functional arithmetic units, and control logic designed to exploit the
accessibility of the wide data path from the row buffer as will be shown in Figure 7.2. The
MIND node is multithreaded and is message driven. Threads can be instantiated by the arrival
of a parcel message from a remote MIND module. The memory employs virtual addresses
locally and to all module nodes in the system. The MIND node employs a variable length
binary instruction set for reduced instruction pressure. It supports multiple operations per
cycle on a multi-field structure. A node can be isolated from the rest of the module in the case
of failure and incorporates fault detection mechanisms in the memory, internal data paths, and
some of the arithmetic function units. Highly replicated elements within the node can also be
isolated from the rest of the node to permit continued operation with degraded capability even
in the presence of a fault. A node clock can be reduced in rate for slower low power operation
and the entire node can be powered down temporarily for active power management. The
node permits limited real time execution with guaranteed response time for small local
sequential tasks.

3. RELATED RESEARCH IN THE FIELD

Prior work in the disciplines of PIM and parallel computing models over the last two
decades (and possibly more) has contributed greatly to the development of the MIND
architecture. Here, a few highlights do inadequate justice to the rich panoply of experiences,
concepts, projects, and contributors that have constituted the intellectual environment from
which this work has emerged.

The idea of smart memories goes back to the days of content addressable memory and
associative processors. These predated high density semiconductor integration but explored
the potential performance opportunities of intimate association of logic and memory in single
structures. STARAN [1] is one example of example of such architectures followed by other
SIMD architectures as the Goodyear MPP [2], the MasPar MP-1 & MP-2 [3,4], and the TMC
CM-2 [5].

The term PIM was coined by Ken Iobst in the late 1980s who led the IDA Terasys [6]
project, another SIMD architecture with a wide row of bit level processors on the memory
chip, each servicing a single column of the memory block. Peter Kogge, then at IBM,
developed the Execube [7] at about the same time, which was the first MIMD PIM
component, incorporating eight banks of memory, each with a dedicated processor of simple

design but independent control. Execube also had a mode in which all processors could be
operated in SIMD mode from an external controller.

The IRAM [8] project at UC Berkeley led by Dave Patterson developed a PIM architecture
for multimedia applications to be employed in otherwise conventional systems such as
workstations and servers. The DIVA architecture [9] was developed by Draper, Hall, and
others at USC ISI to provide a multicore scalable PIM architecture for a wide array of general
applications including scalable embedded applications. This PIM architecture incorporated a
simple mechanism for message (parcel) driven computation and supported a network that
permitted the interconnection of a number of such components to work together in parallel on
the same application. Two generations of the DIVA chip have been fabricated.

Message driven computation has a long history. In the late 1970s, Hewitt developed the
Actor model [10], an object oriented computing model employing message-driven
computation. Daly, Keckler, and Noakes at MIT developed the J-Machine [11] at MIT, a
highly parallel architecture with individual processors that were message-driven. Yelick and
Culler at UC Berkeley developed the active message model [12] and split-C language [13] for
message driven computation for distributed memory machines through software. The DIVA
architecture incorporated a variant of the parcels message driven protocol initially devised for
the HTMT architecture [14]. Parcels have continued to be used as the basis for the Gilgamesh
MIND architecture [15] developed by Sterling and the Cascade architecture under
development by Cray Inc.

Halstead at MIT in the late 1970s developed reference trees for management of distributed
virtual address spaces, possibly with copies, and later incorporated this in the early 1980s in
the MultiLisp language [16] and multiprocessor implementation. Sterling has developed a
variant of reference trees for address management and translation for the MIND architecture.
These techniques with important advances are being employed in MIND.

The futures synchronization construct was also developed by Hewitt as part of the Actors
model and employed very successfully by Halstead in his implementation of MultiLisp. A
variant of futures was devised by Arvind in the 1980s initially at UC Irvine and then at MIT
as part of the dataflow language Id Nouveau [17]. Burton Smith of Tera (now Cray)
incorporated hardware mechanisms in support of futures in the MTA architecture [18] for
efficient producer-consumer computation.

Multithreaded computation has a long tradition with an early implementation by Smith at
Denelcor in the HEP computer [19] and then at Tera in the MTA. Gao at McGill (now
University of Delaware) developed the Earth system [20] (no relation to the Japanese Earth
Simulator) which was a software implementation of a multithreaded execution model. Culler
at Berkeley developed the treaded abstract machine or TAM [21] for conventional multiple-
processor systems.

4. PARALLEX EXECUTION MODEL

MIND departs from conventional sequential microprocessor architecture in that it is
conceived from the beginning to provide for a global parallel execution model for efficient
scalable computing. Clusters and MPPs use sequential processors that through software
middleware support a coarse-grained distributed execution strategy of concurrent
communicating sequential processes employing basic message passing that matches the
distributed memory I/O-based hardware capabilities of its constituent components. In
contrast, MIND based systems employ the MIND memory architecture that supports an
intrinsic parallel model of computation enabling dynamic adaptive resource management,

efficient synchronization and task management, and latency hiding to effectively exploit the
high degree of available memory bandwidth and logic throughput.

4.1. Shared memory
The MIND architecture supports a distributed shared memory name space. Any element of

the parallel MIND system can refer to any data within the entire system directly without
software intervention at the remote location of the addressed data. This is similar to the T3E
and like that earlier system does not imply cache coherency. Any caching in the MIND
architecture is local to the elements and memory on a given chip. The address space of the
MIND architecture is virtual and is more flexible than most. Any virtually named object can
be stored in any part of the system or near it depending on resource availability. A system of
virtual to physical address translation is supported by the MIND architecture through a
combination of hardware and software mechanisms.

The address space is partitioned into a number of distinct contexts for protection and
security. Contexts are a logical resource provided by the hardware that can not be duplicated
or counterfeited by software. Jobs can not touch addresses outside their own context except
through an explicit protocol (beyond the scope of this paper) or between supervisor and user
jobs under supervisor control. This is a limited application of capability based systems.

4.2. Continuations
The MIND parallel computing model is based on the concept of ephemeral continuations.

A continuation is a set of related data that fully specifies a next computation to be performed.
It must refer to some descriptive of a program and a specific entry of that descriptive that will
govern the type of operation that is to be performed. It must refer to an active process (in the
broadest sense) that defines the context of the computation in which the action is to be
performed. Within that context, the continuation may identify argument variables upon which
the action is to be performed and that may be modified as a consequence of the specified
action. The continuation may also identify local or private variables accessible only to the
continuation itself. A continuation is a first class object. It has a name in the global address
space and it can be manipulated as such. A continuation is ephemeral. It is created at some
event during the program execution and may terminate upon completion of the specific action
set (not necessarily a sequence). The effect of a continuation is reflected by the change in
global mutable state either directly or indirectly, including the modification to the control
state of the executing program.

The MIND architecture supports three kinds of continuations that are employed for
different modes of parallel flow control. The three forms of continuations are:

1. Active thread
2. Parcel
3. Lightweight control object

Although distinct in form, they represent the same basic types of information needed to
govern the computation. Indeed, one form of continuation can be transformed in to one of the
other forms, when circumstances warrant.

A thread is the only kind of continuation that actually causes operations to occur on a per
cycle basis on MIND hardware. It is only a thread that in its own form can control MIND
hardware directly for instruction issue and execute. The exception to this is that parcels can
invoke atomic memory operations directly. A thread, like other continuations contains the

necessary state to govern execution of a set of actions. A thread is temporally dynamic but
spatially static. Once instantiated, it exists throughout its life at a single execution site.

