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Abstract

X-ray computed tomography is a well established volume imaging tech-

nique used routinely in medical diagnosis, industrial non-destructive test-

ing, and a wide range of scientific fields. Traditionally, computed tomogra-

phy uses scanning geometries with a single axis of rotation together with

reconstruction algorithms specifically designed for this setup. Recently
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there has however been increasing interest in more complex scanning ge-

ometries. These include so called X-ray computed laminography systems

capable of imaging specimens with large lateral dimensions, or large as-

pect ratios, neither of which are well suited to conventional CT scanning

procedures. Developments throughout this field have thus been rapid, in-

cluding the introduction of novel system trajectories, the application and

refinement of various reconstruction methods, and the use of recently de-

veloped computational hardware and software techniques to accelerate re-

construction times. Here we examine the advances made in the last several

years and consider their impact on the state of the art.

Keywords: Cone-beam, computed laminography, reconstruction algorithms,

X-ray tomography, X-ray laminography, tomosynthesis.
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1 Introduction

Since the early days of computed tomography (CT), there have been advances

across all aspects of the technique, both in image acquisition and reconstruc-

tion. Early CT scanners made use of a single-crystal NaI detector coupled

with a photomultiplier. Scanning a single plane in a three dimensional volume

would take several minutes. A typical sample volume of 3 mm2 × 13 mm could

be reconstructed using an algebraic reconstruction technique (ART) into slices,

each of 80× 80 pixels and taking around 7 minutes [10]. The advent of the fil-

tered backprojection (FBP) reconstruction method reduced the time per slice to

30 seconds and increased the slice resolution to 160× 160 pixels. Today’s CT

scanning systems can yield scans consisting of tens of gigabytes of image data

in the form of several thousand projections, each up to 4096× 4096 (using e.g.

the PerkinElmer XRD 1611 xP detector [65]) or more pixels. Cone beam projec-

tion data can be reconstructed using the Feldkamp-Davis-Kress (FDK) filtered

backprojection algorithm, implemented in commercially available software on

mass-produced graphics processing units (GPUs), taking just several minutes

to reconstruct the entire volume.

The CT scanning and reconstruction process, however, remains best suited

to approximately cylindrical objects, i.e. those with an aspect ratio of approxi-

mately unity in the plane normal to the axis of rotation. When the path lengths

through the scanned object vary dramatically at different angles, or where the

physical extents of the sample being scanned preclude a full rotation within

the scanner, then conventional CT scanning techniques may only produce in-

complete data as, for example, X-rays may be absorbed completely along the

longest path. These conditions produce increasingly poor reconstruction re-
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sults as the aspect ratio of the sample increases. Several techniques may yield

improved imaging quality in such cases, and the choice of technique will be

dependent upon many factors. It is sometimes possible to improve the as-

pect ratio of the samples, either by stacking multiple samples together or by

physically cutting tokens from the sample, if destructive testing is permissible.

Alternatively, dual-energy CT scanning has been developed and applied to the

imaging of CFRP panels [68]: radiographs are acquired using two accelerating

voltages, the higher being optimised for the long path-lengths in the sample

and the lower being optimised for the shorter path lengths. The two sets of

radiographs are combined prior to reconstruction; the dual-energy technique

was found to improve both the contrast-to-noise and signal-to-noise ratios of

the reconstructed images.

Another approach, that which we focus on in the present paper, is lamino-

graphic scanning and reconstruction. In laminographic scanning, it is advanta-

geous to vary the motion of the sample as well as the method of reconstructing

the scanned data from conventional CT. Classical laminography was perhaps

first proposed by the dermatologist André Bocage in 1916, using an X-ray film

and tube moving linearly in opposite directions, to record a crisp image of a

single fixed plane in the sample, since each point in the chosen plane would

cast its image in the same place on the film [45]. More recent work has demon-

strated that computed laminography (CL), where a high resolution flat panel

detector is moved along a suitable trajectory, and a reconstruction technique

modified from CT is used to resolve many layers of the sample in detail, can

produce better-quality images than a limited-angle CT scan, especially where

the limitation on angular range is severe [82]. The effectiveness of CL has
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been demonstrated recently in the assessment of impact damage to carbon-

fibre composites, where synchrotron-radiation CL was used to deliver a short

scan time and high image quality [13].

In this article, we will review existing methods for computed laminography,

specifically detailing the trajectories and reconstruction methods involved. CL

has been used at synchrotron beamlines where a parallel beam is available,

allowing objects sized up to several dm across to be scanned with considerably

better resolution of fine details than limited-angle CT [40]. We shall however

largely restrict ourselves in this article to the cone-beam case, as produced by

many compact laboratory sources. A review of synchrotron-radiation CL was

recently produced by other researchers [41].

