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Abstract

This article reviews the design and analysis of simulation experiments.
It focusses on analysis via either low-order polynomial regression or Krig-
ing (also known as Gaussian process) metamodels. The type of meta-
model determines the design of the experiment, which determines the in-
put combinations of the simulation experiment. For example, a first-order
polynomial metamodel requires a "resolution-III" design, whereas Kriging
may use Latin hypercube sampling. Polynomials of first or second order
require resolution III, IV, V, or "central composite" designs. Before ap-
plying either regression or Kriging, sequential bifurcation may be applied
to screen a great many inputs. Optimization of the simulated system may
use either a sequence of low-order polynomials known as response surface
methodology (RSM) or Kriging models fitted through sequential designs
including effi cient global optimization (EGO). The review includes robust
optimization, which accounts for uncertain simulation inputs.

Keywords: robustness and sensitivity, simulation, metamodel, design,
regression, Kriging

JEL: C0, C1, C9, C15, C44

1 Introduction

In this article we review the design and analysis of simulation experiments. This
design depends on the metamodel– also called surrogate model or emulator–
that we use to analyze fsim , which denotes the input/output (I/O) function
implicitly defined by the underlying simulation model. For example, if we as-
sume that a first-order polynomial is an "adequate" or "valid" metamodel, then
changing one factor (simulation input) at a time enables unbiased estimators
of the first-order or "main" effects of these factors. However, these estimators
do not have minimum variances; a fractional factorial design with two values or
"levels" per factor– denoted as a 2k−p design– gives estimators with minimum
variances– as we shall see in Section 2. There are several types of metamodels,
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but we focus on the most popular types; namely, low-order polynomial regression
and Kriging– or Gaussian process (GP)– metamodels.
We focus on simulation that has as its goals sensitivity analysis (SA) and

optimization of the underlying real system. For such SA and optimization there
are many methods, but we focus on methods that use either low-order polynomi-
als or Kriging metamodels and their corresponding designs. SA is an ambiguous
term; e.g., SA may be either global or local, but we focus on global SA or "what
if" analysis. Notice that many SA methods are reviewed in Borgonovo and
Plischke (2015).
Because Kriging metamodels and simulation-based optimization are very

active fields of research, we update two previous reviews; namely, Kleijnen (2005,
2009). We base our update on Kleijnen (2015), which includes many website
addresses for software and hundreds of additional references. We assume that
the readers have a basic knowledge of simulation and mathematical statistics.
We organize this article as follows. Section 2 summarizes classic linear regres-

sion metamodels– including polynomials– and their designs. Section 3 presents
solutions when the classic assumptions do not hold in practice. Section 4 ex-
plains how sequential bifurcation (SB) can screen hundreds of inputs of realistic
simulation models; this section uses the two preceding sections. Section 5 sum-
marizes Kriging and its designs. Section 6 explains simulation optimization
through either low-order polynomials or Kriging; this section includes robust
optimization. This article ends with 46 carefully selected references, including
30 references published in 2010 or more recently.

2 Classic linear regression metamodels and their
designs

Classic linear regression models have the following form:

y = Xβ+e (1)

with y the n-dimensional vector with the dependent variable and n the number
of simulated input combinations; X the n× q matrix of independent regression
variables with xi;j the value of the independent variable j in combination i (i
= 1, ..., n; j = 1, ..., q); β the q-dimensional vector with regression parameters;
and e the n-dimensional vector with the residuals in the n combinations. In
this review we focus on a special case of (1); namely, a second-order polynomial
with k simulation inputs:

y = β0 +

k∑
j=1

βjxj +

k∑
j=1

k∑
j′≥j

βj;j′xjxj′ + e (2)

with the intercept β0, the k first-order effects βj (j= 1, ..., k), the k(k − 1)2
two-factor interactions (cross-products) βj;j′ (j′> j), and the k purely quadratic
effects βj;j . Obviously, (2) implies q = (k+1)(k+2)/2. Furthermore, interaction
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means that the effect of an input depends on the values of one or more other
inputs. A purely quadratic effect means that effect of the input is not constant,
but diminishes or increases. This metamodel is nonlinear in x but linear in β,
as in (1).
In this review, we assume that interactions among three or more inputs are

unimportant. Our reason is that such interactions are hard to interpret, and
are often unimportant in practice. Of course, we should check this assumption;
i.e., we should "validate" the estimated metamodel, as we shall see below.
To estimate β in (1), we apply the least squares (LS) criterion and obtain

β̂ = (X′X)
−1

X′w (3)

where w denotes the n-dimensional vector with the simulation outputs wi that
correspond with xi;j . Obviously, β̂ exists only if X is not collinear ; e.g. X is
collinear if two simulation inputs change simultaneously by the same amount.
To select a specific X, we may decide to minimize Var(β̂j). To derive Var(β̂j),
classic regression analysis assumes that e in (1) is white noise: e is normally,
independently, and identically distributed (NIID) with zero mean and a constant
variance σ2e . If the metamodel (1) is valid, then obviously σ

2
e = σ2w. Altogether,

β̂ has the following covariance matrix:

Σβ̂ = (X′X)−1σ2w. (4)

The unknown parameter σ2w in this equation can be estimated through

MSR =
(ŷ −w)′(ŷ −w)

n− q (5)

where ŷ = Xβ̂
′
; obviously, (5) assumes n − q > 0. This MSR gives Σ̂β̂ . Next

we may derive confidence intervals (CIs) and tests for the individual elements
of β̂ through the variances given by the main diagonal of Σ̂β̂ and the Student
statistic tυ with υ = n− q.
It can be proven that the variances of the β̂-elements are minimal if X is

orthogonal. Often, the theory on design of experiments (DOE) assumes that we
standardize (scale) the simulation inputs such that -1 ≤ xi;j ≤ 1. If each input
has only two values in the whole experiment with its n input combinations, then
standardization implies the following linear transformation where zj denotes the
quantitative input j measured on the original scale, lj denotes the lower value
of zj in the experiment, uj the upper value, zj the average value of input j in
a balanced experiment in which each input is observed at its lower value in n/2
combinations:

xi;j =
zi;j − zj

(uj − lj)/2
(i = 1, ..., n; j = 1, ..., k). (6)

Consequently, an orthogonal standardized X implies X′X = nI, so Σβ̂ in (4)
becomes

Σβ̂ = (nI)−1σ2w = I
σ2w
n
. (7)
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Input combination 1 2 3 4 = 1.2 5 = 1.3 6 = 2.3 7 = 1.2.3
1 - - - + + + -
2 + - - - - + +
3 - + - - + - +
4 + + - + - - -
5 - - + + - - +
6 + - + - + - -
7 - + + - - + -
8 + + + + + + +

Table 1: A one-sixteenth fractional factorial design for seven inputs

This implies that the q estimators have the same variance σ2w/n, and are statisti-
cally independent. Because these estimators have the same estimated variances,
we can rank these estimates in order of importance, using either these estimates
themselves or their t-values. Because all q estimators are independent, the "full"
regression model with q effects and the "reduced" model with nonsignificant ef-
fects eliminated have identical values for those estimated effects that occur in
both models. If X were not orthogonal, then this so-called "backwards elimina-
tion" of nonsignificant effects would change the remaining estimates.
The selection of X that gives a "good" Σβ̂ is the goal of DOE, discuss next.

In this discussion we initially assume that no input combination is replicated.
We discuss the following special cases of (2): (i) all second-order effects βj;j′
are zero (so the metamodel becomes a first-order polynomial); (ii) all purely
quadratic effects βj;j are zero; we discuss (a) we estimate the first-order effects
βj unbiased by the two-factor interactions βj;j′ with j 6= j′, and (b) we obtain
unbiased estimators of both βj and βj;j′ . These cases require designs of different
resolution (denoted by R); e.g., R-III designs for first-order polynomials.

2.1 R-III designs for first-order polynomials

By definition, a R-III design gives unbiased estimators of βj (j = 1, ..., k),
assuming a first-order polynomial is a valid metamodel. These designs are also
known as Plackett-Burman designs. A subclass of these designs are fractional
factorial two-level 2k−pIII designs with positive integer p such that p < k and 2k−p

≥ 1 + k . Plackett-Burman designs have n equal to a multiple of four and at
least equal to k + 1; e.g., for 8 ≤ k ≤ 11 implies n = 12.
An example is the 27−4III design in Table 1. The symbol - stands for -1, and

+ for 1. The symbol 1 stands for (x1;1, ..., xn;1)′ where in this example n = 8;
likewise, 2 and 3 correspond with inputs 2 and 3. The symbol 4 = 1.2 stands
for xi;4 = xi;1xi;2 with i = 1, ..., n, so the first element (i = 1) in this column is
x1;4 = x1;1x1;2 = (−1)(−1) = +1. The DOE literature calls "4 = 1.2" a design
generator. A 2k−p design requires p generators; e.g., Table 1 specifies these
generators in the last four columns. Obviously, this example gives a balanced
design and an orthogonal X.
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If 4 ≤ k ≤ 6, then we still use Table 1, but we ignore columns; e.g., if k= 6 we
may ignore the last column. If k = 7, then Table 1 implies a saturated design:
n = q (obviously, a first-order polynomial means q = 1 + k). A saturated design
implies υ = n − q = 0 in (5). To solve this problem, we may add one or more
combinations to Table 1; e.g., either combinations from the full factorial 27

design excluding the combinations in Table 1 or the combination at the center
of the experimental area where xj = 0 if zj is quantitative and xj is randomly
selected as -1 or 1 if zj is qualitative.
Kleijnen (2015) also details a 215−11 design, including a simple algorithm for

constructing this design. Algorithms for the construction of 2k−pIII designs with
high k values are presented in Ryan and Bulutoglu (2010) and Shrivastava and
Ding (2010). We do not detail 2k−pIII designs with such high k values, because in
practice such values are rare. In Section 4 we shall discuss so-called screening
designs that are more effi cient than 2k−pIII designs.
There are also Plackett-Burman designs for 12 ≤ n ≤ 96 with n not a power

of two but a multiple of four; e.g., Kleijnen (2015) gives such a design with n
= 12 and k = 11. Montgomery (2009, p. 326) and Myers et al. (2009, pp.
165) tabulate such designs for 12 ≤ n ≤ 36. These designs are balanced and
orthogonal, like 2k−pdesigns are.