A parcel is the only kind of continuation that moves through a system. Once instantiated, it
travels to the physical location holding the virtually named data or object that is its destination
target operand. A parcel carries all of the information required to invoke a remote action.
Some of those actions are primitive atomic memory operations that are performed directly on
the contents of the target operand in which case the effect is direct without the need for
continuation transformation. When a more complex task is to be invoked remotely, the parcel
causes a thread to be instantiated at the site of the target data. The parcel designates the thread
code block to be executed at the remote site and provides additional operand values that may
be used for the computation. It also conveys information about the action to be performed
upon its completion such as the destination variable to send a resulting value from the invoked
computation. A parcel may also update the last kind of continuation, the lightweight control
object.

The last form of the continuation is the lightweight control object (LCO). The LCO
coordinates multiple events, conditioned on a specified criterion (or criteria) will cause an
action to be performed. An LCO is not an executing entity nor does it migrate through the
system. It is a smart conditional that is event driven and maintains private state between
successive events, which may arrive out of order. LCOs can take on a number of forms. In
fact, they can even be a snap shot of either a thread or a parcel. They serve this role when
either is suspended and buffered in memory. A suspended thread is an LCO as is a suspended
parcel. Although they are not performing in their normal mode, they can accept updates while
suspended as LCOs and may be reactivated as a result. A couple of special LCOs are of
express interest for purposes of synchronization. One is the dataflow object. This LCO,
known as a template in the dataflow community, accepts result values from other
computations and when all of the precedence constraints have been satisfied, instantiates a
designated action in the form of a thread. The template LCO keeps the result value until
requested, sends the result via a parcel to a specified variable, or sends it to another template
LCO. Another LCO supports the futures construct for memory based synchronization. The
futures LCO captures requests for a variable value before it has been written. When the value
is finally stored, the LCO returns that value to all pending requests.

4.3. Split-transaction processing
The MIND architecture is designed to perform lightweight transaction processing. This is a

dramatic departure from conventional sequential processes oriented computing. Where a
conventional microprocessor-based distributed system will instantiate a single process per
processor that exists for the life of the application, MIND elements process transactions in
reaction to the incidence of directed requests for actions to be taken. A transaction is initiated
by the arrival of such a request, conducted by the local resources on local data possibly
altering the content of that data. At the termination of a transaction, one or more continuations
may be generated to spawn future parallel tasks that involve, at least in part, the results of the
transaction execution. In the vast majority of cases, a transaction does not make remote
memory or service requests to be satisfied within its life time. While this is not true for
absolutely all instances of transactions, to do so causes delays and waste of resources. Instead,
such remote service requirements are satisfied by decomposing a task in to two or more tasks,
one at the initiating site, and one at the remote site. This splitting of a task in two or multiple
dependent components is referred to as “split transaction” processing for decoupled
computation. Work is almost always performed locally and when involvement of remote data,

services, or resources is required, a new transaction is created at a remote site. When a
transaction is terminated, the local hardware immediately begins to process the next pending
transaction. Thus, assuming there is sufficient parallelism in the application and bandwidth
within the hardware interconnection fabric, there are no delays in execution due to waiting for
response from remote sites. Split transaction processing provides a powerful method of
parallel system latency hiding that scales with system and application size.

Split transaction processing is enabled through the classes of continuations discussed
above. An active transaction task is carried out by a thread continuation at a specific local
execution site. This transaction thread was initiated by one of several events. A thread
continuation can instantiate another transaction thread at the same local site. A parcel
continuation can instantiate a transaction at a remote site. And, a lightweight control object
continuation can cause a transaction either by instantiating a local thread or by eliciting a
parcel at a remote site.

It is assumed that when a parcel is incident at a MIND execution site but there is
contention for the necessary resources at that time, that some action is taken to defer the
intended computation. In the case of MIND, the parcel is stored as a LCO in the local memory
bank. It is converted again as a thread when resources become available. Threads also can be
suspended as LCOs until resources are available to service them. In the worst case, when
buffer space in memory is not available, a new parcel can be created that converts to an LCO
at a remote site whose only value is that it has available space. Thus, the entire system can
serve as a buffer of pending work in the form of LCOs.

5. INSTRUCTION SET ARCHITECTURE

The MIND instruction set architecture combines conventional scalar register-to-register
operations employed within threads with operations for managing application and system
parallelism not found in typical sequential instruction sets in support of the ParalleX model of
computation. There are also a set of wide-register instructions that support multiple operations
on the related fields of the wide registers to atomically manipulate structures through
compound operations, called “struct processing”. In addition, auxiliary instructions provide
the means for managing the system resources for fault tolerance, active power management,
and real time operation. This section introduces some of the attributes and features of the
MIND instruction set.

5.1. Intra-thread functional scalar instructions
A thread performs a sequence of operations. MIND is a register oriented architecture in

that the arithmetic and logical functions are performed mostly on the contents of the registers.
These are either register fields within the thread frame for scalar values or wide registers of
other designated frames, which will be discussed in the next subsection. The thread frame
fields are fixed length of 64-bits but can serve any supported data type of that size or less.
These include:

• Boolean
• Logical bit vectors
• Signed and unsigned integers of 8, 16, 32, and 64 bit lengths
• IEEE 754 floating point, 32 and 64 bit format
• Address pointers

The intra-thread functional instructions are typical of the majority of RISC ISAs on these
data types and include the following classes:

1. Full set of bit-wise logical operations
2. Integer add, subtract, multiply, and compare
3. Floating point add, subtract, multiply, and compare
4. Boolean operations
5. Branches and jumps

Most arithmetic operations have a test version which alters the set of condition flags. There
are separate flags for positive, zero, carry, overflow, NaN, parity and additional special cases.
Branches are predicated on these condition flags. A number of more common combinations of
the condition codes are represented by explicit branch instructions. In addition, there is a
general branch instruction with an immediate mask argument that can represent any
combination of codes both in true and zero valued in Boolean sum or Boolean product
relations. All instruction addresses are contiguous within a thread and checked for
boundedness.

5.2. Struct processing
In addition to fields in a thread frame, the thread may reference one or more other frames

within the local node. A frame may be treated as a wide register and any sub-field of that wide
register may be accessed by the thread. A wide register is treated as part of the context of the
thread and can hold an entire row of the memory bank. This is large enough to contain 256
bytes and hold the entire contexts of most instances of the complex data structure alternatively
referred to as “records” (in Fortran) or “structs” (in C). The format of a struct is determined
by user software. The wide ALU can process multiple fields simultaneously for some (but not
all) operations and can perform an operation of one field of a struct conditioned on the value
of another field within the same struct. This permits a number of sophisticated compound
atomic actions to be performed. Examples include:
• vectors – a contiguous sequence of single typed values upon which the same operations

are to be performed,
• associative searches – a set of structs, each comprising one or more data elements with a

tag field, such that the value of the tag field of each struct is tested and if satisfying the
criterion causes an action to be performed on one or more fields of the struct,

• in-memory synchronization – a field of one or more bits is used to manage
synchronization information, either for maintaining mutual exclusion for the struct and
associated data, or for general parallel flow control,

• histogramming – involving two different struct types: one a large block of equivalent
structs, and the second an integer vector that holds counts of the first block for each
category of a designated field,

• generic types – a data element has an associated field that specifies the type of the
remainder of the struct, to determine the exact operation performed in response to a
general (generic) operation. Can be extended to user defined complex data types and
operation sequences,

• data driven computing – a lightweight control object that specifies an operation to be
performed on arriving argument values and a destination for the result(s),

• directed graph traversal including tree-walking – with each node in the data structure
represented as a struct including meta-data designating the other immediately adjacent
nodes in an otherwise sparse, irregular, and possibly non-ergodic data structure,

• circular queue and stack control – control data including upper and lower bounds, head
and tail offsets, empty and full condition flags (for example) of a diverse set of useful
compound (but usually contiguous) data structures,

• futures synchronization – a powerful mechanism for addressing read-before-write
conflicts when the consumers of a computed value do not know who the producing tasks
are and vice versa.

