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Abstract: In this paper, we employed both first and second laws of thermodynamics to 

analyze the flow and thermal decomposition in a variable viscosity Couette flow of a 

conducting fluid in a rotating system under the combined influence of magnetic field and 

Hall current. The non-linear governing differential equations are obtained and solved 

numerically using shooting method coupled with fourth order Runge–Kutta–Fehlberg 

integration technique. Numerical results obtained for velocities and temperature profiles 

are utilized to determine the entropy generation rate, skin fictions, Nusselt number and the 

Bejan number. By plotting the graphs of various values of thermophysical parameters, the 

features of the flow characteristics are analyzed in detail. It is found that fluid rotation 

increases the dominant effect of heat transfer irreversibility at the upper moving plate 

region while the entropy production is more at the lower fixed plate region.  

Keywords: MHD couette flow; rotating system; variable viscosity; Hall effects;  

entropy analysis 
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1. Introduction 

The flow of an electrically and thermal conducting fluid between two parallel plates in the presence 

of a transverse magnetic field do appear in a wide variety of industrial and engineering applications, as 

well as in many natural circumstances such as geothermal extraction, storage of nuclear waste 

material, oil recovery processes, thermal insulation engineering, pollutant dispersion in aquifers, food 

processing, casting and the dispersion of chemical contaminants in various processes in the chemical 

industry and in the environment, electromagnetic casting, astrophysics and cosmology, earthquake, 

magnetic drug targeting, magnetohydrodynamic (MHD) power generators, boundary layer flow 

control and MHD pumps. MHD flow in a rotating system is also encountered in geophysical fluid 

dynamics. It is well known that a number of astronomical bodies possess fluid interiors and magnetic 

fields. Changes that take place in the rate of rotation suggest the possible importance of hydromagnetic 

spin-up. Barikbin et al. [1] applied the Ritz–Galerkin method in Bernstein polynomial basis to solve 

the nonlinear problem of the magnetohydrodynamics (MHD) flow of third grade fluid between two 

plates. Khan et al. [2] investigated the peristaltic motion of an incompressible non-Newtonian fluid 

with variable viscosity through a porous medium in an inclined symmetric channel under the effect of 

slip condition. Hydromagnetic Couette flow subject to different physical effects, have been studied by 

many researchers [3–6]. Attia [7] studied the unsteady Couette–Poiseuille flow of an electrically 

conducting incompressible non-Newtonian viscoelastic fluid between two parallel horizontal  

non-conducting porous plates with heat transfer putting into consideration the Hall Effect. Makinde 

and Chinyoka [8] studied the unsteady hydromagnetic generalized Couette flow and heat transfer 

characteristics of a reactive variable viscosity incompressible electrically conducting third grade fluid 

in a channel with asymmetric convective cooling at the walls in the presence of uniform transverse 

magnetic field. Eegunjobi and Makinde [9] examined the effects of the thermodynamic second law on 

steady flow of an incompressible variable viscosity electrically conducting fluid in a channel with 

permeable walls and convective surface boundary conditions. 

Many authors have investigated the fluid dynamic of rotating systems under various geometry due 

to its various applications such as compressor, wind turbine, jet engine, pumps, large-scale 

atmospheric and oceanic flows. Shivakumara et al. [10] studied the simultaneous effect of a vertical 

AC electric field and rotation on the onset of thermal convective instability in a horizontal rotating 

dielectric fluid layer by performing linear stability analysis. Nadeem and Saleem [11] investigated of 

third grade fluid flow over a rotating vertical cone in the presence of nanoparticles, i.e., thermophoresis 

and Brownian motion. Turkyilmazoglu [12] investigated analytical solutions for the flow of a viscous 

hydromagnetic fluid due to the rotation of an infinite disk in the presence of an axial uniform steady 

magnetic field with the inclusion of Hall current effects and porosity. Zakinyan et al. [13] 

experimentally investigated the behavior of a magnetic fluid drop lying on a solid horizontal surface 

and surrounded by a nonmagnetic liquid under the action of a uniform magnetic field that is rotating in 

a vertical plane with low frequency. Feiz-Dizaji et al. [14] investigated the flow field of a third-grade 

non-Newtonian fluid in the annulus of rotating concentric cylinders in the presence of magnetic field. 