2.2 R-IV designs

By definition, a R-IV design gives unbiased estimators of the βj (j = 1, ...,
k) in a first-order polynomial– even if two-factor interactions are nonzero, but
all higher-order effects are zero. Remembering that the number of two-factor
interactions in (2) is k(k − 1)/2, we obtain q = 1 + k + k(k − 1)2 = 1 +
k(k + 1)/2. Furthermore, X follows from the n× k design matrix D = (di;j):

X = (xi) = (1, di;1, . . . , di;k, di;1di;2, . . . , di;k−1di;k) (i = 1, . . . , n) (8)

To construct a R-IV design, we apply the foldover theorem, which states that
augmenting a R-III design D with its mirror design −D gives a R-IV design.
Obviously, a R-IV design doubles the number of combinations. A R-IV design
does not always enable unbiased estimators of the individual two-factor inter-
actions. For example, Table 1 gave a 27−4III design, so the R-IV design has n =
16. X follows from (8) with k = 7, so X has q = 1 + 7(7 + 1)/2 = 29 columns;
because n < q we know that X is collinear. Hence, it is impossible to apply
(3) and compute the LS estimators of the 29 individual regression parameters.
Kleijnen (2015) explains that we can estimate sums of these interactions; e.g.,
the 28−4IV design with the generators 5 = 1.3.4, 6 = 2.3.4, 7 = 1.2.3, and 8 =
1.2.4 gives estimators of the 8(8 − 1)/2 = 28 two-factor interactions that are
aliased or confounded in seven groups of size four. In general, let us assume
that a valid linear regression metamodel is

y = X1β1 + X2β2 + e. (9)

An example is an X1 corresponding with the intercept and the first-order ef-
fects collected in β1, and an X2 corresponding with the two-factor interactions
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β2. Suppose that we start with a tentative simple metamodel without these
interactions, so

β̂1 = (X′1X1)
−1X′1w. (10)

Assuming that a valid metamodel is (9) gives E(w) = E(y). Combining (10)
and (9) then gives

E(β̂1) = (X′1X1)
−1X′1E(w) =(X′1X1)

−1X′1(X1β1 + X2β2)
= β1 + (X′1X1)

−1X′1X2β2.
(11)

This equation includes the alias matrix A = (X′1X1)
−1X′1X2. Equation (11)

implies an unbiased estimator of β1 if either β2 = 0 or X′1X2 = 0. Indeed, R-III
designs assume that β2 = 0 where β2 consists of the two-factor interactions,
and R-IV designs ensure that X′1X2 = 0 (the two-factor interaction columns
are orthogonal to the columns for the first-order effects and the intercept).

2.3 Resolution-V designs for two-factor interactions

By definition, a R-V design enables LS estimation of the first-order effects, the
two-factor interactions, and the intercept; higher-order effects are assumed to
be zero. Obviously, this implies q = 1 + k + k(k − 1)/2 = (k2 + k)/2 + 1.
The DOE literature gives tables with generators for 2k−pV designs; e.g., the
28−2V design with 7 = 1.2.3.4 and 8 = 1.2.5.6. Unfortunately, 2k−pV designs
are not saturated at all; e.g., the 28−2V design implies n = 64 � q = 37. So-
called Rechtschaffner designs include saturated R-V designs, but they are not
orthogonal; the statistical properties of these designs are further investigated in
Qu (2007).

2.4 CCDs for second-degree polynomials

By definition, a CCD or central composite design enables LS estimation of all the
effects in a second-order polynomial, assuming all higher-order effects are zero.
A CCD consists of the following combinations: (i) a R-V design (see Section
2.3); (ii) the central combination 0′k, which denotes a row-vector with k zeroes;
(iii) the 2k axial combinations– which form a star design– where the "positive"
axial combination for input j is xj = c while all other (k - 1) inputs are fixed
at the center so xj′ = 0 with j′ 6= j, and the "negative" axial combination for
input j is xj = −c and xj′ = 0. Notice that c 6= 1 implies a CCD with five
values per input, whereas c = 1 implies a CCD with only three values per input.
The usual choice is c 6= 1; the optimal choice of c assumes white noise, which
does not hold in practice; see the next section.
Obviously, a CCD does not give an orthogonal X, and is not saturated.

CCDs are popular in response surface methodology (RSM), which we shall dis-
cuss in Section 6.1 (Section 6 discusses simulation-optimization). For further dis-
cussion of CCDs we refer to Khuri and Mukhopadhyay (2010), Kleijnen (2015),
and Myers et al. (2009, pp. 296—317).

6



3 Classic assumptions versus simulation prac-
tice

In the preceding section we detailed the classic assumptions of linear regression
metamodels and their concomitant designs; these assumptions stipulate a sin-
gle type of simulation output (univariate output) and white noise. In practice,
however, these assumptions usually do not hold. Indeed, a practical simula-
tion model may give a multivariate output. White noise implies (i) normally
distributed output; (ii) no common random numbers (CRN); (iii) homogeneous
variances of the simulation output; (iv) a valid metamodel. In this section, we
try to answer the following questions: (a) How realistic are these classic assump-
tions? (b) How can we test these assumptions? (c) If an assumption is violated,
can we then transform the simulation’s I/O data such that the assumption holds
for the transformed data? (d) If we cannot find such a transformation, which
statistical methods can we then apply?

3.1 Multivariate output

Examples of multivariate output are inventory simulations with two outputs;
namely, (i) the sum of the holding costs and the ordering costs; (ii) the service
(or fill) rate. Analogous to (1), we now assume that we use r univariate linear
regression metamodels:

y(l) = X(l)β(l)+e(l) with l = 1, . . . r (12)

where y(l) is the n-dimensional vector with the dependent variable correspond-
ing with simulation output type l; n is the number of simulated input combina-
tions; X(l) = (x

(l)
i;j) is the n× ql matrix of independent regression variables with

x
(l)
i;j denoting the value of independent variable j in combination i for meta-

model l (i = 1, ..., n; j = 1, ..., ql); β(l) = (β
(l)
1 , . . . , β

(l)
ql )′ is the vector with the

ql regression parameters for metamodel l; e(l) is the n-dimensional vector with
the residuals of metamodel l, in the n combinations. In our review, we assume
that all the r fitted regression metamodels are polynomials of the same order
(e.g.,second-order), so X(l) = X and ql = q. The literature calls the metamodel
a multiple regression model if q > 1 and the metamodel has an intercept, and
calls it a multivariate regression model if r > 1.

The e(l) have the following two properties: (i) Their variances may vary
with l; e.g., the estimated inventory costs and service percentages have very
different variances. (ii) The residuals e(l) and e(l

′) are not independent for
a given input combination i, because they are (different) transformations of
the same pseudorandom number (PRN) stream. Consequently, it might seem
that we need to replace classic ordinary LS (OLS) by– rather complicated–
generalized LS (GLS); see Khuri and Mukhopadhyay (2010). Fortunately, if
X(l) = X, then GLS reduces to OLS computed per output; see Markiewicz and
Szczepańska (2007). Consequently, the best linear unbiased estimator (BLUE)
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of β(l) is
β̂(l) = (X′X)

−1
X′w(l) (l = 1, . . . , r). (13)

Using this equation, we can easily obtain CIs and tests for β̂(l); i.e., we may use
the classic formulas presented in the preceding section. There seem to be no
general designs for multivariate output; see Khuri and Mukhopadhyay (2010).

3.2 Nonnormal output

In simulation, the normality assumption often holds asymptotically ; i.e., if the
simulation run is long, then the sample average of those autocorrelated data
gives nearly normal output. Estimated quantiles, however, may be very non-
normal, especially if they are rather extreme; an example is the 99% quantile.
The t-statistic is known to be quite insensitive to nonnormality (whereas the
F -statistic is not). Whether the actual simulation run is long enough to make
the normality assumption hold, is always hard to know. Therefore it seems good
practice to test whether the normality assumption holds, as follows.
To test whether a set of observations has a Gaussian probability density

function (PDF), we may use various residual plots and goodness-of-fit statistics;
e.g., the chi-square, Kolmogorov-Smirnoff, Anderson-Darling, and Shapiro-Wilk
statistics. A basic assumption of these statistics is that the observations are
IID. We may therefore obtain "many" (say, 100) replications for a specific input
combination (e.g., the base scenario) if the simulation is not computationally
expensive. However, if a single simulation run takes relatively much computer
time, then we can obtain only "a few" (between 2 and 10) replications, so the
plots are too rough and the statistical tests lack power.
Actually, the white-noise assumption concerns the metamodel’s residuals e,

not the simulation model’s outputs w. If we assume that there are mi ≥ 1
replications for combination i (i = 1, ..., n), then wi =

∑mi

r=1wi;j/mi and êi =
ŷi−wi. For simplicity of presentation, we further assume that mi is a constant
m. If wi;j has a constant variance σ2w, then wi also has a constant variance σ

2
w =

σ2w/m. Unfortunately, even if wi has a constant variance σ
2
w and is independent

of wi′ with i 6= i′ (no CRN), then êi does not have a constant variance and êi
and êi′ are not independent; i.e., w can prove that

Σê= [I−X(X′X)−1X′]σ2w. (14)

We may apply normalizing transformations to w; e.g., v = log(w) may be
more normally distributed than w. Unfortunately, the metamodel now explains
the behavior of the transformed output– not the original output. We also refer
to Bekki et al. (2009) and Kleijnen (2015).
Another transformation is jackknifing, which is a general statistical method

for solving the following two types of problems: (i) constructing CIs for nonnor-
mal responses; (ii) reducing the bias of some estimators. To explain jackknifing,
we use the regression problem in (1). Suppose we want CIs for β in case of non-
normal w. For simplicity, we assume mi = m > 1 (i = 1, ..., n). The original
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estimator β̂ was given in (3).The jackknife then deletes replication r (r = 1, ...,
m) for each combination i, and computes