5.3. Parallel flow control
The logical executing agent is the thread, a fixed format data structure that when allocated

to one of the thread frames can cause a sequence of instruction issues by its hosting node.
Instructions are provided by which a thread can be created, terminated, suspended, and
synchronized. A child thread can be blocking or non-blocking but is always local to the parent
thread. If a remote thread is required, i.e., a thread is to be instantiated using data at a remote
site storing the target data, then instructions are used that will create an appropriate parcel.
These instructions can be either implicit or explicit. An explicit parcel instruction demands
the formulation of a parcel, independent of its destination and some instructions provide in-
depth control of the parcel contents. Implicit instructions are generalized functional
applicative commands that will create a thread if the operand is local and a parcel if the
operand is remote. A set of instructions are available to test this condition to permit user
application control of what to do in either case. For example, if an argument is remote, the
user program (or compiler) may decide to suspend the parent thread or take other actions that
could enhance overall efficiency of operation.

A set of instructions is available for the use of lightweight control objects to support this
third form of continuation as described in Section 4. These include the definition of the LCO,
the methods that are associated with it to control its operation. Examples, as mentioned above,
include suspended threads, data flow templates, and futures. The futures is particularly
important as it permits decoupled asynchronous computation with multiple producers and
consumers but without prior coordination. A futures object is centered around a variable
element or structure. Referencing parcels, when finding that the necessary values have been
provided, treat it as a regular data element for efficient access. But when the values have yet
to be committed to the location, a representation of the requesting parcel is stored locally and
linked to the variable (different methods for this are used). When the requested value(s) is
delivered, the pending entries in the future are reissued with the referenced value. In this way
the producing and consuming tasks are synchronized without having to know about each
other.

The futures construct is one example of in-memory synchronization that is used effectively
by the MIND architecture and for which instructions are provided to manage the execution
flow control. Most architectures use barriers sparingly and usually for coarse-grained
synchronization because of the overheads involved. Some architectures have been
implemented that provide hardware tag bits with supporting logic for this purpose, including
older data flow architectures and the Tera MTA multithreaded architecture. MIND does not
include hardware tags. But it does provide hardware and instructions for in-memory
synchronization even without explicit dedicated hardware synchronization bits. Instead, these
instructions operate on fields within user defined structs, providing hardware performance and
low overhead with the flexibility of software defined structures. The result is a highly flexible
and highly efficient near-fine grain method of parallel flow control.

6. ARCHITECTURAL DESIGN FOR POWER, RELIABILITY, AND RESPONSE

The MIND architecture incorporates additional capabilities beyond those implied by the
semantics of the instruction set to provide for highly robust operation over long periods
without maintenance intervention. To further the system effectiveness, the MIND architecture
is also power aware to reduce average power consumption and enhance power efficiency
through active power management. For certain critical code segments of embedded
applications, bounded response time is essential and the MIND architecture incorporates
limited real time computing on a per thread basis. These additional capabilities significantly
extend the breadth of roles and dramatically reduce the risk of operation of MIND based
systems.

6.1. Graceful degradation
A system characterized by single point failure modes will experience catastrophic failure

(the system ceases to operate) if any of its components suffer a hard fault. Thus the mean time
between failures (MTBF) of the system is a function of the mean time between failure of the
components and the number of components of which it is composed. Where there are many
like elements, a time versus space tradeoff can be promoted to let working subsystems fulfill
the requirements of a computation even as other similar subsystems fail. The rate of
computation declines as constituent elements fail, thus delivering degraded performance, but
the operational lifetime of the system is substantially extended. Statistical parametric tradeoff
studies have shown that MIND-like PIM organizations can achieve between three and four
orders of magnitude improvement of MTBF with respect to comparable systems that exhibit
single point failure modes.

In order to deliver graceful degradation of performance in the presence of faults, MIND
incorporates two kinds of mechanisms. The first is isolation through reconfiguration switches.
Ordinarily on, these switches can be permanently disabled through external signals to
disconnect a failed memory/logic node or key duplicated elements of such nodes from the
remaining system. Additional configuration state allows the control logic to operate around
the missing pieces. This works well for registers, memory rows, and some redundant data
paths. Arithmetic and control logic are more difficult. Because MIND memory/logic nodes
incorporate wide ALUs, there are duplicate logic paths that can be exploited and time shared,
assuming the permutation network is intact. This is not the case for control logic. Therefore,
the fundamental Boolean formulation of the control logic is defined with the possibility of
single bit or signal line errors included and the logic still finding its correct state sequence.

The second mechanism class is fault detection. Here prior art is leveraged in the typical
structures of memory and data paths through error bit encoding. These are included in all
hardware of the MIND components. More challenging is detecting errors in the arithmetic
logic, especially transient errors. Redundant computation with scalar operations is made
possible for many but not all such operations through the replicated arithmetic logic resources
and additional checking logic that is included. This does require higher power and can be
turned off for power conservation, a difficult tradeoff: correctness or power conservation. On
a cycle available basis, background testing is performed. For the memory, this is memory
scrubbing that catches bit errors early, tests the memory to determine if these are hard or soft
errors and, if possible, to correct in place. Also, in background using introspective threads is a
set of test suites with test vectors through the ALU and ancillary logic to check for hard faults.
In spite of this aggressive mosaic of complementing mechanisms, 100% fault detection is not
achieved in MIND and critical sections of the computation for which errors are unacceptable

may resort to duplicate computing on separate nodes with comparison of critical results at the
end. While this is brute force, the loss of a factor of two in performance may be acceptable
when orders of magnitude performance scalability is achieved.

6.2. Active power management
Power consumption is emerging as a dominant constraint on the scale and density, as well

as performance and capacity, of high end computing platforms. It is additionally of
considerable concern for those environments for which power is a precious resource, such as
deep space missions (e.g., Mars rovers “Spirit” and “Opportunity”). For computing systems
planned for the end of this decade in the low Petaflops performance regime, power budgets in
excess of 10 Megawatts are anticipated, precluding their use to all but a few high-profile
national laboratories.

MIND benefits from intrinsic properties of PIM resulting from several effects that combine
to make the computation more power efficient. The most important factor is that operations
performed in memory by local logic do not involve the external interface pins or drivers
which consume much power. A second factor is that because the logic is so close to the sense
amps or row buffers on the memory chip that little data movement is required reducing the
on-chip data path power expended. When there is spatial locality, only one access request to a
given row is required as all the data of that row can be processed without subsequent accesses
to that row for the same data. Because the clock rate is approximately half that of
conventional processors of the same technology generation, the energy consumed per
operation is reduced as well. Generally, MIND processors are much simpler than
conventional processor architectures, with approximately one tenth the numbers of gates or
even less. Far fewer gates are involved in the computation thus reducing the average power
consumption further. PIMs usually do not support a traditional cache layer thus eliminating
that source of power demand also. Additional lesser properties of MIND also contribute to
additional energy savings.

