IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 1

Mitigating Silent Data Corruptions In Integer
Matrix Products: Toward Reliable Multimedia
Computing On Unreliable Hardware

Ijeoma Anarado*, Mohammad Ashraful Anam, Fabio Verdicchio, and Yiannis Andreopoulos

Abstract—The generic matrix multiply (GEMM) routine com-
prises the compute and memory-intensive part of many in-
formation retrieval, machine learning and object recognition
systems that process integer inputs. Therefore, it is of paramount
importance to ensure that integer GEMM computations remain
robust to silent data corruptions (SDCs), which stem from
accidental voltage or frequency overscaling, or other hardware
non-idealities. In this paper, we introduce a new method for
SDC mitigation based on the concept of numerical packing. The
key difference between our approach and all existing methods
is the production of redundant results within the numerical
representation of the outputs, rather than as a separate set
of checksums. Importantly, unlike well-known algorithm-based
fault tolerance (ABFT) approaches for GEMM, the proposed
approach can reliably detect the locations of the vast majority
of all possible SDCs in the results of GEMM computations.
An experimental investigation of voltage-scaled integer GEMM
computations for visual descriptor matching within state-of-the-
art image and video retrieval algorithms running on an Intel
i7- 4578U 3GHz processor shows that SDC mitigation based
on numerical packing leads to comparable or lower execution
and energy-consumption overhead in comparison to all other
alternatives.

Index Terms—integer matrix multiplication, dependable sys-
tems, fault tolerance, soft errors, voltage scaling

I. INTRODUCTION

he increase of integration density and the power wall of

future CMOS technologies now require increased levels
of resilience to transient arithmetic, memory or logic faults
caused by process variations and other soft errors (e.g., caused
by particle strikes,circuit overclocking or voltage overscaling)
[43], [53], [58]. Voltage overscaling in particular is emerging
as one of the most effective methods for reducing power and
energy consumption in processor designs [2], [58]. However,
to ensure that processors remain reliable, strong error detection
and correction mechanisms are required, especially for the case
of silent data corruptions (SDCs), i.e., soft errors (occurring

Copyright (c) 2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions @ieee.org.
*Corresponding author. IA, MAA, YA are with the Electronic and Electri-
cal Engineering Department, University College London, Roberts Building,
Torrington Place, London, WCIE 7JE, UK; tel. +44 20 7679 7303; fax. +44
20 7388 9325 (all authors); email: {ijeoma.anarado.12, mohammad.anam.10,
i.andreopoulos} @ucl.ac.uk. FV is with the School of Engineering, University
of Aberdeen, King’s College, Fraser Noble building, Aberdeen, AB24 3UE,
UK; tel. +44 1224 273665; email: fverdicc@abdn.ac.uk. This work was
supported by EPSRC, project EP/M00113X/1. The work of I. Anarado was
supported by the Federal Government of Nigeria under the Presidential Special
Scholarship Scheme for Innovation and Development (PRESSID).

primarily on DRAM [2], [55]) that remain undetected because
they do not lead to a system halt or crash. This is now a
challenge of increasing importance for prevalent applications
in mobile, desktop and high-performance multimedia systems
[20], [40], [56], [59], [62], where SDCs affecting critical data
sections [38], [55] can result in incorrect outputs, or cause
the system to behave unexpectedly. Therefore, reliability mea-
sures, such as caches with hardware-supported error-correction
codes (ECC) are now becoming the norm in most processor
designs. However, the constantly increasing SDC rates along
with the complex corruption patterns (e.g., burst errors and
multibit upsets) found in aggressively-scaled systems require
increasingly-sophisticated ECC methods, which are known to
incur very substantial area, performance and power overheads
[31, [45], [48]. This is why the Defense Advanced Research
Projects Agency (DARPA) Exascale computing study [34] put
forward that mitigation of SDC bursts should also be based on
fault-tolerant software/algorithmic designs rather than solely
depending on expensive circuit-level techniques [34]. This has
led to a growing number of research proposals for developing
cross-layer system reliability designs [14], [45], which ensure
that systems remain reliable under unreliable hardware.

Mitigation techniques for SDCs are especially important
for matrix products performed during descriptor matching,
power iterations, backpropagation, transform decompositions,
random projections, kernel methods, covariance matrix cal-
culations and block Lanczos iterations within information
retrieval, object detection and tracking, machine learning, and
classification applications [8]-[10], [12], [15], [16], [20], [29],
[35], [40], [52], [56], [59], [62]. This is because: (i) matrix-
product computations comprise the bulk of processing in
such applications;(ii) subsequent processing stages apply low-
complex-yet-noise-sensitive thresholding, sorting and cluster-
ing operations [29], [33], [38], [44] and any undetected SDCs
in the matrix-product stage can have severe repercussions in
the final results. Many such matrix products utilize integer
inputs and are typically performed with an integer generic
matrix multiply (GEMM) routine, or the single- or double-
precision floating-point GEMM (sGEMM or dGEMM) rou-
tines of a high-performance mathematics kernel library (MKL)
[22], [28]. Thus, ensuring that integer matrix products remain
reliable against SDCs is of paramount importance for such
multimedia systems.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 2

A. Summary of Prior Work

Existing techniques that can ensure reliability to SDCs
comprise two categories: (i) algorithm-based fault tolerance!
(ABFT)—i.e., methods using checksums specifically tailored
to the algorithm under consideration—that can reliably detect
(and possibly correct) up to a limited number of SDCs [13],
[17], [19], [25], [39], [46], [47], [60]; (ii) systems with
dual modular redundancy (DMR), where all non-coinciding
SDCs can be detected if the same operation is duplicated in
two separate processors (or threads) that cross-validate their
results [21], but SDCs cannot be corrected without using triple
modular redundancy (TMR) [23].

It is well known that DMR/TMR solutions lead to sub-
stantial processing overhead in hardware/software systems and
incur increased energy consumption [21]. On the other hand,
while ABFT in GEMM comes with limited implementation
overhead [25], it can only detect the locations of a limited
number of SDCs (typically up to one or two) for an entire
GEMM computation. To address this issue, modified ABFT
(mABFT) schemes were proposed [13], [17], [30], [31], [39],
[41], [47], [54], [61], which are designed to locate and
correct more SDCs per GEMM. However, mABFT approaches
incur considerable implementation overhead and significant
reduction in available bitwidth for integer GEMM results [13],
[171, [30], [31], [39], [41], [47], [54], [61]. In conjunction with
recent studies indicating that SDCs in large cache memories
tend to increase drastically under voltage overscaling [2],
[43], [45], these observations indicate that ABFT and mABFT
may ultimately not be the most efficient approaches to detect
arbitrary SDC patterns occurring in GEMM computations
under increased rates of transient hardware faults.

B. Contribution

The proposed method detects any number of SDCs in
integer matrix products by creating redundant results within
the numerical representation of the output results. This is
achieved by packing pairs of inputs within one integer number
and performing two complementary quarter-size GEMM calls.
Beyond the desired outputs, these products spontaneously
create numerically-entangled pairs of outputs within the nu-
merical representation of the results. All outputs are then
extracted and, in conjunction with a very low-complex row-
column ABFT check, are cross-validated with the numerically-
entangled outputs to detect arbitrary SDCs with very high
probability.

Calculations of the computational complexity, as well as
experimental results on an Intel Sandy Bridge processor,
demonstrate that the average execution time overhead of the
proposed method against high-performance, fault-intolerant,
GEMM realizations under SDC-free conditions is limited to
11.50%. Therefore, the reliability and execution time effi-
ciency of our method is comparable to that of ABFT and,
unlike ABFT, our method is capable of detecting the locations
of the vast majority of all possible SDCs. This makes our

'In this paper, ABFT refers to Huang and Abraham’s original proposal
[25], while mABFT is used to refer to various modifications and extensions,
i.e., including the use of weighted checksums and subblock partitioning.

method superior to ABFT, mABFT and DMR under the
occurrence of multiple SDCs in memory. Finally, via an SDC-
injection campaign using an open source low-level virtual
machine (LLVM) based fault injection tool, the Kontrollable
Utah LLVM Fault Injector (KULFI) [49], [50], we demonstrate
that our proposal paves the way for a new class of SDC
mitigation methods for integer matrix products that are fast,
energy efficient, and highly reliable.

The remainder of the paper is organized as follows. In
Section II, we summarize the operation of high-performance
GEMM routines with different variants of ABFT and highlight
their differences with the proposed approach. In Section III, we
describe the proposed approach starting from the previously-
proposed concept of numerical packing. Sections IV and V-B
provide performance results and results with a voltage-scaled
platform and Section VI concludes the paper.

II. HIGH-PERFORMANCE GEMM, ABFT AND MABFT

Consider the GEMM design depicted in Figure 1(a), which
follows the general structure found in optimized MKL designs
[22]. The application calls GEMM for an M x K by K x N
matrix multiplication which is further subdivided into L x L
“inner-kernel” matrix products. For our approach, L is speci-
fied by (k e N*):

SIMDy

L =2kx (D

brepr
with: SIMDyys the number of bits of each SIMD register
(SIMDyis = 256 in this work); brepr € {32,64} the number
of bits for floating-point or integer representations. The inner-
kernel result? R, 1 of the example shown in Figure 1(a) com-
prises the sum of multiple subblock multiplications A, ;B 1:

£-1
Ro1=), AgiBiy. 2)

1=0
If the matrices’ dimensions are not multiples of L, some
“cleanup” code [22] is applied at the borders to complete
the inner-kernel results of the overall matrix multiplication.
This separation into top-level processing and subblock-level
processing is done for efficient cache utilization. Specifically,
during the initial data access of GEMM for top-level pro-
cessing, data in matrix A and B is reordered into block
major format: for each L x L pair of subblocks A;; and By ;

multiplied to produce inner-kernel result R; ;, 0 < I < %,
0 <1< %, 0<j< %, the input data within A;; and

B, ; is reordered in rowwise and columnwise raster manner,
respectively. Thus, sequential data accesses are performed
during each subblock matrix multiplication and this enables
the use of SIMD instructions, thereby leading to significant
acceleration.