β̂−r = (X′X)
−1

X′w−r (r = 1, . . . ,m) (15)

with the n-dimensional vector w−r = (wi;−r) where wi;−r denotes the average
of the m − 1 simulation outputs when excluding output r. The m estimators
β̂−r in (15) are correlated because they share m − 2 elements. For ease of
presentation, we focus on the scalar βq (last element of β). Jackknifing then
uses the pseudovalue

Jr = mβ̂q − (m− 1)β̂q;−r. (16)

In this example, both the original and the jackknifed estimators are unbiased
so the pseudovalues also remain unbiased; otherwise, the bias is reduced by
the jackknife point estimator J =

∑m
r=1 Jr/m. Examples of biased estimators

are ratio estimators and nonlinear estimators; see Section 5. To compute a
CI, jackknifing treats the pseudovalues as if they were NIID. So if tm−1;1−α/2
denotes the 1 − α/2 quantile of the tυ-distribution with υ = m − 1, and σ̂2

J
=∑m

r=1(Jr − J)2/[m(m− 1)], then jackknifing gives a two-sided 1− α CI forβq:

P (J − tm−1;1−α/2σ̂J < βq < J + tm−1;1−α/2σ̂J) = 1− α. (17)

Applications of jackknifing in simulation are numerous; see Gordy and Juneja
(2010) and Kleijnen (2015).
Distribution-free bootstrapping or nonparametric bootstrapping is another

general statistical method that does not assume normality. This bootstrap-
ping may be used to solve two types of problems; namely, problems caused by
(i) nonnormal distributions or (ii) nonstandard statistics. Let us return to the
example that lead to (17). Now we distinguish between the original observa-
tions w and the bootstrapped observations w∗. Standard bootstrapping assumes
that the original observations are IID; indeed, wi;1, ..., wi;m are IID because the
m replications use nonoverlapping PRN. Distribution-free bootstrapping means
resampling with replacement from the m original IID observations. We apply
this resampling to each of the n combinations. The resulting w∗i;1, ..., w

∗
i;m give

w∗, which upon substitution into (3) gives

β̂∗ = (X′X)
−1

X′w∗. (18)

To reduce sampling variation, we repeat this resampling (say) B times; B is
known as the bootstrap sample size. A typical value for B is 100 or 1,000. This
sample size gives β̂∗b with b = 1, ..., B. The so-called percentile method gives

P (β̂∗q;(Bα/2) < βq < β̂∗q;(B[1−α/2])) = 1− α (19)

where β̂∗q;(Bα/2) denotes the α/2 quantile of the empirical density function (EDF)

of β̂∗q obtained through the order statistics denoted by the subscript (·) where–
for notational simplicity– we assume that Bα/2 is integer; β̂∗q;(B[1−α/2]) is de-
fined analogously. Another example is given in Turner et al. (2013); namely,
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a CI for s2w (sample variance of w) if w does not have a Gaussian distribution
(so s2w is not χ

2). We shall mention more examples; namely, CIs for a quantile
below (26), for R2 below (28), and for cross-validation statistics below (33).

3.3 Heterogeneous output variances

In practice, Var(wi) changes as xi changes. In some applications, however, we
may hope that this variance heterogeneity is negligible. Unfortunately, Var(wi)
is unknown so we must estimate it. Given mi replications, the classic estimator
is

s2i =

∑mi

r=1(wi;r − wi)2
mi − 1

(i = 1,. . . , n) (20)

with wi =
∑mi

r=1 wi;r/mi. This s2i itself has high variance; i.e., if wi;r is normally
distributed with Var(wi;r) = σ2i , then V ar(s

2
i ) = 2σ4i /mi. In practice, we need

to compare n estimators s2i , and we may apply many tests; see Kleijnen (2015).
The logarithmic transformation may be used not only to obtain Gaussian

output but also to obtain outputs with constant variances. We, however, prefer
accepting heterogeneous variances and adapting our analysis, as follows. If E(e)
= 0, then β̂ is still unbiased. However, if Var(wi) in not constant, then Σβ̂ is
no longer given by (4), but by

Σβ̂ = (X′NXN )
−1

X′NΣwXN (X′NXN )
−1 (21)

where XN is the N × q matrix of independent variables with N =
∑n
i=1mi and

Σw is the N × N matrix with the first m1 elements on its main diagonal all
equal to σ21 , ..., the last mn elements on its main diagonal equal to σ2n.
In jackknifed estimated weighted LS (JEWLS) assuming mi = m and no

CRN, we proceed analogously to (15):

̂̃
β−r = (XΣ̂−1w;−rX)

−1
X′Σ̂−1w;−rw−r (r = 1, . . . ,m) (22)

where w−r is the vector with the n averages of the m − 1 replications after
deleting replication r, and Σ̂w;−r is the diagonal matrix with s2i computed

from the same m − 1 replications. Let ̂̃β denote the estimator that deletes no
replication. Because ̂̃β and ̂̃β−r use estimated (random) weights Σ̂w and Σ̂w;−r,

they are nonlinear estimators. Nevertheless, using ̂̃β and ̂̃β−r we compute the
pseudovalues, which give the desired CI.
The DOE literature ignores designs for heterogeneous output variances. We

propose classic designs with mi such that the resulting V âr(wi) = s2i /mi with
i = 1, ..., n are approximately constant. First we take a pilot sample of size
m0 ≥ 2 for each combination, which gives s2i (m0). Next we select a number of
additional replications m̂i −m0 with

m̂i = m0 × nint
[

s2i (m0)

mini s2i (m0)

]
(23)
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where nint [x] denotes the integer closest to x. We use the m̂i replications
of both stages to compute wi and s2i . From wiwe compute β̂. We esti-
mate Σβ̂ through (21) with Σw estimated by a diagonal matrix with elements

s2i (m̂i)/m̂i. We compute CIs for β̂j using tυ with υ = m0 − 1.
Actually, (23) guides the relative number of replications m̂i/m̂i′ . To select

absolute numbers m̂, we recommend the following rule derived in Law (2015, p.
505) with a relative estimation error γ:

m̂ = min

[
r ≥ m :

tr−1;1−α/2
√
s2i (m)/i

|w(m)| ≤ γ

1 + γ

]
(24)

In Section 5 we shall return to the selection of mi.

3.4 Common random numbers (CRN)

CRN are the default in software for discrete-event simulation. CRN are meant
to compare the outputs of different input combinations while all other "circum-
stances" are the same; e.g., waiting times are compared for one or two servers
while random customer arrivals are the same. Obviously, CRN create correlation
between wi;r and wi′;r. Moreover, two different replications use nonoverlapping
PRN streams, so wi;r and wi;r′ with r 6= r′ are independent; i.e., wr and wr′ are
independent. The final goal of CRN is to reduce V ar(β̂j) and V ar(ŷ); actually,
CRN increase the variance of the estimated intercept.
If we continue to use OLS, then Σβ̂ is given by (21) but now Σw is not a

diagonal matrix. The estimator Σ̂w is singular if m ≤ n; else we may compute
CIs for β̂j from tm−1. An alternative method requires only m > 1, and uses
replication r to estimate β through

β̂r = (X′X)
−1

X′wr (r = 1, . . . ,m). (25)

Obviously, the n elements of wr are correlated because of CRN, and they may
have different variances. The m estimators β̂j;r (j = 1, ..., q; r = 1, ..., m) are
independent and have a common standard deviation (say) σβ̂j , so we get

tm−1 =
β̂j − βj
s(β̂j)

with j = 1, . . . , q (26)

where β̂j =
∑m
r=1β̂j;r/m and s2(β̂j) =

∑m
r=1(β̂j;r − β̂j)2/[m(m− 1)]. Unfortu-

nately, we cannot apply this alternative when estimating a quantile instead of
a mean. In case of a quantile, we recommend distribution-free bootstrapping;
see Kleijnen (2015) and Kleijnen et al. (2011).

3.5 Validation of metamodels

In practice, we do not know whether E(ŷi) = E(wi); e.g., given a "small" ex-
perimental area, the estimated first-order polynomial may be adequate for esti-
mating the gradient when searching for the optimum; see Section 6. We discuss
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the following validation methods: (i) two related coeffi cients of determination;
namely, R2 and R2adj ; (ii) cross-validation. These methods may also be used
to compare first-order against second-order polynomials, or linear regression
against Kriging metamodels.