Hayat et al. [15] developed an exact solution to analyze an electrical conducting viscous fluid over a 

porous plate in a rotating system and many other works [16–18]. 
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In this present study, both first and second laws of thermodynamics are employed to investigate the 

flow and thermal decomposition in hydromagnetic variable viscosity Couette flow in a rotating system 

with Hall current. The nonlinear model problem is tackled numerically using shooting technique 

coupled with fourth order Runge–Kutta–Fehlberg integration scheme. Results for both the primary and 

secondary velocity profiles, temperature profiles entropy generation rate, Bejan number, skin friction 

and Nusselt number are displayed graphically and discussed quantitatively. 

2. Mathematical Analysis 

Consider the steady Couette flow of a variable viscosity, incompressible, electrically and thermally 
conducting fluid between two infinite parallel walls 0y   and y L  in the presence of a uniform 

transverse magnetic field B0 that is applied parallel to y-axis taking Hall current into account. Both the 

fluid and channel rotate in unison with a uniform angular velocity   about y-axis. The deflection 

effect of Coriolis force acting perpendicular to the direction of fluid motion and to the axis of rotating 

reference frame is considered while the effect of centrifugal force is negligible due to fluid axial 

Couette flow motion. Fluid flow within the channel is induced due to uniform pressure gradient 
applied along x-direction as well as the movement of upper wall y L  with uniform velocity U0 in the 

same direction. The walls of the channel are maintained at the same temperature Tw. Physical model of 

the problem is presented in Figure 1. Since channel walls are of infinite extent in x- and z-directions 

and the flow is fully developed, all physical quantities, except pressure depend on y only. 

 

Figure 1. Physical model of the problem. 

Taking into consideration the assumptions made above, the governing equations for steady Couette 

flow of a viscous, incompressible, electrically and thermally conducting fluid in a rotating system 

taking Hall current into account are presented in the following form [2–4,15,17] 
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where peeee ckmTwu ,,,,,,,,,    and Eg are, respectively, the fluid velocity in x-direction, 

fluid velocity in z-direction, fluid temperature, fluid electrical conductivity, fluid density, Hall current 

parameter, cyclotron frequency, electron collision time, thermal conductivity coefficient, specific heat 

at constant pressure and the volumetric entropy generation rate. The boundary conditions for the fluid 

velocities and temperature are given as: 
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Due to the movement of the upper plate, the pressure gradient terms x
P


 
1  and z

P
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 
1 , which 

are present in Equations (1) and (2), respectively, are evaluated with the help of Boundary Conditions (5) 

and are given by 
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The fluid dynamical viscosity is assumed to be an exponential decreasing function of temperature 

given by [3,9] 
( )
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where 0  is the fluid dynamic viscosity at the walls. We introduce the dimensionless variables and 

parameters as follows: 
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Substituting Equation (8) into Equations (1)–(7), we obtain,  

2

0 2 2

( )
2

(1 )

d U d dU M U mW
R W e e

d d d m
   


  

   
  


 (9)

2

2 2

( ))
2 ( )

(1 )

d W d dW M W mU m
Ro U e e

d d d m
   

 
  

   
    


 (10)

   

 

2 2 2 22

22 2
Pr Pr 0

1

U mW W mU md dU dW
Ec e EcM

d d d m

  

  
     

   


                    
 (11)

   

 

2 2 2 2 2

221

U mW W mU md dU dW
Ns Br e BrM

d d d m

  

  
     

   


                          
 (12)

with 
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where Pr is the Prandtl number, 0R  is the rotation parameter, Ec is the Eckert number,  is the 

viscosity variation parameter, M is the magnetic field parameter, Br (=EcPr) is the Brinkm ann number 

and λ is the upper wall motion parameter. Other quantities of interest are the skin friction coefficients 

(Cf1 and Cf2), Nusselt number (Nu) and the Bejan number (Be) which are given as  
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(15)

It is very important to note that N1 represents the thermodynamic irreversibility due to heat transfer 

while N2 corresponds to the combined effects of fluid friction and magnetic field irreversibility. When  

Be = 0.5 both N1 and N2 contribute equally to the entropy generation in the flow process. The model 

Equations (9)–(14) are tackled numerically using a shooting technique coupled with fourth order  

Runge–Kutta–Fehlberg integration scheme. 