2Notations: Boldface uppercase and lowercase letters indicate matrices and
vectors, respectively. The corresponding italicized lowercase indicate their
individual elements, e.g., A and am,». All indices are integers. Assuming
two integers a and b, a > b shifts a by b bits to the right discarding the
least-significant bits and a <« b shifts a by b bits to the left discarding the
most-significant bits; a < b assigns value b to a. The packed and extracted
value of x is indicated by & and Z, respectively.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 3

K N

Aso[Au]

A x B - R

L+1

L

L+l L+l " -
A, x B, - R,
(b) ABFT within subblock product R=AB

L+2

— R,

(¢) mABFT with d=2 checksum clements within
subblock product R=AB

Figure 1: (a) Top-level processing of GEMM highlighting the input subblocks used for the computation of the subblock result
R, 1; (b) ABFT within a single subblock of GEMM via checksum vectors; (¢) mABFT within a single subblock with two

checksum vectors.

From this description it is evident that the top-level pro-
cessing simply administers the computation (and, optionally,
error detection) at the subblock level and the core operations
are performed within each subblock independently, before
being aggregated to produce the final results. Therefore, in
the remainder of the paper we present ABFT, mABFT and
our approach in reference to a single subblock matrix product.
For notational simplicity, we remove the indices from each
subblock product A;;B; ;. Moreover, despite the block-major
format reordering, we retain the 2D indexing in the equations
to facilitate intuitive understanding of the proposed method.

A. Algorithm-based Fault Tolerance

All ABFT methods specifically tailored for GEMM compu-
tations [13], [17], [25], [60], [61] append the input subblocks
with (redundant) checksum vectors (rows or columns), denoted
by a., b; in Figure 1(b) and highlighted in color.

In the ABFT approach proposed by Huang and Abraham
[25], a single checksum row and column per subblock is
used for error detection and correction. Specifically, checksum
vector a. is the sum across each column of A. Checksum
vector b, is the sum across each row of B.

Under the described configuration of Figure 1(b), the result
of the checksum-appended subblock GEMM, R = ABy, can
be checked for the detection and correction of any single
SDC within the subblock product R [13], [17], [25], [61].
Specifically: (i) the sum of each row and each column of
R (which is contained within Ry) is validated against the
corresponding checksum elements of r; and r.; (ii) the sum
of the checksum vectors themselves is validated against 7. If
these validations fail for a certain row and column, the index of
this row and column indicates the location of the SDC within
R;.

However, when multiple SDCs occur within a subblock
multiplication, ABFT cannot pinpoint their exact locations
and requires recomputation of results, which is termed as
“rollback ABFT” [1]. For example, given the +¢ and § error
pattern shown in Figure 2, ABFT flags locations 13 ; and 73 3
as erroneous, while two other erroneous locations, 711 and
r1,3 go undetected due to the cancellation effect of the given
error pattern. Therefore, when multiple SDCs are detected, the

= AB

t

D: checksum mismatch,
indicating error in
corresponding row
or column

D: Undetected error

locations

: Detected error
locations

Figure 2: Errors in ABFT that require row and column
recomputation (rollback ABFT [1]).

only reliable method for recovery via ABFT is to recompute
(i.e., “rollback™) the entirety of the rows and columns that
have been detected as erroneous. If a substantial number of
SDCs is detected, this will result in entire GEMM subblock
recomputation, i.e., complete execution rollback, incurring
significant execution time penalty.

Finally, due to the fact that the checksum inputs a. and
b, are the columnwise or rowwise summation of inputs, the
elements of the row and column checksums, r; and r., will
have increased dynamic range by log, L bits for an L x L by
L x L integer GEMM. In addition, given that 7. is the sum of
the elements of r, and r, this element will require 2log, L
additional bits. Therefore, in comparison to the conventional
(fault-intolerant) GEMM computation and for L = 288 and
32-bit integer representations, ABFT incurs loss of

logy L
15.5

of output dynamic range in order to accommodate all check-
sum results.

x 100% ~ 0.53
L=288

3)

B. Modified Algorithm-based Fault Tolerance

More recently, modified ABFT methods were proposed that
make use of additional checksums, constructed with specific
weight vectors. The number of additional checksums and their
dynamic range is dependent on the desired detectability.

For example, Jou, Anfison et. al. [11], [30] extended ABFT
with the introduction of d checksum rows and columns, d > 1.
All checksum elements beyond the first one are generated via
inner products of rows and columns with specially-constructed

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 4

weight vectors. It is then shown that, under suitable choice of
weight vectors, this extension can guarantee the detection of
up to d SDCs and correction of up to [g] SDCs [11], [30],
[47] per row and column of a subblock product. This comes
at the cost of increasing the size of the checksum matrices by
d times. An illustration of a subblock product with d = 2 is
given in Figure 1(c).

In more detail, the first checksum of each column of A
and row of B is the one of the original ABFT; we denote
this as the unweighted checksum, a.; and by, respectively.
For an mABFT approach with d = 2, the second checksum
of each column of A and row of B (denoted by a., and
by, respectively) is the inner product of the column of A
(resp. inner product of the row of B). Jou and Abraham [30]
proposed the weight vector wey, given by:

Wexp = [20 21 2L_1] . (4)

However, due to the exponential increase of the dynamic
range of a, and bp, the use of we, will cause overflow
problems under 32-bit or 64-bit integer representations. Such
an mABFT approach is therefore mostly of theoretical interest,
rather than of practical relevance to conventional numerical
representations used in programmable processors.

As a remedy to the dynamic range expansion caused by the
weight vector of (4), Rexford and Jha [47] proposed the further
partitioning of input subblocks into smaller blocks. Comple-
mentary to this approach, Luk et. al. [39], [54] proposed the
weights:

L] 5)

instead of Wy, of (4), in order to allow for quadratic increase
of dynamic range in a,, and by, and quartic increase of
dynamic range for the second row-column checksum element,
Tr2c2- Spec:1ﬁcally, the quartic increase in the latter is by factor
(Zl 1 l) or 2 [10g2 (L2 + L) -] bits. Their work shows that,
under the use of Wijpe,r and for d = 2, up to two SDCs per row
or column of a subblock can be reliably detected and up to
one SDC can be reliably corrected. Therefore, the combination
of partitioning of L x L subblocks into P x P blocks with:
P =16, d = 2 and the length-P linear weights Wiipeor (With
L replaced by P) allows for mABFT to operate with 32-bit
representations. However, this comes at the loss of

log, (P2 + P) -
15.5

Wlinear = [1 2

x 100%
P=16

~ 45.7% (6)

of output dynamic range for integer representations in compar-
ison to the conventional (fault-intolerant) GEMM computation.

III. PROPOSED FAULT-TOLERANT NUMERICAL PACKING
IN GEMM

Packed processing has been proposed for throughput-
precision scaling of GEMM computations in our previous
work [6]. Since the proposed method is built upon the concept
of packing [6], this is briefly summarized here. To facilitate
the exposition, we shall be referring to the illustrations of
Figure 3(d)—(g) and Figure 4, which present the steps of the

<k _x1 x1 x 1

= (d) Packed inputs ~ d = a, | @ | b=|[b

t

(@) Original
inputs

(e) Packed GEMM
computation

(b) Conventional
GEMM

<k x1
(e T]

<k x1
(f) Packed outputs 7 = [

oy aghy| |7 Ty

lbll)IA oo o1
aby o | | Tl

(by 117‘

(¢) Original

Extracted result R=
results (2) Extracted results l

To T

Figure 3: (a)—(c) Conventional integer subblock multiplication
for the case of a 2x 1 by 1x2 vector product. (d)—(g) Packing
for the same product with packing coefficient £ = 10. The
partitioning within the rectangles shows the location (shifts by
k bits) of inputs/outputs when packed within a single number.

described methods for the elementary case of a 2 x 2 matrix
produced via a 2 x 1 by 1 x 2 vector product. In addition, the
conventional (fault-intolerant) approach is illustrated in Figure
3(a)—(c). Finally, beyond this elementary case, our analytic
exposition will be based on the general case of an L x L
subblock product.