R2 may be defined as

R2 =

∑n
i=1(ŷi − w)2∑n
i=1(wi − w)2

= 1−
∑n
i=1(ŷi − wi)2∑n
i=1(wi − w)2

(27)

where w =
∑n
i=1wi/n and mi ≥ 1. If n = q (saturated design), then R2 = 1–

even if E(ŷi) 6= E(wi). If n > q and q increases, then R2 increases– whatever
the size of |E(ŷi)− E(wi)| is. Because of possible overfitting, the regression
literature adjusts R2:

R2adj = 1− n− 1

n− q (1−R2). (28)

Critical values for R2 or R2adj are unknown, because these statistics do not have
well-known distributions. We might use subjective lower thresholds. However,
Kleijnen and Deflandre (2006) demonstrates how to estimate the distributions
of these two statistics through distribution-free bootstrapping.
Cross-validation– or more precisely– leave-one-out cross-validation– may be

defined as follows. For ease of presentation, we assume that X has only n in-
stead of N =

∑n
i=1mi rows, because mi = m ≥ 1 so in (3) we may replace w by

w. In this cross-validation we delete I/O combination i to obtain (X−i,w−i),
and compute

β̂−i = (X′−iX−i)
−1

X′−iw−i, (29)

which gives ŷ−i = x′iβ̂−i with i = 1., ..., n. We may "eyeball" the scatterplot
with (wi, ŷ−i), and decide whether the metamodel is valid. Alternatively, we
may compute

t
(i)
m−1 =

wi − ŷi√
s2(wi) + s2(ŷ−i)

(i = 1, ..., n) (30)

where s2(wi) = s2i /m and

s2(ŷ−i) = x′iΣ̂β̂−i
xi with Σ̂β̂−i

= s2(wi)(X
′
−iX−i)

−1
. (31)

We reject the regression metamodel if

maxi |t(i)m−1| > tm−1;1−[α/(2n)] (32)

where Bonferroni’s inequality implies that α/2 is replaced by α/(2n)– resulting
in the experimentwise or familywise type-I error rate α. Cross-validation affects
not only ŷ−i, but also β̂−i; see (29). Actually, we may be interested not only
in the predictive performance of the metamodel, but also in its explanatory
performance.
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Related to cross-validation are several diagnostic statistics in the regression
literature; e.g., DEFITS, DFBETAS, and Cook’s D. The most popular diagnos-
tic statistic, however, is the prediction sum of squares (PRESS):

PRESS =

√∑n
i=1(ŷ−i − wi)2

n
. (33)

Regression software uses a shortcut to avoid the n recomputations in cross-
validation. We may apply bootstrapping to estimate the distribution of these
validation statistics; see Bischl et al. (2012).
If the validation suggests a big fitting error e, then we may consider various

transformations. For example, in queueing simulations we may combine the
arrival rate (say) λ and the service rate µ into the traffi c rate x = λ/µ. Another
transformation replaces y, λ, and µ by log(y), log(λ), and log(µ) so that the
first-order polynomial approximates relative changes through elasticity coeffi -
cients. If we assume that fsim is monotonic, then we may replace w and xj by
their ranks: rank regression. In the preceding subsections, we also considered
transformations that make w better satisfy the assumptions of normality and
variance homogeneity; unfortunately, different goals of a transformation may
conflict with each other.
In Section 2 we discussed designs for low-order polynomials. If such a design

does not give a valid metamodel, then we do not recommend routinely adding
higher-order terms: these terms are hard to interpret. However, if the goal is
not to better understand the simulation model but to better predict its output,
then we may add high-order terms; e.g., a 2k design enables the estimation of
all interactions. In the discussion of (28), we have already mentioned the danger
of overfitting. Note that adding more explanatory variables is called stepwise
regression; eliminating nonsignificant variables (see (26)) is called backwards
elimination.

4 Screening the many inputs of realistic simula-
tion models

Screening means searching for the really important inputs among the many
inputs that can be varied in a simulation experiment. It is realistic to assume
that effects are sparse; i.e., only a few inputs among these many inputs are
really important. Indeed, the Pareto principle or 20-80 rule states that only
a few inputs– say, 20%– are really important. Kleijnen (2015) presents two
examples, with 281 and 92 inputs, respectively; screening finds only 15 and 11
inputs to be really important.
The (rather scarce) literature presents several types of screening designs.

We focus on designs that treat the simulation as a black box ; i.e., only the
I/O of the simulation is observed. Kleijnen (2015) summarizes four types of
screening designs; these types use different mathematical assumptions. We focus
on sequential bifurcation (SB), because SB is very effi cient and effective if its
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assumptions are satisfied. SB selects the next input combination after analyzing
the preceding I/O data. SB is customized ; i.e., SB accounts for the specific
simulation model. Notice that Borgonovo and Plischke (2015) also summarizes
SB, besides Morris’s method; Morris’s method is also discussed in Fédou and
Rendas (2015).

4.1 SB for deterministic simulations and low-order poly-
nomial metamodels

To explain the basic idea of SB, we assume deterministic simulation and a first-
order polynomial with approximation error e where E(e) = 0:

y = γ0 + γ1z1 + . . .+ γkzk + e. (34)

Furthermore, we assume that the signs of γj (j = 1, ..., k) are known so that we
can define the lower and upper bounds lj and uj of zj such that γj ≥ 0. Together
(34) and γj ≥ 0 imply that we may rank the inputs such that the most important
input has the largest first-order effect; the least important inputs have effects
close to zero. Input j is called important if γj > ∆ where ∆ ≥ 0 is specified by
the users.
In its first step, SB aggregates all k inputs into a single group, and checks

whether or not that group has an important effect. So in this step, SB obtains
w(z = l) where z = (zj) and l = (lj). In this step, SB also obtains w(z = h)
where h = (hj). Obviously, if all inputs have zero effects, then w(z = l) =
w(z = h). However, if one or more inputs have positive effects, then w(z = l)
< w(z = h). In practice, not all k inputs have zero effects. It may happen that
all effects are unimportant (0 ≤ γj < ∆), but w(z = h) − w(z = l) > ∆.
If SB finds that the group has an important effect, then the next step splits

the group into two subgroups: bifurcation. Let k1 denote the size of subgroup 1
and k2 the size of subgroup 2 (so k1 + k2 = k). SB obtains wk1 which denotes w
when all k1 inputs in subgroup 1 are "high". SB compares this wk1 with w0 =
w(z = l); if wk1 − w0 < ∆, then none of the individual inputs within subgroup
1 is important and SB eliminates this subgroup from further experimentation.
SB also compares wk1 with wk = w(z = h). The result wk - wk1 < ∆ is unlikely,
because we expect that at least one input is important and that this input is a
member of subgroup 2.
SB continues splitting important subgroups into smaller subgroups, and

eliminating unimportant subgroups. It may happen that SB finds both sub-
groups to be important, which leads to further experimentation with two im-
portant subgroups. Finally, SB identifies and estimates all individual inputs
that are not in eliminated subgroups.
Obviously, assuming γj ≥ 0 ensures that first-order effects do not cancel

each other within a group. Furthermore, we can define the inputs such that if
fsim is monotonically decreasing in zj , then this function becomes monotonically
increasing in the standardized inputs xj . Experience shows that in practice the
users often do know the signs of γj ; e.g., some inputs may be transportation
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speeds so the higher these speeds, the lower the cost which is the output of
interest in one SB case study. Nevertheless, if in a specific case study it is hard
to specify the signs of a few specific inputs, then we should treat these inputs
individually ; i.e., we should not group these inputs with other inputs in SB.
Treating such inputs individually is safer than assuming a negligible probability
of cancellation within a subgroup.
The effi ciency of SB– measured by the number of simulated input combinations–

improves if the individual inputs are labeled such that inputs are placed in
increasing order of importance. Such labeling implies that the important in-
puts are clustered. The effi ciency further improves when placing similar inputs
within the same subgroup. So, splitting a group into subgroups of equal size is
not necessarily optimal. Academic and practical examples are given in Kleijnen
(2015).
Now we assume a second-order polynomial plus approximation error e with

E(e) = 0. Moreover, we assume that if γj = 0, then γj;j = 0 and γj;j′ = 0
with j′ 6= j: heredity assumption; see Wu and Hamada (2009). In Section 2.2
we discussed the foldover principle for constructing R-IV designs from R-III
designs; likewise, SB enables the estimation of γj unbiased by γ2j;j and γj;j′ if
SB simulates the mirror input of the original input in its sequential design. We
let w−j denote w when the first j standardized inputs are -1. Kleijnen (2015)
shows that an unbiased estimator of βj′−j =

∑j
h=j′ βh is

β̂j′−j =
(wj − w−j)− (wj′−1 − w−(j′−1))

4
. (35)

4.2 SB for random simulations and second-order polyno-
mials

Initially we assume a fixed number of replications m per simulated input com-
bination. Let wj;r with r = 1, ..., m denote observation r on wj . Furthermore
we assume a second-order polynomial metamodel. We then obtain the analogue
of (35)): β̂(j′−j);r = (wj;r − w(−j);r) − (w(j′−1);r − w−(j′−1);r)/4. This enables
estimation of the mean and the variance of β̂(j′−j);r, which gives a tm−1-test–
analogously to (26). In SB we apply a one-sided test because SB assumes γj > 0
so βj > 0.
Whereas the preceding t-test assumes a favorite null-hypothesis, the sequen-

tial probability ratio test (SPRT) in Wan et al. (2010) considers two comparable
hypotheses, and selects m such that the SPRT controls the type-I error prob-
ability through the whole procedure and holds the type-II error probability at
each step.
This SPRT classifies inputs with βj ≤ ∆0 as unimportant and inputs with βj

≥ ∆1 as important where ∆0 and ∆1 are specified by the users; for intermediate
inputs– with ∆0 < βj < ∆1– the power should be “reasonable". The initial
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number of replications when estimating βj′−j ism0;j′−j . We expect thatm0;j′−j
may be smaller in the early stages, because those stages estimate the sum of
the positive first-order effects of bigger groups so the signal-noise ratio is larger.
These m0;j′−j replications give

s2(β̂j′−j) =

∑m0;j′−j
r=1 (β̂(j′−j);r − β̂j′−j)2

m0;j′−j − 1
with β̂j′−j =

∑m0;j′−j
r=1 β̂(j′−j);r

m0;j′−j
. (36)

Statistical details of the SPRT and a Monte Carlo experiment are given in
Kleijnen (2015) and Shi et al. (2014).

4.3 Multiresponse SB: MSB

In practice, simulation models have multiple response types (also see Section
3.1). Shi et al. (2014) extends SB to multiresponse SB (MSB). This MSB
selects groups of inputs such that within a group all inputs have the same sign
for a specific type of output, so no cancellation of first-order effects occurs. More
precisely, denote the number of simulation outputs by n (not to be confused with
n in the preceding sections). By definition, changing the value of input j from
L
(l)
j to H(l)

j increases output l (l = 1, ..., n). This change, however, may decrease
another output l′ 6= l; e.g., if there are k inputs and n = 2 outputs, then inputs
1 through k1 may have the same signs for both outputs, whereas inputs k1 + 1
through k have opposite signs for the two outputs. MSB also applies the SPRT
summarized in Section 4.2. For more details including extensive Monte Carlo
experiments and a case study concerning a logistic system in China we refer to
Kleijnen (2015) and Shi et al. (2014).

