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Existence, Stability, and Dynamics of Ring and Near-Ring Solutions to the
Saturated Gierer-Meinhardt Model in the Semi-Strong Regime

Iain R. Moyles† and Michael J. Ward‡

Abstract. We analyze a singularly perturbed reaction-diffusion system in the semi-strong diffusion regime in
two spatial dimensions where an activator species is localized to a closed curve, while the inhibitor
species exhibits long range behavior over the domain. In the limit of small activator diffusivity we
derive a new moving boundary problem characterizing the slow time evolution of the curve, which
is defined in terms of a quasi steady-state inhibitor diffusion field and its properties on the curve.
Numerical results from this curve evolution problem are illustrated for the Gierer-Meinhardt model
(GMS) with saturation in the activator kinetics. A detailed analysis of the existence, stability, and
dynamics of ring and near-ring solutions for the GMS model is given, whereby the activator concen-
trates on a thin ring concentric within a circular domain. A key new result for this ring geometry
is that by including activator saturation there is a qualitative change in the phase portrait of ring
equilibria, in that there is an S-shaped bifurcation diagram for ring equilibria, which allows for
hysteresis behavior. In contrast, without saturation, it is well-known that there is a saddle-node
bifurcation for the ring equilibria. For a near-circular ring, we develop an asymptotic expansion up
to quadratic order to fully characterize the normal velocity perturbations from our curve-evolution
problem. In addition, we also analyze the linear stability of the ring solution to both breakup insta-
bilities, leading to the disintegration of a ring into localized spots, and zig-zag instabilities, leading to
the slow shape deformation of the ring. We show from a nonlocal eigenvalue problem that activator
saturation can stabilize breakup patterns that otherwise would be unstable. Through a detailed
matched asymptotic analysis, we derive a new explicit formula for the small eigenvalues associated
with zig-zag instabilities, and we show that they are equivalent to the velocity perturbations induced
by the near-circular ring geometry. Finally, we present full numerical simulations from the GMS
PDE system that confirm the predictions of the analysis.
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1. Introduction. Modern biological pattern formation is generally posited mathematically
via coupled reaction-diffusion (RD) systems where some spatially homogeneous solution exists
for a set of reaction kinetics. Often the effect of spatial diffusion in such systems is to initiate
spatially inhomogeneous patterns from perturbations of the otherwise stable steady-states of
the reaction kinetics. Classically, the onset of such spatial solutions can be analyzed using
a criterion derived by Turing (cf. [38]). However, large amplitude spatially inhomogeneous
patterns can persist beyond what one would anticipate from a Turing-type analysis, and it is
of general interest to study such patterns far from this Turing regime.

An early two-component RD model for complex pattern formation was developed in [12]
and is known as the Gierer-Meinhardt (GM) model. This model couples an autocatalytic short
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range activator with a long range inhibitor, and leads to self-sustaining patterns that are used
to model biological morphogenesis. This model has been used as a basis for explaining the
formation of embryonic axes, of leaf formation at the tip of a growing shoot, and of shell
patterns on mollusks (cf. [12], [16], [24], [34]). Aside from the GM models, there are various
other models that exhibit complex and interesting pattern dynamics. These include the Gray-
Scott (GS) model of theoretical chemistry (cf. [30], [31], [33], [7]), a hybrid chemotaxis RD
model of fish skin patterns (cf. [32]), the Swift-Hohenberg model (cf. [13]), a generalized
Schnakenberg system modelling root hair initiation in plants (cf. [5]), a model for urban crime
(cf. [37]), and many more. Many of these models admit similar structures and patterns due
to the coupling of short range activation and long range inhibition.

Many two-component pattern formation models exhibiting localized patterns can be writ-
ten in terms of an activator v and an inhibitor u in the singularly perturbed dimensionless
form

vt = ε2∆v − v + g(u, v) , τut = D∆u− u+
1

ε
f(u, v) , (1.1)

on some domain Ω ⊂ R2 subject to Neumann boundary conditions on the boundary ∂Ω. Some
specific studies in more than two dimensions can be found in [22] and [29]. In (1.1), τ is an
effective time scale delay between the activator and inhibitor, while D and ε2, with ε � 1,
are the inhibitor and activator diffusivities respectively. We will consider a classical limit
for this problem, the so-called semi-strong regime where D = O(1). With this formulation,
the activator is singularly perturbed and localized, owing to its small diffusivity, while the
inhibitor has a longer range behaviour. The functions f(u, v) and g(u, v), with g(u, 0) = 0
and f(u, 0) = 0, are chosen such that spatially homogeneous steady-states are unstable to a
standard Turing analysis [38].

In the simpler setting of a one-dimensional spatial domain, there has been a plethora
of work characterizing the existence, stability, and the dynamics of steady-state and quasi-
steady state solutions to the GM, GS, and Schnakenberg, models (cf. [6], [8], [9], [15], [14],
[18], [27], [30], [40], [41], [42]). For the two-dimensional GM model, straight stripe patterns
in rectangular domains have been studied (cf. [17], [25], [10]). In higher dimensions, the
existence of steady-state ring solutions in N -dimensional radially symmetric domains was
investigated in [29], without any stability analysis. Ring solutions were analyzed in [25], [20],
[21] and the linear stability analysis of such solutions to a breakup instability, which triggers
the disintegration of a ring into localized spots, relied on studying the spectrum of a non-
local eigenvalue problem (NLEP). In certain special cases, the analysis of the NLEP can be
reduced to the much simpler problem of analyzing an explicit transcendental equation for the
eigenvalue parameter (cf. [25], [28]).

The general form of the reaction kinetics for the GM model are

f(u, v) =
vo

us
, g(u, v) =

vp

uq(1 + σvp)
, (1.2)

where σ ≥ 0 is a saturation parameter, which limits the autocatalytic activation of v. For
the range σ > 0 the model is generally referred to as the saturated Gierer-Meinhardt (GMS)
model. Although most of the previous analytical studies of the GM model is for the basic
model with σ = 0, there are a few studies that allow for saturation. For the case where the
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activator is localized on the midline of a rectangular domain, resulting in a straight stripe
pattern, [17] provides existence and stability results for a stripe for the GMS model. However,
there are no corresponding studies where the activator concentrates on a circular curve, i.e. a
ring pattern, or on arbitrary curves. In a one-dimensional domain, some existence and stability
results for a spike solution to the GMS model are presented in [43] for the so-called shadow
regime, where D →∞, with the authors conceding that the establishment of similar stability
results for finite D is an open problem.

One of the main goals of this paper is to analyze the semi-strong interaction reaction
regime where the activator field concentrates on an arbitrary closed curve inside a 2-D domain
Ω. In this singularly perturbed limit, in §2 we derive a new moving boundary problem for
(1.1), which characterizes the slow time evolution of the curve. This reduced problem is
defined in terms of a quasi steady-state inhibitor diffusion field and its associated jump and
continuity conditions across the curve. The formulation of this curve-evolution problem below
in (2.13) differs substantially from that of the more traditional mean curvature flows and
quasi-static moving boundary problems common in the field of materials science. As such,
in the companion article [26], a new numerical methodology was developed to compute curve
evolution from our quasi-static moving BVP. With this hybrid analytical-numerical approach
to study localized pattern formation, the qualitatively interesting curve-evolution dynamics
observed below in Fig. 2.1 for the GMS model provides an impetus to analyze the existence and
stability of ring and near-ring solutions to the GMS model in radially symmetric geometries.

With this motivation, the main focus of the paper is to analyze the existence, stability, and
dynamics of ring solutions to the GMS model with reaction kinetics (1.7) in radially symmetric
domains. When saturation is not present, it was shown previously that steady-state ring
solutions do not exist below a critical saddle-node fold bifurcation point (cf. [29]). This leads to
a saddle-node bifurcation diagram for ring equilibria when there is no saturation. However, in
§3 we show that the inclusion of saturation induces a change in the small radius ring dynamics,
which creates a third steady-state ring radius. The corresponding bifurcation diagram for
steady-state ring radii with saturation is S-shaped, thereby allowing for hysteretic transitions,
and is such that steady-state ring solutions exist at all ring radii. This qualitatively new result
due to saturation is possibly linked to the discussion in [34], where it was noted that patterns
on a freshwater snail, Theodoxus fluviatilis, change drastically because of concentrations of
salt in the water they are exposed to. A hysteresis-type bifurcation diagram provides a
mechanism to allow for such drastic changes that cannot be described with a saddle-node
bifurcation structure of steady-state solutions.

In §3 we then use our quasi-static moving BVP curve-evolution problem to study the effect
of perturbations to the radially symmetric solution for a near-ring interface. We show that
a two-term, and not simply a one-term, asymptotic expansion of this problem is essential to
capture important qualitative information of the curve dynamics resulting from perturbations
in the normal velocity. In particular, the leading-order term introduces the sinusoidal pertur-
bation to the constant velocity that is due to the angular perturbation of the interface, while
the second order term is needed to analyze the constant shift in the velocity, which induces a
non-zero drift of the average interface location. For small ring radii we show analytically that
non-radially symmetric initial perturbations of the ring will eventually stabilize, and lead to
the circularization of the curve as time increases.
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In §4 we use a WKB approach to formulate the linear stability problem for a ring solution
in a radially symmetric domain. We show that the spectrum is divided into two classes of
eigenvalues arising from either locally even or odd eigenfunctions across the ring, each of
which are analyzed in §4.1 and §4.2, respectively. The breakup instability analysis resulting
from locally even eigenfunctions relies on the derivation and analysis of a non-local eigenvalue
problem (NLEP), the main conclusions of which mirror the analysis in [17] of a straight-stripe
solution and, as such, are only briefly summarized. The main result of this analysis is that
when the saturation parameter is sufficiently large there is no longer any breakup instability for
a ring. The existence of such a stabilizing mechanism due to saturation has key implications
for solutions of our reduced curve-evolution problem (2.13) since it implies that its computed
solutions will persist as solutions to the full RD system.

In addition, in §4.2 we also analyze zig-zag instabilities of a ring solution, resulting from
locally odd eigenfunctions near the curve, which can distort the shape of the curve. The
analysis of these zig-zag instabilities for a ring is a new result, and does not follow in a
straightforward manner from the corresponding analysis of zig-zag instabilities of a straight
stripe solution done in [17]. As a result of the non-zero curvature of the ring, a rather
delicate matched asymptotic expansion analysis is needed to derive a formula for the small
eigenvalues of order O(ε2), which characterizes zig-zag instabilities. We also show, as expected
intuitively, that these small eigenvalues are related to the first order velocity corrections of the
near-circular ring problem. This is significant because it shows the bifurcation from radially
symmetric solutions to solutions of near radial symmetry analyzed in §3. Therefore, in order
that the moving BVP curve-evolution dynamics (2.13) accurately approximate solutions to
the full RD system it is only essential to ensure that the ring solution is stable to locally even
perturbations across the curve, as characterized by the spectrum of the NLEP.

In §5, we present full numerical results to demonstrate predicted breakup modes in the
absence of saturation, as well as the stabilizing effect that saturation has on such patterns.
We show the curve circularization tendency for perturbed circles of small radii, but also
show that the curve can destabilize if made larger, or if the inhibitor diffusion coefficient is
appropriately scaled. Finally, in §6, we briefly summarize our main results, and we suggest a
few open problems that warrant further investigation.

