
Test and Debug Solutions for 3D-Stacked
Integrated Circuits

by

Sergej Deutsch

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Krishnendu Chakrabarty, Supervisor

Pankaj Agarwal

Rolf Drechsler

Nan Jokerst

Hisham Massoud

James Morizio

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Electrical and Computer Engineering

in the Graduate School of Duke University
2015

Abstract

Test and Debug Solutions for 3D-Stacked

Integrated Circuits

by

Sergej Deutsch

Department of Electrical and Computer Engineering
Duke University

Date:
Approved:

Krishnendu Chakrabarty, Supervisor

Pankaj Agarwal

Rolf Drechsler

Nan Jokerst

Hisham Massoud

James Morizio

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Electrical and Computer

Engineering in the Graduate School of Duke University
2015

Copyright © 2015 by Sergej Deutsch
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Three-dimensional (3D) stacking using through-silicon vias (TSVs) promises higher

integration levels in a single package, keeping pace with Moore’s law. TSVs are small

copper or tungsten vias that go vertically through the substrate of a die and provide

vertical interconnects to a die stacked on top. TSV-based interconnects have benefits

in terms of performance, interconnect density, and power efficiency.

Testing has been identified as a showstopper for volume manufacturing of 3D-

stacked integrated circuits (3D ICs). A number of challenges associated with 3D test

need to be addressed before 3D ICs can become economically viable. This dissertation

provides solutions to new challenges related to 3D test content, test access, diagnosis

and debug.

Test content specific to 3D ICs targets defect that occur during TSV manufac-

turing and stacking process. One example is the effect of thermo-mechanical stress

due to TSV fabrication process on the surrounding logic gates. In this dissertation,

we analyze these effects and their consequences for delay testing. We provide quan-

titative results showing that the use of TSV-stress oblivious circuit models for test

generation leads to considerable reduction in delay-test quality. We propose a test

flow that uses TSV-stress aware circuit models to improve test quality.

Another example of 3D-specific test challenge is the testability of TSVs. In this

dissertation, we focus on TSV test prior to die bonding, as access to TSVs is limited

at this stage. We propose a non-invasive method for pre-bond TSV test that does

iv

not require TSV probing. The method uses ring oscillators and duty-cycle detectors

in order to detect variations in propagation delay of gates connected to a single-sided

TSV. Based on the measured variations, we can diagnose the TSV and predict the size

of resistive-open and leakage faults using a regression model based on artificial neural

networks. In addition, we exploit different voltage levels to increase the robustness

of the test method.

In order to efficiently deliver test content to structures under test in a 3D stack,

3D design-for-test (DfT) architectures are needed. In this dissertation, we discuss

existing 3D-DfT architectures and their optimization. We propose an optimization

approach that takes uncertainties in input parameters into account and provides a

solution that is efficient in the presence of input-parameter variations and minimizes

test time, therefore reducing test cost.

Post-silicon debug is a major challenge due to continuously increasing design com-

plexity. Traditional debug methods using signal tracing suffer from the limited ca-

pacity of on-chip trace buffers that only allow for signal observation during a short

time window. This dissertation proposes a low-cost debug architecture for massive

signal tracing in 3D-stacked ICs with wide-I/O DRAM dies. The key idea is to use

available on-chip DRAM for trace-data storage, which results in a significant increase

of the observation window compared to traditional methods that use trace buffers. In

addition, the proposed on-chip debug circuitry can identify erroneous segments of ob-

served data by using compact signatures that are stored in the DRAM a priori. Only

failing intervals are off-loaded from a temporary trace buffer into DRAM, allowing

for a more efficient use of the memory, resulting in a larger observation window.