4.4 Validating the SB and MSB assumptions

By definition, “screening" means that k is too big to enable the estimation of
all the q individual effects of a second-order polynomial; e.g., the Chinese case
study has only k = 26, and yet q = 378. We denote the number of unimportant
inputs identified through SB or MSB by kU (“U" stands for unimportant), and
the number of important inputs by kI (“I"stands for important); obviously, kU +

kI = k. Each of these kU inputs has nearly the same magnitude for β̂
(l)
j ; namely,

smaller than ∆
(l)
0 . So we do not estimate the many individual– first order and

second order– effects of the unimportant inputs, but test whether these inputs
indeed have virtually no effects. So we simulate only a few extreme combinations
of these inputs. To explain this validation method, we consider a simulation with
a single output type so SB suffi ces. We then simulate only the following two
extreme combinations of unimportant inputs (for simplicity we assume that the
kI inputs are quantitative): (a) all kU inputs that SB identified as unimportant
are fixed at −1, while all kI remaining inputs are fixed at 0; (b) all kU inputs
are fixed at 1, while the kI remaining inputs are fixed at the same values as
in combination (a). We relabel the k inputs such that the first kU inputs are
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declared to be unimportant. We let xU denote the kU -dimensional vector with
the values of the unimportant inputs, and 1 denote the kU -dimensional vector
with all elements equal to 1. Consequently, combinations (a) and (b) together
with (2) give

E(y | xU = 1)− E(y|xU = −1) = 2

kU∑
j=1

βj = 2β1−kU . (37)

Letmval denote the number of replications for these two combinations (to choose
mval, we may examine the final m that the SPRT needed to test the significance
of individual inputs). This gives

dr = wr(xU = 1)− wr(xU = −1) (r = 1, ..., mval).

If we use CRN, then we get so-called paired differences and use

tmva l−1 =
d− E(d)

s(d)/
√
mval

. (38)

This statistic gives a CI for δ = E(d), which we may use to test

H0 : E(d) ≤ ∆ versus H1 : E(d) > ∆ (39)

where≤ implies a one-sided hypothesis– which we use because βj ≥ 0. We reject
this H0 only if the observed value of the statistic in (38) with E(d) replaced
by ∆ is higher than tmva l−1;1−α. We select ∆ = 2kU∆0 where ∆0 was used to
define unimportant inputs, and the kU unimportant inputs might have a total
effect of 2kU∆0; see the factor 2 in (37). Altogether, we accept bigger differences
between the outputs for the extreme input combinations, as kU increases.
Finally, we test the heredity assumption (if βj = 0, then βj;j = 0 and βj;j′

= 0 with j 6= j′). Our test of the combinations (a) and (b) is insensitive to
these βj;j and βj;j′ . Therefore we now consider the center combination x0 =
0 where 0 denotes the kU -dimensional vector with all elements equal to zero.
Obviously, if the heredity assumption does not apply, then E(y | xU = 0) 6=
E(y | xU = −1) = E(y | xU = 1). So we compute

d0;r = wr(xU = 0)− [
wr(xU = −1) + wr(xU = 1)

2
] (r = 1, ..., mval).

If the second-order polynomial holds for the kU unimportant inputs, then E(d0)

= −
∑kU
j=1

∑kU
j′=j βj;j′ where some of the kU(kU − 1)/2 + kU second-order ef-

fects βj;j′ may be negative and some may be positive so we do not make any
assumptions about the magnitude of this sum. These d0;r give the analogue of
(38), which we use to test

H0 : E(d0) = 0 versus H1 : E(d0) 6= 0 (40)

where we now use a two-sided hypothesis, because the second-order effects may
be negative or positive. We reject this H0 if |t0;mva l−1| > tmva l−1;1−α/2.
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Next we briefly discuss MSB with two output types. If there were a sin-
gle input group, then the method would be the same as the method for the
SB explained above. If there are two input groups, then we simulate the two
extreme combinations for each of the two output types.; i.e., we simulate four
combinations, as explained in Kleijnen (2015).
Shi and Kleijnen (2015) also presents a validation method that takes advan-

tage of the existence of input groups. These input groups enable us to estimate
the effects of an input group for all n output types simultaneously, so we save on
simulation effort. This method may be more effi cient than the method detailed
above.

5 Kriging metamodels and their designs

Kriging metamodels are fitted to simulation I/O data obtained for larger or
global experimental areas than the local areas in low-order polynomial meta-
models.

5.1 Ordinary Kriging (OK) in deterministic simulation

In this section we focus on OK, which is popular and successful in practical
deterministic simulation; see Chen et al. (2006). In deterministic simulation,
OK assumes

y(x) = µ+M(x) with x ∈ Rk (41)

where µ is the constant mean E[y(x)], M(x) is is a Gaussian stationary process
with zero mean. By definition, such a process has covariances that depend only
on the distance between the input combinations x and x′ (we use x instead of d
because the Kriging literature uses x, whereas DOE and the preceding sections
use d). X denotes an n × k matrix with the n combinations xi (i = 1, ..., n).
M(x) is called the extrinsic noise to distinguish it from the intrinsic noise in
stochastic simulation; see Section 5.3.
OK computes the predictor ŷ(x0) for the new combination x0 as a linear

function of the n old outputs w at X:

ŷ(x0) =
∑n
i=1λiwi = λ′w. (42)

The weight λi decreases with the distance between x0 and xi, so λ is not
a constant vector (whereas β in linear regression is constant). The optimal
weight-vector λo gives the best linear unbiased predictor (BLUP). "Unbiased"
implies that if x0 = xi, then the predictor is an exact interpolator : ŷ(xi) =
w(xi). We can prove that

λ′o=[σM (x0)+1
1− 1′Σ−1M σ(x0)

1′Σ−1M 1
]′Σ−1M (43)

whereΣM = (cov(yi, yi′)) denotes the n×nmatrix with the covariances between
the metamodel’s "old" outputs, and σM (x0) = (cov(yi, y0)) denotes the n-
dimensional vector with the covariances between the metamodel’s n old outputs
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yi and the new output y. Furthermore, we can prove that λo implies

ŷ(x0) = µ+ σM (x0)
′Σ−1M (w−µ1) (44)

where 1 is an n-dimensional vector with all elements equal to 1. Obviously,
ŷ(x0) varies with σM (x0); given are µ, ΣM , and w.
The gradient ∇(ŷ) follows from (44); see Lophaven et al. (2002, Eq. 2.18).

We should not confuse∇(ŷ) and∇(w); sometimes we can indeed estimate∇(w),
and use ∇̂(w) to estimate a better OK model; see Qu and Fu (2014) and Ula-
ganathan et al. (2014).
Let τ2 denote Var(y). Themean squared error (MSE) of ŷ(x0) can be proven

to be

MSE [ŷ(x0)] = τ2 − σM (x0)
′Σ−1M σM (x0)

+
[1− 1′Σ−1M σM (x0)]

2

1′Σ−1M 1
. (45)

Because ŷ(x0) is unbiased, this MSE equals Var[ŷ(x0)]. Obviously, Var[ŷ(x0)]
= 0 if x0 = xi. So, Var[ŷ(x0)] has many local minima. Experimental results
suggest that Var[ŷ(x0)] has local maxima at x0 approximately halfway between
old input combinations. Kriging gives bad extrapolations compared with inter-
polations (linear regression also gives minimal Var[ŷ(x0)] when x0 = 0).
Obviously, λo depends on ΣM and σM (x0)– or switching from covariances

to correlations– on R = τ−2ΣM and ρ(x0) = τ−2σM (x0). There are several
types of correlation functions; see Rasmussen and Williams (2006, pp. 80—104).
Most popular is the Gaussian correlation function:

ρ(h) =
k∏
j=1

exp
(
−θjh2j

)
= exp (−

k∑
j=1

θjh
2
j ) (46)

with distance vector h = (hj) where hj = |xg;j − xg′;j | and g, g′ = 0, 1, ..., n.
Obviously, ρ(h) implies that λo in (43) has relatively high elements for xi close
to x0. Kriging software standardizes the original simulation inputs and outputs,
which affects the values in h.
To estimate the Kriging parameters ψ = (µ, τ2, θ′)′ with θ̂ = (θ̂j)

′, the most
popular criterion is maximum likelihood (ML)– but LS and cross-validation are
also used. We denote the resulting estimator by ψ̂ . The estimation of ψ is a
mathematical challenge; different values for ψ̂ may result from different software
packages or from initializing the same package with different starting values.
Plugging ψ̂ into (44), we obtain

ŷ(x0, ψ̂) = µ̂+ σ̂(x0)
′Σ̂−1(w−µ̂1). (47)

Obviously, ŷ(x0, ψ̂) is a nonlinear predictor. In practice, we simply plug ψ̂

into (45) to obtain MSE[ŷ(x0, ψ̂)]; moreover, we ignore possible bias of ŷ(x0) so
s2{ŷ(x0)} = MSE[ŷ(x0, ψ̂)]. We use this s2[ŷ(x0) to compute a CI:

P [w(x0) ∈ [ŷ(x0, ψ̂)± zα/2s{ŷ(x0)}] = 1− α. (48)
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There is much software for Kriging; see Kleijnen (2015).
Note: There are many publications that interpret Kriging in a Bayesian

way.; see Yuan and Ng (2015). However, we find it hard to come up with a prior
distribution for ψ, because we have little intuition about θ.

Note: We may apply parametric bootstrapping to estimate the true MSE
of ŷ(x0, ψ̂) in (47). We may also apply a bootstrap variant called conditional
simulation. These two methods are rather complicated, and yet they give CIs
with coverages and lengths that are not superior compared with the CI specified
in (48); see Kleijnen (2015).
Note: Universal Kriging (UK) replaces µ in (41) by f(x)

′
β where f(x) is

a q-dimensional vector of known functions of x and β is the corresponding q-
dimensional vector of unknown parameters. The disadvantage of UK is that UK
requires the estimation of additional parameters: besides µ = β0. We conjecture
that the estimation of these q−1 extra parameters explains why UK has a higher
MSE. In practice, most Kriging models do not use UK but OK.