A. Review of Packing in Integer Subblock Matrix Multiplica-
tion

In packing for integer subblock multiplication R = AB,
only one input subblock is packed, i.e., either A or B.
This selection does not affect the performance in the case of
GEMM, as both subblocks have been reordered in block-major
format. Assuming A is chosen, the packing process creates
block A w1th x L coefficients given by (Vm,n: 0 <m,n <
Low=[3):

= (azmn < k) + a2ms1n @)

where k is the utilized packing coefficient , & € N*. The
utilized value for k depend on the maximum possible value of
the matrix product, as it will be elaborated in the following.
An illustration of the packing of (7) for the two elements of
a 2 x 1 vector a is given in Figure 3(d), i.e., for n =m = 0.
Notice that (7) operates along the columns of A in order to
pack rows 2m and 2m + 1 together. This means that, in order
to use integer SIMD instructions for accelerated computation
of (7), we can group SIMD"‘“ consecutive elements of each row
and apply each multlply “accumulate (MAC) operation of (7)
to them with one SIMD instruction. Once (7) is completed,
processing occurs via R=AB (Vm,n: 0<m,n< L, m=

15]

A

L-1
Trn = Z Gy, ibj (8)
L— L-1
Z agmdbj n << kl+ Z a2m+17jb]7
j=0 3=0

The packed output of (8) contains both rows of the results,
Pom,n and Pop11 5, packed together. An example is shown in
Figure 3(f) for n = m = 0. Importantly, if they do not overlap
in the packed representation and the numerical representation

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 5

used can accommodate both packed outputs, both rows can
be computed concurrently via (8). For the packed processing
of two inputs shown in (7) and (8), these two conditions are
met when the packing coefficient satisfies the below constraint
[4]-[6]:
e For 32/64-bit integer
logy (maxXym pn|[rmnl) + 1 and 2k <
W e {32,64}.
Any high-performance % x L by L x L subblock code for
32/64-bit GEMM (integer or floating-point) can be used for
the computation of (8). Following the completion of the
processing, unpacking of the results can be performed by the
following process [4]-[6] (Vm,n: 0 <m,n < L, i =|2Z|).
The first output, T2,41,,, Which is packed at the most
significant bits of 7y, ,,, is extracted by:

representation: k >
W, with

= Prn > k)

T2rm,n

The extracted output is then removed from 7,

= [(Frpn > k) < k], (10)

T2m+1,n = Tm,n

The result is then converted into its signed representation.
Specifically, if 7241, > 2°7%, then Fasme1,n < (Form,n — 2).
Finally if 733,41 » < O, then the result extracted from the most-
significant bits must be incremented by one, i.e.:
(’FQﬁL,n + 1)

T2rm,n <

B. Proposed Fault-tolerant Packing

We utilize the packing concept in order to provide highly-
reliable integer matrix products within each GEMM call. Our
method uses standard 64-bit integer representations and off-
the-shelf GEMM subblock kernels to process 32-bit inputs, as
detailed in the following.

1) Packing Process: The proposed approach performs two
packings of matrix A into A; and Aj and one packing of B
into B, as shown in the example of Figure 4(a). The figure
illustrates only the case of an elementary 2 x 1 by 1 x 2
vector product with k¥ = 10 and, due to the small input vector
dimensions, the packed matrices are in fact scalars a;, a; and
b. For the general case of an L x L by L x L subblock product,
the process is identical for all other pairs of inputs within A
and B and is expressed by (Vm,n : 0 < m,n < L, m =

%) - [3)

&i,fn,n = (a2fn,n < k) — A2m+1,n (11)
&j,m,n = (a2m+1,n < k) — G2m,n (12)
I;m,ﬁ = (bm2n < k) + b 2441 (13)

Each packing “stacks” two inputs together in a single 64-
bit integer number (assuming 32-bit inputs) and can be done
during initial reading and reordering of each subblock in
GEMM [6], [22]. Notice that, in comparison to conventional
packing presented in the previous section [and illustrated in
Figure 3(d)—(g)]:

e (11) and (12) invert the sign of the elements of A that

are left shifted by k-bits;

e A is packed twice with reverse “ordering”, as shown in
(11) and (12);

« B is packed as well.

This setup enables packed processing to be used for error
detection.

2) Packed GEMM computations: Two (% x L) X (L x %)
subblock multiplications ensue via the use of two standard
subblock GEMM calls (using either 64-bit integer or 64-bit
floating point representation), producing all required results, as
well as a number of “entangled” results within the numerical
representation of the packed outputs. An example for the two
packed products of elementary 2 x 1 by 1 x 2 vectors is shown
in Figure 4(b)—(c). For the general case of an L x L by L x L
subblock product, the elements packed within R, and f{j are
expressed mathematically by (Vm,n: 0 < m,n < L, m =

5], 7= 13

Tignp = Z Qi 1, kO,
k=0
- -1
= Z a2rin kb2 < 2k | = | Y gt wbr2n < k
k=0 k=0
-1 -1
+| D0 azimkbr2net < k| = D asmet kbr2ae
k=0 k=0
= ’7:’27?%2’& <2k + (?QT?L,QfL+1 - ?’27h+1,2ﬁ) <k
—T2m+1,27+1 (14)
-1 .
Fima = 2 Gjmkbea
k=0
-1 —
= | D avimetnbron < 2k Z A2, kbk, 28 << Kk
k=0 k=0
-1 -1
+ af27h+1,kbk,2fz+1 <k Z 277, kbk 2n+1
k=0

= Tomel,2n <2k + ('772m+1,2n+1 - T’Qm,zn) <k
(15)

— T2, 27041

3) Unpacking of the Results: Subsequently, unpacking oc-
curs within each element of R, and R based on the process
presented below, which extends the unpackmg of the previous
section in order to handle the three packed results within each
output 7; 3, 5 and 7; 4, 5, illustrated in Figure 4(d).

We extract the components packed within #; following the
unpacking process described in the previous subsection, with
€ (ko,k1),(k2,ks) INdicating the entanglement (i.e., superposition
within the representation) of elements 7, », and 7, k. The
first output, 72y, 25, which is packed at the most-significant
bits of #;, is extracted by:

’Fgm’gﬁ = 721 > (2]{7) s (16)

The extracted output is then removed from #; and relevant
bitwise operations ensue to determine the sign of the entangled
OULpUL, € (24n,24+1),(2r+1,27)- WE present the details of this sign
check by defining two parameters, ¢; 1 and ¢; 2 as outlined
below:

tin =7 — [Tam2n < (2F)],

tio=ti1 >k,

a7
(18)

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 6

(a) Packed inputs

(b) Packed GEMM
computation =ab 7, = ajb
< 2k <k x(—1) <2k <k x(—1)
(c) Packed outputs o= aob, JAQO@RY ap, | = [aiby by agho| a,b, |

(d) Unpacking and NO

fault checking

Detected

(e) Validated results

ABFT

Fault
INVALID checksum Detected

Figure 4: Illustration of highly-reliable integer subblock multiplication via numerical packing for the case of a 2 x 1 by 1 x2
vector product with packing coefficient £ = 10. The partitioning within the rectangles shows the location (shifts by k or 2k

bits) of inputs/outputs when packed within a single number.

If t;0 > 2571, then &(om 2a41),(2ims1,20) = liz — 2F, else
(2, 2041), (2 +1,23) = ti2-

If é(2m72ﬁ+1)7(2ﬁ,’+1’2ﬁ) <0, then : Ty, 0 « ("I‘“fgm,gﬁ +1).
Subsequently, the intermediate result extracted by (18) is also
removed from the packed representation and a similar check
is performed in order to extract the signed representation of
o+l 241, 1.6.0

tin < [tin— (ti2 < k)] (19)

If t;1 2 277, then Tome1,0a+1 = 28 — 1, else Tame1 241 =
—t;,1. Finally, similarly as before, if 72y,4+1,27+1 < 0, then the
the entangled output, €2, 24+1),(2m+1,24) 1S incremented by
one: E(om 2n+1),(2ims1,20) < (E@im2ati),(2me120) +1). We
extract the components packed within #; via the following
process, which is identical to the process described for 7;:

Tom+1,20 = 75 > (2k), (20)
ti1 =75 = [Tame1,20 < (2K)], (21
tjo=tj1 >k, (22)

If t50 > 2571, then &(ge12041),(2m2n) = 2 — 2F, else

E(2m+1,2041),(2m,27) = t5.2- I E2ma1,2a+1),(2m,20) < 0, then
'Fgmﬂjgﬁ <« ('7:'277“_17271 + 1). Subsequently:

tin < [tj1—(tj2<k)].

If tj,l > 2k_1, then F2m72ﬁ+1 = 9k _ t]‘71, else "F’Qm}gﬁ_'_]_ =
~tj1. It Tomoarr < 0, then &(mi1,2041),(2m,20)
(5(2m+1,2ﬁ+1),(2m,2ﬁ) + 1) .

If:

(23)

<«

« sufficient spacing is provisioned via the packing coeffi-
cient k£ so that no overlapping (or “invasion”) of results
occurs within the numerical representation [4]-[6], and

« all three packed results fit within the utilized numerical
representation,

then the results are guaranteed to be recoverable.

Relating to the second requirement, if 3k < W, then the
unpacking process determines the correct value of each output.
This condition imposes that:

e k <21 for W = 64 in 64-bit integer GEMM. Given
that the sum of two outputs must be accommodated for
the packed results shifted by k-bits (i.e., the entangled
results) and one bit must be provided to allow for the
sign information to be preserved within the packed integer
representation, this allows for up to +2' output dynamic
range without any approximation. This means that 12
bits of dynamic range are sacrificed in comparison to 32-
bit integer GEMM that allows for up to +231 pits, i.e.,
loss of 37.5% of the bitwidth. This loss is substantially
smaller than the corresponding bitwidth loss of ABFT
and mABFT, reported in (3) and (6), respectively. Since
the computational complexity and error detectability of
the proposed algorithm is independent of the packing
factor, we set k£ to the maximum achievable value, i.e,
k =20 and k = 9 for 64 and 32-bit integer processing,
respectively. Further details on the mathematics of the
analytic calculation of the maximum packing factor are
found in related work [4]-[6].

4) Error Detection by Post-Entanglement followed by Row-
Column ABFT Checksum Validation: The advantage of the
proposed packing-based GEMM is that, we not only ob-
tain the results, but we can also validate them by post-
entangling, i.e., doing 72, 27+1 = To,,51 24 a0d To,00 0541 —
Tom,2n and comparing these with the entangled results
E(2mm,2n+1),(2m+1,27) ANA E(2m41,2041),(2im,20)> TESPeCtively.
An example is shown in Figure 4(d)—(e) for m = n = 0. If
differences are detected, the higher level routine (top-level
processing) can be notified and a decision can be made by
the application on whether to recompute the erroneous results
or not.