1.1. Boundary Fitted Coordinate Formulation. Due to the singularly perturbed nature
of the activator, we will construct a local boundary fitted coordinate system (cf. [11], [13])
(x, y) → (η, s) where η is the signed normal distance from a curve (inward is positive) and s
is the curve arclength. In this coordinate frame, and sufficiently close to the curve,

∆ = ∂ηη −
κ

(1− κη)
∂η +

1

(1− κη)
∂s

(
∂s

(1− κη)

)
, (1.3)

where κ is the signed curvature (positive for convex curves). We consider g(u, v) from (1.1)
such that g(u, 0) = 0 so by (1.1), the activator is identically zero except for a region of O(ε)
near the interface. With this in mind we introduce the following inner coordinate scaling:

η̂ =
η

ε
; ṽ(η̂, s) = v(εη̂, s), ũ(η̂, s) = u(εη̂, s) . (1.4)
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Furthermore, we will construct quasi-steady solutions where the only dynamic component
arises from the evolution of a front. Asymptotic balance requires that this curve dynamic
time scale satisfies T = ε2t. Using this time scale, we have that (1.1) transforms under the
inner coordinate system to

εη̇ṽη̂ + ε2ṡṽs = ∆̃ṽ − ṽ + g(ũ, ṽ), (1.5a)

ε3τ η̇ũη̂ + ε4τ ṡũs = D∆̃ũ− ε2ũ+ εf(ũ, ṽ) , (1.5b)

where η̇ and ṡ are the normal and arclength velocities, and the inner Laplace operator satisfies,

∆̃ ≡ ∂η̂η̂ −
εκ

(1− εκη̂)
∂η̂ +

ε2

(1− εκη̂)
∂s

(
∂s

(1− εκη̂)

)
. (1.6)

We will generalize results when possible for various f(u, v) and g(u, v) but will primarily focus
on the saturated Gierer-Meinhardt (GMS) model (1.2) of the following form:

g(u, v) =
v2

uq(1 + σv2)
, f(u, v) =

vo

us
; qo− (s+ 1) > 0 . (1.7)

2. The Singular Limit in the Semi-Strong Regime. By expanding u and v in powers of
ε, we obtain from the leading order problem for (1.5) that ũ0 = U0(s) and

ṽ0η̂η̂ − ṽ0 + g(U0, ṽ0) = 0 ; ṽ0η̂(0) = 0, lim
|η̂|→∞

ṽ0 = 0 , (2.1)

where the front-centering condition is imposed to eliminate translational invariance in the
problem. We seek a homoclinic orbit solution of this problem that tends to the fixed point
ṽ0 = 0 as |η̂| → ∞. A general result for the existence of such a homoclinic solution was first
proved in Theorem 5 of [4] (see also [25]). The result is as follows:

Lemma 2.1. Consider the problem of finding a C2 smooth homoclinic orbit w(y) on −∞ <
y <∞ satisfying

wyy − w + h(w) = 0 , w → 0 as |y| → ∞; w′(0) = 0, wm = w(0) > 0 , (2.2)

where we assume h(w) is C1 smooth on w ≥ 0 with h(0) = 0 and h′(0) < 1. If we define
Q(w) ≡ h(w)− w, so that Q(0) = 0 and Q′(0) < 0, and if

1. For s > 0, Q(s) = 0, Q′(s) > 0; Q(w) < 0, for 0 < w < s,
2. Q(w) > 0 for s < w < wm with wm satisfying

∫ wm
0 Q(w) dw = 0,

then a unique, positive, homoclinic orbit solution exists.
Due to the structure of (2.1), the homoclinic orbit solution, if it exists, is necessarily even.

In the context of the GMS model we identify that

w =
ṽ0

U q0
, h(w) =

w2

(1 + bw2)
; where b ≡ U2q

0 σ > 0 . (2.3)

We now examine the conditions in Lemma 2.1 for this choice of nonlinearity. When b ≥ 1/4 we
observe that Q(w) < 0 for all w 6= 0 and therefore, condition 2 is not satisfied. Alternatively,
for b < 1/4, w = 0 is a root together with the two additional roots

w± = (1±
√

1− 4b)/2b , (2.4)
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with Q(w) < 0 on 0 < w < w− satisfying condition 1 of Lemma 2.1. Condition 2 is then
satisfied for wm ≤ w+ if ∫ w+

w−
Q(w) dw ≥

∫ w−

0
|Q(w)|dw . (2.5)

This inequality will hold up until the value b = bc where wm = w+(bc) and therefore a
homoclinic orbit exists when 0 ≤ b < bc with

bc = 0.211376, wm(bc) = 3.29521 , (2.6)

as was first reported in [17].
If we continue the activator-inhibitor expansion to O(ε) then

Lṽ1 = κṽ0η̂ − gu(U0, ṽ0)ũ1 + ṽ0η̂η̇ , ũ1η̂η̂ = − 1

D
f(U0, ṽ0) , (2.7)

where Lṽ1 ≡ ṽ1η̂η̂ − ṽ1 + gv(U0, ṽ0)ṽ1. By the translational invariance of (2.1) ṽ1 = ṽ0η̂ is a
homogeneous solution to (2.7) for ṽ1. This leads to the following solvability condition:

η̇ = −κ− 1∫∞
−∞ ṽ

2
0η̂ dη̂

∫ ∞
−∞

Gũ1η̂ dη̂; G ≡
∫ ṽ0

0
gu(U0, x) dx . (2.8)

Upon integrating this expression by parts, and using (2.7) for ũ1, we get∫ ∞
−∞

Gũ1η̂ dη̂ = Ĝũ1η̂

∣∣∣∞
−∞

+
1

D

∫ ∞
−∞

Ĝf(U0, ṽ0) dη̂ ; Ĝ(η̂) ≡
∫ η̂

0
G(x) dx . (2.9)

Finally, since f(u, v) is an even function in v, while Ĝ is odd, we obtain the front velocity
condition that

η̇ = −κ− 2H
〈
∂u

∂η

〉
η=0

, H ≡ Ĝ(+∞)∫∞
−∞ ṽ

2
0η̂ dη̂

, (2.10)

where 〈·〉η=a is the average across η = a and we have used matching conditions to the outer
region to rewrite the derivative. Moreover, by integrating (2.7) for ũ1, we get[

du

dη

]
η=0

= − 1

D

∫ ∞
−∞

f(U0, ṽ0) dη̂ , (2.11)

where [·]η=a indicates a jump across η = a.
Now consider the global problem where η = O(1) given by (1.1). Since f(u, 0) = 0 and v
decays exponentially in the far-field, then to leading order

lim
ε→0

f(u, v)

ε
=

(∫ ∞
−∞

f(U0, ṽ0) dη̂

)
δ(η), (2.12)

where δ(·) is the Dirac measure. Integrating the equation for u in (1.1) using this measure
results precisely in the jump condition (2.11) as one would expect. Therefore, in the limit as
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ε tends to zero, we can ignore the reaction term f(u, v) in the global problem as long as we
properly supplement with jump conditions on u. In this way, we have the following singular
limit problem for the global inhibitor field:

Principal Result 2.1.Consider an activator v and inhibitor u to (1.1) on a domain Ω in R2

with Neumann boundary conditions on ∂Ω. Suppose that the activator v is localized as ε→ 0
(in the sense of homoclinic orbit solutions defined by Lemma 2.1) entirely on a set of (possibly
disjoint) curves Γ. The effective global problem for the inhibitor, which defines the interface
velocity, is

D∆u− u = 0 , x ∈ Ω \ Γ ;
∂u

∂n
= 0 , x ∈ ∂Ω , (2.13a)

u = U0(s) , x ∈ Γ , (2.13b)[
∂u

∂n

]
Γ

= − 1

D

∫ ∞
−∞

f(U0, ṽ0) dη̂, x ∈ Γ , (2.13c)

V = κ+ 2H
〈
∂u

∂n

〉
Γ

. (2.13d)

The normal velocity to the curve, as measured with respect to the origin, is V = −η̇.
We remark that only for the special case where the interface is a circular ring concentric

within a disk-shaped domain, is it possible to readily verify that equilibria of the reduced
dynamics (2.13d), corresponding to setting V = 0 on Γ, do in fact correspond to true radially
symmetric steady-state solutions where the activator concentrates on a circular ring concentric
within the disk. Such ring-type solutions are analyzed in detail in §3.

While analytic solutions using this formulation are not generally possible for arbitrary
curves Γ, recently in the companion article [26], a numerical methodology has been designed
to solve moving-boundary problems of the type (2.13). This class of problems is new, as
compared to the well-known Cahn-Hilliard problems of material science, in the sense that the
normal velocity depends on the average, rather than the difference, of the diffusive flux across
the interface [26]. As such, a novel numerical framework was developed in [26] to treat (2.13).
Some numerical examples of solutions obtained using this methodology of [26] are presented
in Fig. 2.1, where it is seen that the RD system has a rich set of dynamics to be understood.
For example, in both Fig. 2.1a and Fig. 2.1b we start with similar initial conditions with the
main difference being the radius of the domain and base radius of the curve. However, in
Fig. 2.1a the perturbed circle shrinks and circularizes, while in Fig. 2.1b it grows and distorts.

It is important to emphasize that Fig. 2.1 is a simulation of the reduced dynamics, char-
acterized by the moving-boundary problem (2.13), and not the full PDE system (1.1). To
determine whether the reduced slow dynamics does in fact capture long-time behavior of the
full PDE system (1.1) we need to analyze the linear stability properties of the linearization of
the full PDE system (1.1). This is done in §4 for the class of ring-type solutions. For these
ring-type solutions we will show that weak zig-zag instabilities, associated with eigenvalues of
O(ε2) in the linearization, have a direct correspondence to small amplitude shape-deforming
instabilities of the ring pattern associated with the reduced dynamics (2.13). We will fur-
ther show for ring-type solutions that there are parameter regimes where there are no O(1)
time-scale breakup instabilities associated with the profile of the ring solution, as character-
ized by the spectrum of a nonlocal eigenvalue problem NLEP. As such, our analysis suggests
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that there are parameter regimes where the reduced moving-boundary dynamics, which can
be computed using the algorithm in [26], should accurately reflect corresponding long-time
behavior in the full PDE system (1.1). In the remainder of this manuscript, we will primarily
focus on the simple geometrical configuration of a ring-type solution for which the development
of an analytical theory is tractable.
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(a) r0 = 0.5 + 0.3 cos(5θ)
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(b) r0 = 5 + 0.3 cos(5θ)
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(c) r0 = 5 + 0.3 cos(6θ)

Figure 2.1: Some numerical solutions to (2.13) using the framework developed in [26]. For (a),
we have taken the localized curve to be a near circle with radius given by r0 = 0.5+0.3 cos(5θ)
inside a larger circular domain R = 1. For (b), we have taken the localized curve to be a near
circle with radius given by r0 = 5 + 0.3 cos(5θ) inside a larger circular domain R = 10. The
perturbation is identical to (a) but just with a larger curve base radius in a larger domain.
For (c), we have taken r0 = 5 + 0.3 cos(6θ) inside a larger circular domain R = 10. This curve
grows and distorts even more than in (b). In all simulations we have chosen the exponent set
(2, q, o, s) = (2, 1, 2, 0), the saturation as σ = 10, and the diffusivity D = 1. We have omitted
plotting the boundary of the domain r = R.

3. Ring and Near-Ring Solutions to the GMS Model. In this section, we will explicitly
consider the saturated Gierer-Meinhardt model where f(u, v) and g(u, v) in (2.13) are replaced
with (1.7). First, we consider a ring solution where the activator is localized on a circle of
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radius r0 in a domain 0 < r < R. For this geometry, we define the inner variable ρ = (r−r0)/ε.
Upon solving (2.13) with a radially symmetric inhibitor field for this geometry we obtain the
following result:

Principal Result 3.1. For ε→ 0 the quasi-equilibrium ring solution with radius r0, satisfying
O(ε)� r0 � 1−O(ε), is given by

ve(r) ∼ U q0w
(
r − r0

ε

)
, ue(r) ∼ U0

G0(r; r0)

G0(r0; r0)
, (3.1)

where w is the homoclinic solution, as defined in Lemma 2.1, and G0 is the Green’s function
that satisfies,

G0rr +
1

r
G0r −

1

D
G0 = −δ(r − r0) ; 0 < r < R ; G0r(0) = G0r(R) = 0 . (3.2)

The solution to this problem for G0(r; r0) is given by

G0(r; r0) =

{
J0,1(r)J0,2(r0) , 0 ≤ r ≤ r0

J0,1(r0)J0,2(r) , r0 ≤ r ≤ R
, (3.3)

J0,1(r) ≡ I0

(
r√
D

)
, J0,2(r) ≡ α0I0

(
r√
D

)
+K0

(
r√
D

)
, α0 ≡

K1

(
R√
D

)
I1

(
R√
D

) ,

(3.4)

where In and Kn are the modified Bessel functions of order n. The constant U0 is determined
by applying (2.13c), which yields

Uβ−1
0 =

D

r0AG0(r0; r0)
; β = qo− s , A =

∫ ∞
−∞

wo dρ . (3.5)

When the parameter b 6= 0, as defined in (2.3), then this is an implicit expression for U0 since
A has a U0 dependence. However, if we define

G̃(b) ≡ bA
2q
β−1 =

(
D

r0G0(r0; r0)

) 2q
β−1

σ , (3.6)

then we can conclude numerically that dA/db > 0. Therefore, we have that dG̃/db > 0 so
that for each σ there is a unique b. When o = 2, this monotonicity property was shown to
hold analytically in [43]. Finally, using (2.13d), the dynamic condition for the ring motion
becomes

dr0

dT
= − 1

r0
− q

4
Ĥ
(J ′0,1(r0)

J0,1(r0)
+
J ′0,2(r0)

J0,2(r0)

)
, Ĥ ≡

∫∞
−∞w

2 dρ∫∞
−∞w

2
ρ dρ

− 1. (3.7)

We emphasize that our construction of the quasi-equilibrium ring solution is asymptoti-
cally valid only when the ring radius satisfies O(ε) � r0 � 1 − O(ε). For the narrow range

9
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where r0 = O(ε), a new type of localized solution for the GMS model exists in the form of
a droplet, or bubble-type solution, similar to that constructed in [35] in the limit of large
saturation. We do not consider such a droplet solution here.