We will adopt a working definition of laminography as a 3-D imaging pro-

cess of acquiring X-ray projections and performing a reconstruction, where the

amount of data collected is less than that required for a full CT scan, due –

for example – to access constraints imposed by the geometries of the sample

and the imaging system. The current article is structured as follows: we firstly

explore the trajectories and geometries that have been applied in CL systems

in § 2. We then detail the various reconstruction methods that have been used

in laminography in § 3; because most advanced laminographic reconstruction

methods have their roots in CT, we include significant literature on the various

methods as applied to CT as well as to laminographic reconstructions. In § 3.5

we consider recent developments in computational technologies that facilitate

accelerated implementations of these reconstruction methods. Finally we give

a summary and outlook in § 4.
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2 Trajectories and geometries for cone-beam laminog-

raphy

Various system motions have been discussed in the literature, each having their

advantages and disadvantages. The following subsections offer more detail on

some of the possible system motions that have been used in laminography

systems.

The system geometry and trajectory which define the relative motions be-

tween X-ray source, detector and object are crucial aspect of the design of a

CL system, as they can place a limit on the total amount of information that

may be recorded and therefore used in any reconstruction. To ensure that all

volumetric information is captured by a cone-beam CT system, a set of suf-

ficiency criteria has been derived [79]. These require that the curve followed

by the source (which sits at the vertex of the cone-beam) remains outside the

region of the object, is bounded, continuous and differentiable almost every-

where and that every plane passing through the region of interest must cut

the trajectory at least once. This means that many systems can only produce

approximate reconstructions. Laminographic trajectories preclude capturing

data from a range of angles which would be captured during full CT, so that

laminographic scans contain less information than CT scans. In practice, it is

thus important to tune the trajectory geometry of a laminographic system to

balance the trade-off between the amount of data captured against other pa-

rameters such as the dimensions of specimens that may be imaged and the rel-

ative angles of components. An example of such an optimisation for a circular

laminographic trajectory is given by [66].
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Other physical considerations influence the choice of a scan trajectory in

practice. It is conceptually of little importance if we move the object or the

source and detector. For example, in traditional X-ray CT, the data collected if

we fix the object and rotate source and detector is equivalent to the data gen-

erated with a fixed source and detector whilst rotating the object. However,

there are obvious practical differences between the two approaches. The same

is true in laminography. It is the relative motion between source, object and de-

tector that provides the diversity in information required for three dimensional

image reconstruction. Yet practical constraints limit potential movement trajec-

tories, and accuracy requirements might make it more sensible to use a specific

physical realisation of a relative movement trajectory. For example, translating

the sample works well for small and lightweight objects, such as circuit boards,

but may become problematic if larger, bulkier samples have to be moved ac-

curately over larger distances [46, 57]. Other constraints related to the sample

may dictate that the relative motion should arise from the motion of the sample

or the X-ray source and detector. One example is that for in vivo measurement

such as e.g. in medical scanning of human patients, or in imaging of a mouse’s

physiological functions, it is preferable to position the animal horizontally and

rotate the imaging system around it [16,19]. On the other hand, in nondestruc-

tive testing CT applications, it is more typical to place the object on a rotation

stage and keep the imaging system still [19]. Yet more complex trajectories

are also possible. Extreme examples would be the computed laminography

machine reported in [53], where source, detector and object are all moved, or

the option put forward in [12] where multiple detectors and a multiple-anode

scanning electron beam X-ray source is used to record projections from many
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angles in a short time frame. Whilst the latter approach avoids system motions

completely, the former allows objects larger than the scanner’s usual maximum

dimensions to be accommodated.

We classify typical scan geometries into the following four categories: pla-

nar, swing, rotary, and more complex geometries that do not neatly fall into the

three other categories. Schematic diagrams that exemplify motions belonging

to each of the categories are given in Figures 4, 4, 4, and 4 respectively.

2.1 Planar

In a planar system, the source, detector and object to be scanned each remain

in their own plane and a relative motion is set up between them. An X-ray

source with a suitably wide cone-beam angle is usually required to illuminate

the detector in all its positions during the translation. Two common planar

motions are those using linear and circular paths.

Probably the simplest planar motion is as illustrated schematically in Fig. 4,

in which the source and detector are translated along straight lines parallel

to the plane of the sample. This is detailed in the ‘Linear’ subsection, below.

A similar movement pattern, in which source and detector move in circular

paths, is shown in figure 4. Again, this motion can be designed so that points

on one focal plane are mapped to the same points on the detector. This will

lead to a simplified tomosynthesis reconstruction as discussed below, but more

general planar motions are also possible in conjunction with somewhat more

involved reconstruction techniques.
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2.1.1 Linear

If the object remains stationary, the source and detector may be translated lin-

early through space. Such a linear path is shown schematically in Fig. 4, where

the source and detector move in opposite directions in such a manner that each

point in a focal plain in the object is mapped to the same detector location.

Knowing the relative positions of each component (source, detector, sample)

for each frame, the resulting image may be reconstructed to a volume. Alterna-

tively, keeping both the source and detector stationary, good results have been

achieved by translating just the object along a linear path within the cone-beam

of the source [85].