One weakness of the post-entanglement check is that,
however unlikely, it is still possible that an SDC occurs in
a location in the packed results R, and Rj in a way that
the operation 72,2741 —T2/m+1,24 OF T2/44+1,274+1 — T2mm,2n does

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 7

not detect it. Specifically, this would be the case if both the
extracted results 7oy, 2541 and Top,41,24 Were affected by an
additive noise term §, with § € Z*. To detect the occurrence of
such pathological cases, we simply utilize the conventional
row-column ABFT checksum by calculating a single inner
product between the sum of the columns of A with the sum
of the rows of B:

L-1
Z(Zazl Zblj) (24)
1=0

which, similar to ABFT, can be derived during the input
subblock reordering. Then, after checking for SDCs based on
the post-entanglement check (and recalculating all detected
SDCs), we can check if r, produced by (24) agrees with
the sum of all the elements of R.: Zf:f)l Zf;ol ;5. It 1is
straightforward to derive the latter when the output matrix
is returned via a raster-scan and summation. This checksum
ensures no such SDCs remain undetected.

The overall ABFT-based row-column checksum process
requires producing only a single checksum per integer matrix
product, i.e., r of (24), and simply adding the results in the
order they are returned to the top-level processing of GEMM.
Our experiments will demonstrate that the overall error check-
ing process (packing, unpacking, post-entanglement check and
row-column ABFT checksum) incurs execution time overhead
similar to that of ABFT.

C. Theoretical Analysis

The following two propositions summarize the arithmetic
operations (addition, multiplication and comparison) for the
computation of the proposed method for SDC mitigation in
GEMM in reference to ABFT, mABFT and DMR. Note that
the operation counts for the proposed approach have been
scaled by two to account for the fact that the use of double-
bitwidth representations (due to the use of packing) reduces
the processing throughput by a factor of two.

Proposition 1. In the absence of SDCs within an LxL GEMM
output, the number of arithmetic operations of the proposed
method is:

: 1112
(i): (m) -100% more than that of ABFT;

(ii): 34L°-4331°+64 100% less than that of mABFT;

162L3+719L2
(iii): 2L _19L *1.100% less than that of DMR.

T 4L3-L%

Proof: See Appendix 1.]

For example, for L = 576, Proposition 1 shows that numer-

ical packing is only 0.95% less efficient than ABFT, while

remaining 20.37% and 49.20% more efficient than mABFT
and DMR respectively.

Proposition 2. Given x SDCs in output GEMM results, the
number of arithmetic operations of the proposed method for
the GEMM computation followed by error detection and
correction, and averaged between the best and worst case of
SDC patterns, is:

. L3+L2(2\/5+26-5)+L(\/§_6w)_30x_\/§
(i): 3L3+L2(2/z+8.5)+L\/z—/z-1.5
that of ABFT:

- 100% than

less

34L°-433L°%-366Lx+1912x+64

(ii): 162L3+719L2118Lx—8a - 100% less than that
of mABFT;
(iii): 2L 4219,9LL22_33LI””L__311"55;+1 -100% less than that of DMR.
Proof: See Appendix 1.
|

By setting L = 576 and = = 10, Proposition 2 estimates
that numerical packing is 32.86%, 20.36% and 49.19% more
efficient than ABFT, mABFT and DMR respectively. Overall,
the complexity analysis of Propositions 1 and 2 indicates that
our proposal is expected to incur small penalty when no SDCs
happen, and become highly-beneficial when multiple SDCs
occur in GEMM.

IV. EXPERIMENTAL RESULTS

In this section, we present execution time results with an
Intel i7- 3632QM 2.2GHz processor (Ivy Bridge architecture
with AVX support, Ubuntu 14.04.1 LTS, Clang 3.2 compiler).
The BLAS routine of the ATLAS math library was used for
all GEMM calls (sGEMM and dGEMM for 64-bit)’. After
experimenting with various subblock sizes, we selected six
subblock sizes as representative cases, ranging from 32 x 32
(below which the use of sSGEMM or dGEMM is not beneficial)
to 1152 x 1152. We opted for subblock sizes that are multiples
of the subblock size settings for SGEMM and dGEMM within
most open-source MKLs (e.g., ATLAS and GOTO) and avoid
the use of cleanup code for the borders.

The ABFT approach follows Huang and Abraham [25],
while we implemented the mABFT following Rexford and
Jha [47], with the linear weighted checksum vector [39], [54]
of (5). We opted for partition block size of 16 x 16 within each
subblock in order to achieve output dynamic range comparable
to the proposed approach and at the same time limit the
overhead caused by the two additional checksum rows and
columns per block*. For the ABFT implementation, due to the
detection limitations analyzed in Section II-A, entire rows and
columns are recomputed when multiple SDCs are detected. In
addition, when ten SDCs are detected in different rows and
columns, the error detection process stops and entire GEMM
subblock recomputation (i.e., complete rollback) is carried out,
as this turns out to be less costly than complete detection and
multi-row & column recomputation for the chosen subblock
sizes.

A. SDC Injection Technique

In order to investigate the performance of all presented
approaches for the detection and correction of soft errors,

3Since all optimized math kernel libraries today support only 32/64bit
floating point number representations, we cast all integer inputs into floating
point data-type after preprocessing while casting to integer data type in order
to perform error-check and correction if required.

4Speciﬁcally, we found that, under P = 8, the overhead caused by mABFT
is more than 150% in comparison to the fault-intolerant original GEMM and
P = 32 or higher leads to unacceptable loss of dynamic range, as illustrated
by (6).

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 8

Table I: Average execution times (in milliseconds) and percentile comparisons against the fault-intolerant (conventional) ATLAS BLAS sGEMM for all

methods. All fault-tolerant approaches were able to detect and correct all SDCs.

Fault- % 1incr. ABFT % 1incr. mABFT % 1incr. DMR-based % 1incr.
Component Intolerant Proposed in exec. sGEMM in exec. sGEMM in exec. sGEMM in exec.
measured sGEMM time [25] time [18], [30] time [21] time
[39], [47], [54]
subblock size: 32 x 32
GEMM calls only 0.0082 -50.60 0.0181 9.04 0.0211 27.11 0.033 98.80
with EC* & SDC count = 0 00166 0.0125 -24.70 0.0193 16.27 0.0287 72.89 0.0362 118.07
with EC & SDC count = 1 ’ 0.0128 -22.89 0.0194 16.87 0.0297 78.92 0.0366 120.48
with EC & SDC count = | row 0.0170 241 0.0375 125.90 0.0467 181.33 0.0446 168.67
subblock size:144x 144
GEMM calls only 0.3293 -21.41 0.4455 6.32 0.5431 29.62 0.8348 99.24
with EC & SDC count = 0 0.419 0.4075 -2.74 0.4699 12.15 0.6988 66.78 0.8918 112.84
with EC & SDC count = 1 0.4087 -2.46 0.4700 12.17 0.7033 67.85 0.8930 113.13
with EC & SDC count = 1 row 0.4540 8.35 0.9223 120.12 1.0134 141.86 0.9935 137.11
subblock size: 288 x 288
GEMM calls only 2.77 13.05 2.61 6.46 3.27 33.34 5.02 104.80
with EC & SDC count = 0 245 3.51 43.20 2.87 17.01 3.88 58.37 5.11 108.67
with EC & SDC count = 1 ’ 352 43.78 2.87 17.04 3.91 59.38 5.14 109.58
with EC & SDC count = | row 3.67 49.94 5.47 123.43 4.02 64.20 5.47 123.15
subblock size: 384 x 384
GEMM calls only 6.11 8.38 5.97 6.00 7.14 26.61 11.41 102.48
with EC & SDC count = 0 564 7.28 29.13 6.45 14.41 8.29 47.02 11.59 105.58
with EC & SDC count = 1 ’ 7.28 29.25 6.45 14.45 8.34 47.95 11.61 106.02
with EC & SDC count = | row 7.62 35.19 12.31 118.38 8.49 50.68 12.31 118.34
subblock size: 576 x 576
GEMM calls only 18.92 2.20 19.00 2.66 23.19 25.29 37.34 101.76
with EC & SDC count = 0 18.51 21.80 17.80 20.40 10.21 25.23 36.31 37.43 102.23
with EC & SDC count = 1 21.83 17.92 20.40 10.24 25.30 36.70 37.46 102.38
with EC & SDC count = 1 row 22.60 22.11 41.60 124.74 26.18 41.43 38.59 108.52
subblock size: 1152 x 1152
GEMM calls only 148.39 0.18 150.86 1.84 182.98 23.53 298.63 101.59
with EC & SDC count = 0 148.13 157.50 6.32 155.62 5.06 194.32 31.18 300.15 102.63
with EC & SDC count = 1 - 158.08 6.71 155.69 5.10 194.71 31.44 300.18 102.64
with EC & SDC count = 1 row 161.83 9.25 310.28 109.46 196.86 32.89 308.19 108.05

*EC stands for Error Correction

we perform an artificial fault injection campaign using the
open source LLVM [37] based fault injection tool, KULFI
[50]. KULFI emulates faults occurring in CPU state elements,
which usually manifest as bit flips in a random computational
state chosen at run time by injecting faults at the intermediate
representation (IR) code of LLVM. Because the LLVM IR
code preserves variable and function names and supports
program analysis and transformations, it allows for controlled
fault injections to be performed at specific program points, and
into specific instructions. Given that such flips are somewhat
rare in computing systems today, KULFI injects a single
transient fault during every execution under investigation,
albeit at a random time instance. By selecting fault injection
parameters’as outlined in the author’s example code [49], we
observe and characterize the effect of the injected faults during
GEMM computation into three classes:
« Benign errors: errors that have no effect on the GEMM
output.
o Single SDC: errors that affect a data element that are not
reused during the GEMM computation.
« Single-row SDC: errors that affect a data element that is
used to compute an entire row/column of GEMM.