In summary, this dissertation provides solutions to several challenges related to

3D test and debug that need to be addressed before volume manufacturing of 3D ICs

can be viable.

v

Contents

Abstract iv

List of Tables ix

List of Figures x

Acknowledgements xiv

1 Introduction 1

1.1 Introduction to 3D Integration Using TSVs 4

1.2 3D Test Flow . 9

1.3 3D DfT Architectures and Optimization 10

1.4 Defects due to TSV Manufacturing 14

1.5 Pre-Bond TSV Test . 17

1.6 Post-Silicon Debug Using Signal Tracing 20

2 TSV Stress-Aware ATPG 23

2.1 Related Prior Work . 25

2.1.1 SDD Testing and SDQL . 25

2.1.2 Mobility Variation due to TSV Stress 26

2.2 Methodology . 27

2.2.1 TSV Stress-Aware Model Generation 28

2.2.2 TSV-Stress-Aware ATPG . 30

2.3 Case Study . 31

vi

2.3.1 Test Vehicles . 31

2.3.2 ATPG Results . 33

2.4 Conclusion . 37

3 Contactless Pre-Bond TSV Test and Diagnosis Using Ring Oscilla-
tors and Multiple Voltage Levels 39

3.1 Pre-Bond TSV Test Method . 41

3.1.1 TSV Fault Model . 41

3.1.2 Ring Oscillators with TSVs 43

3.1.3 Duty-Cycle Detectors . 46

3.1.4 DfT Infrastructure for On-Chip Measurement 49

3.2 Regression Model Based on Artificial Neural Networks 51

3.3 Simulation Results . 56

3.3.1 Resistive-Open Faults . 56

3.3.2 Leakage Faults . 59

3.3.3 Duty-Cycle Detector . 61

3.3.4 Regression Model for Inferring Fault Size 62

3.3.5 DfT Area Cost and Test Time Estimations 67

3.4 Conclusions . 69

4 Uncertainty-Aware Robust Optimization of Test-Access Architec-
tures 71

4.1 Uncertain Parameters in Optimization of 3D Test Architecture and
Test Scheduling . 74

4.2 Related Prior Work . 77

4.2.1 Overview of Robust Optimization 77

4.2.2 Simulated Annealing . 80

4.3 Robust Optimization of 3D Test Architecture 81

vii

4.3.1 Mathematical Model for Robust Co-Optimization of Test Ar-
chitecture and Test Scheduling 83

4.3.2 Heuristic Method for Robust Optimization Based on Simulated
Annealing . 89

4.4 Simulation Results . 94

4.5 Conclusion . 100

5 Massive Signal Tracing Using On-Chip DRAM for Silicon Debug 103

5.1 Proposed Debug Framework . 105

5.1.1 Multiple-Input Signature Register (MISR) 108

5.1.2 Trigger Module . 109

5.1.3 Trace Buffer and Shadow Buffer 112

5.1.4 Control Logic . 113

5.1.5 Interface with DRAM: Challenges, Limitations, and Solutions 115

5.1.6 Analysis of Compression Effectiveness 117

5.2 Simulation Results . 122

5.2.1 DfD Implementation and Simulation 122

5.2.2 Comparison with Method Proposed in [75] 124

5.2.3 Comparison with Method Proposed in [74] 127

5.3 Conclusion . 128

6 Conclusions 130

6.1 Future Research Directions . 132

Bibliography 133

Biography 144

viii

List of Tables

2.1 Design statistics for the benchmarks. 32

2.2 Defective parts per million for various designs. 35

2.3 Pattern count for various designs. 36

3.1 Truth table for TEST CTRL output specification. 51

4.1 Solutions of the LP problem for (a) s1, (b) s2, and (c) taking both s1
and s2 into account. 80

4.2 Design parameters of some of the benchmark SoCs used in simulations. 97

4.3 Input parameters and resulting test times for the SoC benchmarks. . 99

5.1 . 106

5.2 Comparison of debug-session time with prior work [75]. 125

5.3 Comparison of debug-session time with prior work [74]. 128

ix

List of Figures

1.1 Packaged 3D IC on a board. 5