The MIND strategy for active power management employs two mechanisms of hardware
control. The first provides for clock slowing. The logic of a given node has its own clocking
for distribution and skew control. (Each chip has a master clock but the individual nodes even
on the same semiconductor die operate asynchronously with respect to each other.) This node
clock can operate at a number of speeds of factors of 2. The memory access timing control
circuits can be separately adjusted as well. Only the parcel handler is maintained at full clock
rate for message assimilation. Slower clocking reduces power consumption and permits low
power idling when workload is low and requests are few. The second mechanism powers
down MIND nodes with the exception again of the parcel handler. A node can be temporarily
isolated from the rest of the MIND chip and the power cut off to stop essentially all power
consumption for that node while in this state. This can also enhance long term system
reliability as powered down subsystems are less likely to experience failures. While a fully
shut down node will consume less power than the slowed clock, it takes much longer to restart
and a local boot process must be engaged. Therefore, both mechanisms are incorporated in the
MIND architecture. A third software method can temporarily discontinue certain background
introspective thread processing and some redundant operations used for fault tolerance. This
exposes the tradeoff between power consumption and reliability.

6.3. Real time response
For embedded computing applications responsible for sensor data assimilation and real

time control of mechanical actuators, as well as some time-critical service functions in high

performance computers, bounded response time is essential. Most conventional mainstream
microprocessors do not support real-time computing. MIND does, to a limited degree. Each
memory/processor node can dedicate a single thread to a real time task. This thread, referred
to as a time-thread, can be assigned to a specific I/O signal (e.g., a signal pin on a MIND
chip). Except for actions triggered by catastrophic failure events, the time-thread has highest
priority and guarantees action completion in bounded and predictable time. While the
limitation of only a single time-thread to each node may seem over constraining, this is one of
the true features of the MIND architecture. Since each MIND chip can have a substantial
number of nodes and a system may comprise multiple MIND chips, each real time task can be
allocated its own execution unit, ensuring that no two (or more) real-time tasks demand the
same physical resources, thus avoiding any delays due to contention.

7. MIND MODULE AND MIND NODE ARCHITECTURE

In this section, we highlight the relevant features of the MIND architecture and of its
constituting components, while rationalizing our design choices. We first describe the
architecture of the MIND module, and then describe the architecture of the MIND nodes
within a module and of the components within a MIND node.

7.1. MIND module architecture
A MIND module consists of a set of MIND nodes with accompanying interfaces and

infrastructure. Such a module can be fabricated either as silicon chips or integrated further
into multi-chip modules (MCMs). The number of nodes per package depends on available
process technology rules and practical die sizes; the current estimates place it between 16 and
128, but we envision modules with hundreds or thousands of nodes before the middle of the
next decade. The internal structure of a MIND module is depicted in Figure 7.1.

Figure 7.1. Architecture of a MIND module.

In their raw format the nodes alone cannot handle all aspects of computational tasks and
communications expected. As seen in Figure 7.1, several additional subcomponents are
required to provide full functionality:

• Local Parcel Interconnect. This is a high-bandwidth, low latency network that connects
all components within a module. It is the only intra-module parcel transport medium in the
module and attaches directly to parcel handlers at the nodes. This interconnect must
achieve a very low latency (e.g., only a few clock cycles between issuing a request at the
local node and the initialization of, for instance, the corresponding memory operation at a
remote node). While low latency for accessing the functionality of a remote node is a clear
requirement for nodes in the same “neighborhood” (as defined by the interconnect
topology), the latency for interactions involving any two components within the module
should not be much higher either. Given these requirements, although a bus-oriented
topology may be sufficient for a nominal number of components, the need to alleviate
contention suggests a more hierarchical organization for the local parcel interconnect.

• Communication Ports. These ports provide an interface between the local interconnect
and the global interconnect, enabling parcel exchange between all modules. Parcels
traversing the global interconnect must be “wrapped” inside packets/frames of the
communication protocol proprietary to that interconnect. In contrast, the local parcel
interconnect network communicates parcel content as is. The role of the ports is to
facilitate parcel communication among these two networks by converting between the two
parcel representations. The number of ports is typically smaller than the number of
internal nodes, and is selected to satisfy the bandwidth requirements of the communication
traffic incident on the module. In addition, the ports also perform buffering of messages
and handle message fragmentation and reassembly in order.

• External DRAM Interface. This interface makes it possible to increase the available RAM
capacity in the system by attaching standard “dumb” memory modules to PIM devices,
thus allowing flexible platform configurations. Internally, the interface connects to the
local parcel interconnect and emulates responses to remote memory access requests of a
regular node. The external signaling interface conforms to industry standard protocols,
such as DDR and its variants. Since the PIM nodes are capable of processing atomic
memory requests locally, the interface incorporates a simplified ALU to enable this
feature without undue overhead.

• Data Streaming I/O. This is used to communicate with external high-bandwidth streaming
devices, such as mass storage (file I/O), video interfaces (cameras), or specialized
processors (e.g., DSP engines). To minimize the number of dedicated external pins, most
likely a form of serial, low-voltage swing differential signaling will be adopted. However,
other standardized interfaces (HDMI, SATA, IEEE 1394) may be considered as well.

• Common Functional Units. These units complement the processing capabilities of the
MIND nodes either by adding functions not directly supported by the nodes, or by
implementing dedicated units to increase the performance of specific tasks. For example,
if the cost of implementing a pipelined IEEE 754-compliant FPU in every node proves to
be prohibitive, a number of such FPUs may be combined in a separate subcomponent,
shared by all nodes.

• Module Control Unit. This entity monitors a number of external signal lines, processes
changes in their status and distributes this information to PIM nodes and other
components. The unit stores low level information describing the function and relation of
the MIND module relative to the rest of the system. Besides reacting to low-level control
inputs, such as global reset and interrupts, the control unit may also receive signals over a
dedicated set of configurable I/O lines as well as drive them to control simple external
devices (sensor arrays, mechanical actuators, etc.). Of course, different implementation

versions of MIND modules may vary the availability and the nature of configurable I/O
features.

7.2. MIND node architecture
The internal structure of a MIND node embeds all the functionality necessary to provide

efficient memory access, extra-node communications, and multithreaded processing. The
overriding design principles aim at maintaining a high degree of autonomy of individual
subcomponents as well as at maximizing local memory bandwidth, while attempting
contention avoidance in component interactions. As depicted in Figure 7.2, there are five
fundamental components in a MIND node:
• Frame Cache. This cache provides local low-latency frame storage for various key data,

including thread data (active register file/stack frame), instruction stream data, auxiliary
data registers (vectors and structs), runtime and system management data, and temporary
data. Since the chances of access contention from various components need to be
minimized, the frame cache operates with single-cycle access latency and features
multiple wide data I/O buses. Additionally, the frame cache controls the allocation and
deallocation of individual frames for use by other components.

• Wide ALU. This ALU performs permutations, arithmetic, and logical operations on data.
In addition to standard processing of scalar values, the ALU can also apply SIMD-style or
heterogeneous struct operations to 256-bit wide vectors of elements up to 64 bit in size
each. The ALU supports both coarse-grain (element boundary) and fine-grain (bit
boundary) vector element replication, permutations, and masking to take the most
advantage of processing capabilities during a single pass through the ALU pipeline. To
increase the effective floating-point throughput, the ALU may be augmented with a
standard double-precision FPU.