We further remark that the expression for Ĥ, in (3.7) arises from evaluating (2.9) for the
GMS model (1.7), and then using (2.2) to simplify the resulting expression. Typically one
considers a scaling where the diffusivity is absorbed into the length scale (R = 1/

√
D = `)

and so we will take D = 1 and R = ` to be varied. When saturation is neglected, the problem
remains invariant under this transformation. However, when σ 6= 0, the invariance is broken
since, for a given b value, different saturation constants, σ, are needed for the problem of D
and R variable than for D = 1 and R variable. When b = 0, it has been shown (cf. [29]) that
equilibrium values to (3.7) undergo a saddle-node bifurcation at some R = Rc where there
exists two equilibrium radii for R > Rc, with the larger radius yielding the stable equilibrium.
The existence of a saddle-node bifurcation point when σ = 0 relies on Ĥ being constant for all
r0. However, when σ 6= 0, then since b = b(U0) and U0 depends on r0, the value of b depends
on r0 for a fixed saturation σ. Since the homoclinic orbit depends on b then Ĥ is no longer
constant. We have the following lemma to describe the behaviour of Ĥ for r0 � 1 but with
r0 � O(ε):

Lemma 3.1. Consider (1.1) with f(u, v) and g(u, v) given by (1.7) and where the activator
is localized on a ring of radius r0 in a circular domain. Then, for r0 � 1, but with r0 � O(ε),
the dynamic condition (3.7) reduces to

dr0

dT
∼

(
qĤ

4(α0 + log(2)− log(r0)− γ)
− 1

)
1

r0
, (3.8)

where γ ≈ 0.57722 is the Euler-Mascheroni constant. If σ = 0 then we can compute the
homoclinic orbit solution in Lemma 2.1 explicitly as w = 3

2 sech 2(ρ/2). In this case Ĥ ≡ 4
and by (3.8),

dr0

dT
∼ − 1

r0
→ −∞ . (3.9)

If σ 6= 0 then, when a homoclinic orbit exists by Lemma 2.1, it is a function of r0 and
specifically as r0 → 0, but with r0 � O(ε), it follows from (3.6) that A tends to infinity and
so b must tend to the critical parameter bc. Therefore Ĥ tends to infinity in such a way that
by (3.8), we have dr0

dT → +∞ on the regime where O(ε)� r0 � 1.

The introduction of saturation has quite a drastic effect on the limiting behaviour of (3.8).
To investigate this we consider a small, non-zero saturation such that σ � 1. For r0 ∼ O(1),
(3.6) implies that b ∼ σ � 1 and we expect that the leading order (b = 0) behaviour persists.
However, consider scaling r0 = σxR0 for some x > 0 so that in (3.6) we have

G̃(b) ≈ ν
(
D

R0

)ζ
; ν = σ1−ζx log(σ−x)−ζ , ζ ≡ 2q

β − 1
, (3.10)

where we have taken G0 ∼ log(σ−x) for σ � 1. However, G̃(b) = bAζ as well and since G̃ is
monotonic in b then there must be a value of b for all values of σ regardless of r0. This value

10
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of b must satisfy 0 ≤ b ≤ bc and therefore since ν � 1 then A ∼ ν1/ζ . It is reasonable to
expect that this will also be the scaling for Ĥ as defined in (3.7) and therefore from (3.8),

qĤ
4(α0 + log(2)− log(σxR0)− γ)

∼ ν

log(σ−x)
=

σ
1−ζx
ζ

log(σ−x)2
= ω . (3.11)

For x not too large then ω � 1 and the leading order behaviour in (3.8), dr0
dT → −∞ persists

as when σ = 0. However, as r0 gets smaller and x increases then ω � 1 and instead dr0
dT →∞.

To find the parameter x where small to large behaviour transitions we look for the roots ω = 1
of which there are two, x− and x+. However, we also require that ν � 1 when ω � 1 and so
we take x = x+ as the transition point above which ω � 1. To support this discussion we plot
b versus r0 in Fig. 3.1 for various values of the saturation parameter σ. Indeed we see that for
σ � 1 and r0 not too small that b ≈ 0 as we expected. We also observe the boundary layer
behaviour as r0 tends to zero. For σ � 1, b is equal to the saturation value for a large range
of r0. This could be expected once again by considering G̃(b) in (3.6) where now σ � 1 and
therefore A � 1 unless r0 is sufficiently large. To generate Fig. 3.1 we solved (3.6) for b using

Newton’s method for a fixed value of σ and by varying r0. In Fig. 3.2, we plot dr0
dT for various

values of R = ` in the cases of no saturation (left figure) and when σ = 0.5 (right figure). We
once again observe that, aside from r0 � 1, the small saturation causes a negligible deviation
from b = 0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

r0

b

 

 

σ=0.01

σ=0.5

σ=2

σ=5

σ=10

σ=25

Figure 3.1: Modified saturation parameter b as a function of r0 for various saturation values
σ. Here we take D = 1, R = 1 and the exponent set (2, 1, 2, 0).

The r0 � 1 boundary layer has quite a significant role on the overall structure of the
equilibrium solutions. For the case of no saturation, Fig. 3.2a shows the existence of the
saddle-node bifurcation in that no equilibrium values exist until a critical R = Rc = 3.622.
However, with saturation, we obtain the qualitatively new result, as seen in Fig. 3.2b, that
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(b) σ = 0.5

Figure 3.2: Right-hand side of (3.7) for various domain radii R = `. The exponent set is
(2, 1, 2, 0) and D = 1.

a new small equilibrium radius exists for all R due to the limiting r0 behaviour when σ 6= 0
in Lemma 3.1. Therefore, adding saturation allows a new branch of equilibrium solutions
to emerge from r0 = 0. Overall, the effect of the saturation parameter is that the saddle-
node bifurcation diagram for σ = 0 characterizing equilibria of the ring dynamics is deformed
into an S-shaped bifurcation diagram, which now allows for hysteresis behavior. Fig. 3.3
demonstrates this for σ = 8.

3.1. Near-Ring Solutions. Next, we consider near-ring solutions to the GMS model. By
a near-ring we mean localizing the activator on a curve with radial perturbation r = r0 +εh(θ)
for ε � 1 and h(θ) to be some smooth periodic function. The immediate advantage of the
singular limit formulation (2.13) is evident here as this formulation is as amendable to this
new problem as it was to the ring. For asymptotic consistency, we require that ε� ε so that
the singular limit problem at O(1) is still valid.

To analyze the near-ring behavior we make a formal expansion of the inhibitor field as

u(r, θ) = u0(r) + εu1(r, θ) + ε2u2(r, θ) + . . . , (3.12)

where we explicitly note that we want to consider a perturbation from the radially symmetric
inhibitor solution. Upon using this expansion, we have that the curve value U0 and normal

12



SIAM J. APPLIED DYNAMICAL SYSTEMS c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

R

r 0

Figure 3.3: Bifurcation diagram for equilibria of (3.7) for σ = 8, D = 1, and exponent set
(2, 1, 2, 0).

derivative can be expanded as

U0 = u(r0 + εh(θ)) ∼ u0(r0) + ε(u0r(r)h(θ) + u1(r))r0

+ ε2

(
1

2
u0rr(r)[h(θ)]2 + u1r(r)h(θ) + u2(r)

)
r0

= U00 + εU01(θ) + ε2U02(θ) , (3.13a)

du

dn

∣∣∣∣
r=r±0

∼ − u0r(r
±
0 ) + ε

(
−u0rr(r

±
0 )h(θ)− u1r(r

±
0 )
)

+ ε2

(
−1

2
u0rrr(r

±
0 )[h(θ)]2 − u1rr(r

±
0 )h(θ) +

u1θ(r
±
0 )h′(θ)

r2
0

+
u0r(r

±
0 )[h′(θ)]2

2r2
0

− u2r(r
±
0 )

)
. (3.13b)

The notation (·)r0 indicates an evaluation at r = r0 and we do this externally because indi-
vidual terms may be discontinuous but they must combine to form a continuous curve value.
In the presence of saturation, we must also consider expansions similar to (3.12) for A, Ĥ,
and b given by (3.5), (3.7), and (2.3) respectively. The leading order solution u0 is the radi-
ally symmetric inhibitor problem on a ring, which was defined in Principal Result 3.1. Using
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(3.13), the problem at O(ε) for u1 is

1

r

∂

∂r

(
r
∂u1

∂r

)
+

1

r2

∂2u1

∂θ2
− 1

D
u1 = 0 , r 6= r0 ,

∂u1

∂r

∣∣∣
r=R

= 0 , (3.14a)

[u1]r0 = −h(θ)

[
du0

dr

]
r0

, (3.14b)[
∂u1

∂r

]
r0

= −h(θ)

[
d2u0

dr2

]
r0

− Ā0

U00

¯̄A0U01 , (3.14c)

where we have defined

Ā0 ≡
A0

D
Uβ00 =

U00

r0G0(r0; r0)
, ¯̄A0 ≡ β +

2qb0
A0

dA0

db
. (3.15)

The zero subscripts indicate evaluations of saturation dependent functions at the constant
value U00. To calculate the terms in this expression involving u0, we use the standard Wron-
skian relation

W0,n(r) ≡ In
(

r√
D

)
d

dr
Kn

(
r√
D

)
−Kn

(
r√
D

)
d

dr
In

(
r√
D

)
= −1

r
. (3.16)

In this way, we can rewrite (3.14b) and (3.14c) as

[u1]r0 = h(θ)Ā0 ,

[
∂u1

∂r

]
r0

= −h(θ)
Ā0

r0
− Ā0

U00

¯̄A0U01 . (3.17)

We then introduce the Fourier eigenfunction expansion

u1(r, θ) =

∞∑
n=−∞

V1n(r) exp(inθ) , U01(θ) =

∞∑
n=−∞

U1n exp(inθ) , h(θ) =

∞∑
n=−∞

Hn exp(inθ) ,

(3.18)
which leads to the following result regarding the solution to (3.14):

Principal Result 3.2. In terms of the Fourier decomposition (3.18), the solution to (3.14),
with (3.17), is

V1n(r) = Ā1nr0G1,n(r; r0)− B̄1nr0G0,n(r; r0) , (3.19)

with constants Ā1n and B̄1n defined by

Ā1n ≡ HnĀ0 , B̄1n ≡ −
HnĀ0

r0
− Ā0

U00

¯̄A0U1n . (3.20)

Here we have defined the Green’s functions G0,n and G1,n as

G0,n(r; r0) ≡

{
Jn,1(r)Jn,2(r0), 0 ≤ r ≤ r0

Jn,1(r0)Jn,2(r), r0 ≤ r ≤ R
, G1,n(r; r0) ≡

{
Jn,1(r)J ′n,2(r0), 0 ≤ r < r0

J ′n,1(r0)Jn,2(r), r0 < r ≤ R
,

(3.21)
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with Jn,i(r) defined similarly as in (3.4). We note that G1,n is not continuous across r = r0

as is expected by the jump condition (3.14b). Using (3.13a), we have that

U1n =

(
V1n +Hn

du0

dr

)
r0

. (3.22)

Although each of the two terms in this expression are discontinuous across r = r0, we have
that U1n is continuous, and so U1n = 〈U1n〉r=r0. By explicitly evaluating the terms in this
expression we obtain that

U1n =
HnU00

G0(r0; r0)

(
1− ¯̄A0

G0;n(r0; r0)

G0(r0; r0)

)−1
(
G0,n(r0; r0)

r0
+

〈
G1,n(r, r0) +

dG0

dr

〉
r0

)
. (3.23)

Furthermore, the unsigned curvature at O(ε) is

κ1 = r−2
0

[
h′′(θ) + h(θ)

]
, (3.24)

and, therefore, by expanding (2.13d) to O(ε), we generate a perturbed interface velocity V01 of
the form

V01 = −κ1 −
qĤ0

2U2
00

(
1− 2qb0

Ĥ0

dĤ0

db

)〈
du0

dr

〉
r0

U01 +
qĤ0

2U00

(
h(θ)

〈
d2u0

dr2

〉
r0

+

〈
∂u1

∂r

〉
r0

)
.

(3.25)
Here Ĥ is defined in (3.7), while u1 and U01 are given in (3.18).