This cone-beam CL approach is equivalent to the CT approach with a lim-

ited aperture [31, 85], so that slightly-modified CT reconstruction algorithms

may be taken advantage of to reconstruct the data. A similar setup was pro-

posed in 2007 by Gao et al. who described a “linear CT” (LCT) system for

security and industrial applications with fixed source and detector, where the

sample is translated along a line, equivalent to keeping the sample still and

translating the source and detector [28].

Linear motion may lead to different resolutions in the x and y axes of the

sample, which is not always desirable [53]. The linear motion gives short ac-

quisition times [27], but acquires relatively little information, making clear re-

constructions challenging.

2.1.2 Circular

The object and detector may be translated in circles within their planes. This is

a more complicated motion but gives the advantage of equality of the resolu-
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tions in the x and y directions in the sample [53]. In this setup, the detector and

source are moved around a common centre, remaining in their parallel planes,

with a phase difference of π, as illustrated in Fig. 4. The line from the centre

of the source aperture to the centre of the detector at any time during the scan

should pass through the same point in the middle layer of the sample plane

during the entire rotation.

The design parameters of circular trajectories are addressed specifically by [66]

for the case of laminography for planar samples using tomosynthesis recon-

struction as discussed below, with some brief additional consideration of other

reconstruction techniques. The authors recommend using a configuration where

there are many different tilt angles, to reduce the occurrence of hat-shaped arte-

facts and maintain good contrast and sharpness.

2.2 Swing or limited-angle tomography

Also known as limited angle tomography, a swing laminographic scan [57,

§4.2] may be completed in a standard CT scanner using a limited angular range

of e.g. ±30◦ rather than the full±180◦ required for cone-beam CT, as illustrated

in Fig. 4. This scanning geometry can be used in combination with different re-

construction techniques. Its relationship to standard tomography means that

many standard CT algorithms can be adapted; it is also a ubiquitous technique

in electron tomography, discussed in, for example [20, 22].

2.3 Rotary

In this technique, the planar object is rotated along an axis normal to its surface,

which is inclined with respect to the principal ray of the X-ray beam [57, §4.3],
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as illustrated in Fig. 4. The motion is equivalent to cone-beam CT where the

specimen is mounted some distance above (or below) the principal axis. Both

the source and detector are kept in fixed positions, the beam passing through

the specimen at an angle to the axis of rotation. The motion is simplified as

there is only one moving part, which simply rotates; the source-detector posi-

tion remaining constant means that the geometry should not introduce any

variations in detected intensity throughout the trajectory, so fewer detector

calibrations are necessary. In one scheme, the detector is mounted on an arc-

shaped guide rail, and the specimen is rotated on a stage in the illumination of

the cone-beam [84]. The motion of the detector along its arc allows for chang-

ing the laminographic angle (i.e., the angle between the axis of rotation and the

normal to the principal ray).

For the rotary trajectory, in the parallel beam case it is possible to map

individual sampling planes into Fourier space straightforwardly, yielding a

representation of the sampled regions and those in which no information is

available. This is illustrated by e.g. Helfen et al in [39, Figure 2], and Xu et

al in [82, Figure 1]. In the cone-beam case, the correspondence between the

real-space and Fourier domains is considerably more complicated, but where

cone-beam projections may be re-binned to equivalent parallel-beam projec-

tions, these mappings may apply approximately, and provide additional in-

sight into the information available from a given scan.

The rotary geometry has also been successfully applied in phase-contrast

computed laminography (PC-CL), which is ideal for imaging specimens of

weak absorption contrast. In PC-CL, conventional CL is expanded upon to

extract phase information, and this has been reported on for both the cone-
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beam and parallel-beam cases [2, 26]. The method introduced by Fu et al. [26]

is designed to be used with cone-beam laboratory sources, and uses a modified

backprojection algorithm (see below) for its reconstruction.

One recent variation of the rotary CL geometry uses a detector that is offset

from the conventional central position [27]. The potential advantage of this is

that the spatial resolution of conventional CL is maintained whilst an extended

spatial region can be imaged for a given detector size. Numerical studies and

real-world experiments yielded promising results, showing an enlarged imag-

ing region with an improved spatial resolution.

2.4 More complex geometries and trajectories

More complex scanning geometries are also possible, especially when used

with the iterative reconstruction methods discussed below. A recent example is

the spherical sinusoidal scan, a scanning motion as illustrated in Fig. 4, which,

used as a sparse scanning scheme, in combination with a compressed sensing-

based total-variation regularised reconstruction algorithm, requires low num-

bers of projections to achieve good reconstructions using a numerical test phan-

tom [1]. The new scheme is found to outperform the others in terms of resolu-

tion and contrast. The authors apply the same reconstruction methods to sim-

ulations of the other, more conventional, scanning trajectories whilst keeping

the numbers of projections and detector pixels, as well as the source-to-object

and source-to-detector distances, constant to show that the trajectory (and not

just the reconstruction method) contributes to the enhanced quality of the re-

sults. However, to realise this sort of geometry in a real system would require

complicated motion control and might only justify its use in specialist applica-
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tions.