SNamely, the following parameters are used for all our fault
injection executions: iteration=100; byte_position=random;
expected_fault_count=10; total_fault_count=100;
inject_once flag=1l; static_fault/dynamic_fault=1;
inject_pointer_error=0;
print_fault_site=0

inject_data_error=1;

For example, a typical error summary when performing 100
fault injection executions (excluding segmentation and out-of-
bound faults) of an N x N-by-N x N GEMM is given by:

Single-row SDCs:16, Single SDC:34, Benign errors:50

In order to keep track of the number of injected errors
that manifest as SDCs, KULFI performs two executions of
a given source code: error-free and error-prone executions.
We design the error-free execution to implement optimized
GEMM calls (using the cblas_sgemm and cblas_dgemm
function of the ATLAS library), while the error-prone GEMM
implementation is written in plain C code in such a way as to
allow for error injection during GEMM. In this way, GEMM
execution time reported in Table I is measured from the error-
free implementation while the performance for pre- and post
processing (including error correction) is measured from the
error-prone execution.

B. Results under SDCs

The average execution time out of several independent
runs (each using randomly-generated inputs) is presented in
Table 1. For all the reported experiments, all methods de-
tected all incurred errors (i.e., the detection rate was 1.0 for
all approaches). Therefore, the reported results compare the
different methods with respect to execution time. To present
a detailed breakdown of the execution time performance of
the components of the proposed approach, four subcases are

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 9

shown: (i)only the cost of dGEMM calls (i.e., not the cost of
packing, unpacking or error checking); (ii) everything when
no SDCs occur; (iii) everything, including error checking and
correction when one SDC occurs; (iv) everything, including
the detection and correction of one row of SDCs injected using
the KULFI tool.

Theoretically, the execution time for GEMM computation
(without error tolerance) is expected to be equal for the
conventional SGEMM and the two quatersize dGEMMs per-
fomed by the proposed approach (cf. proof of Section III-C).
In practice, due to the internal kernel optimizations of the
ATLAS MKL for different matrix inner blocks, the results
of Table I show both positive and negative GEMM execution
time overhead for the proposed approach, which subsequently
affects the overall overhead for error tolerance for the pre-
sented matrix sizes. Overall, the results show that, against
fault-intolerant (conventional) GEMM design, the proposed
approach incurs execution time overhead between —24.70%
and 43.20% when no SDCs occur and 2.41% and 49.94%
when mitigating up to NV SDCs in an N x N GEMM output.
On average, 12.05% to 21.21% overhead is incurred by the
proposed scheme for tolerating up to N SDCs in GEMM
for the presented matrix sizes. Similarly, Table I shows that
ABFT incurs an average execution time overhead® of 12.64%
to 120.34% for the same level of fault tolerance. Overall, it is
evident from the results of Table I that the proposed method
incurs comparable overhead to ABFT when no errors occur
and this overhead is (approximately) 18.04% and 46.37% less
than that of mABFT and DMR-based GEMM. These results
are in line with the theoretical predictions of Proposition 1
and, as expected by the theoretical analysis of Section III-C,
the percentile overhead of all methods tends to decrease with
increased subblock length (with some fluctuation for small
subblock sizes due to internal kernel optimizations of the
utilized ATLAS library).

For execution time overhead when correcting SDCs, the
results of Table I show that the performance of ABFT could
be worse than modular redundancy in multiple SDC scenar-
i0s. Specifically, while the proposed algorithm, mABFT and
DMR incurs very low overhead for the correction of detected
SDCs, ABFT requires (on average) more than 50% additional
overhead for error correction. This is because, under multiple
detected SDCs in GEMM, ABFT recomputes several rows
and columns of the result, or indeed the entire GEMM sub-
block when ten erroneous rows/colums are detected (“rollback
ABFT” [1]). This significant increase in the incurred overhead
is also evident in the theoretical analysis of Proposition 2.
It is also evident that the additional overhead for tolerating
multiple SDCs decreases considerably for all approaches,

5The performance results for ABFT are in line with previously-reported
ABFT benchmarks in GEMM. For example Bosilca et. al. [13], report that
checkpointing the system state to detect a single SDC per process (and rolling
back to a previous state when SDCs are detected) leads to 9% ~ 34% time
overhead for an implementation using up to 484 processes. Similarly, Chen
and Dongarra [17] report that, for detecting a single SDC per subblock of a
large matrix operation, 4% ~ 9% execution time overhead is incurred in a
ScaLAPACK implementation over a distributed computing system. Finally,
Waunderlich er. al. [61] report that ABFT incurs 18% ~ 45% execution
time overhead versus GEMM on medium to large matrix dimensions under a
graphics processing unit (GPU) implementation.

with the exception of ABFT, as the matrix size increases.
For example, numerical packing requires 53.01% additional
overhead to tolerate multiple SDCs for the 32 x 32 matrix,
while requiring only 9.07% to tolerate the same proportion
of SDCs in the 1152 x 1152 matrix. This property is shared
amongst all exact error-location algorithms (like numerical
packing and DMR) and is beneficial as the requirements for
low-cost SDC correction techniques are more significant for
large matrix sizes, where entire GEMM recomputation would
lead to substantial performance degradation.

In terms of error detection, by injecting independent and
uniformly distributed (IUD) bit flips in all the outputs of the
two GEMM calls of the proposed approach (in the integer
case) under an extensive SDC campaign of more than 10
trillion combinations, we verified experimentally that the lo-
cations of all SDCs were indeed detectable by the proposed
approach. On the contrary, as detailed in Section II, ABFT
can reliably detect and correct only up to a single SDC within
each subblock product. ABFT requires recomputation of entire
rows and columns to ensure no SDCs remain uncorrected, as
discussed in the example of Figure 2. This is circumvented
via the use of mABFT, which, under the utilized settings, can
reliably detect the locations of up to 32 SDCs per GEMM
subblock, albeit at the cost of substantial execution time
overhead.

Overall, our theoretical analysis and experimental results
demonstrate that our proposal offers very high accuracy and
reliability in the detection of the locations of SDCs, while it
comes with runtime overhead that is similar to that of ABFT
when no SDCs occur.

V. APPLICATION IN ENERGY-AWARE COMPUTING
SYSTEMS UNDER VOLTAGE SCALING FOR VISUAL
DESCRIPTOR MATCHING IN IMAGE AND VIDEO
RETRIEVAL

Voltage overscaling has been proposed as the means to
improve battery life in portable devices, albeit at the risk of
exposing the execution to transient faults in memory [32],
[42], [63]. For example, Narayanan and Xie [42] report that
dropping the operating voltage of a 4Mbit-SRAM memory for
one hour brings significant energy savings but also increases
the number of memory errors from 57 to 658. Our approach
can be used as the fault detection and mitigation framework
when applying such a scenario within integer matrix products
of multimedia applications. It may be argued that, because
multimedia applications are inherently error tolerant [7], SDCs
would always have a benign effect on the output results.
However, recent studies [24], [38], [44] show that there exist
“critical” sections of multimedia applications where mitigation
of soft errors is imperative, especially when outputs from such
sections are reused for subsequent computations. In view of
this, in the next two subsections we present such an example
within the context of state-of-the-art image and video retrieval
algorithms and we also showcase the corresponding energy
savings obtained when SDC tolerant algorithms are used in a
vulnerable voltage-overscaled environment.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 10

Table II: Average number of discrepancies in the VLAD
matches under one row of computed similarity measures being
affected by SDCs.

Image No. of wrong
bunch size N VLAD matches
288 84.2 (28.61%)

384 111.4 (29.01%)

576 165.2 (28.68%)

1152 343.1 (29.78%)

A. Effect of SDCs on the Results of an Image or Video
Retrieval Task

Consider a large image database preprocessed using
the state-of-the-art vector of locally aggregated descriptors
(VLAD) method of Jegou et. al. [29] to produce a compact de-
scriptor for each database image comprising N integers, with
N € [288,1152]. The database images could be standalone
pictures, or consist of frames of several video sequences. In
order to match a given query image (or video frame) with
the database images, an inner product between the compact
descriptor of the query image and the descriptor of each of the
images in the database is computed [29]. Given that multiple
query images (a.k.a., image “bunch”) are matched through the
stored database at any given moment (e.g., because of many
concurrent users, or due to the use of video that results in
multiple feature vectors per query), the matching operations
are carried out via GEMM products between the descriptors
of query image bunches and the ones of the database images.

In order to see the impact of SDCs in such a framework,
we consider matching a query bunch comprising N image
descriptors within 1000 segments of N database descriptors
each (i.e., 1000 N x N-by-N x N GEMMs), with the descrip-
tors extracted from the Holidays dataset [29]. The experiment
is set to establish the differences occurring in the retrieved
images when running under SDC-free conditions versus when
running under KULFI’s single-row SDC case of Table I. We
present an illustration of returned matches in both error free
and erroneous cases in Fig. 5. The average difference in the
obtained results for various bunch sizes is presented in Table
IL. It is evident that the compact nature of the image descriptors
(which makes them sensitive to errors) leads to nearly 30%
discrepancy between the error-free and the SDC execution
of the descriptors. This results in irrelevant images being
retrieved, as shown in Fig. 5. Therefore, in such image and
video retrieval experiments, mitigation of SDCs is imperative
in order to maintain reliable system operation.

B. Application in Energy-aware Computing Systems under
Voltage Scaling Incurring High SDC Rates in Data Cache
Memory

We present an example of the efficacy of our proposal as a
power saving technique within systems where it is imperative
to ensure reliable performance at reduced energy consumption.