From (3.25) we obtain that the velocity perturbation has the limiting behavior V01 ∼ −κ1

for r0 � 1. As such, for typical perturbations of the form h(θ) = cos(mθ), the interface
velocity is in phase with h(θ) and will circularize the curve. This was evidenced in Fig. 2.1
where our choice r0 = 0.5 lead to an overall circularization of a perturbed curve. However
for larger values of r0, the curve grew and distorted from a circle. Overall then, (3.25) show
that curves of low curvature can grow because of radial gradients in the steady-state. Im-
mediately we see from Principal Result 3.2 that introducing sinusoidal perturbations induces
contributions of each perturbed mode to the inhibitor solution. However, any modes, aside
from n = 0, cannot describe vertical shifting from the unperturbed value U00 and as such, we
must consider second-order perturbations at O(ε2).

At O(ε2) the base problem is the same as (3.14), but is now subject to the new jump
conditions

[u2]r0 =− h(θ)

[
∂u1

∂r

]
r0

− [h(θ)]2

2

[
d2u0

dr2

]
r0

, (3.26a)

[
∂u2

∂r

]
r0

=
1

2

[h′(θ)]2

r2
0

[
du0

dr

]
r0

+
h′(θ)

r2
0

[
∂u1

∂θ

]
r0

− h(θ)

[
∂2u1

∂r2

]
r0

− 1

2
[h(θ)]2

[
d3u0

dr3

]
r0

− Ā0

U2
00

(
¯̄A1U

2
01 + ¯̄A0U00U02

)
, (3.26b)

15



SIAM J. APPLIED DYNAMICAL SYSTEMS c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

with

¯̄A1 =
1

2
β(β − 1) +

qb0(2q − 1)

A0

dA0

db
+

2q2b20
A0

d2A0

db2
. (3.27)

Using (3.17) for (3.26a), together with (3.18) and Principal Result 3.2, we calculate that

[u2]r0 = [h(θ)]2
Ā0

2r0
+ h(θ)

Ā0
¯̄A0

U00
U01 ,

[
∂u1

∂θ

]
r0

= Ā0h
′(θ) . (3.28)

Then, upon using the Wronskian relationship defined by (3.16), together with the one defined
by

W1,n(r) ≡ d

dr
In

(
r√
D

)
d2

dr2
Kn

(
r√
D

)
− d

dr
Kn

(
r√
D

)
d2

dr2
In

(
r√
D

)
=
n2

r3
+

1

Dr
, (3.29)

we have that [
∂2u1

∂r2

]
r0

=

∞∑
n=−∞

(
Ā1n

(
n2

r2
+

1

D

)
− B̄1n

r0

)
exp(inθ) , (3.30a)[

d3u0

dr3

]
r0

=− Ā0

(
2

r2
0

+
1

D

)
. (3.30b)

Then, by using (3.18), we can simplify (3.30a) to[
∂2u1

∂r2

]
r0

=
Ā0

r2
0

(
h(θ)− h′′(θ)

)
+
Ā0

D
h(θ) +

Ā0
¯̄A0

U00r0
U01 . (3.31)

Combining this expression with (3.28) and (3.30), we obtain that (3.26b) simplifies to[
∂u2

∂r

]
r0

=
Ā0[h′(θ)]2

2r2
0

+
Ā0

r2
0

h(θ)h′′(θ)− Ā0

2D
[h(θ)]2− Ā0

¯̄A0

U00r0
h(θ)U01−

Ā0

U2
00

(
¯̄A1U

2
01 + ¯̄A0U00U02

)
.

(3.32)
Next, in order to analyze the solution to this problem for u2 using an eigenfunction ex-

pansion, we need to treat products of infinite sums in a delicate way. Specifically, we will
assume that the perturbations h(θ) are such that their Fourier series terminate, i.e. they are
composed of a finite set of modes. This leads to the following definition:

Definition 3.2. Assume two functions f(θ) and g(θ) have a Fourier series given by

f(θ) ∼
∞∑

n=−∞
an exp(inθ) , g(θ) ∼

∞∑
m=−∞

bm exp(imθ) ,

and that there exists some N and M such that |an| = 0 when |n| > N and |bm| = 0 when
|m| > M . If this is the case then we can define the product of these functions as

f(θ)g(θ) =
∞∑

m=−∞

∞∑
n=−∞

anbm exp(i(n+m)θ) .
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This definition allows us to use the finite series product for handling the infinite sums
which is in contrast to the Cauchy-product typically used. Using Definition 3.2 allows us
express the inhibitor solution at O(ε2) as a series expansion

u2(r, θ) =

∞∑
k=−∞

V2k(r) exp(ikθ) , U02(θ) =

∞∑
k=−∞

U2k exp(ikθ) , (3.33)

which leads to the following result for the solution:
Principal Result 3.3. Consider a series solution to (3.14) given by (3.33) with jump condi-

tions (3.28) and (3.32) in place of (3.14b) and (3.14c) respectively. Only modes k which exist
as products of modes n at O(ε) will produce non-zero components. As such, there exists a set
Nk for each valid k containing the integer modes n that produce mode k. Using this notation,
we rewrite the jump conditions (3.28) and (3.32) as

[V2k]r0 =
Ā0

2r0

∑
n∈Nk

HnHk−n +
Ā0

¯̄A0

U00

∑
n∈Nk

HnU1k−n ≡ Ā2k , (3.34a)

[
dV2k

dr

]
r0

=− Ā0

2r2
0

∑
n∈Nk

n(k − n)HnHk−n −
Ā0

r2
0

∑
n∈Nk

(k − n)2HnHk−n

− Ā0

2D

∑
n∈Nk

HnHk−n −
Ā0

¯̄A0

U00r0

∑
n∈Nk

HnU1k−n

− Ā0

U2
00

 ¯̄A1

∑
n∈Nk

U1nU1k−n + ¯̄A0U00U2k

 ≡ B̄2k . (3.34b)

With the jump conditions defined in this way, the solution V2k is decomposed as

V2k(r) = Ā2kr0G1,k(r; r0)− B̄2kr0G0,k(r; r0) , (3.35)

where G0,k and G1,k are defined by (3.21). Using (3.13a), we have that

U2k =

1

2

d2u0

dr2

∑
n∈Nk

HnHk−n +
∑
n∈Nk

Hn
d

dr
V1k−n + V2k


r0

, (3.36)

which we can once again compute by taking the average to yield

U2k =

(
1− ¯̄A0

G0,k(r0; r0)

G0(r0; r0)

)−1
(
Ā0r0

2

〈
d2G0

dr2

〉
r0

∑
n∈N

HnHk−n

+r0

∑
n∈N

Hn

(
Ā1k−n

〈
dG1,k−n

dr

〉
r0

− B̄1k−n

〈
dG0,k−n

dr

〉
r0

)
+r0Ā2k 〈G1,k〉r0 − r0B̃2kG0,k(r0; r0)

)
, (3.37)
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where B̃2k = B̄2k + Ā0
¯̄A0

U00
U2k. Furthermore, the unsigned curvature at O(ε2) is

κ2 =
4h(θ)h′′(θ) + [h′(θ)]2 + 2[h(θ)]2

2r3
0

. (3.38)

Therefore, expanding (2.13d) to O(ε2) generates a velocity perturbation V02 such that

V02 =κ2 +
q

2

((
U2

01

U2
00

− U02

U2
00

)
Ĥ0 −

U01

U2
00

dĤ0

db
b1

+
1

U00

(
1

2

d2Ĥ0

db2
b21 +

dĤ0

db
b2

))〈
du0

dr

〉
r0

+
q

2U2
00

(
U00

dĤ0

db
b1 − U01Ĥ0

)
(
h(θ)

〈
d2u0

dr2

〉
r0

+

〈
∂u1

∂r

〉
r0

)
− qĤ0

2U00

(
−1

2
[h(θ)]2

〈
d3u0

dr3

〉
r0

−h(θ)

〈
∂2u1

∂r2

〉
r0

+
h′(θ)

r2
0

〈
∂u1

∂θ

〉
r0

+
[h′(θ)]2

2r2
0

〈
du0

dr

〉
r0

−
〈
∂2u2

∂r2

〉
r0

)
, (3.39)

where we have defined b1 and b2 as

b1 ≡ 2qU2q−1
00 U01σ, b2 ≡ qU2q−2

00

(
(2q − 1)U2

01 + 2U00U02

)
σ . (3.40)

To illustrate the summing set Nk, suppose that h(θ) = cos(6θ). There are two modes at
O(ε) of n = −6 and n = 6. Various quadratic combinations of these modes leads to k = −12,
k = 0, and k = 12 as the only possible modes that can occur at O(ε2). Therefore, if k = −12
then N−12 = {−6}, while for k = 0 then the set is N0 = {−6, 6}.

We can confirm Principal Results 3.2 and 3.3 by comparing to a numerically computed
solution. The numerical solutions are generated from the framework derived in [26] and
discussed in §2. We perform such simulations with σ = 10, R = 1, D = 1, exponent set
(2, 1, 2, 0), and r0 = 0.5 with perturbation h(θ) = cos(6θ) and ε = 0.01. Fig. 3.4 shows the
corrections at each order of ε for U0 and modified saturation parameter b, while Fig. 3.5 shows
the corrections at each order of ε for the velocity, V . The asymptotically predicted corrections
of Principal Results 3.2 agree favourably and indeed demonstrate the need for both expansions
to see the introduction of sinusoidal perturbations and the vertical shifts that are induced at
O(ε2).

4. Linear Stability of the Ring Solution. The numerical methodology in [26] generates
numerical solutions to (2.13) but does not address the question of the linear stability of
interface solutions to the RD system to any transverse perturbations. In particular, it has
been shown for stripe solutions (cf. [17]), and for ring solutions with a particular exponent
set (cf. [25]), that a certain class of eigenfunctions can lead to breakup instabilities for which
the numerical solutions to (2.13) no longer characterize the slow dynamics of an interface.
As such, it is important to investigate when instabilities of this nature could arise. For the
stability analysis, we explicitly consider the base solution ve and ue to be asymptotically given
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Figure 3.4: Asymptotic corrections compared to full numerical simulations of the curve in-
hibitor value U0 and the corresponding saturation value b from solving (2.13) for a perturbed
circle with radius r = r0 +εh(θ) and h(θ) = cos(6θ). Here we take the exponent set (2, 1, 2, 0),
R = 1, D = 1, r0 = 0.5, σ = 10, and ε = 0.01.

by the radially symmetric solution (3.1) described in Principal Result 3.1. Periodicity in θ
dictates that the angular mode m for the perturbation is an integer on (−∞,∞). In our
calculation we will allow m to be a positive continuous parameter where we can ignore the
complex conjugate without loss of generality.

Since the quasi-steady equilibrium evolves on the slow timescale T = ε2t, we cannot use a
standard linear perturbation expansion in time. Instead we use a WKB ansatz (cf. [3]) of the
form

v ∼ ve + Φ

(
r − r0

ε

)
eimθ+ϕ(T )/ε2 , u ∼ ue +N(r)eimθ+ϕ(T )/ε2 , (4.1)

where the perturbation in the activator is explicitly made a function of the inner variable only
since it will remain localized. Note that, rather than a time dependent amplitude and phase,
we place the sole time dependence in the argument of the exponential, as is typical in WKB
theory. The interesting impact of the WKB formulation on the stability is the introduction
of the integral of the eigenvalue rather than the eigenvalue itself. Owing to the slow time-
dependence of the ring solution, delayed transitions to instability, similar to those studied in
[39] for the simpler case of 1-D spike solutions, should also occur for ring solutions. Although
we will not study such delayed bifurcation effects here for ring solutions, our WKB formulation,
which incorporates a historical memory into the linearized system, can in principal be used
to analyze this behavior.