3. Numerical Procedure 

Here, the nonlinear model governing Equations (9)–(11) together with the Boundary Conditions (13) 

represent a boundary value problem (BVP) and are converted into a set of nonlinear first order 

ordinary differential equations with some unknown initial conditions that are determined using 

shooting technique. Let, 
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with the corresponding initial conditions as  
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The unknown initial conditions s1, s2, and s3 are first guessed and subsequently determined using  

Newton–Raphson’s method for each set of parameter values with respect to the prescribed boundary 

conditions. The resulting initial value problem is tackled numerically using a fourth order  

Runge–Kutta–Fehlberg integration scheme. The step size  = 0.01 for the numerical solution. From the 

process of numerical computation, we obtain the skin friction coefficients (Cf1 and Cf2), the Nusselt 

number (Nu), the entropy generation rate and the Bejan number as given by Equation (14). 

4. Results and Discussion 

In order to have a physical insight of the problem, we discuss the effects of various thermophysical 

parameters controlling the flow system displayed in Figures 2–9. Figure 2 depicts the primary velocity 

profiles in the x-direction. It is zero at the fixed lower wall and increasing gradually with the maximum 

velocity at the upper moving wall satisfying the prescribed boundary conditions. In Figure 2a, it is 

observed that the primary velocity profiles rises towards the lower fixed wall with an increase in 

magnetic field intensity (M). This may be due to the combined actions of Lorenz force and the moving 
upper wall. Figure 2b depicts the effect of increasing in upper wall motion parameter   . As   is 

increasing, the fluid primary velocity generally increases across the channel with maximum primary 

velocity at the upper wall. Figure 2c,d shows the effect of increase in rotation parameter (R0) and the 

viscosity variation parameter (). An increase in each of these parameters produces a rise in the 

primary velocity profile across the channel and towards the upper wall. This may be attributed to the 

facts that as  increases, the fluid viscosity decreases leading to an increase its primary velocity. In 

Figure 2e, it is observed that as Hall current parameter (m) increases, the fluid primary velocity 

decreases across the channel. Meanwhile, an increase in viscous heating also increases the primary 

velocity profiles as illustrated in Figure 2f. Figure 3 shows the effects of parameter variation on fluid 

secondary velocity profiles in z-direction. It is interesting to note that a general flow reversal is 

observed. Moreover, the intensity of flow reversal along z-direction decreases with a boost in magnetic 

field but increases with increasing parameter values of  , m and Ec. Figure 4 demonstrates the 

response of fluid temperature profiles to parameter variation. It is noteworthy that the temperature 

profile is parabolic with maximum value within the channel core region. The fluid temperature rises 

with increasing parameter values of M, R0, Ec and   but decreasing with increasing parameter values 

of m and . Figure 5 depicts the effects of thermophysical parameters on the entropy generation rate. 

Generally, the entropy production is highest at the lower fixed wall and lowest at the upper moving 

wall. This can be attributed to the fact that high velocity and temperature gradients are experienced at 

the lower fixed wall as compared to the upper moving wall. Moreover, it is interesting to note that 

entropy generation rate further increases at the lower fixed wall and decreases at the upper moving 
wall with increasing parameter values of M and R0 as shown in Figure 5a,c. At the point  0.5  , 

increase in M and R0 does not affect entropy generation rate while at the point  0.5  . Meanwhile, 

an increase in the upper wall motion generally increases entropy generation across the channel while a 

decrease in the fluid viscosity (i.e.,  increases) decreases the entropy production rate (see Figure 5b,d). 



Entropy 2015, 17 7817 

 

 

In Figure 5e, we observed that entropy production at the lower wall decreases while that at the upper 

wall increases with increasing Hall parameter. At the point  = 0.6, increase in m does not affect 

entropy generation rate. An increase in Eckert number due to fluid friction also increases the entropy 

generation rate across the channel as depicted in Figure 5f. Figure 6 depicts the effects of increasing 

parameters on Bejan number. A point exists at  = 0.4 where the fluid friction and magnetic field 

irreversibility completely dominates the entire flow system. Figure 6a shows that the Bejan number at 

both lower and upper walls increases as M increases but decreases within the region 0.1 <  < 0.4.  