• Thread Manager. This manager is responsible for the local execution of multithreaded
code. The centerpiece of this component is a thread scheduler that maintains a table of
active threads and selects threads for execution on a cycle-by-cycle basis, subject to
resource availability, scheduling priorities, privilege level, and exception and instruction
caching status. The thread manager also includes instruction fetch engines for transferring
the currently executing code fragments to the frame cache, as well as execution pipelines
that interface directly with the resources visible from the node and exception handler.

• Memory Manager. This block combines a sophisticated request handler with a fairly
standard DRAM macro. Its role is fourfold: (i) handling of local memory accesses; (ii)
ensuring atomicity of read-modify-write requests; (iii) internal data and metadata buffer
management; (iv) application of optimization techniques, such as access combining; and
(v) data replication on register boundary to comply with the intra-node bus and destination
register organization.

• Parcel Handler. This component controls parcel traffic originating from and arriving at
the node. The handler maximizes both the incoming and outgoing stream bandwidths,
effectively processing a rudimentary parcel in a single cycle per stage. The receive
pipeline decodes the parcel contents, extracts the data or request operands and deposits
them in a pre-allocated frame registers. Conversely, the output stages can accept a proto-
parcel specification residing anywhere in the frame cache or directly from the memory
manager, and form and emit the outgoing parcel. Since some parcels may effect thread
creation, parcel handler interfaces directly with the thread manager.

The organization of datapaths within the MIND node provides the necessary interconnect
bandwidth and a high degree of independence in interfacing with internal components. At the
heart of the node’s floor plan resides the frame cache with multiple wide (256 bits), but
relatively short unidirectional buses attached to other major components. Such an
organization alleviates latencies typically associated with recharging parasitic capacitances
inherently associated with long buses and eliminates the need for costly (in terms of die area
and switching latency) multiplexer arrays. The access control is also vastly simplified
compared to bi-directional mode. Each of the data buses can operate independently and since
the requestors typically either access different frames in the cache, or the accesses to the same
registers are disjoint in time, the write contentions occur with very low probability and can
thus be handled by simple hardware. In this arrangement, the frame cache plays effectively
the role of a high-bandwidth switch with the added benefit of single-cycle accessible storage.

Figure 7.2. Architecture of a MIND node.

The control interfaces are routed point-to-point between the interacting entities. Any
required arbitration is performed by the resource owner when multiple conflicting requests are
received simultaneously. Since the amount of control information is miniscule compared to
the volume of data, the use of unidirectional control buses does not pose significant problems.

In the next four sections we provide a detailed description of the Frame Cache, the Wide
ALU, the Thread Manager, the Memory Manager, and the Parcel Handler.

8. FRAME CACHE

The Frame Cache is a central, register-level, instruction and data repository for the node.
The storage space is partitioned into frames (2048 bit wide registers), each of which can be
assigned to hold a single thread’s state, cache currently accessed fragments of instruction
stream, configured as temporary hardware buffer, or assigned as an auxiliary data register
visible to the active threads. The frames are further subdivided into eight 256-bit wide
registers, which naturally match the widths of I/O data paths and can be used to handle and
transfer non-scalar data efficiently. For the purpose of standard fine-grain register access, a
frame may also be viewed as a collection of 32 general purpose 64-bit registers addressable
from threads. The total frame count is expected to be no lower than 64.

To minimize contention, the frame cache is multi-ported for both read and write accesses,
using standard SRAM technology. The multiplexing is performed directly at bit-cell level by
activating one of multiple word lines to select which of the bit lines will drive the cell’s inputs
for writes, or conduct the bit values stored in the cell to the sense amplifiers during reads. The
only downside of this approach is the increased size of the memory cell because of additional
data and control lines with associated switching transistors.

Due to the organization of wide buses, reads and writes always operate on 256-bit data
chunks. However, the threads frequently require finer-grain access to registers. While the
necessary alignment hardware is present in every component block connected to the frame
cache outputs, the writes require only a simple replication of a scalar over 256-bit space; the
target 64-bit register is selected by write control logic activating only the required subset of
word lines. The frame cache also features an internal selection and replication logic attached
to a dedicated pair of input and output buses, which is used to perform efficient register to
register moves. This results in much improved latency of such operations compared to using
the ALU and it doesn’t consume any additional cycles or resources in components external to
the frame cache.

There are currently two competing solutions to incorporate the instruction caching
gracefully. The first assumes that each frame is equally available to be used as a data or
instruction store. Hence, the OS may dynamically partition the frame cache and adjust the size
of the portion allocated for instruction stream depending on the characteristics of the
executing code. This approach, while flexible, potentially wastes significant die area due to
multiporting. The second solution is based on the observation that since the instruction
caching hardly requires multiple access buses, the optimized implementation could fit more
bit cells per area unit if the code was actually stored in a dedicated, minimal I/O, structure.
This has also the added benefit of removing the instruction path as another port from the data
cache and offers an option of exact matching the widths of the instruction buses to the
interfacing units: higher level cache on the input (capable of handling bursty traffic involving
transfer of cache lines) and instruction decoder in thread manager on the output (requiring
reduced width, but contiguous stream every cycle). The viability of each solution will be
determined through simulation.

Besides providing physical storage, the frame cache also tracks the usage of individual
frames, providing allocate and deallocate functions to the neighboring components. Since
frame reservations are hardly ever performed en masse, the control automaton may be quite
simple and handle such requests within a cycle. The ownership and associated responsibility
to deallocate the frame when no longer in use is assigned to the original requestor, but with
the possibility of OS override if problems arise.

9. WIDE ALU

Analogously to traditional processors, the MIND ALU performs all non-trivial arithmetic
and logical processing on data passing through the node. Unlike many CPUs, however, it
features wide operand inputs and output, extensive range of data permutations, operand
masking, extended set of logical operations, unary vector, scalar-vector and vector-vector
operations on many vector element sizes, and struct processing. The ALU is fully pipelined
and accepts 256-bit arguments with transparent support for scalar (64-bit) operations. The
vectors may be composed of elements ranging from one to eight bytes in size, packed within
the 256-bit field, while scalars are right-adjusted in the rightmost 64-bit scalar field of wide
operand, which complies with the data alignment applied in thread registers.

The arguments originate either from the frame cache or internal memory manager
registers. The latter is necessary to implement atomic memory operations (AMOs), in which
the memory has a master control over processing applied to a chunk of memory data before
the result is committed back to the memory. In either case, the transfer of control is uniform
and represented as a specially formed request token, naming the operation(s), argument
number, types and location as well as the destination of the result. The ALU is capable of
accessing the data registers of both the memory manager and the frame cache using
standardized interfaces. Since control bits are decoupled from data, the tokens may be
decoded before fetching the operands, which enables a convenient setup of the processing
pipeline and minimizes the intermediate data buffer space. The result of processing is either a
vector or a 64-bit scalar, in which case a built-in alignment network is used to adjust its
location within the 256-bit output field. Besides the data outcome, the ALU generates the
condition codes, which are typically stored in the thread status register by the final stages of
the instruction execution pipeline, or examined directly by the requestor if the operation was
triggered by an external entity, e.g., through a parcel, to determine its validity and possibly
signal an exception. The condition codes are wrapped in a return token, whose additional
function is to provide notification for the completion of computations. Indeed, the result write
operation may be performed asynchronously without the knowledge of the requestor.

The ALU components include the coarse-grain permutation network, integer vector unit,
scalar multiply-divideunit, floating point unit, and the distribution and selection network.
Each of these is described in more detail below.