5.2 Designs for deterministic simulation

There is an abundant literature on various design types for Kriging in deter-
ministic simulation; e.g., orthogonal array, uniform, maximum entropy, mini-
max, maximin, integrated mean squared prediction error, and "optimal" de-
signs. However, most popular is Latin hypercube sampling (LHS), which we
explain next.
LHS assumes that an adequate metamodel is more complicated than a low-

order polynomial; LHS does not assume a specific type of metamodel, but fo-
cuses on Rk, the input space formed by the k—dimensional unit cube defined by
the standardized simulation inputs. LHS does not imply a strict mathemati-
cal relationship between n and k, whereas DOE uses (for example) n = 2k so
n drastically increases with k. Nevertheless, if LHS keeps n "small" and k is
"large", then "space filling" LHS covers Rk so sparsely that the fitted Kriging
model may be inadequate. Therefore a well-known rule-of-thumb for LHS in
Kriging is n = 10k; see Loeppky et al. (2009).
Technically, LHS divides the range of each input into n mutually exclusive

and exhaustive intervals of equal probability. LHS gives a noncollapsing design;
i.e., if an input turns out to be unimportant, then each remaining individual
input is still sampled with one observation per interval (the estimation of the
correlation function may benefit from this noncollapsing property). Unfortu-
nately, projections of a LHS-combination in Rk onto more than one dimension
may give "bad’designs. Therefore standard LHS is further refined, leading to
so-called maximin LHS and nearly-orthogonal LHS.
Now we switch from fixed sample or one shot designs to sequential designs

that account for fsim so the sequential designs are application-driven or cus-
tomized. Sequential procedures require fewer observations than fixed-sample
procedures. In sequential designs we learn about the behavior of the underlying
system as we experiment with this system and collect data (also see Section 4
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on SB). Unfortunately, extra computer time is needed if we re-estimate ψ when
new I/O data become available.
Kleijnen (2015) details sequential designs for Kriging, to perform either SA

(so the whole experimental area is of interest) or optimization (so only the global
optimum is interesting). In such a design we may start with a pilot experiment
using LHS, and use this experiment to obtain simulation I/O data. Next we fit a
Kriging model to these data. Then we may consider– but not yet simulate–Xc

which denotes a larger set of candidate combinations selected through LHS, and
find the "winning" candidate. In SA this winner has the highest s2{ŷ(x)} with x
∈ Xc; for optimization the winner is discussed in Section 6.2. Experiments show
that sequential designs for SA select relatively few combinations in subareas with
an approximately linear fsim , and many combinations in the other subareas; in
optimization the winner looks "promising". Next we use this winner as the
input for the next simulation run, which gives additional I/O data. We may
now re-fit (update) the Kriging model to the augmented I/O data. We stop if
either the Kriging metamodel satisfies a given goal or the computer budget is
exhausted.

5.3 Stochastic Kriging (SK)

SK adds the intrinsic noise term εr(x) for replication r at combination x to (41),
assuming εr(x) ∈ N(0,Var[εr(x)]) and εr(x) independent of M(x). Averaging
over replications, SK replaces (41) by

y(xi) = µ+M(xi) + ε(xi) with x ∈ Rk and i = 1, . . . , n. (49)

Obviously, mi replications without CRN make Σε diagonal with main-diagonal
elements Var[ε(xi)]/mi. CRN and mi = m give Σε = Σε/m.
SK may use s2i defined in (20). Alternatively, SK may use another Krig-

ing metamodel for Var[ε(xi)]– besides the Kriging metamodel for the mean
E[yr(xi)]– to predict Var[ε(xi)]. This alternative may give less volatile esti-
mates than the point-estimates s2i . Because s

2
i is not normally distributed, the

GP is only a rough approximation. We might also replace s by log(s2i ) in the
Kriging metamodel; also see Section 3.3 and Kamiński (2015).

To get the SK predictor, Ankenman et al. (2010, Eq. 25) replaces ΣM in
OK by ΣM + Σε and w by w:

ŷ(x0, ψ̂) = µ̂+ σ̂(x0)
′(Σ̂M + Σ̂ε)

−1(w−µ̂1) (50)

and

s2{ŷ(x0)} = τ̂2 − σ̂(x0)
′(Σ̂M + Σ̂ε)

−1σ̂(x0)

+
[1− 1′(Σ̂M + Σ̂ε)

−1σ̂(x0)]
2

1′(Σ̂M + Σ̂ε)−11
. (51)

SK for a quantile instead of an average is discussed in Chen and Kim (2013).
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In the discussion of (48) we mentioned the problems caused by the random-
ness of ψ̂. To solve this problem we may apply distribution-free bootstrapping ;
see Van Beers and Kleijnen (2008) and Yin et al. (2009).
Usually SK employs the same designs as OK does for deterministic simu-

lation. So, SK often uses one-shot LHS. However, we also need to select mi.
In Section 3.3 we have already discussed the analogous problem for regression
metamodels; a simple rule-of-thumb is (24).
In sequential designs, we may select the "winner" defined in Section 5.2.

In SK we may select this winner, using distribution-free bootstrapping. Van
Beers and Kleijnen (2008) selects more input values in the subdomain of the
experimental area that gives a highly nonlinear estimated I/O function; this
design gives better Kriging predictions than the fixed LHS design– especially
for small designs, which are used in expensive simulations.

5.4 Monotonic Kriging

In practice we sometimes know that fsim is monotonic; e.g., if the traffi c rate
increases, then the mean waiting time increases. More examples were given in
Section 4 on screening. The Kriging metamodel, however, may be wiggling if n is
small. To make ŷ monotonic, we may apply distribution-free bootstrapping with
acceptance/rejection; i.e., we reject the Kriging metamodel fitted in bootstrap
sample b– with b = 1, ..., B and bootstrap sample size B– if this metamodel is
not monotonic. A monotonic predictor means that the estimated gradients of
the predictor remain positive as the inputs increase. An advantage of monotonic
Kriging is that in practice the resulting SA is better understood and accepted.
Furthermore, monotonic Kriging may give a smaller MSE and a CI with higher
coverage and acceptable length. Finally, the estimated gradients with correct
signs may improve optimization.
Methodologically, we assume that no CRN are used, and mi (i = 1, ..., n′)

is not necessarily a constant m. Let xi < xi′ with i 6= i′ mean that at least
one component of xi is smaller than the corresponding component of xi′ and
none of the remaining components is bigger. Between (44) and (45) we have
already mentioned that ŷ(x) enables the computation of ∇ŷ(x). We use a test
set with v "new" combinations. We assume that a 90% CI is desired. We
start with resampling wi;r (r = 1, ..., mi) with replacement, to obtain the mi-
dimensional vector w∗i;b = (w∗i;r;b) (b = 1, ..., B); resampling all n combinations
gives (X,w∗b) where w∗b has the n elements w

∗
i;b =

∑mi

r=1w
∗
i;r;b/mi. Using this

(X,w∗b), we compute ψ̂
∗
. Using (X,w∗b) and ψ̂

∗
b , we compute ŷ

∗
b . We accept this

ŷ∗b only if ∇ŷ∗i;b′ > 0. We use the Ba accepted ŷ∗b to compute Ba predictions for
the test set xu (u = 1, ..., v). These Ba predictions ŷ∗u give the sample median
ŷ∗u;(0.50Ba)

as the point estimate and [ŷ∗u;(0.05Ba)
, ŷ∗u;(0.95Ba)

] as the two-sided
90% CI; see (19). If we find the resulting CI too wide, then we increase B so
Ba probably increases too.
To quantify the performance of this method in SA, we may use the estimated

integrated mean squared error (EIMSE). where we average over xu. Further-
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more, OK uses the CI defined in (48), which is symmetric around its point
estimate ŷ and may include negative values– even if negative values are im-
possible, as is the case for waiting times. Experiments show that– compared
with OK– monotonic Kriging gives a smaller– but not significantly smaller–
EIMSE, and significantly higher estimated coverages of the CI without widening
the CI.
We may also apply Kriging with acceptance/rejection to preserve other I/O

characteristics; e.g., positive values for waiting times, variances, and thickness.
Furthermore, we may apply this method to other types of metamodels such as
the linear regression metamodel.

5.5 Global sensitivity analysis

So far we focused on the predictor ŷ(x), but now we measure how sensitive
ŷ(x)– and hence w(x)– are to the individual inputs x1 through xk and their
interactions. We assume that x has a prespecified distribution, as in LHS;
see Section 5.2. We apply functional analysis of variance (FANOVA), using
variance-based indexes originally proposed by Sobol. FANOVA decomposes the
output variance σ2w into fractions that refer to the individual inputs or to sets
of inputs; e.g., FANOVA may show that 70% of σ2w is caused by the variance in
x1, 20% by x2, and 10% by the interaction between x1 and x2. We can prove
the following variance decomposition into a sum of 2k−1 components:

σ2w =

k∑
j=1

σ2j +

k∑
j<j′

σ2j;j′ + . . .+ σ21;...;k (52)

with the main-effect variance σ2j = Var[E(w|xj)] and the two-factor interaction
variance σ2j;j′ = Var[E(w|xj , xj′)] etc., ending with the k-factor interaction vari-
ance σ21;...;k = Var[E(w|x1, . . . , xk)]. Note that Var[E(w|x1, . . . , xk)] denotes the
variance of the mean of w if all k inputs are fixed; consequently, this variance
equals the intrinsic noise in stochastic simulation.
The measure σ2j leads to the first-order sensitivity index or the main effect

index γj = σ2j /σ
2
w. So, γj quantifies the effect of varying xj alone– averaged over

the variations in all the other k− 1 inputs; σ2w in the denominator standardizes
γj to provide a fractional contribution (in linear regression we standardize xj
so that βj measures the relative main effect; see (6)). Likewise, σ2j;j′ through
σ21;...;k are divided by σ

2
w. Altogether we get

k∑
j=1

γj +

k−1∑
j=1

k∑
j′=j+1

γj;j′ + . . .+ γ1;...;k = 1. (53)

As k increases, the number of measures in (52) or (53) increases dramatically.
So– as we assumed for regression metamodels– we may assume that only γj–
and possibly γj;j′– are important, and verify whether they sum up to a fraction
"close enough" to 1 in (53). The estimation of the various sensitivity measures
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may use LHS, and replace the simulation model by a Kriging metamodel; see
Borgonovo and Plischke (2015) and Saltelli et al. (2008, pp. 164- 67).