3 Reconstruction Methods

There is a close link between the scanning trajectory employed and the suitabil-

ity of specific reconstruction algorithms. Whilst the simplest reconstructions

simply copy analogue film based systems and thus require quite specific ge-

ometries, more advanced methods can be applied in principle to arbitrary ge-

ometries and here reconstruction performance is then often dominated by the

amount of information captured in a scan. In many cases, reconstruction meth-

ods for computed laminography have been based on established techniques

from the more mature field of CT, and recent advances in CT reconstruction

were reviewed by Hsieh et. al. [43].

3.1 Tomosynthesis

Digital tomosynthesis (also known as focal plane tomography) mimics clas-

sical (analogue) laminography by superimposing the relevant projections. In

a nutshell, digital tomosynthesis adds up all the projected images, such that

all X-ray measurements that are collected along X-ray paths that pass through

one point within a focal plane are mapped back to this point. This ensures

that everything within the plane remains in focus in the reconstruction. Each

plane parallel to the focal plane is also mapped back into the reconstructed fo-

cal plane, though it appears blurred, with the amount of blur increasing the

farther away from the focal plane the parallel plane is. It therefore suffers con-

siderable blurring, compared to contemporary CT methods, although at the
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time of its introduction it produced images with a good diagnostic quality for

medical purposes, using a lower dose than CT [59]. When using simple super-

positions of X-ray projections to compute a digital tomosynthesis reconstruc-

tion, then the magnification must not change during the scan, which restricts

geometrical configurations that may be used. The method is simple and fast

but due to the relatively poor quality of the reconstruction, it is perhaps best

used for simple objects which have good contrast. In digital tomosynthesis,

various preprocessing steps have been suggested including methods such as

taking a root to the Nth power, taking the mean, or applying a minimum oper-

ator iteratively to reduce the appearance of artefacts [67].

Digital Tomosynthesis can be understood as a special case of backprojec-

tion, where images are backprojected into a single focal plane. This can be done

very easily for certain imaging geometries, where this backprojection leads to

a simple summation of appropriately shifted projection images. More gener-

ally, when using more complex scanning geometries, then similar results can

be obtained, however, individual X-ray projections might have to be prepro-

cessed before they are combined. For example, preprocessing can correct for

differences in magnification and orientation. In its most general form, this is

basically a backprojection operation. In fact, if we were to sum all the back-

projections of each X-ray projection throughout the volume, this would create

a digital tomosynthesis type reconstruction for all potential focal planes.

3.2 Filtered Backprojection

In addition to backprojection operations, traditional CT reconstruction also

routinely employs additional filtering steps within volume reconstruction, and
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filtered backprojection (FBP) algorithms have long been the most popular choice

among CT reconstruction methods (see, e.g. [5, 61]). These methods have a

lower computational complexity than algebraic techniques whilst often recon-

structing images to an acceptable quality. These algorithms were developed

initially for CT reconstruction, and have more recently been adapted by vari-

ous means to improve their suitability to CL reconstruction. Therefore, we will

examine both the history of these methods and their recent adaptations in the

following subsections.

Conventional algorithms For a parallel beam geometry, reconstruction meth-

ods begin by forming sinograms – stacks of 1D projections taken from different

angles at the same sample height, arranged as a 2D image – by the Fourier slice

theorem, each sinogram contains the required information to reconstruct one

sample slice. The 3D reconstruction is thus turned into a series of 2D recon-

structions whose results are recombined into a single volume. The standard

filtered backprojection algorithm in CT reconstructs an N3 volume from N3

samples, having an overall algorithmic complexity ofO(N5). In many lamino-

graphic setups (with the exception of swing laminography with the rotation

axis at 90◦ to the principal ray, or equivalent linear geometries), slices perpen-

dicular to the rotation axis do not coincide with single rows of pixels on the

radiographs, so the sinogram-based approach is not applicable.

Feldkamp-Davis-Kress (FDK) methods For cone-beam CT, exact FBP meth-

ods exist for certain scan geometries, though the Feldkamp-Davis-Kress (FDK)

methods is the most commonly used approximation to exact reconstruction.

In FDK algorithms, the recorded data are pre-weighted, compensating for the
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divergent beam, then they are ramp-filtered and backprojected. The formulæ

introduced by Feldkamp [25] are approximate, but their formulation is conve-

nient for computational evaluation, gives rise to small errors in many practical

situations, and is considerably faster than iterative methods such as the alge-

braic reconstruction techniques. Development of the FDK class of methods

was motivated from considering the fan-beam reconstruction formula where

the Radon transform was written as a convolution and a backprojection. The

FDK method has a computational complexity of O(N4). The FDK method for

CT has been enhanced through the introduction of a rotation-angle-dependent

weighting scheme [80] to compensate for the density drop that FDK suffers for

larger cone angles. Another recent development is a further modification, to

define the reconstruction slices along the exact orientation of the planar object

that has been scanned [55]. This technique reduces the required reconstruction

volume, and by avoiding the rotation of reconstructed images, avoids intro-

ducing additional interpolation errors into the reconstructions whilst poten-

tially reducing the required computational time.