We substitute (4.1) into (1.1) taking the GMS forms (1.7) for g(u, v) and f(u, v) and
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Figure 3.5: Asymptotic corrections compared to full numerical simulations of the curve veloc-
ity V0 from solving (2.13) for a perturbed circle with radius r = r0 +εh(θ) and h(θ) = cos(6θ).
Here we take exponent set (2, 1, 2, 0), R = 1, D = 1, r0 = 0.5, σ = 10, and ε = 0.01.

linearize the resulting equations. The leading order stability problem for Φ is

L0bΦ− qU q−1
0

w2

(1 + bw2)
N(r0) =

(
λ+

ε2m2

r2
0

)
Φ , (4.2a)

where L0bΦ ≡ Φρρ − Φ +
2w

(1 + bw2)2
Φ, ϕ =

∫ T

0
λ(s) ds . (4.2b)

We note that if λ were time-independent then ϕ/ε2 = λt, as expected. Classically, one
often takes ϕ = λt regardless of the slow time dependence in the base operator. The WKB
method used here more accurately reflects this time dependence but quite often we are only
concerned about qualitative eigenvalue information such as regions of positivity and the overall
formulation doesn’t impact this significantly. Using the Dirac measure, the perturbation to
the inhibitor satisfies

1

r
(rNr)r −

m2

r2
N − θ2

λN =

(
sUβ−1

0

D
N(r0)A− oUβ−q0

D

∫ ∞
−∞

wo−1Φ dρ

)
δ(r − r0) . (4.3)

Here θλ =
√

1+τλ
D , where we have chosen the principal branch of the square root. We have

the following result concerning the solution to (4.3):

Principal Result 4.1. The solution to (4.3) subject to Nr(0) = Nr(R) = 0 is

N(r) = r0

(
oUβ−q0

D

∫ ∞
−∞

wo−1Φ dρ− sUβ−1
0

D
N(r0)A

)
Ḡ0,m(r; r0) , (4.4)
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where

Ḡ0,m(r; r0) =

{
J̄m,1(θλr)J̄m,2(θλr0), 0 ≤ r ≤ r0

J̄m,1(θλr0)J̄m,2(θλr), r0 ≤ r ≤ R
, (4.5a)

J̄m,1(θλr) = Im (θλr) , J̄m,2(θλr) = ᾱmIm (θλr) +Km (θλr) , (4.5b)

ᾱm =

(
Km+1 (θλR)− m

θλR
Km (θλR)

m
θλR

Im (θλR) + Im+1 (θλR)

)
. (4.5c)

Furthermore, evaluating (4.4) at r = r0 and using (3.5) to simplify the resulting expression,
we get

N(r0) = U1−q
0

χm
q

∫∞
−∞w

o−1Φ dρ

A
, χm =

1

Cm
≡ qo

(
s+

J0,1(r0)J0,2(r0)

J̄m,1(θλr0)J̄m,2(θλr0)

)−1

.

(4.6)

The structure of the eigenvalue problem (4.2a) is such that Φ has both even and odd
solutions. Since w is even, then by (4.6) it follows that N(r0) can only vanish whenever Φ
is odd, or when Φ is even with multiple nodal lines. When this happens the eigenvalue, λ in
(4.2a), becomes part of the spectrum of the local operator L0b in (4.2b). The eigenvalues of
this operator are characterized by the following lemma adapted from Theorem 5.4 of [2]:

Lemma 4.1. Assume that h(w) is such that there is a unique solution to the homoclinic
orbit problem

wyy − w + h(w) = 0 , w′(0) = 0 , w → 0 as |y| → ∞ , w(0) > 0 ,

(for the precise conditions see Lemma 2.1). Then, the corresponding local eigenvalue problem

LΦ = Φyy − Φ + h′(w)Φ = λΦ , Φ→ 0 as |y| → ∞ ,

has a discrete simple positive eigenvalue λ0 > 0 associated with a positive eigenfunction Φ0.
There is also a discrete eigenvalue λ1 = 0 with the eigenfunction Φ1 = w′. Furthermore when
h′(0) is finite, a continuous spectrum exists on Re(λ) ≤ −1 + h′(0) < 0 with Im(λ) = 0.

A corollary to Lemma 4.1 is that if other discrete eigenvalues λj , j > 1 exist, then
−1 + h′(0) < λj < 0. We therefore have two possible cases that lead to instability, i.e. to an
eigenvalue with Re(λ) > 0. Either Φ is even and of one sign so that N(r0) does not vanish, or
Φ is odd (to leading order) and instabilities emerge from λ = 0. We classify these eigenvalues
in a similar manner to [17] whereby the even eigenfunctions that satisfy Re(λ) > 0 are called
breakup instability modes, and they evolve on an order-one time scale, which is fast relative
to the slow dynamics. In contrast, the odd eigenfunctions, that satisfy Re(λ) ≈ 0, are called
zig-zag instability modes, and they evolve on a slow time scale. We will analyze each of these
instabilities, recalling that breakup instabilities are the most delicate in terms of studying
(2.13).
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4.1. Breakup Instabilities of a Ring. When N(r0) 6= 0, where N(r0) is defined in (4.6),
then (4.2a) transforms into the following nonlocal eigenvalue problem (NLEP):

Principal Result 4.2. Let ε→ 0 and assume that
∫∞
−∞w

o−1Φ dρ 6= 0. Then, Φ satisfies the
NLEP

L0bΦ−
χm
A

w2

(1 + bw2)

∫ ∞
−∞

wo−1Φ dρ = µΦ , where µ ≡ λ+
ε2m2

r2
0

, (4.7)

where we explicitly include terms ε2m2 to account for large wavenumber perturbations. Since
L0b is self-adjoint, we can alternatively readily show that the unstable eigenvalues are roots in
Re(λ) > 0 of gm(λ) = 0, where

gm(λ) ≡ Cm(λ)− f(µ) , f(µ) ≡
∫∞
−∞w

o−1ψ dρ

A
, ψ = (L0b − µ)−1 w2

(1 + bw2)
. (4.8)

Here Cm(λ) is given by (4.6).
This operator splitting approach is the same technique used to analyze the NLEP for a

straight stripe solution in Principal Result 2.2 of [17]. We start with the case σ = b = 0 where
L0Ψ = L00Ψ = νΨ. From [8, 23], the continuous spectrum exists on Re(ν) < −1 and the
discrete eigenvalues and eigenfunctions satisfy,

ν0 =
5

4
, Ψ0 = w3/2 ; ν1 = 0 , Ψ1 = w′ ; ν2 = −3

4
, Ψ2 =

(
1− 5

6
w

)
w1/2 . (4.9)

The analysis of the NLEP (4.7) when σ = 0 is very similar to that in Appendix A of [17].
Specifically, it relies on the following properties of f(µ), as rigorously established in Proposition
3.1 and 3.5 of [40]:

f ′(µ) > 0 , µ ∈ [0, ν0) ; f ′′(µ) > 0 , µ ∈ [0, ν0) ; f(µ) < 0 , µ ∈ (ν0,∞) , (4.10)

f(µ) ∼ 1 +

(
1− 1

2o

)
µ+ κcµ

2 as µ→ 0 ; κc ≡
∫∞
−∞w

o−1L−3
0 (w2) dρ

A
. (4.11)

While [40] only demonstrates the properties for o = 2 and o = 3, they can be extended
numerically to general exponents. We also have the following properties for Cm in (4.6),
which are readily established through numerical and asymptotic investigation of the modified
Bessel functions In and Kn:

C0(0) = 1/2 ,
∂Cm
∂m

(0) > 0 ,
∂Cm
∂λ

> 0 ,
∂2Cm
∂λ2

< 0 , (4.12)

as well as Cm = O(m) for m� 1.
First we establish the following result regarding the neutral stability points:
Proposition 4.2. There exists two neutral stability points m = mb− and m = mb+ that

satisfy gm(0) = 0. The lower threshold mb− satisfies, to leading order, the implicit relation

Jmb− ,1(r0)Jmb− ,2(r0) =
J0,1(r0)J0,2(r0)

β
, β = qo− s , (4.13)
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while the upper threshold mb+ is given asymptotically for ε� 1 by

mb+ ∼
r0
√
ν0

ε
− qoB

4ν0J0,1(r0)J0,2(r0)
; B =

∫∞
−∞w

2Ψ0 dρ
∫∞
−∞w

o−1Ψ0 dρ

A
∫∞
−∞Ψ2

0 dρ
. (4.14)

Here ν0 and Ψ0 are the principal eigenpair of the local operator, as given in (4.9).
Proof. The neutral stability point mb− is calculated by simply satisfying gm(0) = 0

and using the monotonicity properties (4.12) to ensure its uniqueness. The second neutral
stability point, mb+ , utilizes an asymptotic expansion in (4.7) of the form Φ ∼ ε−1Φ0 + Φ1

and m ∼ ε−1m0 +m1, to generate the problems

L0Φ0 =
m2

0

r2
0

Φ0, L0Φ1 −
m2

0

r2
0

Φ1 =
qow2

2J0,1(r0)J0,2(r0)m0A

∫ ∞
−∞

wo−1Φ0 dρ+
2m0m1

r2
0

Φ0 .

(4.15)

The first has solution Φ0 = Ψ0 and m2/r2
0 = ν0, which becomes a homogeneous solution for

the second problem for Φ1. Invoking a solvability condition generates the required correction
term m1.

The eigenvalue analysis now follows identically as in Appendix A of [17]. Specifically, in
regards to complex eigenvalues, we can use a winding number criterion (cf. [36]) to count the
number of eigenvalues N in the right-half plane Re(λ) > 0. This yields

N =
5

4
+

1

π
[arg gm]ΓI , 0 < m <

r0
√
ν0

ε
; N =

1

4
+

1

π
[arg gm]ΓI , m >

r0
√
ν0

ε
, (4.16)

where ΓI is the positive imaginary axis traversed downwards. Overall, we have the following
proposition regarding eigenvalues to (4.7) when there is no saturation:

Proposition 4.3. For 0 ≤ m < mb−, there are no eigenvalues with positive real part when τ
is sufficiently small and two complex eigenvalues with positive real part when τ is sufficiently
large. These eigenvalues undergo a Hopf bifurcation when τ = τHm . As τ increases further,
the complex conjugate pair coincide on the real axis and become purely real. The neutral
stability point at m = mb− is the largest eigenvalue while τ < τ∗mb−

at which point there exists
some λτ > 0 that is purely real. The transition value τ = τ∗mb−

occurs at m = mb− when

gm(0) = dgm
dλ (0) = 0. For mb− < m < mb+ there exists exactly one real positive eigenvalue for

all τ and when m > mb+ there are no eigenvalues with positive real part for all τ .
Proof. The proof follows immediately from Appendix A of [17] with the neutral stability

points redefined by Proposition 4.2.
A unique aspect of the ring problem that is not present in the stripe case is the curvature

term r−1
0 , which modifies the stability boundaries. This is most readily seen in the expression

for mb+ , (4.14) where the upper instability boundary grows with increasing circle radius
(decreasing curvature). The implication of this qualitative result is that higher curvature
circles are less susceptible to high wave mode breakup instabilities than are smaller curvature
circles. Table 4.1 shows the values of mb− and mb+ for various choices of r0 corresponding to
the exponent set (2, 1, 2, 0) with D = 1, R = 1, and τ = 0. We compute mb+ using (4.14)
and mb− by using a Newton’s Method solver on (4.13). The lower instability band mb− also
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r0 mb− τ∗mb−
mb+

0.01 0.1375 5.0456 0.3629

0.10 0.2266 2.9539 4.3329

0.25 0.3027 2.2126 10.9972

0.50 0.4003 1.8376 22.1376

0.75 0.4920 1.8736 33.3084

0.90 0.5520 2.0969 40.0231

Table 4.1: Breakup instability boundary limits mb− and mb+ for various values of r0 subject
to the exponent set (p, q, o, s) = (2, 1, 2, 0), D = 1, R = 1, and τ = 0.

increases with decreasing curvature but to a lesser extent as it remains an O(1) quantity.
Overall, the breakup instability band is suppressed as the curve shrinks. In Table 4.1 we also
compute τ∗mb−

, the value of τ for which the lower instability point vanishes and this decreases
with decreasing curvature, which implies that smaller circles maintain the neutral stability
point for a larger range of τ . All of this behaviour supports the breakup stabilizing effects
that curvature has on the circle. We expect that a similar qualitative result would likely be
true for general curves, although the analysis of this is an open problem.

4.1.1. The Effect of Saturation on the Breakup Instability Band. When we add satura-
tion, the upper neutral stability point (4.14) of Proposition 4.2 still satisfies mb+ ∼ r0

√
ν0(b)/ε

to leading order where ν0(b) is the positive discrete eigenvalue to the operator L0b given by
(4.2b). Such a unique positive discrete eigenvalue exists because the operator can still be clas-
sified by Lemma 4.1, even in the presence of saturation. We start with an important lemma
regarding the critical saturation value bc,

Lemma 4.4. Consider the singular activator limit (2.1) with the saturated GM formulation
(2.3). When 0 ≤ b < bc with bc given by (2.6) then a homoclinic orbit exists via Lemma 2.1.
When b = bc a heteroclinic orbit, ŵ, exists with

lim
η̂→−∞

ŵ = 0 , lim
η̂→∞

ŵ = wm(bc) , (4.17)

where wm(bc) is given by (2.6).