Voltage scaling is commonly found today within power-
aware computing for multimedia systems [26]. Recently, volt-
age overscaling has been proposed as the means for achieving
substantial reduction in energy consumption at the cost of

Retrieved Matches

£

(a)

Query Image

Query Image Retrieved Matches

(b)

Figure 5: Indicative image matches (from the Holidays dataset
[29]) in VLAD-based image retrieval when using the query
image on the left for (a) an error free case; (b) a single-row
erroneous case.

transient cell failures in large memory arrays (e.g., data caches)
[2], [58]. We thus assume that the fault-intolerant parts of
the multimedia processing algorithm (including data input,
packing—for the proposed approach—and post-computation
error detection and correction) operate at Vi Volt, which
ensures no SDCs occur at runtime, albeit at the cost of high
power dissipation. However, the fault-tolerant parts (i.e., the
GEMM calls) operate under scaled voltage Vo VoIt (with
Verror < Viafe), selected such that transient cell failures are
occasionally encountered within the utilized data cache, while
instruction cache is protected by on-chip variable-strength
error-correcting codes (VS-ECC) that leave no errors exposed
to the operating system and application layers [2].

C. Application Context

We performed experiments where ABFT, mABFT, DMR
and the proposed approach are used to detect SDCs within
the GEMM operations of the image retrieval task described
in Section V-A for database segment sizes of 576 and 1152
images, and each image in the database represented by a
descriptor comprising 576 and 1152 integers, respectively.

D. System Description and SDC Injection

The experiments were performed on an Intel i7-4578U
3GHz processor (Windows 8.1, Intel C++ Compiler 15.0.1).
The Intel Extreme Tuning Utility was used for all voltage
adjustments in our experiments and the Intel Power Gadget
API [27] was used to measure the dynamic CPU power dis-
sipation for the different approaches. We selected Vi = 1.37
V for SDC-free operation and Vo = 0.98 V for overscaling.
The chosen value for V., is below the recommended voltage
for our system, but was still found to be providing for safe
operation. Further overscaling causes actual SDCs in our
setup, but does not allow for any control in our experimental
conditions. Therefore, in common with related work [33], [36],
[51], [57], we opted to operate our platform at a safe voltage
level and then inject SDCs artificially with probabilities of

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 11

107* and 107° per data cache access’. Thus, on average,
1 SDC occurs every 10,000 and 100,000 accesses during
each GEMM computation, respectively. This ensures that
all methods undergo the same SDC injection campaign. In
summary, the chosen experimental setup emulates the case
where the fault-tolerant parts of the application (operating at
Verror V) are exposed to data-cache SDCs that are detected and
corrected at runtime.

E. Energy Consumption Results

Table III shows the average CPU energy for the different
approaches. Due to the increased number of recomputations of
ABFT, its performance drops with increased SDC rates. Table
IIT shows that the proposed approach provides for up to 35%
reduction in energy consumption against the fault-intolerant
GEMM and up to 96% reduction against the other alternatives.
This is because:

1) like DMR, it achieves highly-reliable detection of the
locations of the vast majority of all the erroneous
computations, while ABFT requires row and column
recomputations given that, beyond the case of a single
SDC per GEMM subblock, it cannot pin-point the SDC
locations precisely (Figure 2);

2) it has substantially-reduced overhead in comparison to
DMR and mABFT-based GEMM and its processing
cycles are comparable to the fault-intolerant GEMM.

It can thus be considered as the best approach for SDC
mitigation under aggressive voltage scaling in integer GEMM
operations within energy-aware computing systems.

VI. CONCLUSIONS

We proposed a new class of methods for highly-reliable
integer matrix products. Our approach inserts redundancy
within the numerical representation of the inputs by exploiting
the concept of numerical packing. Analysis and validation of
our proposal using high-performance generic matrix multiply
(GEMM) routines demonstrated that high reliability comes
at the cost of certain bitwidth loss and limited execution
time overhead in comparison to the equivalent fault-intolerant
GEMM. A summary of the features, requirements and per-
formance of the proposed method in reference to ABFT,
mABFT and DMR is given in Table IV. The summary
shows that, on average: (i)junder no SDCs in the GEMM
execution, our approach incurs only 2.51% higher overhead
than algorithm-based fault-tolerance (ABFT), and is 18.04%
and 46.37% more efficient than modified ABFT (mABFT)
and dual modular redundancy (DMR), respectively; (iijunder
a single-row data corruption emanating from the use of a fault
injection tool, KULFI, the proposed approach is 17% to 47%
more efficient than all other methods, as it can pin-point the
locations of all detected SDCs. In terms of energy consumption
requirements, based on an emulated SDC-injection campaign
incurred in data cache memory under voltage overscaling, we

TRelated work [2], [33], [36], [51], [57] has carried out experiments and
simulation studies with similar SDC rates to the ones utilized here and we
have verified that KULFI produces similar rates.

show that the proposed approach performs best in comparison
to all other approaches. Future work will investigate alternative
forms of numerical packing and their feasibility for SDC
mitigation within broader classes of numerical computations.

APPENDIX
PROOF OF PROPOSITION 1

Proof. Given two L x L matrices A and B, the proposed
method requires 3£~ addition/subtraction operations (see (11)
~ (13) ignoring all arithmetic shift operations) to generate the
= >< = packed matrices A,, A and B since each element of
the packed inputs is computed with an addition and a bit-shift
operation with the packing factor, k.

The GEMM computatlon of R; = A;B and R = A B
subsequently requires 3 (2L3 LZ) operations as both R; and
R, are £ x L matrices.

Assummg no SDCs occur within output GEMM results,
each packed output 7°; or r*; requires 11 arithmetic operations
(including comparison operations) for unpacking [as elabo-
rated in equations (16) — (23)] and an additional subtract
and compare ogeratlon for error check (cf. Section III-B3).
Therefore, % operatlons are requlred for the unpacking
of the two é x £ packed outputs, R; and R, while L?
operations are requlred for error checking. The final Row-
Column ABFT validation utilized by the proposed approach
for the detection of certain pathological SDC cases would
require 2.2 -2L and L?+2L -1 operations for pre-processing
and error check respectively. In summary, assuming no SDCs
occur, 3(2L% + 15L%) double bitwidth and 3L* - 1 single
bitwidth arithmetic operations are required. By doubling the
number of operations computed using the double bitwidth
number representation, the number of operations is given by:

Cx {no error in proposed} = 2L3 + 18L* - 1 (25)

To achieve same protection for GEMM outputs using
traditional ABFT, the row-column checksum would require
2% — 2L addition operations for it’s computation, while the
GEMM itself will be computed with 2L3 + 3L% — 1 operations
and the ABFT row & column checksum will be validated with
2L2 + 2L addition and comparisons. Therefore, assuming no
SDCs occurred, the operations of traditional ABFT are given
by:

Cx {no error in ABFT} = 2L + 7L? - 1 (26)

For mABFT, given that two checksum rows (and columns)
are generated per partition size of 16, each unweighted
checksum element would require 15 add operations for it’s
computation while the corresponding weighted checksum el-
ement is computed with 31 arithmetic operations. Therefore,
46L operations are required for the checksum computation of
each partition, and ¢ partitions exist for each of the input
matrices. In total, pre processing for mABFT would require
46L - % -2 = 23 .2 arithmetic operations for the calculation of
the row & column checksums. Performing GEMM between
the 2L x L and L x 2& matrices of mABFT will subsequently
requ1re = (2L3 LE) operations and, in order to check for

9L

SDCs W1th1n each 18 x 18 partition of the resultlng T xXg

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 12

Table III: Average CPU energy (mJ) and percentile comparison against the fault-intolerant (conventional) SGEMM operating at ViV for
GEMM computations for matching a bunch of N = 576 and N = 1152 images against a database of images consisting of N = 576 and
N = 1152 images respectively. For each case, each image is represented by an N-element VLAD.

Approach SDC Measured % decrease SDC Measured % decrease
rate Energy (mJ) in Energy rate Energy (mJ) in Energy
N =576
SGEMM at Vife 133.92 0 133.92 0
Proposed 127.07 5.11 133.15 0.57
ABFT [25] 107 238.30 -77.94 1074 235.86 -76.12
mABFT [18], [30], [39], [47], [54] 148.20 -10.66 150.35 -12.27
DMR [21] 168.04 -25.47 176.00 -31.42
N =1152
sGEMM at Vi 1124.28 0 1124.28 0
Proposed 730.86 34.99 1030.32 8.36
ABFT [25] 107 2148.78 -91.13 1074 2154.37 -91.62
mABFT [18], [30], [39], [47], [54] 1349.31 -20.02 1381.31 -22.86
DMR [21] 1875.17 -66.79 2168.82 -92.91

Table IV: Summary of features of different methods for SDC mitigation in integer matrix products.

Method
ctho Proposed Fault-tolerant
Feature

Numerical Packing

ABFT mABFT Dual Modular

[25] [18], [301, [39], [47], [54] Redundancy [21]

Memory overhead

1 checksum element

1 additional row & col

12.5% more rows & cols

100% increase

Dynamic range loss

37.5% of bitwidth

equation (3)

equation (6)

0

Error correction

Recomputes erroneous

Corrects 1 SDC; recomputes

Corrects multiple

Recomputes erroneous

and SDC rate of 107°

capability pairs of locations rows & columns for >1 SDC SDCs pairs of locations

Average execution overhead vs.

fault-intolerant GEMM 11.50 12.52% 52.09% 108.34

under no SDCs

Average execution overhead vs.

fault-intolerant GEMM 21.21% 120.34% 85.40% 127.31

for “single-row” of SDCs
Energy decrease with voltage overscaling 20.05% _84.54% _15.34% _46.13%

output matrix, 16 (or 32) operations will be required for
each unweighted row/column checksum error check (or each
weighted row/column error check). This implies that mABFT
requires 48-2- (%)2 . (%) = # operations for error check.
Therefore, the overall complexity of mABFT (assuming no
SDCs occurred) is:

Cx{no error in mABFT} = (162L° +719L%) (27)

1

4

Finally, dual modular redundancy does not require any pre

or post processing for its computation. However, 4L3-2L? and

L? arithmetic operations are performed for the computation of

GEMM and error checking, respectively. Therefore, assuming
no SDCs occurred, the complexity of DMR is:

Cx {no error in DMR} = 4L% - L2 (28)

Combining (25)—(28) leads to the ratios reported in Propo-
sition 1.