FBP in laminography There has been interest in adapting FBP methods for

tomosynthesis for at least 15 years [54], and in that early work a general con-

cept of filter design for laminographic reconstruction is established, and ap-

plied to one example reconstruction problem, giving rise to a “striking im-

provement in image quality.” The main idea is to start with a simple back-

projection. For several system geometries, it is then possible to evaluate the

filtering effect of the forward and backward projections, an operation that ef-

fectively blurs the three dimensional volume. An inverse filter can then be
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defined to undo this blurring as far as possible and this process can be opti-

mised so that a single slice is reconstructed with high fidelity. The authors note

that the spatial resolution in the plane of the reconstructed slices is good, but

the depth resolution is relatively poor, which is due to the limited informa-

tion available in the tomosynthetic scan. The design of filters for backprojec-

tion in tomosynthesis is also explored by [72] as well as [18]. Cho et al used

a limited-angle CT arrangement, and in their reconstruction they also adapted

the filter to reduce the out-of-plane artefacts, again giving rise to an anisotropic

voxel size so that the reconstruction has a slice thickness which depends on the

scanned angle range.

More recently FBP methods have been studied for laminographic applica-

tions such as in imaging of printed circuit boards [84], and for more general

(parallel-beam) CL cases by Myagotin et al. [61]. Both of these references also

use FBP type reconstruction methods. Yang et al. use a backprojection operator

adapted to their laminographic scanning geometry but use the same filtering

as that used in the FDK algorithm [25] used for cone-beam tomography. For the

rotary laminographic setup used, this is an intuitive choice, as the scanning ge-

ometry is equivalent to a typical cone-beam CT setting, with the difference that

the object is mounted well above the central slice of the cone beam. Myagotin

et al. on the other hand derive their reconstruction from a backprojection filtra-

tion approach similar to that proposed in [54]. However as three dimensional

filtration of the volume is deemed too costly, the 3D filter is converted to the

equivalent 2D filter that can be applied before backprojection, leading again

to an FBP algorithm. The 3D filter is designed for the laminographic system

using the approach suggested in [60]. The work by Myagotin et al. also eval-
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uates parallel and distributed computing approaches and the application of

graphics processing units (GPUs) to the reduction of time required for recon-

struction, and achieves a speedup for the algorithm developed of 177× for the

a parallelised, distributed reconstruction running on 24 identical 8-core com-

puters compared to sequential execution.

Using a linear laminographic system motion, Gao et al [28] considered re-

constructions with two methods, both a rebinning of the data to parallel-beam

projections using bilinear interpolation, and a direct linear FBP (LFBP) method

that they developed without using rebinning. Their simulated results show

that the rebinning-to-parallel-beam method and the LFBP produce compara-

ble errors when there is no truncation, but that the re-binning method suffers

worse errors in the presence of truncation. They further demonstrate improved

reconstruction accuracy for a relatively simple simulated phantom by using the

computationally-intensive IRR (iterative reconstruction reprojection) method,

starting with the results of the LFBP and enforcing for each iteration the con-

straints of non-negativity, limitation of the scanned object region, and mass

conservation of each projection in the image and projection spaces. For com-

plex objects, though, even after tens of iterations, satisfactory reconstructions

were not achieved.

Fourier methods The Fourier slice theorem provides a close link between the

Fourier domain and the filtered backprojection algorithm. It is thus no surprise

that many reconstruction methods work directly in the Fourier space. For ex-

ample, Grangeat et al. [33] proposed an exact 3D cone-beam CT reconstruction

method, in which the reconstruction is split into two parts, with an overall
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complexity of O(N4). The first stage is the transformation from cone-beam

data to derivatives of Radon data and the second is translation from derivatives

of Radon data to the 3D reconstructed object. This method offers increased ro-

bustness against distortions compared to the FDK method. Due to the similar-

ities of the data collected by CT and CL systems, Grangeat’s method may be

applied to CL reconstruction for those system geometries which are equivalent

to limited-view CT systems without significant modification [69]. Smith also

derived a different, but structurally similar, inversion formula [76], and subse-

quently, this work has been integrated to provide a cone-beam reconstruction

algorithm for non-planar orbits [52].

A similar method to Grangeat’s was introduced by Axelsson and Daniels-

son in 1994, which applied direct Fourier techniques to reduce the complexity

to O(N3 log N) [6]. For a complete set of projection data, their method is ex-

act in the mathematical sense and uses the same two stages as the Grangeat

method. The computational complexity of the backprojection algorithm for 3D

Radon data may also be reduced to O(N3 log2 N) by applying a hierarchical,

recursive decomposition to the backprojection operation [8], which the could

yield an O(N3 log2 N) reconstruction algorithm for cone-beam tomography,

if combined with a fast 2D reprojection algorithm to compute the 2D Radon

transforms from cone-beam to 3-D Radon data [11]. These techniques are yet

to be applied to laminographic reconstruction.