9.1. Coarse permutation network
The role of the coarse permutation network (CPN) includes preconditioning of the

operands for the operation to be performed in the subsequent stages, rearranging the byte
order in the 64-bit component subfields, and masking out the unnecessary portions of the
input. The processing is performed in two largely independent pipelines, one for each of the
input arguments. The operand preconditioning involves alignment of the scalar arguments,
which are right-adjusted in the 256-bit field (so that the 64-bit functional units can fetch them
from a predetermined subfield), and replication of scalars to form a vector of uniform
elements. The latter is required for scalar-vector operations, as they are executed as vector-
vector operations. The replication and alignment logic, which is organized as a set of 64-bit
wide 4-way demultiplexers can also be applied to realize the coarse part of high-count bit
shifts (i.e., by more than 64 positions).

The second level of permutation hardware consists of four independent modified Banyan
networks, each processing a 64-bit chunk of the input vector with the 8-bit granularity in three
stages. This allows an independent implementation of shifts and rotations on all four scalar
fields (the final high-resolution shifting takes place in another functional block). The Banyan
switch also performs arbitrary permutations and replications of vector components smaller
than 8 bytes, thus reusing the same hardware structure for another task.

Finally, the output of the Banyan network is passed through the masking logic, which
nullifies unwanted portions of arguments (again, on a byte boundary). Its second purpose is to
provide correct sign extensions of the shifted/rotated integer vector components.

9.2. Integer vector unit
The most complex functional block of the ALU is the integer vector unit, which in turn can

be subdivided into three major components: fine-grain permutation network (FPN), logical
unit and vector arithmetic unit. The fine-grain network essentially helps finalize shift and

masking operations initialized in the coarse permutation unit. It consists of two stacked stages,
each of which is a limited range (zero, one or two bits in either direction) shift-rotate unit
combined with a masking logic. Note that superposition of FPN operations together with
those of the coarse permutation network yields the full range of shift-rotate counts. The
masking logic has a bit resolution and may also accept bit patterns supplied by the
programmer.

The logical unit performs all typical unary (not) and binary bitwise (and, or, xor,
implication with complements) operations on vectors treated as contiguous groups of bits, as
well as population counts (both zeroes and ones), leading and trailing bit counts and parity in
each component of the vector. This functionality is distributed across both argument’s data
paths, as many of these operations are mutually exclusive and require quite different
processing logic. To reduce the number of logic stages, and thus the effective latency, a
crossover network is used to divert operands onto secondary path when necessary.

The final processing steps in the integer vector unit are performed by a three-stage vector
arithmetic unit. Besides integer adders and comparators handling argument widths of up to 64
bits, the arithmetic unit features a sophisticated reduction network, including both arithmetic
and logical operations. Thanks to distribution of computing logic over both operand flows, the
arithmetic unit is capable of delivering a result of bitwise logical reduction or a sum of all
elements in a full vector every cycle, even if their type size is as small as byte.

9.3. Integer multiply-divide unit
The multiply-divide unit was separate from the main vector pipeline for a couple of

reasons. Firstly, the latency of operations (especially division) is significantly higher than that
of any elementary calculations performed in the vector pipeline. Secondly, the amount of
logic implementing the desired functionality is substantial, which makes its replication to
support vector operations consume rather large portion of chip die area. With the progress of
process technology it is anticipated that moving at least a rudimentary multiplier to the vector
unit becomes possible, while significantly lesser used functions, such as division, would be
delegated to a standalone scalar unit.

The unit features two separate Wallace-tree multiply and carry-lookahead cellular array
divide pipelines. Each of these operations produces 128 bits of result from the input pair of
scalars, since the division yields both quotient and remainder.

9.4. Floating point unit
The FPU operates on double-precision IEEE 754 number representations. Its

implementation is pipelined and supports a standard set of floating-point calculations, such as
addition, subtraction, multiplication, comparison and operand conversion. More sophisticated
algorithms for division and square root approximation are also planned.

9.5. Selection and distribution logic
The purpose of this final ALU stage is to identify and choose fairly the ready results from

one of the parallel pipelines, and perform the data alignment before sending them to the
register file. The output selection algorithm, whose scaled-down version is also used in the
multiply-divide unit, provides nearly starvation-free operation with a vastly reduced level of
stall back-propagation from processing pipelines to the input stages.

Each of the computing blocks described above produces results of different sizes. While
the full 256-bit vectors are handled directly by the frame cache logic, scalars and 128-bit long
data are replicated to be correctly written to the intended target register or register set.

10. THREAD MANAGER

The multithreaded execution model, which provides the basis for MIND programming,
relies heavily on the efficient implementation and hardware support for threads. The threads
are named objects, which can reside anywhere in the virtual address space. For convenience, a
thread name is synonymous with the virtual address of memory holding its frame. Frames are
encapsulations of the local thread state; they include contents of the register window and
thread execution status with such details as current instruction pointer, condition codes,
priority and privilege levels, interrupt mask, synchronization information and environment
linkage. A frame occupies 2048 bits of storage (typical size of a memory row) and thus can be
efficiently transferred between node’s register space and memory. The frames of all threads
associated with a node, executing or not, are collected in internally linked pools of memory
that are pre-allocated and initialized by the operating system.

10.1. Thread management and execution
Every actively executing thread must be present in the node’s frame cache and is

supervised by the thread manager. By contrast, threads whose state has been removed from
the cache, and committed to memory, are suspended. The thread manager controls all aspects
of thread creation, suspension, termination, scheduling and execution, which demands a
number of auxiliary tasks, such as allocation of thread entries, storage and updates of the state
of active threads, instruction stream handling, monitoring resource availability, management
of execution pipelines, exception processing, inter-thread synchronization, and detection and
workarounds for stalls and faults. The active threads are selected for execution based on their
relative priority, immediate availability of the next decoded instruction and status of the
primary target resource indicated by the instruction. This eliminates priority inversion
problems, in which a high-priority thread may obtain a static execution slot, but is unable to
progress due to unavailability of the target resource, thus blocking an unprivileged thread. To
avoid stalls inherent to a single execution pipeline dispatching requests to multiple resources
with different response times, every major resource has a dedicated pipeline, which receives
predecoded requests when allowed to do so by the scheduler. The optimal-FIFO-depth issue
pertinent to this scenario when processing time at the resources can vary drastically is
resolved by a split-phase transaction strategy. In this strategy, buffering effectively occurs
directly at the resource site, or along the conduit leading to it, in a distributed fashion (e.g., in
the parcel handler and interconnect buffers). Split-phase transactions also shorten the
execution pipelines and their control. The pipelines dedicated to very short latency and high
availability services don’t need to rely on split transaction approach.

The thread manager contains a single instruction decoder for all threads; its role is to
determine quickly what class of operation is to be performed and identify the target resource.
Such predecoded information is stored in a relevant field of the thread table and retained there
until the thread is scheduled for further execution. This happens when the dynamic priority
value is higher than that of other active threads and the status line of the primary resource
specified in the instruction signals readiness to process requests. The relevant portions of the
instruction and its operand(s), including the not yet decoded fragments, are then passed to the
appropriate execution pipeline for the resource. When the decoding is complete, the pipeline
also generates a request token, which can be directly understood and consumed by the
resource. In split-transaction pipelines, the shipping off of the token to the target execution
site signifies the end of the first phase of the transaction. The second phase starts when the
return token is received from the site and thus the execution pipe can learn the status of the

operation with possible exceptions incurred during the execution. At this moment, the
dynamic priority of the thread is decreased (scheduling fairness policy) and the updated state
information, including the new IP value and condition codes, is written to the thread’s frame.
Note that the instructions causing non-maskable exceptions do not perform the state write-
back. Instead, their thread’s entry is flagged as blocked (to remove it from the scheduler’s
view), relevant information is passed to an exception handler and the corresponding stage of
the execution pipeline invalidated. The handler thread can analyze the information (the IP of
the offending instruction can still be found in the thread’s frame) and, depending on the
severity of the exception, terminate the thread, suspend it, or unblock it.