PROOF OF PROPOSITION 2

Proof. Given the detection of z SDCs within the output
GEMM results, the number of computations required by all
algorithms for error correction is dependent on their location.
We therefore calculate the operations required for error cor-
rection as the average of the “worst-case” and “best-case”
SDC distribution in output GEMM results, where “worst-case”
refers to an SDC distribution requiring the highest number of

operations and “best-case” SDC distribution requires the least
number of operations.

For numerical packing, the “best-case” refers to the case of
detection of an SDC in an output 7; and its corresponding
output r; , i.e, ¢ = j. In such a case, our method of
error correction re-computes 7 locations for each of R; and
R, thereby requiring = (2L — 1) operations for all erroneous
location re-computations, while 2-11- 2 operations would be
required for the unpacking of all x locations in both matrices
(as each unpacking requires 11 operations).

On the other hand, the “worst-case” SDC distribution occurs
when all x SDCs happen within either of R, or Rj. Given that
any SDC detected for each r; or r; requires the re-computation
of both #; and 7; of the failed location, 2 re-computations and
unpackings will be required for this scenario, i.e., z (4L + 20)
arithmetic operations.

By averaging between the two cases, the proposed approach
requires 5 (6L +21) operations to correct x detected SDCs.

By doubling this result:

Cx {x errors in proposed} = 213 +18L? =1+ 6z L + 30z (29)

Concerning ABFT, assuming (for simplicity of exposition)
that \/z is integer, the “best-case” SDC distribution for ABFT
is having the SDCs located within a \/z x \/z square in the
matrix. Therefore, provided the SDCs are all detectable, ABFT
would flag \/z rows and columns as erroneous. When multiple
SDCs are detected via ABFT, entire rows and columns that
fail the checksum test are recomputed. The “best-case” SDC

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 13

distribution of ABFT would therefore require a re-computation
of \/z rows and \/z columns involving 2\/z (2L* + L - 1)
MAC operations.

On the other hand, if z is large (e.g., > 16), entire GEMM
re-computation is more beneficial in practice in comparison to
selective recomputation of multiple rows and columns. This
is because the data access irregularity, in conjunction with
the high percentage of outputs that are recomputed, ends
up incurring higher execution time penalty in comparison
to simply recomputing the GEMM. Therefore, the required
operations for this case are:

%[2L3+3L2—1+2\/E(2L2+L—1)].
By averaging between the two cases:
Cx {z errors in ABFT} =2L +7L* +0.5-[2L" + 3L* - 1]
+[va(2L?+L-1)] -1
=3L% + L* (2V/z +8.5)
+ Lz -z -15
(30)

The mABFT implementation presented in the paper can
detect one SDC and correct two SDCs for each row or
column within a partition. The “best-case” SDC distribution
for this implementation would be having SDCs spread in
such a way that only one SDC occurs in a row or column
of a partition. Since mABFT requires one division operation
for error location and one subtraction operation for error
correction [19], [54] , 2x operations would be required in order
to correct the = detected SDCs.

On the other hand, the ‘“worst-case” error location in
mABFT occurs when 4 SDCs occur within a 2x2 sub-block in
a partition such that two SDCs are detected in each of the two
rows and columns corresponding to the sub-block error loca-
tion. Since the mABFT implementation in this work can not
correct more than one SDC per row/column, entire erroneous
rows and columns of the affected partitions are re-computed.
Thus, 4-18 (2L - 1) arithmetic operations are required for the
re-computation of 2 erroneous rows and 2 erroneous columns
assumed to be spread across 7 different locations. Therefore,
the overall complexity of mABFT including the correction of
x SDCs is:

Cx {z errors in mABFT} = 6i4 (162L° + 719L7)
+x (18L - 8)

Finally, performing same analysis for DMR, the “best-
case” SDC distribution would refer to two SDCs occurring
exactly at corresponding positions of the two GEMMSs. This
would require re-computation of 7 output locations. On the
other hand, the “worst-case” SDC here refers to all x SDCs
occurring at different locations of one of the GEMM outputs.
In such a case, = locations would need to be re-computed for
each of the output matrices. Therefore, the overall complexity
of DMR (including the correction of SDCs) is:

Cx {z errors in DMR} = 413 - L?+3zL - 15z (32)

€Y

Combining the last four equations leads to the ratios re-
ported in Proposition 2.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

A. A. Al-Yamani, N. Oh, and E. J. McCluskey. Performance evaluation
of checksum-based ABFT. In Proc. IEEE Int. Symp. Defect and Fault
Tol. in VLSI Syst., DFT’01, pages 461-466. IEEE, October 2001.

A. R. Alameldeen et al. Energy-efficient cache design using variable-
strength error-correcting codes. In 38th IEEE Int. Symp. on Computer
Archit. (ISCA), 2011, pages 461-471. IEEE, 2011.

P. Ampadu, M. Zhang, and V. Stojanovic. Breaking the energy barrier
in fault-tolerant caches for multicore systems. In Proc. IEEE Int. Conf.
on Des., Autom. and Test in Europe, DATE’13, pages 731-736. EDA
Consortium, 2013.

D. Anastasia and Y. Andreopoulos. Linear image processing operations
with operational tight packing. IEEE Sig. Process. Let., 17(4):375-378,
2010.

D. Anastasia and Y. Andreopoulos. Software designs of image process-
ing tasks with incremental refinement of computation. IEEE Trans. on
Image Processing, 19(8):2099-2114, 2010.

D. Anastasia and Y. Andreopoulos. Throughput-distortion computation
of generic matrix multiplication: Toward a computation channel for
digital signal processing systems. IEEE Trans. on Signal Processing,
60(4):2024-2037, 2012.

Y. Andreopoulos. Error tolerant multimedia stream processing: There’s
plenty of room at the top (of the system stack). [EEE Trans. on
Multimedia, 15(2):291-303, February 2013.

Y. Andreopoulos et al. A local wavelet transform implementation versus
an optimal row-column algorithm for the 2d multilevel decomposition.
In Proc. IEEE Int. Conf. on Image Process., ICIP 2001, volume 3, pages
330-333. IEEE, October 2001.

Y Andreopoulos et al. A new method for complete-to-overcomplete
discrete wavelet transforms. In Proc. 14th IEEE Int. Conf. on Digital
Signal Process., DSP 2002, volume 2, pages 501-504. IEEE, July 2002.
Y. Andreopoulos and M. van der Schaar. Incremental refinement of
computation for the discrete wavelet transform. IEEE Trans. on Signal
Process., 56(1):140-157, 2008.

C.J. Anfinson and FE.T. Luk. A linear algebraic model of algorithm-based
fault tolerance. IEEE Trans. on Computers, 37(12):1599-1604, 1988.
E. Bingham and H. Mannila. Random projection in dimensionality
reduction: applications to image and text data. In Proceedings of the
7th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 245-250, 2001.

G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based
fault tolerance applied to high performance computing. J. Paral. and
Distrib. Comput., 69(4):410-416, 2009.

N. P. Carter, H. Naeimi, and D. S. Gardner. Design techniques for cross-
layer resilience. In Proc. IEEE Int. Conf. on Des., Autom. and Test in
Europe, DATE’10, pages 1023—-1028. European Design and Automation
Association, 2010.

A. Chadha and Y. Andreopoulos. Region-of-interest retrieval in large
image datasets with Voronoi VLAD. In Computer Vision Systems ICVS,
pages 218-227, 2015.

Y. Chauvin and D. E. Rumelhart. Backpropagation: theory, architec-
tures, and applications. Psychology Press, Hover, UK., 2013.

Z. Chen, G. E Fagg, E. Gabriel, J. Langou, T. Angskun, G. Bosilca, and
J. Dongarra. Fault tolerant high performance computing by a coding
approach. In Proc. ACM SIGPLAN Symp. on Princ. and Pract. of Paral.
Program., pages 213-223. ACM, 2005.

T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High performance
linpack benchmark: a fault tolerant implementation without checkpoint-
ing. In Proc. Int. Conf. on Supercomputing, pages 162—-171. ACM, 2011.
P. Du, P. Luszczek, S. Tomov, and J. Dongarra. Soft error resilient
QR factorization for hybrid system with GPGPU. J. of Computat. Sci.,
4(6):457-464, 2013.

S. Dubois, R. Péteri, and M. Ménard. Decomposition of dynamic
textures using morphological component analysis. IEEE Trans. on Circ.
and Syst. for Video Technol., 22(2):188-201, 2012.

C. Engelmann, H. Ong, and S. L Scott. The case for modular redundancy
in large-scale high performance computing systems. In Proc. IASTED
Int. Conf. on Parallel and Distributed Computing and Networks (PDCN),
volume 641-046, pages 189-194, Feb. 2009.

K. Goto and R. A. Van De Geijn. Anatomy of high-performance matrix
multiplication. ACM Trans. Math. Soft, 34(3):12, 2008.

K. Han, G. Lee, and K. Choi. Software-level approaches for tolerating
transient faults in a coarse-grainedreconfigurable architecture. [EEE
Trans. on Depend. and Secure Comp., 11(4):392-398, 2014.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED 14

[24]

[25]

[26]

[27]
[28]
[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Andreas Heinig, Michael Engel, Florian Schmoll, and Peter Marwedel.
Improving transient memory fault resilience of an h. 264 decoder. In
Embedded Systems for Real-Time Multimedia (ESTIMedia), 2010 Sth
IEEE Workshop on, pages 121-130. IEEE, 2010.