5.6 Risk analysis (RA) or uncertainty analysis (UA)

In FANOVA we assume a given distribution for x ∈ Rk with w = fsim (x). In
RA we may wish to estimate P (w > c) with a given threshold value c. RA
is applied in nuclear engineering, finance, water management, etc. Actually,
P (w > c) may be very small– so w > c is called a rare event– but may have
disastrous consequences. An example of RA may be w denoting the net present
value (NPV) and x the cash flows so x is sampled from given distribution
functions; spreadsheets are popular software for such NPV computations. The
uncertainty about the exact values of x is called subjective or epistemic, whereas
the "intrinsic" uncertainty in stochastic simulation is called objective or aleatory.

SA and RA address different questions; namely, "Which are the most im-
portant inputs in the simulation model of a given real system?" and "What is
the probability of a given (disastrous) event happening?". So, SA may identify
those inputs for which the distribution in RA needs further refinement. RA and
SA are also detailed in Borgonovo and Plischke (2015).
Methodologically, we propose the following method for RA aimed at esti-

mating P (w > c). We use a Monte Carlo method to sample input combination
x from its given distribution. Next we use this x as input into the given sim-
ulation model. We run the simulation model to transform x into w, which is
called propagation of uncertainty. We repeat these steps n times to obtain the
EDF of w. Finally, we use this EDF to estimate P (w > c).
In expensive simulation, we do not run n simulation runs, but run its meta-

model n times. The true P (w > c) may be better estimated through inexpensive
sampling of many values from the metamodel, which is estimated from relatively
few I/O values obtained from the expensive simulation model.
The British community Managing uncertainty in complex models (MUCM)

also studies uncertainty in simulation models, including RA, and SA. Cheva-
lier et al. (2014) uses Kriging to estimate the excursion set defined as the set
of inputs that give an output that exceeds a given threshold, and quantifies
uncertainties in this estimate; a sequential design may reduce this uncertainty.
Obviously, the volume of the excursion set is closely related to the failure proba-
bility P (w > c). Kleijnen et al. (2011) uses a first-order polynomial to estimate
which combinations of uncertain inputs form the frontier that separates accept-
able and unacceptable outputs; both aleatory and epistemic uncertainty are
included.
RA is related to the Bayesian approach assuming the parameters of the

simulation model to be unknown with a given prior distributions for these
parameters– usually, conjugate priors. After obtaining simulation I/O data,
this approach computes the posterior distribution using the well-known Bayes
theorem. Bayesian model averaging and Bayesian melding formally account–
not only for the uncertainty of the input parameters– but also for the uncer-
tainty in the form of the (simulation) model itself. Frequentist RA, however,

24



has been applied many more times in practice. We also refer to the specific
Bayesian approach in Xie et al. (2014).

6 Simulation optimization

In practice, optimization of real-world systems is important. We also emphasize
the crucial role of uncertainty in the input data for simulation models, which
implies that robust optimization is important. In academic research, the im-
portance of optimization is demonstrated by the many publications on this
topic.
The simplest optimization has no constraints for the inputs or the outputs,

has no uncertain inputs, and concerns the expected value of a single output,
E(w). This E(w) may represent the probability of a binary variable: P (w =
1) = p and P (w = 0) = 1 − p imply E(w) = p. However, E(w) excludes
quantiles and the mode of the output distribution. Furthermore, the simplest
optimization assumes continuous inputs, excluding ranking and selection (R&S)
and multiple comparison procedures.

There are so many optimization methods that we do not try to summarize
these methods. Instead, we focus on optimization using metamodels, especially
linear regression and Kriging. Jalali and Van Nieuwenhuyse (2015) claims that
metamodel-based optimization is "relatively common" and that RSM is the
most popular metamodel-based method, while Kriging is popular in theoret-
ical publications. Furthermore, we focus on expensive simulations; for these
simulations, it is impractical to apply optimization methods such as OptQuest.
In many applications, a single simulation run is computationally inexpensive,

but there are extremely many input combinations. In practice, most simulation
models have a high k: curse of dimensionality ; e.g., k = 7 with 10 values per
input requires 107 combinations. Moreover, a single run may be expensive if
we wish to estimate the steady-state performance of a queueing system with a
high traffi c rate. Finally, if we wish to estimate a small E(w) = p (e.g. p =
10−7), then we need to simulate extremely many customers (unless we succeed
in applying importance sampling).

6.1 Linear regression for optimization: RSM

RSM treats the simulation model as a black box. RSM is sequential ; i.e., it uses
a sequence of local experiments that is meant to lead to the optimum input
combination. RSM has gained a good track record; see Kleijnen (2015), Law
(2015, pp. 656—679). and Myers et al. (2009).
We assume that RSM is applied only after the important inputs and their

experimental area have been identified; i.e., before RSM starts, we may need
screening ; see Section 4. However, Chang et al. (2014) integrates RSM and
screening.
Methodologically, the goal of RSM is to minimize E(w|z) where z denotes

the vector with the k original (nonstandardized) inputs. To initialize RSM,
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we select a starting point; e.g., the combination currently used in practice. In
the neighborhood of this starting point we fit a first-order polynomial, assuming
white noise; however, in a next step, RSM allows Var(w) to change. Unfor-
tunately, there are no general guidelines for determining the appropriate size
of the local area in each step; Chang et al. (2014), however, selects this size
through a so-called trust region. To fit a first-order polynomial, we use a R-III
design; see Section 2.1. In the next steps, we fit local first-order polynomials.
In each of these steps, we use the gradient implied by the first-order polyno-
mial fitted in that step: ∇(ŷ) = β−0 where −0 means that the intercept β0 is
removed from β. This ∇(ŷ) estimates the steepest descent direction. We take a
step in the steepest-descent direction, trying intuitively selected values for the
step size. After a number of steps in the steepest-descent direction, the output
will increase instead of decrease because the first-order polynomial is only a
local approximation. When such deterioration occurs, we simulate the n > k
combinations of the R-III design that is now centered around the best combina-
tion found so far. To quantify the adequacy of the local first-order polynomial,
we may compute R2 or cross-validation statistics; see Section 3.5. Obviously, a
plane implied by a first-order polynomial cannot adequately represent a hill top
when searching to maximize the output or– equivalently– minimize the output.
So, in the neighborhood of the estimated optimum, we fit a second-order poly-
nomial using a CCD. Next we use the derivatives of this polynomial to estimate
the optimum. We may also apply canonical analysis to examine the shape of
the optimal subregion: unique minimum, saddle point, or ridge with station-
ary points? If time permits, then we may try to escape from a possible local
minimum and restart the search from a different initial local area.
We recommend not to eliminate inputs with nonsignificant effects in a local

first-order polynomial: these inputs may become significant in a next local area.
The selection of mi is a moot issue; see Section 3.3 and the SPRT for SB in
Section 4.2. A higher-order polynomial is more accurate than a lower-order
polynomial, but may give a predictor ŷ with lower bias but higher variance so
its MSE increases; moreover, a higher-order polynomial requires the simulation
of many more input combinations.
Assuming mi = m and CRN, we may compute β̂r (r = 1, ..., m). So,

replication r gives ∇(ŷ)– if a first-order polynomial is used– or the optimum–
if a second-order polynomial is used. If we find the estimated accuracy too low,
then we may simulate additional replications so m increases. We may also use
either parametric or distribution-free bootstrapping to derive CIs for ∇(ŷ) and
the optimum.
Kleijnen (2015) also discusses the scale-independent adapted steepest-descent

direction that accounts for Σβ̂ . Experimental results imply that this direction
performs better than the classic steepest-descent direction.
In practice, simulation models have multiple (say, r) responses types. The

RSM literature offers several approaches for such situations, but we focus on
generalized RSM (GRSM); see Angün (2004). GRSM addresses the following
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constrained nonlinear random optimization problem:

minx E(w0|z)

E(wh′ |z) ≥ ch (h′ = 1, . . . , r − 1) (54)

lj ≤ zj ≤ uj with j = 1, . . . , k.

GRSM combines RSM and mathematical programming, avoiding creeping along
the boundary of the feasible area that is determined by the constraints on the
random outputs and the deterministic inputs. So, GRSM moves faster to the
optimum than steepest descent. GRSM is scale independent. For details we
refer to Kleijnen (2015).
Obviously, it is uncertain whether the optimum estimated by GRSM is close

to the true optimum. The first-order necessary optimality conditions are known
as the Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions may be
tested through parametric bootstrapping; see Bettonvil et al. (2009).