3.3 Iterative Reconstruction Techniques

In contrast to FBP algorithms, iterative reconstruction techniques do not re-

quire modification to be applicable to laminar reconstruction, whether the scan
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trajectory leads to varying or constant magnification. In theory, all that is re-

quired is the specification of the appropriate system matrix that describes the

laminar measurement geometry, and indeed these algorithms have been ap-

plied to laminographic reconstructions since the late 1980s [7]. Many itera-

tive methods are broadly classed as algebraic techniques, although an itera-

tive version of the classically non-iterative filtered backprojection algorithm

has also been developed to reconstruct laminographic differential phase mea-

surements [37].

As CL system geometries do not generally provide as much spatial infor-

mation as CT geometries, the system matrix tends to be ill-conditioned or non-

invertible. Additional regularisation is thus often applied when using itera-

tive techniques for CL applications. Furthermore, these methods come with

an additional computational cost compared to the FBP methods. One possible

approach to overcome these limitations is the use of advanced computational

hardware as discussed in § 3.5.

3.3.1 ART

The algebraic reconstruction technique (ART) (known in applied mathematics

as the Kaczmarz algorithm [47]) has been introduced into the CT community

in the 1970s, when it was proposed independently by Hounsfield [3, 42], and

by Gordon, Bender and Herman [32]. In ART, the object volume is represented

as a matrix of voxels. A system of linear equations is set up to find the atten-

uations due to each voxel in the sample: the total attenuation for each ray is

known from the projections. Each ray path through the object is represented as

an equation and these are combined into a matrix, whose inversion gives the
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solution. The runtime of a true matrix inversion withO(109) unknowns would

be prohibitively long, so an iterative approximation method is typically used

instead, where the attenuation calculated from each ray path through the cur-

rent trial voxel array is compared to the recorded attenuation. The differences

are used to inform improvements to the trial solution by adjusting the attenu-

ation values of pixels along the given ray path, until some stopping criteria is

met.

These techniques typically take considerably longer to run than tomosyn-

thesis or backprojection methods, but can yield an improved reconstruction

quality. Commercially implemented algebraic reconstruction algorithms are

often GPU-accelerated and using a high-end, multi-GPU workstation, a vol-

ume of O(109) voxels may be iteratively reconstructed relatively rapidly.

Recent work has shown that a multi-resolution approach may be adopted

for algebraic CT reconstruction methods, and this reduces both the computa-

tional burden and the amount of memory required. It is claimed that these

reductions in required resources can be achieved without significantly affect-

ing the quality of the reconstructed image [21].

The ART can easily be modified to integrate a priori knowledge about the

system and/or the imaged object (e.g. a known shape of the sample or con-

straints on the values of the reconstructed function) into the algorithm, which

may improve the fidelity of the reconstruction whilst decreasing the computa-

tional requirements [61]. The ART has long been considered to provide better

results where only limited numbers of projections or projections from limited

angular ranges are available [4, 85], or where a priori information can be in-

cluded, the latter potentially giving reduced reconstruction times and suppres-
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sion of artefacts [31].

3.3.2 SIRT

The simultaneous iterative reconstruction technique (SIRT) was introduced in

1972 [30] as an alternative to the previously introduced ART. It was shown to

produce correct reconstructions under certain conditions, as compared to the

ART which does not produce exact reconstructions in general. More recent

general advancements of the technique include the tuning of the relaxation

parameter that is frequently used to accelerate the method, and the introduc-

tion of a scalar preconditioning scheme [35]. Moreover, a modified form of the

SIRT has been proposed for laminographic application, known as the discrete

algebraic reconstruction technique (DART) [9]. This method assumes that the

object being reconstructed consists only of a very limited number of materials

(e.g. 2–5), which correspond to characteristic grey levels in the reconstruction;

promising results were achieved using a simulated reconstruction of a phan-

tom representing a slab of silicon containing a grid of copper through-silicon

vias, as might typify an electronic component, some of which contain voids.

This technique is, however, only suited to objects that may be well represented

using a small number of grey levels – a class of objects that includes many real-

world engineering components, which are frequently composites of only few

phases.

3.3.3 Simultaneous algebraic reconstruction technique: SART

The simultaneous algebraic reconstruction technique (SART) was proposed in

1984 as a superior implementation of the original Algebraic Reconstruction
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Technique, making a good reconstruction achievable with only one iteration. In

the SART, error-correction terms are computed as they are in ART, but applied

simultaneously for all rays in a given projection. The method was developed

with the goal of decreasing the appearance of the so-called salt and pepper

noise artefacts in images reconstructed via ART [5]. The Andersen implemen-

tation of SART reduces the number of equations used per projection c.f. the

numbers used in ART; in the former, the number of equations used is approx-

imately the number of points in the reconstructed image whereas in the latter,

the system was typically overdetermined by a factor of around four. Recent

work that applied a GPU-accelerated SART algorithm to reconstruct a lamino-

graphic reconstruction of some 2000× 2000× 300 voxels reported a run time

just in excess of an hour for a single iteration [56].