K.-H. Huang and J. A. Abraham. Algorithm-based fault tolerance for
matrix operations. I[EEE Trans. on Computers, 100(6):518-528, 1984.
Y. Ikenaga, M. Nomura, S. Suenaga, H. Sonohara, Y. Horikoshi, T. Saito,
Y. Ohdaira, Y. Nishio, T. Iwashita, M. Satou, et al. A 27% active-
power-reduced 40-nm CMOS multimedia soc with adaptive voltage
scaling using distributed universal delay lines. IEEE J. Solid-State Circ.,
47(4):832-840, 2012.

Intel. Intel power gadget 3.0 (windows 64-bit), 2014.

MKL Intel. Intel math kernel library, 2007.

H. Jégou, F. Perronnin, M. Douze, J. Sanchez, P. Perez, and C. Schmid.
Aggregating local image descriptors into compact codes. IEEE Trans.
Pat. Anal. and Machine Intel., 34(9):1704-1716, 2012.

J.-Y. Jou and J.A. Abraham. Fault-tolerant matrix arithmetic and signal
processing on highly concurrent computing structures. In Proc. of the
IEEE, volume 74, pages 732,741. IEEE, May 1986.

J.Y Jou and J. A Abraham. Fault-tolerant matrix operations on multiple
processor systems using weighted checksums. In Proc. SPIE 28th
Annual Tech. Symp. on Real-time Signal Processing VII, volume 0495,
pages 94-101. International Society for Optics and Photonics, Aug.
1984.

Woonseok Kim, Dongkun Shin, Han-Saem Yun, Jihong Kim, and
Sang Lyul Min. Performance comparison of dynamic voltage scaling
algorithms for hard real-time systems. In Real-Time and Embedded
Technology and Applications Symposium, 2002. Proceedings. Eighth
IEEE, pages 219-228. IEEE, September 2002.

V. B. Kleeberger, C. Gimmler-Dumont, C. Weis, A. Herkersdorf,
D. Mueller-Gritschneder, S. R. Nassif, U. Schlichtmann, and N. Wehn.
A cross-layer technology-based study of how memory errors impact
system resilience. IEEE Micro, 33(4):46-55, 2013.

P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carson, W. Dally,
M. Denneau, P. Franzon, W. Harrod, K. Hill, et al. Exascale computing
study: Technology challenges in achieving exascale systems. 2008.

N. Kontorinis et al. Statistical framework for video decoding complexity
modeling and prediction. IEEE Trans. on Circ. and Syst. for Video
Technol., 19(7):1000-1013, 2009.

F. J. Kurdahi, A. Eltawil, K. Yi, S. Cheng, and A. Khajeh. Low-power
multimedia system design by aggressive voltage scaling. IEEE Trans.
Very Large Scale Integration (VLSI) Syst., 18(5):852-856, 2010.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In Proc. IEEE Int. Symp.
Code Generation and Optimization, CGO 2004, pages 75-86. IEEE,
2004.

K. Lee, A. Shrivastava, I. Issenin, N. Dutt, and N. Venkatasubramanian.
Mitigating soft error failures for multimedia applications by selective
data protection. In Proc. ACM Int. Conf. on Comp., Arch. and Synth.
for Embed. Syst., pages 411-420. ACM, 2006.

Franklin T Luk. Algorithm-based fault tolerance for parallel matrix
equation solvers. Proc. SPIE Real-Time Signal processing VIII, 564:49—
53, Aug. 1985.

Y. Mu, W. Liu, and S. Yan. Video de-fencing. IEEE Trans. on Circ.
and Syst. for Video Technol., 24(7):1111-1121, 2014.

V.S.S Nair and J.A. Abraham. General linear codes for fault tolerant
matrix operations on processor arrays. In Proc. Int. Symp. Fault Tolerant
Comput., pages 180-185. IEEE, 1988.

Vijaykrishnan Narayanan and Yuan Xie. Reliability concerns in embed-
ded system designs. Computer, 39(1):118-120, 2006.

M. Nicolaidis, Anghel L., et al. Design for test and reliability in ultimate
CMOS. In Proc. IEEE Int. Conf. on Des., Autom. and Test in Europe,
DATE’12, pages 677-682. IEEE, 2012.

1. Polian, B. Becker, M. Nakasato, S. Ohtake, and H. Fujiwara. Low-cost
hardening of image processing applications against soft errors. In Proc.
IEEE Int. Symp. Defect and Fault Tol, in VLSI Syst., DFT’06, pages
274-279. IEEE, 2006.

H. M Quinn, A. De Hon, and N. Carter. CCC visioning study:
system-level cross-layer cooperation to achieve predictable systems from
unpredictable components. Technical report, Los Alamos National
Laboratory (LANL), 2011.

G. R. Redinbo. Wavelet codes for algorithm-based fault tolerance
applications. [EEE Trans. on Depend. and Secure Comp., 7(3):315-
328, 2010.

N.K. Rexford, J.; Jha. Algorithm-based fault tolerance for floating-point
operations in massively parallel systems. In Proc. IEEE Int. Symp. on
Circ. and Syst., volume 2, pages 649,652. IEEE, May 1992.

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

D. Rossi, N. Timoncini, M. Spica, and C. Metra. Error correcting code
analysis for cache memory high reliability and performance. In Proc.
IEEE Int. Conf. on Des., Autom. and Test in Europe, DATE’11, pages
1-6. IEEE, 2011.

V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan. Kulfi.
https://github.com/soarlab/KULFI/.

V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan. Towards
formal approaches to system resilience. In Dependable Computing
(PRDC), 2013 IEEE 19th Pacific Rim International Symposium on, pages
41-50. IEEE, 2013.

J. Sloan, R. Kumar, and G. Bronevetsky. An algorithmic approach
to error localization and partial recomputation for low-overhead fault
tolerance. In Proc. IEEE/IFIP Int. Conf. on Depend. Syst. and Net.
(DSN’13), pages 1-12. IEEE, 2013.

V. Spiliotopoulos et al. Quantization effect on vlsi implementations for
the 9/7 dwt filters. In Proc. IEEE Int. Conf. on Acoust., Speech, and
Signal Process., ICASSP’01, volume 2, pages 1197-1200. IEEE, May
2001.

V. Sridharan, H. Asadi, M. B. Tahoori, and D. Kaeli. Reducing data
cache susceptibility to soft errors. IEEE Trans. on Depend. and Secure
Comp., 3(4):353-364, 2006.

V. K. Stefanidis and K. G. Margaritis. Algorithm based fault tolerance:
Review and experimental study. In Proc. Int. Conf. of Numer. Anal. and
Appl. Math., pages 379-383. IEEE, 2004.

I. Stefanovici, A. Hwang, and B. Schroeder. Battling borked bits. /IEEE
Spectrum, 52(12):34-53, 2015.

L. Sun and T. Shibata. Unsupervised object extraction by contour
delineation and texture discrimination based on oriented edge features.
IEEE Trans. on Circ. and Syst. for Video Technol., 24(5):780-788, 2014.
A. Suresh and J. Sartori. Automated algorithmic error resilience for
structured grid problems based on outlier detection. In Proc. Annual
IEEE/ACM Int. Symp. on Code Gen. and Opt., page 240. ACM, 2014.
A. Timor, A. Mendelson, Y. Birk, and N. Suri. Using underutilized CPU
resources to enhance its reliability. /EEE Trans. on Depend. and Secure
Comp., 7(1):94-109, 2010.

J. Wen, Y. Xu, J. Tang, Y. Zhan, Z. Lai, and X. Guo. Joint video frame
set division and low-rank decomposition for background subtraction.
IEEE Trans. on Circ. and Syst. for Video Technol., 24(12):2034-2048,
2014.

P. Wu, C. Ding, L. Chen, T. Davies, C. Karlsson, and Z. Chen. On-line
soft error correction in matrix—matrix multiplication. J. of Comput. Sci.,
4(6):465-472, 2013.

H.-J. Wunderlich, C. Braun, and S. Halder. Efficacy and efficiency of
algorithm-based fault-tolerance on GPUs. In [EEE Internat. On-Line
Testing Symp., 2013, pages 240-243. IEEE, 2013.

J. Yang, D. Zhang, A. F Frangi, and J.-Y. Yang. Two-dimensional PCA:
a new approach to appearance-based face representation and recognition.
IEEE Trans. on Patt. Anal. and Machine Intell., 26(1):131-137, 2004.

B. Zhao, H. Aydin, and D. Zhu. Reliability-aware dynamic voltage scal-
ing for energy-constrained real-time embedded systems. In Computer
Design, 2008. ICCD 2008. IEEE International Conference on, pages
633-639. IEEE, 2008.

Ijeoma Anarado is currently pursuing the Ph.D.
degree at the Department of Electronic and Electrical
Engineering, University College London, U.K. Her
research interests include the design of system level
algorithms for fault tolerance in data computations
and throughput acceleration in signal processing
tasks. Her PhD is funded by the Federal Government
of Nigeria under the PRESSID Scheme.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, ACCEPTED

Mohammad Ashraful Anam received the PhD
in Electronic Engineering from University College
London, London, UK.

He is currently a Post-Doctoral Research Asso-
ciate with the Department of Electronic and Elec-
trical Engineering, University College London. His
current research interests are in error tolerant com-
puting, and reliable cloud computing.

Dr. Anam received the Lombardi Prize for the
Best PhD thesis in Electronic Engineering from
University College London.

Fabio Verdicchio is a Lecturer in the School of
Engineering within the College of Physical Sciences
at the University of Aberdeen. His research interests
include Internet video streaming, applications of
microcontrollers to sensing and design of video-
processing algorithms

Yiannis Andreopoulos (M’00-SM’14) is Reader
(Assoc. Professor) in Data and Signal Processing
Systems in the Department of Electronic and Elec-
trical Engineering of University College London
(U.K.). His research interests are in wireless sensor
networks, error-tolerant computing and multimedia
systems.

15