6.2 Kriging metamodels for optimization

Effi cient global optimization (EGO) is a well-known sequential method that uses
Kriging to balance local and global search; i.e., it balances exploitation and explo-
ration. When EGO selects a new combination x0, it estimates the maximum of
the expected improvement (EI) comparing w(x0) and– in minimization– mini
w(xi) with i = 1, ..., n. We saw below (45) that s2{ŷ(x0)} increases as x lies
farther away from xi. So, EI reaches its maximum if either ŷ is much smaller
than min w(xi) or s2{ŷ(x0)} is large so ŷ shows much uncertainty. We present
only basic EGO for deterministic simulation; also see the classic EGO reference,
Jones et al. (1998).
Note: There are many variants for deterministic and random simulations,

constrained optimization, multi-objective optimization including Pareto fron-
tiers, the "admissible set" or "excursion set", robust optimization, estimation
of a quantile, and Bayesian approaches; see the references in Kleijnen (2015).
We start with a pilot sample, typically selected through LHS. To the resulting

I/O data (X,w), we fit a Kriging metamodel y(x) Next we find fmin =min1≤i≤n
w(xi). This gives

EI(x) = E [max (fmin − y(x), 0)] . (55)

We can derive the following closed-form expression for its estimator:

ÊI(x) = (fmin − ŷ(x)) Φ

(
fmin − ŷ(x)

s{ŷ(x0)}

)
+ s{ŷ(x0)}φ

(
fmin − ŷ(x)

s{ŷ(x0)}

)
(56)

where Φ and φ denote the cumulative distribution function (CDF) and the
PDF of the Gaussian variable with mean 0 and variance 1. Using (56), we
find x̂

opt
, the estimate of x that maximizes ÊI(x). (We may apply a global

optimizer; a local optimizer is undesirable because s{ŷ(xi)} = 0 so EI(xi) =
0. Alternatively, we use a set of candidate points selected through LHS.) Next
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we run the simulation with this x̂opt, and find w(x̂opt). Then we fit a new
Kriging model to the augmented I/O data (Kamiński (2015) presents methods
for avoiding re-estimation of the Kriging parameters). We update n and return
to (56)– until we satisfy a stopping criterion; e.g., ÊI(x̂opt) is “close”to 0.

Kleijnen et al. (2010) derives the heuristic Kriging and integer mathematical
programming (KrIMP), addressing the problem already presented in (54), but
now augmented with s constraints fg for x while x must belong to the set of
non-negative integers N:

minx E(w0|x)

E(wh′ |x) ≥ ch (h′ = 1, . . . , r − 1)

fg(x) ≥ cg (g = 1, . . . , s)

xj ∈ N (j = 1, . . . , d). (57)

To solve this problem, KrIMP combines (i) sequentialized DOE to specify
the next combination; (ii) Kriging to analyze the resulting I/O data, and obtain
explicit functions for E(wh|x) (h = 0, 1, ..., r − 1); (iii) integer nonlinear pro-
gramming (INLP) to estimate the optimal solution from these explicit Kriging
models. Experiments with KrIMP and OptQuest suggest that KrIMP requires
fewer simulated combinations and gives better estimated optima.

6.3 Robust optimization (RO)

Robustness is crucial in today’s uncertain world. The optimum solution for the
decision variables– that we may estimate through RSM or Kriging– may turn
out to be inferior when ignoring uncertainties in the noncontrollable environ-
mental variables; i.e., these uncertainties create a risk.
Taguchians emphasize that in practice some inputs of a manufactured prod-

uct are under complete control of the engineers, whereas other inputs are not.
In simulation, x̂

opt
may be completely wrong when we ignore uncertainties in

some inputs. Taguchians therefore distinguish between (i) decision variables,
which we now denote by d = (d1, ..., dk)′, and (ii) environmental inputs or noise
factors e = (e1, ..., ec)

′; in this section we denote the residual by ε instead of e.
Note: The goal of RO is the design of robust products or systems, whereas

the goal of risk analysis is to quantify the risk of a given engineering design;
that design may turn out to be not robust at all. For example, Kleijnen
and Gaury (2003) simulates production-management, using RSM assuming a
specific– namely the most likely– combination of e-values. Next, the robust-
ness of x̂

opt
is estimated when e changes; technically, e is generated through

LHS. In RO, however, we wish to find a solution that– from the start of the
analysis– accounts for all possible environments, including their likelihood; i.e.,
whereas Kleijnen and Gaury (2003) performs an ex post robustness analysis, we
wish to perform an ex ante analysis.
Taguchians assume a single output (say) w, focusing on its mean µw and

its variance caused by the noise factors e so σ2(w|d) > 0. These two outputs
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are combined in a scalar loss function such as the signal-to-noise or mean-to-
variance ratio µw/σ2w; also see Myers et al. (2009, pp. 486-488). We, however,
use µw and σ2w separately; i.e., given a threshold T , we try to solve:

min E(w|d) such that σ(w|d) ≤ T ; (58)

also see Myers et al. (2009, pp. 488-495).
The Taguchian worldview is successful in production engineering, but sta-

tisticians criticize the statistical techniques. Moreover– compared with real-life
experiments– simulation experiments have many more inputs, input values, and
input combinations. Myers et al. (2009, pp. 502-506) combines the Taguchian
worldview with the statisticians’RSM. Whereas Myers et al. (2009) assumes
Σe = σ2eI, w assume a general Σe. Whereas Myers et al. (2009) superimposes
contour plots for E(w|d) and σ(w|d) to find x̂

opt
, we use MP. This MP, however,

requires specification of T in (58). Unfortunately, managers may find it hard to
select a specific value for T , so we may try different T -values and estimate the
corresponding Pareto-optimal effi ciency frontier. To estimate the variability of
this frontier resulting from the estimators of E(w|d) and σ(w|d), we may use
bootstrapping.
More precisely, Myers et al. (2009) fits a second-order polynomial for d

that is to be optimized; possible effects of e are modelled through a first-order
polynomial; control-by-noise two-factor interactions are also considered:

y = β0 +

k∑
j=1

βjdj +

k∑
j=1

k∑
j′≥j

βj;j′djdj′ +

c∑
g=1

γgeg +

k∑
j=1

c∑
g=1

δj;gdjeg + ε

= β0 + β′d + d′Bd + γ′e + d′∆e + ε.

(59)

If E(e) = µe and E(ε) = 0, then (59) implies

µy = β0 + β′d + d′Bd + γ′µe + d′∆µe. (60)

Given Σe, 59) implies

σ2y = (γ′ + d′∆)Σe(γ + ∆′d) + σ2ε = l′Σel + σ2ε (61)

where l = (γ + ∆′d) is the gradient (∂y/∂e1, . . . , ∂y/∂ec)
′. Obviously, the

larger the gradient’s elements are, the larger σ2y is. Furthermore, if ∆ = 0, then
we cannot control σ2y through d.

To estimate the parameters in (59), Taguchians usually apply a crossed de-
sign, which combines the design or inner array for d with nd combinations and
the design or outer array for e with ne combinations so the crossed design has
nd×ne combinations. Analogously, we combine a CCD for d and a R-III design
for e; see Section 2.4 and Section 2.1, respectively. Obviously, this combined
design enables estimation of ∆.
Reformulating (59) as y = ζ′x + ε with the q-dimensional vector ζ =

(β0, ..., δk;c)
′ and x defined corresponding with ζ, gives

ζ̂ = (X′X)−1X′w and Σζ̂ = (X′X)−1σ2w (62)
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where σ2w equals σ
2
ε because we assume ε ∼ NIID(0, σ2ε ) in (59). To estimate µy

in (60), we simply plug ζ̂ into (60) with known d and µe. To estimate σ
2
y we also

plug ζ̂ into (61) with known Σe. Obviously, this plugging-in of ζ̂ creates bias,
which we ignore. Next we solve (58), using (for example) Matlab’s fmincon.
The resulting d̂opt implies corresponding values for µw and σ2w. Examples are
presented in Myers et al. (2009) and also in Dellino et al. (2012) and Yanikoğlu
et al. (2015).
Dellino et al. (2012) combines the Taguchian world view and Kriging, so

this approach replaces the polynomial in (59) by OK metamodels. Moreover,
Dellino et al. uses bootstrapping to quantify the variability of the estimated
Kriging metamodels. Dellino et al. again combines Kriging and NLP. Changing
T in the NLP-model (58) enables estimation of the Pareto frontier.
To estimate the Kriging models for E(w|d) and σ(w|d) in (58), Dellino et

al. proposes the following two approaches: (i) Fit one Kriging model for E(w|d)
and one Kriging model for σ(w|d)– estimating both models from the same sim-
ulation I/O data. (ii) Fit one Kriging model to a relatively small number n of
combinations of d and e, and use this metamodel to compute predictions for w
for N � n combinations of d and e, accounting for the distribution of e. We
detail these approaches, as follows.
In approach (i) we select the nd combinations of d space-filling ; e.g., we use

LHS. The ne combinations of e, however, we sample from the distribution of
e. If we have no prior information about the likelihood of specific values for e,
then we use independent uniform distributions for each element of e. To sample
e, we may again use LHS. The result is an nd × ne crossed design specifying
the k+ c simulation inputs. Running the simulation with these nd × ne input
combinations gives wi;j , which give

wi =

∑ne
j=1 wi;j

ne
and s2i =

∑ne
j=1(wi;j − wi)2

ne − 1
with i = 1, ..., nd. (63)

The estimators in (63) are unbiased, as they do not use any metamodels.
In approach (ii) we select n � nd × ne combinations of the k + c inputs dj

and eg through a space-filling design (using e.g. max-min LHS). Next, we use
this n× (k+ c) matrix as simulation input, and obtain the n-dimensional vector
with simulation outputs w. To these I/O simulation data we fit a Kriging model,
which approximates w as a function of dj and eg. Finally, we use a design withN
� n combinations, crossing a space-filling design with Nd combinations of d and
LHS with Ne combinations of e accounting for the distribution of e. We use the
Kriging model to compute the predictors ŷ of the Nd ×Ne simulation outputs.
We then compute the Nd conditional means wi and standard deviations s2i using
(63) replacing nd and ne by Nd and Ne and replacing w by ŷ. We use these wi
and s2i (i = 1, ..., Nd) to fit one Kriging model for wi and one for si.
Finally, we summarize Ben-Tal et al.’s RO. If MP ignores the uncertainty

in the coeffi cients of the MP model, then the resulting nominal solution may
easily violate the constraints in the given model. RO may give a slightly worse
value for the goal variable, but RO increases the probability of satisfying the
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constraints; i.e., a robust solution is "immune" to variations of the variables
within the uncertainty set U . Given historical data on e, Yanikoğlu et al.
(2013) derives a specific U for p where p denotes the unknown density function
of e that is compatible with the historical data on e. This type of RO develops a
computationally tractable robust counterpart of the original problem. RO may
give better worst-case performance and also better average performance than
the nominal solutions give.
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