The proof of this lemma rests on a continued analysis of Lemma 2.1 at the value b = bc
and recognizing that wm(bc) is a saddle point in the w′ versus w phase-plane. Considering
this new heteroclinic orbit, we are lead to the following result:

Principal Result 4.3. When b = bc in the saturated GM model, a heteroclinic orbit, ŵ exists
on 0 < ŵ < wm(bc) by Lemma 4.4 and ŵ′ is an even function with no nodal lines. As such, by
Lemma 4.1, ŵ′ is the principal eigenfunction of L0b with eigenvalue ν0(bc) = 0 and, therefore,
the upper neutral stability point m = mb+ tends to zero as b tends to bc.

When b = bc then ŵ is an equilibrium solution to (2.2). This heteroclinic orbit also has a
translational invariance and therefore differentiating (2.2) with respect to the space variables
yields L0bŵ

′ = 0 and therefore zero is an eigenvalue of the operator. Since ŵ is an even
function with no nodal lines then it is the principal eigenvector and hence zero is the principal
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eigenvalue. In Fig. 4.1, we numerically verify that the principal eigenvalue ν0(b) tends to zero
as b→ b−c . It is an open problem to theoretically predict the explicit rate at which ν0(b) tends
to zero as b→ b−c .
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Figure 4.1: Computation of the principal eigenvalue of L0b given by (4.2b) as the saturation
b is increased.

The entire classification of the breakup instability regime rested upon having the principal
eigenvalue of the NLEP satisfy Re(ν0) > 0 so that there was a finite band mb− < m < mb+

where a real positive eigenvalue existed. However, since this eigenvalue tends to zero at critical
saturation, it is reasonable to expect that this can entirely quench the breakup instability
behaviour. Indeed, we observe this behaviour numerically in Fig. 4.2 where we plot the
principal eigenvalue to the NLEP (4.7) versus m for a range of b values and see that the entire
breakup spectrum disappears as we vary saturation. From this plot, we observe that even
when b ≈ 0.2 < bc there is no breakup instability band for m. It is important to emphasize
that Principal Result 4.3 nor Fig. 4.2 should be taken as a proof that the breakup instability
can always be suppressed. Indeed for fixed b then as ε → 0 there will always be an ε∗ such
that for ε < ε∗ a breakup instability band will form. However, in our numerical computations
we consider ε as a small but fixed parameter and for any fixed ε there will be a range of b
values for which mb+ � 1 suggesting the disappearance of the breakup band. The numerical
experiments in §5 support this conjecture.

4.2. Zig-Zag Instabilities of a Ring. When N(r0) = 0, the spectrum of (4.2a) reduces to
eigenfunctions that belong to L0b. Following Lemma 4.1, instability can occur when Φ ∼ wρ
and µ = λ + ε2m2/r2

0 ∼ 0 to leading order. We first remark that if m = O(ε−1) then µ = 0
implies Re(λ) < 0 and so instability can only occur where m = O(1). Secondly, unlike the
study of breakup instabilities, which followed from an analysis similar to [17], the analysis here
for zig-zag instabilities is both novel and intricate owing to the radial geometry. In particular,
Appendix B of [17] for the zigzag instabilities associated with a straight, planar, stripe solution
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Figure 4.2: Computation of eigenvalues of the NLEP for b > 0 and τ = 0 as the mode m is
varied. In all cases (2, q, o, s) = (2, 1, 2, 0), ε = 0.025, R = 1, r0 = 0.5, and D = 1.

relies on commutation of the L0 operator with differentiation, which does not extend to our
problem with radial geometry due to the presence of the curvature r−1 term. We therefore
must use a rather intricate matched asymptotic analysis to analyze zigzag instabilities of a
ring. This method could also be applied to the stripe case in [17] and as such is a more general
approach to the analysis of zig-zag instabilities.

Since N(r0) ∼ 0 to leading order, we rescale N(r) = εN̂ , and let Ñ(ρ) = N̂(r0 + ερ). We
then introduce the following expansion into the spectral problem:

Φ ∼ wρ + εΦ1 + ε2Φ2 + . . . , Ñ(ρ) ∼ Ñ0 + εÑ1 + . . . . (4.18)

This leads to our next result regarding eigenvalues at O(ε):
Proposition 4.5. Consider N(r) = εN̂ so that N(r0) = 0 to leading order in (4.2a). Expand

Φ and Ñ(ρ) = N̂(r0 + ερ) as in (4.18). Then λ = o(ε).
Proof. Let λ = ελ1. We start by expanding the equilibrium states as

ṽe ∼ U q0w + εṽ1 + ε2ṽ2 + . . . , ũe ∼ U0 + εũ1 + ε2ũ2 + . . . . (4.19)

Upon using (2.7) for the GMS kinetics (1.7), and converting to polar coordinates, we obtain
that ṽ1 and ũ1 satisfy

L0bṽ1 = −U
q
0

r0
wρ + qU q−1

0

w2

(1 + bw2)
ũ1 − U q0

dr0

dT
wρ , (4.20a)

ũ1ρρ = − 1

D
Uβ0 w

o . (4.20b)

If we differentiate (4.20a) with respect to ρ and rearrange the resulting expression we get

a1wρ = − 1

U q0
L0bṽ1ρ −

wρρ
r0

+
q

U0

w2

(1 + bw2)
ũ1ρ −

dr0

dT
wρρ , (4.21)
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where we have defined a1 by

a1 ≡
2

U0(1 + bw2)2

(
(1− 3bw2)

U q−1
0 (1 + bw2)

ṽ1 − qwũ1

)
. (4.22)

In this derivation we used the simplification

(L0by)ρ = L0byρ + 2
(1− 3bw2)

(1 + bw2)3
wρy . (4.23)

We now proceed with the eigenvalue calculation by substituting the expansion (4.18) into
(4.2a) to obtain that Φ1 satisfies

L0bΦ1 =− wρρ
r0
− wρρ

dr0

dT
− a1wρ +

qU q−1
0

1 + bw2
w2Ñ0 + λ1w , (4.24)

which, after using (4.21), reduces to

L0bΦ1 =
1

U q0
L0bṽ1ρ +

q

U0

w2

(1 + bw2)
F̃0 + λ1wρ , F̃0 = U q0 Ñ0 − ũ′1 . (4.25)

By Lemma 4.1, wρ is a homogeneous solution to this problem, which then leads to the solv-
ability condition

q

U0

∫ ∞
−∞

w2

(1 + bw2)
F̃0wρ dρ+ λ1

∫ ∞
−∞

w2
ρ dρ = 0 , (4.26)

where we have used the fact that L0b is a self-adjoint operator in order to remove the first
term. To show that the first integral in (4.26) vanishes, we need to study the problem F̃0ρ =
U q0 Ñ0ρ − ũ1ρρ which we have differentiated from (4.25) since it is natural to use (4.20b) for
ũ1ρρ. For Ñ , we consider the linearization of (1.1) via (4.1) in the inner region, i.e. we take
(4.3) without the using the Dirac measure reduction. This yields,

ε3τÑλ1 =
D

(r0 + ερ)
((r0 + ερ)Ñρ)ρ − ε2

Dm2

(r0 + ερ)2
Ñ − ε2Ñ +

oṽo−1
e

ũe
s Φ− ε sṽ

o
e

ũs+1
e

Ñ , (4.27)

and therefore, using the expansion (4.18), we get Ñ0ρρ = −oUβ−q0
D wo−1wρ. Combining this

relation with (4.20b) yields F̃0ρ = 0, which shows that F̃0 is constant. Because F̃0 is constant,
the first integral in (4.26) is odd and, consequently, vanishes. Therefore, λ1 = 0 and λ� O(ε)
as stated.

We now use the same techniques at O(ε2) to show that eigenvalues are non-vanishing at
this order. To do this we will require some key results. Firstly, we have the following result
regarding the equilibrium solution at O(ε2):

Principal Result 4.4. Consider ve and ue which satisfy (1.5) subject to GMS functions (1.7).
If we pose an expansion as (4.19) then v1 and u1 are given by (4.20), while v2 and u2 satisfy,
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L0bṽ2 =− ṽ1ρ

r00
+
ρU q0
r2

00

wρ −
dr00

dT
ṽ1ρ −

dr01

dT
U q0wρ −

U q−2
0 q(q + 1)

2

w2

(1 + bw2)
ũ2

1 ,

+
2q

U0

w

(1 + bw2)2
ũ1ṽ1 −

1

U q0

(1− 3bw2)

(1 + bw2)3
ṽ2

1 + U q−1
0 q

w2

(1 + bw2)
ũ2, (4.28a)

ũ2ρρ =
U0

D
− ũ1ρ

r00
+

1

D
Uβ−1

0 swoũ1 −
1

D
Uβ−q0 owo−1ṽ1 , (4.28b)

where r0 = r00 + εr01. Here, r00 replaces r0, i.e. it satisfies (3.7), while r01 will satisfy a
differential equation via an orthogonality condition with the homogeneous solution ṽ2 = wρ
which exists by Lemma 4.1. Differentiating (4.28a) and rearranging yields,

a2wρ = − 1

U q0
L0bṽ2ρ −

ṽ1ρρ

U q0 r00
+
wρ
r2

00

+
ρwρρ
r2

00

− 1

U q0

dr00

dT
ṽ1ρρ

− dr01

dT
wρρ + ā2ũ1ρ −

a1

U q0
ṽ1ρ +

q

U0

w2

(1 + bw2)
ũ2ρ , (4.29)

where a2 and ā2 are defined by

a2 ≡
2

U0(1 + bw2)2

(
(1− 3bw2)

U q−1
0 (1 + bw2)

ṽ2 − qwũ2

)
+
q(q + 1)

U2
0

w

(1 + bw2)2
ũ2

1

− 2q

U q+1
0

(1− 3bw2)

(1 + bw2)3
ũ1ṽ1 −

12bw

U2q
0

(1− bw2)

(1 + bw2)4
ṽ2

1 , (4.30a)

ā2 ≡
2q

U q+1
0

w

(1 + bw2)2
ṽ1 −

q(q + 1)

U2
0

w2

(1 + bw2)
ũ1 . (4.30b)

It may seem erroneous to introduce a radial correction r01 without any consideration to
matching conditions in earlier discussions. However, in terms of the outer problem, we are
only interested in the singular limit solution where all variables are O(1) and matching terms
generated by radial corrections furnish conditions on terms smaller than O(1). Next, we
establish the following result regarding the eigenfunction solution Φ1:

Principal Result 4.5. Consider Φ1, the eigenfunction correction at O(ε), which satisfies
(4.25) with λ1 = 0, as shown in Proposition 4.5. We rewrite this problem as

L0b

(
Φ1 −

1

U q0
ṽ1ρ −

qF̃0

U0
ψ

)
= 0 , L0bψ =

w2

1 + bw2
, (4.31)

which, by setting the homogeneous solution to zero without loss of generality, can be solved to
yield

Φ1 =
1

U q0
ṽ1ρ +

qF̃0

U0
ψ . (4.32)
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In [40], where b = 0, it was shown that ψ = w. If we operate L0b on this function when b 6= 0
then

L0bw =
w2

1 + bw2

(
1− bw2

1 + bw2

)
. (4.33)

Furthermore, if we recall the homoclinic orbit problem (2.2) and differentiate with respect to
the saturation parameter b then we get the result

L0bwb =
w4

(1 + bw2)2
. (4.34)

Combining this with (4.33), we have that

L0bw + 2bL0bwb =
w2

1 + bw2
, (4.35)

and therefore,

ψ = w + 2bwb , (4.36)

where we have, once again, set the homogeneous solution to zero without loss of generality.