Since at any time each thread has only at most one instruction being processed, the
complex hazard detection and resolution circuitry known from superscalar CPUs is
unnecessary. This also guarantees that instructions executed by each thread are processed in
order. The threads in a group, however, may proceed at different relative speeds, affected by
the response rate of resources they access and individual scheduling parameters. To allow the
operating system to monitor the progress of program execution and detect potentially
hazardous situations and faults, several counters capable of triggering timeout exception have
been integrated with every thread’s entry. Hence, if a remote processing site becomes
unresponsive, this fact will eventually become known to the local runtime system. Similarly,
some counters are linked to the scheduling priority computation, thus enabling reasonably
efficient emulation of custom scheduling policies, or identification of cases when
underprivileged threads cannot make progress.

10.2. Components of the thread manager
The functionality of the thread manager is distributed over several internal blocks:

• The Thread Scheduler, which maintains an internal thread table. The thread table contains
information about active threads that is volatile and mostly invisible to the programmer. The
table contains one entry per active thread, with the estimated total number of entries not
exceeding 16. The thread data include, among other, the updated value of instruction pointer,
indices to thread register and instruction frames, status flags (active, running, blocked, waiting
for instruction, etc.), scheduling attributes (static and dynamic priorities, privilege level,
timeout value, execution counter and scheduler control flags), predecoded instruction field
and exception attributes. The scheduler determines which thread to run based on parallel
lookup of all entries in the table. The lookup, as well as updates of the fields in thread entries
take one cycle.
• The Thread Control Unit, which provides an external interface to the thread manager,
accommodating high-level thread oriented requests such as thread creation, suspension and
termination, which are produced by or relayed from other components of the MIND node. It
also generates control signals to other subcomponents (particularly the thread scheduler) and
coordinates them. Finally, it allocates and frees the individual frames from thread pools in
memory via a dedicated free-list manager, thus mapping and unmapping thread objects in
virtual namespace.
• The Execution Engine, which is an aggregation of all pipelines conditioning requests
associated with supported resources. The engine directs output from the thread scheduler
containing the next predecoded instruction to run and injects it into the relevant pipeline. The
final stages of all pipelines share the bus delivering the state update data to the thread table.
Currently, the supported resources include frame cache, memory manager, parcel handler,
wide ALU, common functional unit, external I/O queue and external DRAM.

• The Instruction Cache Frame Prefetch, which initializes cache line transfers from the
shared instruction repository and stores them in the frame cache. This operation is triggered as
soon as the computation of the next IP during the instruction execution refers to the address
outside the span of text cached in the instruction frame(s) for the thread. Since the prefetch is
activated ahead of time, there exists a good chance that the new line will arrive before the
next instruction is needed. Note that since cache lines and frames do not have to be of the
same size, the prefetch sequence may require multiple lines to be streamed per fetch.
• The Instruction Fetch and Predecode, which performs two functions: it extracts individual
instructions from the local instruction frame and passes them to the decoder. Compared to the
frame prefetch machine, the fetch operation is much simpler (it requires one access to the
frame cache, followed by an alignment step). The decoder is fairly primitive as well, since it
has to determine only basic parameters of instruction execution. Both fetch automata have the
authority to unblock a thread as soon as the operation completes.
• The Exception Handler, which has a threefold purpose: it provides an entry point for the
external exceptions routed from the module control unit, it arbitrates the invocation order of
the exception handlers based on predefined priorities, and it buffers parameters of
simultaneously occurring exceptions. The exception handler interfaces to the final stages of
the execution pipes, where the exception description returned by the executing resources may
be decoded and used.
• The Frame Cache Arbiter, which is a minor supporting block whose function is to admit
access to the frame cache to selected competing components of the thread manager. While the
arbitration only minimally increases the average request turnaround time, it drastically
reduces the number of supporting data buses while increasing their utilization. The arbiter
caches the most recent access history internally to increase the fairness of its decisions.

11. MEMORY MANAGER

The memory manager provides the means of accessing the dynamic memory embedded in
a PIM node. It services memory read and write primitives with data sizes ranging from 64-bit
scalars and 256-bit vectors to 2048-bit wide memory rows/frames. To aid the PIM integration
in systems employing traditional CPUs, some provisions for adjustable size cache line
transfers has been made as well. Both physical and virtual addressing modes are supported.
The memory manager also supervises atomic memory operations, in which a memory datum
is offloaded to the wide ALU to be processed in an uninterruptible sequence. The conflicting
accesses to the same memory location are guaranteed to be delayed until the result is
computed and stored back. This direct support of AMOs is one of the architectural elements
enabling an efficient implementation of distributed synchronization algorithms.

The design of the memory manager was driven by the need to both extract the maximum
of the available memory bandwidth and provide efficient mechanisms to deal with the
inherently high latency of memory accesses. The first requirement assures that the DRAM
macros are utilized to their potential; the latter promotes pre-staging and early initialization of
memory request processing, memory access combining (reducing the raw number of memory
accesses), and efficient arbitration for multiple access channels. While the dynamic memory
blocks are typically well optimized for use in standalone modules, there are possibilities of
improving their efficiency in some situations based on the spatial relationship of addresses
accessed in sequence. This is possible due to unhindered access to the decoder circuits in
PIM. The bandwidth may also be increased by using multiple memory macros per node or

changing their internal organization; however, routing an excessive number of bit line sets
and multiplexing the wide outputs of memories may prove to be too expensive in terms of
space required. The variation of the last approach is to decompose a single memory block into
banks that can handle the scalar data independently of each other. If scalar accesses
temporarily dominate the request stream, this modification could help reclaim at least some
part of the wasted bandwidth. During vector access, all address decoders and data lines
remain tightly coupled.

The second set of optimizations deals with issues related to the interfacing with the
requesting entities (arbitration), buffering (the internal register space has to accommodate all
data supplied by the pending writes, as well as the data read from memory using dynamic
allocation of buffers), request combining (where the issue is the optimal size of the working
set), request processing (decoding and setup of incoming requests should overlap the memory
array access as much as possible), and memory operation retirement (streaming out the
results, with possible post-conditioning). While most of these are fairly straightforward, if not
mundane, a clever integration of these tasks is expected to lower further the effective average
memory access latency.

12. PARCEL HANDLER

The parcel handler is a communication center of the MIND node; it shapes all aspects of
inbound and outbound parcel traffic. Its main functions include:
• Assimilation of parcels from the local interconnect, with the emphasis on maintaining the
incoming parcel bandwidth and thus preventing the stalls of the input link. It also implies
reconstruction of large parcels from elementary transfer units (flits) used directly by the
communication medium.
• Parcel decoding and conversion to data aggregations understood by other node
components. This involves identification of the parcel type, extraction of the local destination
of the embedded request, extraction of the request itself with its arguments and repackaging of
the reply address if a response to the request is expected.
• Function dispatch based on request type, which may range from a simple physical register
access, through memory operations (including AMOs and page transfers) to thread
instantiation. While the operations in physical space are trivial enough to be performed by the
handler directly and instantly, memory and thread manager requests additionally involve
register allocation and deposition of their arguments in the frame cache.
• Outgoing parcel assembly and its emission onto the interconnect. The output parcel may
be generated as a result of inbound parcel processing (e.g., memory read request), or
explicitly assembled by a local thread. The proto-parcel arguments supplied in each of these
scenarios are different enough to require customized approaches.
• Invocation of exception handlers in case of faults or errors.
• Buffering of unprocessed parcels in the available space of the local node. While the parcel
handler has only a minimal buffer space to support the request flow, it can act as a conduit
and allocator to store the parcel data in the frame cache or, in the worst case, in memory. In
theory, this mechanism could also be used to offload the parcel traffic to an underutilized
node, should the original destination node become a communication hotspot.