This implies that the thermodynamic irreversibility due to heat transfer dominates the flow at both 

walls; however, within the region 0.1 <  < 0.4, the combined effects of fluid friction and magnetic 

field irreversibility dominate. Figure 6b,f shows that Bejan number increases at both walls with 

increasing values of   and Ec, this implies irreversibility due to heat transfer is enhanced. Figure 6c,d 

shows that the Bejan number decreases at lower wall region but increases at upper wall region with 

increasing R0 and . This shows that an increase in the fluid rotation coupled with a decrease in 

viscosity with enhance fluid friction irreversibility at the lower wall region and the heat transfer 

irreversibility at the upper wall region. Figure 6e shows that Bejan number increases at lower wall 

region and decreases at upper wall region with an increase in Hall current intensity (m). Figure 7 

illustrates the effects of parameter variation of Nusselt number both at the lower fixed wall and the 

upper moving wall. It is observed that the heat transfer rate is generally higher at the lower fixed wall 

as compared to that of upper moving wall. Moreover, an increase in λ and R0 increases heat transfer 

rate due to the elevation in temperature gradient at the walls while an increase in  decreases wall heat 

flux. The skin frictions at both walls with respect to primary and secondary flow velocity gradients are 

depicted in Figure 8. It is observed that the skin friction in the z-direction due the secondary flow 

velocity gradient is higher at the lower wall as compared to that of the upper wall as shown in Figure 8. 

An increase in λ, m and R0 increases the secondary flow skin friction while an increase in magnetic 

field intensity parameter M decreases the secondary flow skin friction. It is interesting to note that the 

secondary flow skin friction decreases at the lower fixed wall and increases at the upper moving wall 

with a decrease in fluid viscosity (i.e.,  increases). Figure 9 shows that the primary flow skin friction 

in the x-direction is higher at the upper moving wall as compared to that of lower fixed wall. 

Moreover, the primary flow skin friction increases at the lower wall but decreases at the upper wall 

with an increase in the intensity of R0 and M. The trend is opposite with increasing parameter values of 

m and . An increase in the upper wall motion λ increases the primary flow skin friction at both lower 

and upper walls. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 2. Velocity profile in x-direction with increasing (a) M, (b)  , (c) 0R , (d)  ,  

(e) m, and (f) Ec. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3. Velocity profile in z-direction with increasing (a) M, (b)  , (c) 0R , (d)  ,  

(e) m, and (f) Ec. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4. Temperature profile with increasing (a) M, (b)  , (c) 0R , (d)  , (e) m, and  

(f) Ec. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 5. Entropy generation with increasing (a) M, (b)  , (c) 0R , (d)  , (e) m, and  

(f) Ec. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 6. Benja number with increasing (a) M, (b)  , (c) 0R , (d)  , (e) m, and (f) Ec. 
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(a) (b) 

(c) 

Figure 7. Nusselt number with increasing (a)   versus  , (b)   versus  , and  
(c)   versus 0R . 

(a) (b) 

Figure 8. Cont. 
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(c) (d) 

Figure 8. 2Cf  with increasing (a)   versus  , (b) M versus  , (c) m versus  , and  

(d) 0R  versus  . 

(a) (b) 

(c) (d) 

Figure 9. 1Cf  with increasing (a)  versus 0R , (b) M versus 0R , (c) m versus 0R , and  

(d)   versus 0R . 
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5. Conclusions 

The thermodynamic analysis of variable viscosity hydromagnetic Couette flow in a rotating system 

with Hall current is investigated. The nonlinear model is tackled numerically using shooting technique 

coupled with fourth order Runge–Kutta–Fehlberg integration scheme. Our results can be summarized  

as follows: 

 The primary velocity profiles in x-direction increases with M,  , 0R , and  but decreases  

with m.  
 The secondary velocity profiles in z-direction increases with M but decreases with  , 0R ,  and m. 

 The temperature profile increases with M,  , 0R , and Ec but decreases with m and . 

 The entropy generation rate increases with   and Ec but decreases with . 

 Heat transfer irreversibility is more at the upper moving wall as compared to lower fixed wall.  

A point exists at  = 0.4 where the fluid friction and magnetic field irreversibility completely 

dominate the flow system. The Bejan number increases with λ and Ec. 

 The Nusselt number is higher at the lower wall as compared to upper wall. An increase in λ and 

0R  increases Nu while an increase in  decreases Nu.  

 The secondary flow skin friction coefficient increases with λ, m, and 0R  but decreases with M.  

 Increase in 0R  and M increases the primary flow skin friction coefficient at the lower wall but 

decreases it at the upper wall. The trend is opposite with increasing parameter values of m and 

. An increase in λ increases the primary flow skin friction at both lower and upper walls. 
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