Using Principal Results 4.4 and 4.5 while taking λ = ε2λ2, we have the following problem
for the eigenfunction correction at O(ε2):

L0bΦ2 =
q

U0

w2

(1 + bw2)
F̃1 +

(
ā2 −

q

U0

(
a1ψ +

1

r00
ψρ +

dr00

dT
ψρ

))
F̃0

+
1

U q0
L0bṽ2ρ +

(
λ2 +

m2 − 1

r2
00

)
wρ , (4.37a)

F̃1 =U q0 Ñ1 − ũ2ρ . (4.37b)

Since Φ2 = wρ is a homogeneous solution then the eigenvalue λ2 will be be determined by the
orthogonality condition

q

U0

∫ ∞
−∞

w2

(1 + bw2)
wρF̃1 dρ︸ ︷︷ ︸

I1

+F̃0

∫ ∞
−∞

ā2wρ −
q

U0

(
a1ψwρ +

1

r00
ψρwρ +

dr00

dT
ψρwρ

)
dρ︸ ︷︷ ︸

I2

+

(
λ2 +

m2 − 1

r2
00

)∫ ∞
−∞

w2
ρ dρ = 0 . (4.38)

We will evaluate each of these integrals separately. Beginning with I2, we use (4.21) and
integrate by parts to obtain that∫ ∞

−∞
a1ψwρ dρ =

∫ ∞
−∞
− 1

U q0
ψL0bṽ1ρ +

wρψρ
r00

+
q

U0
ψũ1ρ

w2

(1 + bw2)
+

dr00

dT
wρψρ dρ . (4.39)
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Using (4.30b) from Principal Result 4.4, integrating by parts, and using the self-adjoint prop-
erty of L0b, we also have that∫ ∞

−∞
ā2wρ dρ = − q

U q+1
0

∫ ∞
−∞

ψL0bṽ1ρ dρ+
q(q + 1)

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w2
ρ dρ . (4.40)

Here Ĥ is given in (3.7), while 〈duedr 〉r00 denotes the average value of the outer inhibitor
derivative solution across r = r00. Upon combining these two integrals we get

I2 =
q(q + 1)

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w2
ρ dρ− q2

U2
0

∫ ∞
−∞

ψũ1ρ
w2

(1 + bw2)
dρ

− 2q

U0

(
1

r00
+

dr00

dT

)∫ ∞
−∞

wρψρ dρ . (4.41)

For the last integral, we simplify it using (3.7), to finally obtain, after integrating several terms
by parts and by using (4.36) for ψ, that

I2 =
q

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w2
ρ dρ− bq2

U2
0

〈
due
dr

〉
r00

(
4

∫ ∞
0

w2wb
(1 + bw2)

dρ

+4

∫ ∞
0

∫ w

0

v4

(1 + bv2)2
dv dρ− 2Ĥ

∫ ∞
−∞

wρwbρ dρ

)
. (4.42)

We make one further simplification by differentiating Ĥ in (3.7) with respect to the saturation
b, and noticing that this is the final term in the brackets in (4.42). Therefore, we arrive at

I2 =
q

2U2
0

Ĥ
〈

due
dr

〉
r00

∫ ∞
−∞

w2
ρ dρ

(
1− 2bq

Ĥ
dĤ
db

)
. (4.43)

Finally, we consider I1 in (4.38) which, upon integrating by parts, is

I1 = −Ĥ
4

∫ ∞
−∞

w2
ρ dρ

(
F̃1ρ(∞) + F̃1ρ(−∞)

)
+

∫ ∞
−∞

(∫ ρ

0

∫ w(x)

0

v2

1 + bv2
dv dx

)
F̃1ρρ dρ ,

(4.44)

where the term in brackets of the second integral is an odd function of ρ. To see that this
integral vanishes, we require the following result regarding F̃1:

Principal Result 4.6. Consider F̃1 defined by (4.37b), and differentiate it twice with respect
to ρ to get

F̃1ρρ = U q0 Ñρρ − ũ2ρρρ . (4.45)

The third derivative of u2 is obtained by differentiating (4.28b) in Principal Result 4.4. We
obtain an equation for Ñ1 from an expansion to O(ε) of (4.27) using (4.18) to produce,

Ñ1ρρ =− Ñ0ρ

r00
+
sUβ−1

0

D
woÑ0 −

oUβ−q0

D
wo−1

(
ṽ1ρ

U q0
+
qF̃0

U0
ψ

)

+
osUβ−q−1

0

D
wo−1wρũ1 −

o(o− 1)Uβ−2q
0

D
wo−2wρṽ1 . (4.46)
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Combining this with the third derivative of ũ2 yields

F̃1ρρ =
Uβ−1

0

D
wo−1F̃0(sw − oψ) , (4.47)

which is an even function. Therefore, in (4.44),∫ ∞
−∞

(∫ ρ

0

∫ w(x)

0

v2

1 + bv2
dv dx

)
F̃1ρρ dρ = 0 . (4.48)

If we define a global function F = U q0 N̂ −
due
dr and combine I2 and I1, we have that (4.38)

simplifies to

λ2 =
1−m2

r2
00

− q

2U2
0

Ĥ

(
1− 2bq

Ĥ
dĤ
db

)〈
due
dr

〉
r00

F(r00) +
qĤ
2U0

(
U q0

〈
dN̂

dr

〉
r00

−

〈
d2ue
dr2

〉
r00

)
,

(4.49a)

F(r00) =U q0

〈
N̂
〉
r00
−
〈

due
dr

〉
r00

, (4.49b)

i.e. the eigenvalues can be written in terms of outer solutions to ue and N̂ . Here we have
used the fact that F̃ is a constant to leading order and therefore that F(r00) must be defined
and equal to the average value. Next, we establish the following result regarding the outer
inhibitor eigenfunction N̂ :

Principal Result 4.7. Approximating the localized radius r0 = r00 + εr01 ≈ r00, the problem
for the inhibitor eigenfunction in the outer region takes the form

1

r
(rN̂r)r −

m2

r2
N̂ − 1

D
N̂ +

1

ε2
o

D

vo−1
e

use
Φ

(
r − r00

ε

)
− 1

ε

s

D

voe
us+1
e

N̂︸ ︷︷ ︸
S1

= 0 . (4.50)

Taking ε→ 0, the terms S1 lead to singularities with Dirac measures of the form

S1 =
Uβ−q0

D
A δ′(r − r00) +

Uβ−q−1
0

D
F(r00)A

(
β +

2qb

A
dA
db

)
δ(r − r00) , (4.51)

with A, U0, and β given by (3.5), and F(r00) by (4.49b). Here δ′(·) is the Dirac measure of
order one. Substituting these singularities into (4.50) and integrating yields the jump relations

[N̂ ]r00 =− Ā0

U q0
, (4.52a)[

dN̂

dr

]
r00

=
Ā0

U q0 r00
− Ā0

¯̄A0

U q+1
0

U q0

〈
N̂
〉
r00

+
Ā0

¯̄A0

U q+1
0

〈
due
dr

〉
r00

, (4.52b)
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where Ā0 and ¯̄A0 are defined by (3.15). If we define

Z ≡ HnU
q
0 N̂ + V1n , Hn ≡

1

2π

∫ 2π

0
h(θ) exp(−inθ) dθ , (4.53)

where h(θ) is a smooth C2 periodic function and V1n is the solution in Principal Result 3.2,
it follows that the outer inhibitor eigenfunction problem can be recast as

1

r
(rZr)r −

n2

r2
Z − 1

D
Z = 0 , r 6= r00 ;

dZ
dr

∣∣∣
r=r00

= 0 , (4.54a)

[Z]r00 = 0 ,

[
dZ
dr

]
r00

= −Ā0
¯̄A0

U0
Z(r00) , (4.54b)

for which Z ≡ 0 is the only solution. Therefore, the outer inhibitor eigenfunction is simply

N̂ = − 1

HnU
q
0

V1n . (4.55)

The Dirac measure singular terms in Principal Result 4.7 arise in a similar fashion to (2.12)
after expanding Φ and N̂ = Ñ((r − r0)/ε) using (4.18) while the order one Dirac measure
term comes from recognizing that,

lim
ε→0

wo
(
r−r0
ε

)
ε

= Aδ(r − r0) , (4.56)

and then differentiating the result. Overall, we are lead to the final key result for the small
eigenvalues associated with the zig-zag mode, and which demonstrates the close connection
between these eigenvalues and the quasi-steady near-circle problem already discussed:

Principal Result 4.8. Consider a radially symmetric quasi-steady state given by (3.1) in
Principal Result 3.1 with dynamic condition subject to (3.7). Assume that these steady-states
are perturbed in the sense of (4.1) with Φ odd so that N(r) = εN̂ with N̂ given by (4.55) in

Principal Result 4.7. The leading order time expansion satisfies ϕ(T )/ε2 =
∫ T

0 λm(s) ds with

λm =
1−m2

r2
00

+
q

2HmU2
0

Ĥ

(
1− 2bq

Ĥ
dĤ
db

)〈
due
dr

〉
r00

(
〈V1m〉r00 +Hm

〈
due
dr

〉
r00

)

− qĤ
2HmU0

(〈
dV1m

dr

〉
r00

+Hm

〈
d2ue
dr2

〉
r00

)
. (4.57)

In terms of the near circular ring geometry r = r0 + εh(θ), ε � 1 which has leading order
correction given by Principal Result 3.2, the leading order velocity correction satisfies

V01 =
∞∑

m=−∞
Hmλm exp(imθ) . (4.58)
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We can see the eigenvalue-velocity relationship more naturally by looking at the activator
itself. If the eigenfunction is odd then the the maximum of Φ is not at ρ = 0. This maximal
location ρ∗ is how we define the localization curve for the activator v. Therefore, extending
back into the outer coordinates, the localization curve will be at the radius r = r0 + ερ∗(θ)
where

ṽρ(ρ
∗) = ṽeρ(ρ

∗) + Φρ(ρ
∗) exp

(
imθ +

∫ T

0
λm(s) ds

)
= 0 . (4.59)

Since this maximal radius is a function of the angle, we produce the aforementioned zig-zag
instability which creates a near circle perturbation. If we differentiate (4.59) with respect to
T then we can write the curve velocity as

dr

dT
=

dr0

dT
+ ε

dρ∗

dT
=

dr0

dT
+ ε

ṽeρ(ρ
∗)

ṽρρ(ρ∗)
λm(T ) , (4.60)

with dr0
dT given by (3.7). This explicitly shows the velocity-eigenvalue relationship when the

coefficient in front of λm is small.

5. Numerical Experiments in the Semi-Strong Regime. We now compute full numerical
solutions to (1.1) for the GMS nonlinearities (1.7) for the exponent set (2, 1, 2, 0). From an
analysis perspective, it is often convenient to scale the diffusivity to be unity and alter the
length scale. However, this is generally impractical when computing. Instead, we fix R = 1
and instead vary the diffusion coefficient. As we remarked in §3, these two formulations are
not invariant when saturation is included in that different values of σ are needed to generate
a given value of b. In our simulations, we fix b initially and adjust σ accordingly for a given
parameter regime. For the discretization, we take a uniformly spaced rectangular grid in (r, θ)
with a cell centered discretization. We supplement this with Neumann conditions at r = 1
and a compatibility condition that the derivative of each component vanish at r = 0. For
plotting purposes, we use a conformal map to a circle using Matlab’s pol2cart function.

To stimulate breakup instabilities, we will allow for random perturbations to the base
state when b = 0, which is sampled uniformly from [−δ, δ] with δ = 0.001. Even when
we allow saturation to be non-zero, we take the b = 0 base solution and allow the code to
evolve naturally to a quasi-equilibrium. When breakup patterns do occur, we expect that the
maximal eigenvalue will persist but as we discussed in Proposition 4.3, there is usually a range
of instability and, due to the random perturbations, modes clustered near the maximal mode
may persist. Therefore, when looking for breakup patterns, we perform a discrete Fourier
transform of the solution and isolate the modes that are within 95% of the maximal mode
(herein termed dominant modes). Since we are not concerned with translational effects, we
will filter the m = 0 mode. Since m are integers then we predict the number of spots, N , that
form to be N = mdom. When breakup patterns are not expected, we will instead consider a
perturbation of the form r = r0 + 0.02 cos(6θ). Since slow dynamics occur on the long time
scale O(ε−2), we will track the curve base radius r0 as the average r position which produces
the largest value of the activator, v, for each θ. If the ring breaks into spots, this value is
not reliable or relevant, and secondary instabilities intrinsic to spot patterns (cf. [19] for the
Schnakenburg model) can take effect.
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(a) t = 0, r0 = 0.5 (b) t = 5.32, r0 = 0.495

(c) t = 6.32, r0 = 0.493 (d) t = 10, r0 = 0.493

Figure 5.1: Experiment 1: Contour plot of the solution v to (1.1) with ring geometry at four
times with exponent set (2, 1, 2, 0). The parameter values are ε = 0.025, D = 1, τ = 0.1, and
σ = 0. The radius r0 is computed as the average value of the radial positions corresponding
to the maximum of v for each θ.

For our first experiment we take D = 1, R = 1, r0 = 0.5, and ε = 0.025. From Fig. 4.2,
when b = 0, we predict mdom = 4.80 and hence a four-spot breakup pattern. We plot the
results from the simulation in Fig. 5.1, and from the Fourier transform in Fig. 5.2, where we
see that m = 4 is one of the most dominant modes. The rather slow onset of the breakup can
be attributed to the unstable eigenvalues in Fig. 4.2 being below λ = 1.