The design of the parcel handler was dictated primarily by the parcel throughput
requirements on both I/O links. Both input and output flows have their dedicated pipelines
with a crossover bus connecting the end stage of the receive logic with the input of the

transmit pipe. The purpose of the crossover is to enable a quick route for the parcels which
require minimal processing with reply, such as a physical register read, thus minimizing their
turn-around time. In general, the incoming parcel traffic has a higher processing priority over
the requests generated within the node. This is reasonable given that parcels are received in
fragments and cannot continuously block the access to the resources from internal
components. Some of the arbitration logic may therefore be simplified by not having to
implement the fully qualified fairness algorithms. Analogously, the quick turn-around path is
allowed to block the parcels originating from anywhere in the node when competing for the
output pipeline, since otherwise the stall could back-propagate and back up the input link.

The secondary processing priority is associated with extracting the maximal memory
bandwidth, and thus additional provisions have been made in the input stages to assure a
quick dispatch of memory requests, such as a dedicated channel to memory manager and an
auxiliary request buffer to independently retain the parcel information when arbitrating the
memory access. This also alleviates the contention with other parcel-initiated actions, such as
thread spawn requests, for which waiting for the preceding memory request to come through
may significantly increase the latency if the memory manager is busy. Such requests rely on
access to the register file only and then relinquish the control to the thread manager in a
minimal number of cycles.

Figure 12.1. Basic parcel format.

The fundamental structure of a parcel is shown in Figure 12.1. Even parcels of this basic
format can already perform a variety of actions: physical register accesses, simple thread
creations, operations on scalars in memory. Frequently, all elements required to build a simple
parcel can be stored within a single 256-bit datum, taking advantage of very fast transfers
from the frame cache. More complex and larger parcels are formed by reusing the basic
parcel’s header and extending the sizes of other fields.

ACKNOWLEDGMENTS

The authors would like to express their deep gratitude to William D. Whittaker of
NASA/JPL for lending his unparalleled expertise in the field of logic and VLSI design, and
countless hours spent in discussions leading to the refinement of the architectural components
of the MIND system. Our thanks also extend to Susan Powell, who assisted and significantly
helped to shape this document into its final form. We also thank Prof. Henri Cassanova of
UCSD for his substantial contributions in editing this document.

REFERENCES

1. K. Batcher, STARAN Parallel Processor System Hardware. Proc. AFIPS Conference 43 (1974)
405-410.

2. K. Batcher, Design of a Massively Parallel Processor. IEEE Trans. on Computers 29:9 (1980) 836-
840.
3. T. Blank, The MasPar MP-1 Architecture. IEEE Compcon (1990) 20-24.
4. MasPar Corporation, Sunnyvale, California, MasPar System Overview. Doc. 9300-0100, Rev. A3,
March 1991.
5. W. Hillis, The Connection Machine. MIT Press, Cambridge, Mass., 1985.
6. M. Gokhale, B. Holmes and K. Iobst, Processing In Memory: the Terasys Massively Parallel PIM
Array. IEEE Computer (1995) 23-31.
7. P. Kogge, The EXECUBE Approach to Massively Parallel Processing. Proc. Int. Conference on
Parallel Processing 1 (1994) 77-84.
8. D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas and K.
Yelick, A Case for Intelligent RAM: IRAM. IEEE Micro (1997) 34-44.
9. J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C. Chen, C. Woo
Kang, I. Kim and G. Daglikoca, The Architecture of the DIVA Processing-In-Memory Chip. Proc.
ICS '02 (2002).
10. C. Hewitt and H.G. Baker, Actors and Continuous Functionals. Proc. IFIP Working Conference on
Formal Description of Programming Concepts (1977) 367-390.
11. M. Noakes, D. Wallach and W. Dally, The J-Machine Multicomputer: An Architectural
Evaluation. Proc. 20th Int. Symp. on Computer Architecture, 1993.
12. T. von Eicken, D. Culler, S. Goldstein and K. Schauser, Active Messages: A Mechanism for
Integrated Communication and Computation. Proc. 19th Int. Symp. on Computer Architecture (1992)
256-266.
13. D. Culler, A. Dusseau, S. Goldstein, A. Krishnamurthy, S. Lumetta, T. von Eicken and K. Yelick,
Parallel Programming in Split-C. Proc. SC99 (1999).
14. G. Gao, K. Likharev, P. Messina and T. Sterling, Hybrid Technology Multithreaded Architecture.
Proc. 6th Symp. on the Frontiers of Massively Parallel Computation (1996) 98-105.
15. T. Sterling and H. Zima, Gilgamesh: A Multithreaded Processor-In-Memory Architecture for
Petaflops Computing. Proc. SC02 (2002).
16. R. Halstead, Jr., Multilisp: A Language for Concurrent Symbolic Computation. ACM Trans.
Programming Languages and Systems 7:4 (1985) 501-538.
17. R. Nikhil, S. Pingali and Arvind, Id Nouveau. Tech. Rep. Memo 265, Computational Structures
Group, Laboratory for Computer Science, MIT, July 1986.
18. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield and B. Smith, The Tera
Computer System. Proc. ICS ’90 (1990) 1-6.
19. B. Smith, Architecture and Applications of the HEP Multiprocessor Computer System. Proc. SPIE
- Real Time Signal Processing IV 298 (1981) 241-248.
20. H. Hum, O. Maquelin, K. Theobald, X. Tian, G. Gao and L. Hendren, A Study of the EARTH-
MANNA Multithreaded System. J. Int. Parallel Programming 24 (1996) 319-347.
21. D. Culler, S. Goldstein, K. Schauser and T. von Eicken, TAM - A Compiler Controlled Threaded
Abstract Machine. J. Parallel and Distributed Computing 18:3 (1993) 347-370.
22. T. Sterling, J. Brockman and E. Upchurch, Analysis and Modeling of Advanced PIM Architecture
Design Tradeoffs. Proc. SC04 (2004).

	INTRODUCTION
	AN OVERVIEW OF THE MIND SYSTEM ARCHITECTURE
	RELATED RESEARCH IN THE FIELD
	PARALLEX EXECUTION MODEL
	Shared memory
	Continuations
	Split-transaction processing

	INSTRUCTION SET ARCHITECTURE
	Intra-thread functional scalar instructions
	Struct processing
	Parallel flow control

	ARCHITECTURAL DESIGN FOR POWER, RELIABILITY, AND RESPONSE
	Graceful degradation
	Active power management
	Real time response

	MIND MODULE AND MIND NODE ARCHITECTURE
	MIND module architecture
	MIND node architecture

	FRAME CACHE
	WIDE ALU
	Coarse permutation network
	Integer vector unit
	Integer multiply-divide unit
	Floating point unit
	Selection and distribution logic

	THREAD MANAGER
	Thread management and execution
	Components of the thread manager

	MEMORY MANAGER
	PARCEL HANDLER
	ACKNOWLEDGMENTS
	REFERENCES