A significant improvement in image quality in laminographic SART may

be achieved by compensating for artefacts arising from the fact that lamino-

graphic projections are often truncated (i.e. do not always show the whole

of the object in question). The truncation errors typically consist of increased

absorption values near the edges of the volume reconstructed, and with an iter-

ative reconstruction, this can lead to reduced absorption values in the interior

and decreased contrast. Recent work applied a ray-length based region of in-

terest correction technique and yielded very much improved contrast over the

uncorrected results in real scans [71].

3.3.4 Maximum likelihood and statistical reconstruction

A method was proposed in 1982 which applied maximum likelihood meth-

ods to the problem of emission tomography reconstruction [73]. The simula-

23



tions carried out by Shepp and Vardi indicated that this method could pro-

vide a lower statistical noise artefact over convolution backprojection meth-

ods, but without introducing excessive smoothing. Maximum likelihood tech-

niques have also been applied to artefact suppression in cone-beam CT, “nearly

eliminating” the truncation artefacts in two out of three scans of humans in

one study, and qualitatively improving the images in all cases [58]. More re-

cently, ordered subsets expectation maximisation methods have been applied

to emission tomography, delivering an order-of-magnitude acceleration over

a standard expectation maximisation algorithm in simulated emission tomog-

raphy [44]. In these methods, projection data are grouped into an ordered se-

quence of blocks, and an iteration consists of a pass through all the blocks –

in each block, the current estimate is used to initialise an application of stan-

dard EM. A maximum likelihood method was developed for tomosynthesis

mammography, illustrating the method’s applicability to laminographic scan-

ning [81].

3.4 Regularisation and prior information

As CL does not provide the same level of 3D information that is usually avail-

able in CT, reconstruction greatly benefits from the use of prior information

and regularisation. For example, in scanning biological specimens, the knowl-

edge that vascular anatomy consists of a void in which a “dilute framework”

of nonzero density values is embedded motivated the development of an iter-

ative reconstruction method for digital tomosynthesis that gave rise to a clear

improvement in image quality as early as 1988 [51]. Iterative methods have the

advantage that it is often relatively easy to incorporate such additional con-
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straints.

Statistical methods incorporating a priori information, such as the previously-

known shape of the object to be reconstructed, or which use prior information

about the type of reconstructed image that is required as one of an ensem-

ble (e.g. in a medical context, an ensemble might contain many images of

various hearts; this provides prior information that may be applied to reduce

artefacts in reconstructing a scanned heart), are classed as Bayesian methods.

Bayesian methods are appealing for applications such as laminography where

limited data is available, because they permit the inclusion through the en-

semble of information beyond that which may be obtained through lamino-

graphic imaging alone, and which may help to reduce artefacts. Early Bayesian

methods are reviewed in [36], which considers techniques such as maximum

a posteriori (MAP) and fit and iterative reconstruction (FAIR). Bayesian meth-

ods for emission tomographic reconstruction were developed by Hebert and

Leahy [38], and Green [34]. More recent work has demonstrated the appli-

cability of an iterative expectation maximisation algorithm to laminographic

reconstructions [50].

Although in many cases the image to be reconstructed is not sparse, the im-

age formed from the magnitude of its gradient is often approximately sparse.

This motivates the development of iterative methods for divergent-beam re-

constructions based on total variation (TV) minimisation [74, 75]. The recon-

struction is posed as an optimisation problem where the TV of the reconstructed

image is minimised. This has been shown to perform well in cases where there

are few projections, projections for a limited angular range only, or projections

containing gaps due to bad detector bins, making these methods naturally
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suited to laminographic reconstruction. Under certain conditions the optimi-

sation can yield a unique solution, which is the true image [14, 15].

More recent work [29] introduces a hybrid reconstruction technique that

utilises an initial reconstruction from an FBP or linogram technique [23], fol-

lowed by a Gerchberg-Papoulis extrapolation [17] using the linogram (GPEL)

which compensates for missing data, applied in an iterative-reconstruction-

reprojection algorithm [62]. Because the GPEL method may be divergent when

the data are noisy or undersampled, TV minimisation is embedded into the

GPEL algorithm, in a process called GPEL-TV. Preliminary results indicate that

the algorithm can reconstruct high-quality images from noisy and undersam-

pled data in security inspection systems. TV regularisation is one common

approach taken in several recent advances in compressed sensing based recon-

struction techniques, which are a class of techniques aiming to exploit sparsity

of the image data to recover it from fewer projections than conventional meth-

ods would require. Some of these techniques have been applied with good

results to laminographic reconstruction problems: just 40 projections were re-

quired to produce good reconstructions of a resolution test phantom in one

computational simulation (where a novel system trajectory was also employed,

as discussed in § 2.4) [1]. Another compressed sensing based tomosynthesis re-

construction technique was recently developed by Ertas et al. [24], employing

a combination of local TV minimisation and non-local means filtering. This

method yields results visually superior to widely used algebraic reconstruc-

tion methods using TV alone, exhibiting reduced noise whilst preserving edge

definition.