For the remainder of our numerical experiments we will study the effect of saturation
(σ 6= 0), since by Proposition 4.3 it follows that without saturation breakup instabilities
will occur for all parameter values. For experiment 2, we take the same parameter set as
in experiment 1 but now take σ = 25. By (3.6), this corresponds to b = 0.1356 and, from
Fig. 4.2, we do not anticipate this low value of the saturation to stabilize the breakup pattern.
However, for this value of b the instability band is significantly diminished and so we expect

34



SIAM J. APPLIED DYNAMICAL SYSTEMS c© xxxx Society for Industrial and Applied Mathematics
Vol. xx, pp. x x–x

0 10 20
0

0.005

0.01

0.015
mdom=13 18

m

A
m
p
li
tu
d
e

0 10 20
−4

−2

0

2

4
t: 0

m

P
h
a
se

0 1 2 3 4 5 6 7
−4

−2

0

2

4
x 10

−5

θ

r0= 0.5

(a)

0 10 20
0

0.5

1

1.5

2
mdom=4 6

m

A
m
p
li
tu
d
e

0 10 20
−4

−2

0

2

4
t: 5.26

m

P
h
a
se

0 1 2 3 4 5 6 7
−5

0

5
x 10

−3

θ

r0= 0.49501

(b)

0 5 10 15 20
0

2

4

6
mdom=4 6

m

A
m
p
li
tu
d
e

0 5 10 15 20
−4

−2

0

2

4
t: 6.32

m

P
h
a
se

0 1 2 3 4 5 6 7
−0.02

−0.01

0

0.01

0.02

θ

r0= 0.49252

(c)

0 10 20
10

20

30

40

50
mdom=1 2 3 4 5 6

m

A
m
p
li
tu
d
e

0 10 20
−4

−2

0

2

4
t: 10

m

P
h
a
se

0 1 2 3 4 5 6 7
−0.2

−0.1

0

0.1

0.2

θ

r0= 0.49252

(d)

Figure 5.2: Experiment 1: Discrete Fourier transform of the solution v to (1.1) with ring
geometry at four times with exponent set (2, 1, 2, 0). The parameter values are ε = 0.05,
D = 1, τ = 0.1, and σ = 0. The upper left plot shows the amplitudes from the Fourier
transform while the upper right plot displays the phase. The bottom graphic in each panel
shows an inverse Fourier transform of a solution comprised of only the most dominant mode.

that the dominant mode for experiment 2, mdom = 4.68, should be more pronounced when
compared to experiment 1, since there is less clustering near the dominant mode. Since the
magnitude of the unstable eigenvalues with Re(λ) > 0 decreases as well, this should lead to
an increase in the time needed for breakup instability formation.

The results for experiment 2 are shown in Fig. 5.3, with the Fourier transform results given
in Fig. 5.4. We notice that these predicted results do indeed hold, as the onset of instability
is delayed when compared to Fig. 5.1 and the four spot breakup pattern is more pronounced.
We also notice that the ring is thicker owing to the wider homoclinic orbit solution that occurs
as b increases (cf. [17]). Finally, we note that since the initial radius, r0 = 0.5 is greater than
the equilibrium value predicted by (3.7) for the parameter set used in experiment 2, the ring
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(a) t = 10, r0 = 0.478 (b) t = 26.2, r0 = 0.438

(c) t = 37.3, r0 = 0.358 (d) t = 50, r0 = 0.243

Figure 5.3: Experiment 2: Contour plot of the solution v to (1.1) with ring geometry at four
times with exponent set (2, 1, 2, 0). The parameter values are ε = 0.025, D = 1, τ = 0.1, and
σ = 25. The radius r0 is computed as the average value of the radial positions corresponding
to the maximum of v for each θ.

radius should decrease. Indeed we see over the course of the experiment that r0 decreases to
r0 ≈ 0.48 before breakup up occurs.

For experiment 3, we once again take the same parameters as in experiment 1 but with
σ = 950. Then, from (3.6), we get b = 0.2010 and, by Fig. 4.2, we predict that there is
no longer any breakup instability. Therefore, after an initial transient period where the ring
thickens due to the saturation, the ring should remain relatively static with dynamics only
occurring due to (3.7). Once again, the initial radius r0 = 0.5 is greater than the equilibrium
value and so the radius should decrease. By Fig. 3.1, b increases as r0 decreases and this should
cause the ring to thicken even further. Indeed, all of this predicted behaviour is evidenced in
Fig. 5.5. The Fourier transform plot shown in Fig. 5.6 indicates that, while m = 4 remains
the dominant integer mode, the Fourier amplitudes do decrease over time, and so no breakup
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Figure 5.4: Experiment 2: Discrete Fourier transform of the solution v to (1.1) with ring
geometry at four times with exponent set (2, 1, 2, 0). The parameter values are ε = 0.025,
D = 1, τ = 0.1, and σ = 25.

instability occurs.

Finally, we consider two experiments where we illustrate our results regarding zig-zag
instabilities. For experiment 4 we take the parameters as in experiment 3 but now use, as
an initial perturbation, localization on a curve of radius r = 0.5 + 0.02 cos(6θ). We predicted
in Principal Result 3.2 that when r0 � 1, the velocity corrections are in phase with the
perturbations and should lead to curve stabilization. The full numerical results shown in
Fig. 5.7 do illustrate this circularization tendency of the curve. However, when r0 � 1, we can
no longer guarantee that curve perturbations will circularize. To illustrate this, in experiment
5 we take the parameter set D = 0.01, r0 = 0.5, and ε = 0.01. At first glance it looks like the
same behaviour could occur because the same computational value of r0 has been chosen as
in experiment 4. However, the diffusivity has changed and if we scale to D = 1, the equivalent
problem would be R = 10, r0 = 5, and ε = 0.1. Since varying the parameters does affect the
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(a) t = 0, r0 = 0.5 (b) t = 3.48, r0 = 0.478

(c) t = 12.2, r0 = 0.365 (d) t = 20, r0 = 0.213

Figure 5.5: Experiment 3: Contour plot of the solution v to (1.1) with ring geometry at four
times with exponent set (2, 1, 2, 0). The parameter values are ε = 0.025, D = 1, τ = 0.1, and
σ = 950. The radius r0 is computed as the average value of the radial positions corresponding
to the maximum of v for each θ.

saturation value σ, we need to take σ = 5910 in order to use b = 0.210, which is the value used
in experiment 3 and experiment 4. Fig. 5.8 show the results of this experiment where the curve
begins to accentuate the small angular perturbations causing overall curve lengthening that
destabilizes the circular solution. However, this new solution does not undergo any breakup
instabilities as it evolves. It is worth mentioning that the parameters chosen for experiment 5
are very similar to those chosen in Fig. 2.1c where the algorithm developed in [26] was used to
demonstrate curve buckling. Therefore, perhaps tuning the saturation parameter if necessary,
it is reasonable to expect that such a pattern would be stable to breakup based on experiment
5.
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Figure 5.6: Experiment 3: Discrete Fourier transform of the solution v to (1.1) with ring
geometry at four times with exponent set (2, 1, 2, 0). The parameter values are ε = 0.05,
D = 1, τ = 0.1, and σ = 950.
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(a) t = 0 (b) t = 4.92

(c) t = 15.76 (d) t = 20

Figure 5.7: Experiment 4: Contour plot of the solution v to (1.1) with perturbed ring geometry
of the form cos(6θ) at four times with exponent set (2, 1, 2, 0). The parameter values are
ε = 0.025, D = 1, τ = 0.1, and σ = 950. The radius r0 is computed as the average value of
the radial positions corresponding to the maximum of v for each θ.
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(a) t = 0 (b) t = 15

(c) t = 31 (d) t = 50

Figure 5.8: Experiment 5: Contour plot of the solution v to (1.1) with perturbed ring geometry
of the form cos(6θ) at four times with exponent set (2, 1, 2, 0). The parameter values are
ε = 0.01, D = 0.01, τ = 0.1, and σ = 5910. This corresponds to a scaling of the problem
D = 1, ε = 0.1, R = 10, and τ = 0.1. We take as an initial base radius r0 = 0.5 which scales
to r = 5 when D = 1. The radius r0 is computed as the average value of the radial positions
corresponding to the maximum of v for each θ.
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6. Discussion. We have analyzed a singularly perturbed RD system in the semi-strong
diffusion regime in two spatial dimensions where an activator species is localized to a closed
curve, while the inhibitor species exhibits global behaviour over the domain. In this semi-
strong asymptotic limit, we derived a novel moving boundary problem characterizing the
slow time evolution of the curve, which is defined in terms of a quasi steady-state inhibitor
diffusion field and its properties on the curve. Since this curve-evolution problem differs
significantly from the traditional mean curvature flows and quasi-static moving boundary
problems common in the field of materials science, in the companion article [26] a new nu-
merical methodology was developed to compute curve evolution from this new quasi-static
moving BVP.

The qualitatively interesting numerical results from this curve evolution problem, as shown
in Fig. 2.1, provided motivation for our detailed analysis of the existence, stability, and dy-
namics, of ring and near-ring solutions to the GMS model in radially symmetric geometries.
A brief summary of some of our major findings for this class of ring solutions is as follows:
We first showed that, in contrast to the saddle-node bifurcation structure for steady-state
ring solutions in the absence of activator saturation, the introduction of the saturation pa-
rameter admits a hysteresis effect between two stable branches of ring-equilibria, and that
ring-equilibria now exist for all ring radii. Secondly, we used our curve evolution problem to
show that, for the case of near-ring solutions, a perturbed ring will ultimately circularize if
the ring radius is small enough. In addition, a higher order theory was developed to deter-
mine the mean drift of a perturbed ring. Thirdly, in our stability analysis of a ring solution,
we showed that the breakup instability band, which triggers the disintegration of a ring into
localized spots, can disappear when the saturation parameter is sufficiently large. Therefore,
under sufficiently large activator saturation, the slow curve evolution problem should accu-
rately reflect corresponding behavior in the full PDE system. Finally, we provided a new
matched asymptotic expansion analysis to derive an explicit formula for the small eigenval-
ues of order O(ε2) of the linearization of the ring solution, which characterize any zig-zag
shape-deforming instabilities of the curve. The calculation of such eigenvalues is a new result,
and due to the non-zero curvature of the ring the analysis was considerably more intricate
than that for a straight stripe solution performed previously in [17]. Moreover, these eigen-
values were shown to agree with the normal velocity corrections to the perturbed near-ring
dynamics. Our full numerical results in §5 computed from the RD system for the GMS model
demonstrated predicted breakup modes in the absence of saturation, as well as the stabilizing
effect that saturation has on such patterns. These results also showed the predicted curve
circularization tendency for perturbed circles of small radii, and the initial development of
labyrinthian-shaped curve for perturbed rings of a large enough radius, or if the inhibitor
diffusion coefficient is appropriately scaled.

Finally, we briefly discuss four open directions that warrant further investigation. One
particular challenging problem is to derive and then analyze a nonlocal eigenvalue problem
(NLEP) whose spectrum will characterize the possibility of O(1) time-scale breakup insta-
bilities for an arbitrary closed curve in the semi-strong interaction limit. The formulation
of this linear stability problem would, at least for low wavelength perturbations, involve the
full numerical solution of a free boundary problem for the linearization of the inhibitor field.
We anticipate that a hybrid asymptotic-numerical approach would be required to analyze the
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spectrum of the NLEP. One of the challenges to this is that the boundary coordinate Laplace
operator is not separable and as such the eigenfunction expansion is cumbersome. However,
we showed for a ring that high curvature tends to stabilize the breakup instability pattern and
conjectured that this would hold for arbitrary curves. Taking a high curvature limit of the
boundary coordinate operator may simplify the resulting linear stability problem and allow
for an analytic insight to the upper stability band in a similar fashion to the ring problem.

A second open direction would be extending our analysis of near ring solutions to a related
problem of a circular curve in a domain with a boundary that is only slightly perturbed from a
circle. This would easily fit into the numerical curve tracking algorithm presented in [26] and
would provide an interesting case for comparison to the results presented here, particularly in
regards to geometry effects on stability threshold. A third interesting open problem would be
moving beyond the study of closed curve-evolution to the case where the curve is not closed,
but instead has endpoints, or tips, inside the domain. The analysis of localized pattern
formation in the presence of these stripe fragments is largely an open problem (see [1] for
one specific study). It would be interesting to develop an asymptotic approach to derive a
reduced dynamical description of tip dynamics through the asymptotic matching of the local
tip behavior to the global inhibitor field. Finally, it would be worthwhile to develop a hybrid
asymptotic-numerical approach to study localized pattern formation for the GMS model in
the weak interaction regime, where D = O(ε2). The numerical experiment shown in Fig. 5.8
gives a glimpse that rather intricate dynamics should occur in this regime. With this scaling,
both problems are localized and so it will be easier to formulate analytical problems for both
the equilibrium and stability of arbitrary curves. However, like with the NLEP formulation in
the semi-strong region presented here, numerical techniques will be required for determining
stability boundaries.
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