Another recent approach for reducing artefacts is based on making a pre-
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scan with the goal of detecting the outer surfaces of the specimen, perhaps

using contrasting markers. The knowledge about the specimen that this pre-

scan provides can then be used to regularise a tomosynthesis reconstruction,

or serve as prior information for an iterative reconstruction method [78].

3.5 GPU- and parallel computing accelerated techniques

Reconstruction has always been a compute-intensive process, whichever method

is employed. Initial efforts at accelerating the process focused on expensive

hardware costing tens of thousands of dollars. However, as long ago as 2005,

consumer graphics processing units (GPUs) were a promising choice for ac-

celerating various techniques using in CT reconstruction: one paper that year

applied the GPU to FDK, SART and EM reconstructions [83]. At that time,

general-purpose GPU programming was considerably less well-developed than

it is today. Languages for heterogeneous computing such as OpenCL [49, 77]

were not available, and GPU memory was more limited (256 MiB being typical,

facilitating reconstructed volumes of 1283 voxels; 4 GiB is easily and economi-

cally available on a consumer-grade GPU today, and cards featuring 16 GiB are

available at the time of writing).

Recent work by Scherl et al investigates various computational platforms

for FDK CT reconstruction, finding speedups of 6.5 for the Cell Broadband En-

gine Architecture (using 2 processors), 22.0 for a single GPU board, and 35.8

for nine FPGA chips, where the reference time was that taken by a quad-core

workstation with no ancillary processor [70]. However, Scherl et al do caution

that efficiently utilising such parallel computational hardware brings the dis-

advantage of requiring considerably more complicated implementations. The
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speedup for a single GPU achieved by Scherl et al of 22× is in broad agreement

with the speedup of 24×, achieved for the FDK algorithm in 2010 by other re-

searchers [64]. More dramatic speedups to the FDK method (from 25 minutes

on the CPU to 3.2 seconds on a GPU) were reported by yet other workers [63].

However, it is difficult and perhaps subjective to ensure that, when an algo-

rithm is implemented on multiple architectures, it is equally well-optimised to

get the best results from the strengths of each of them, so the reported speedups

should be considered indicative only. The SART reconstruction algorithm has

also been shown to be amenable to acceleration by running on GPUs, with one

group reporting a speedup of greater than 64 times, compared to a “state-of-

the-art CPU” [48]. More recently, another group has implemented the SART

algorithm for laminographic reconstruction on a GPU and achieved speedups

between 8× and 55× compared to their single-core CPU implementation [56].

4 Summary and outlook

Whilst CT is now an established technique in medical, materials engineering,

industrial manufacturing and nondestructive testing applications, computed

laminography – especially in cone beam systems – is still undergoing consid-

erable development. When scanning objects whose aspect ratios complicate or

preclude the use of a full CT scan, CL is becoming a compelling alternative.

We have examined recent advances in computed laminography, both in

terms of surveying scanner geometries and trajectories, and reconstruction ap-

proaches that have been adapted for laminography. We first considered and

illustrated scan geometries including linear and circular planar, swing (also
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known as limited-angle CT), rotary, and one example of a more complex, non-

traditional scan trajectory that yielded promising results in initial simulation

studies. We then considered various reconstruction methods that have been

applied to laminography, starting with the most basic digital tomosynthesis,

and then considering filtered backprojection – a technique that is popular and

well-developed in CT, and has been applied to some laminographic systems

with success. The iterative reconstruction methods have long been applied

to laminographic reconstruction and we considered them next, before turning

our attention to the various regularisation techniques, and a priori information,

that can be applied to enhance these reconstructions. We finally considered the

application of graphical processing units and other parallel computing acceler-

ation techniques, which can offer significant speedups of several tens of times

compared to conventional methods. This could make reconstruction methods

that previously would have had prohibitively high runtimes increasingly prac-

tical in real applications.

Analogously to CT, CL may be performed using either cone or parallel-

beam geometries; we have mostly considered cone-beam systems in the present

work, due to their advantages which include the availability of lab-based sources

and the magnification that is achievable using the cone beam. However, laminog-

raphy is a less well established technique, and therefore is undergoing more

rapid development. We have seen that many developments first made in CT

are now being applied to CL and this is a trend that is likely to continue, due to

the similarity of the two techniques. As time goes on, both interest in computed

laminography and the capability of computational resources to facilitate rapid

simulation and reconstruction are increasing, so that the pace of development

29



remains high.
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Figure captions

Fig. 1 Schematic representation of the linear laminographic system motion,

which involves linear translation of the specimen relative to source and

detector.

Fig. 2 A schematic representation of the circular laminographic system mo-

tion, which involves rotating the source and detector around a common

centre.

Fig. 3 A schematic representation of swing laminography, which is also known

as limited-angle CT and involves an incomplete rotation of the specimen

about an axis 90◦ to the principle ray.

Fig. 4 A schematic representation of rotary laminography, which is analogous

to CT, but has the axis of rotation inclined to the beam’s principal ray.

Fig. 5 Schematic illustration of the spherical sinusoidal scanning trajectory, a

relatively complicated motion proposed by [1].
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