1.2 SEM photographs of (a) TSVs and (b) micro-bumps (source IMEC). 6

1.3 Typical TSV and micro-bump dimensions. 6

1.4 TSV fabrication steps in IMEC’s process. 7

1.5 Wafer thinning and stacking steps in imec process. 7

1.6 Various vertical die stack architectures: (a) 2.5D IC, (b) 3D IC, and
(c) 5.5D IC [14]. 8

1.7 2D (a) and 3D (b) test flows [18]. 9

1.8 Schematic view of the logic-on-logic 3D DfT architecture [14]. 11

1.9 An illustration of (a) rectangle packing and (b) the corresponding TAM
design [28]. 12

1.10 An example of a 3D test architecture with (a) serial TAM and (b)
parallel test architecture [32]. 13

1.11 TSV plating defects: (a) voids, (b) pinch-off [33]. 14

1.12 (a) BOX undercut, (b) Simulated electric field [35]. 15

1.13 TSV stress types and their induced failures [36]. 16

1.14 Crack in a micro-bump due to mechanical stress [36]. 16

1.15 Micro-bump failure after current stress test [42]. 17

1.16 Traditional signal-tracing architecture. 21

2.1 Delay distribution FDptsq. 25

2.2 The TSV structure and three different KOZ sizes used in our studies. 28

x

2.3 The design flow used to obtain TSV-stress-aware timing 29

2.4 ATPG tool flow. 32

2.5 (a,b) Layout screenshots for KOZ1 and KOZ3 of benchmark des perf.
White rectangles indicate TSVs, and blue indicates standard cells.
(c,d) The corresponding PMOS mobility maps. Black indicates TSVs.
Green, red and blue represent nominal, positive, and negative mobility
change respectively. 33

2.6 DPPM ratio as function of λ. 37

3.1 Voids in 10 µm x 60 µm TSVs [46]. 40

3.2 TSV models: (a) fault-free, (b) micro-void, (c) pinhole. 40

3.3 Ring oscillator with N TSVs. 43

3.4 I/O-cell rise time for the fault-free case and 3 kΩ resistive-open and
300 µS leakage faults. 46

3.5 I/O-cell fall time for the fault-free case and 3 kΩ resistive-open and
300 µS leakage faults. 46

3.6 Schematic of the duty-cycle detector. 49

3.7 Pre-bond TSV test DfT infrastructure. 50

3.8 Example of a generic three-layer ANN. 53

3.9 Regression model based on ANNs. 56

3.10 ∆T as a function of RO at location xT � 0.5 and at 1.1 V supply voltage. 58

3.11 ∆T as a function of supply voltage in (a) fault-free case and (b) in case
of 1 kΩ resistive open at xT � 0.5. 59

3.12 ∆T as a function of RL at different voltage levels. 60

3.13 ∆T as a function of supply voltage in (a) fault-free case, and (b) in
case of 3 kΩ (333.3 µS) leakage fault. 61

3.14 Confusion matrix for class net. 63

3.15 Error histograms of GL-net and GL-net r at GL � 100 µS. 64

3.16 MSE of GL-net and GL-net r for different values of GL. 65

3.17 MSE of RO-net and RO-net r for different values of RO. 66

xi

3.18 MSE of GL-net using multiple vs. single Vdd. 67

3.19 MSE of RO-net using multiple vs. single Vdd. 68

4.1 Die-level architecture with reconfigurable multiple-width TAM. 75

4.2 Mathematical programming model for non-robust test architecture op-
timization. 85

4.3 SA-based Robust Optimization Flow. 90

4.4 Test Architecture 1: (a) TAM assignment and partitioning, (b) sched-
ule for 4-bit configuration, (c) schedule for 8-bit configuration. 95

4.5 Test Architecture 2: (a) TAM assignment and partitioning, (b) sched-
ule for 4-bit configuration, (c) schedule for 8-bit configuration. 96

4.6 Evaluation of the robust and non-robust solutions for p22810 in 1n-
bit, 2n-bit, and 4n-bit configuration for different Pmax for nominal core
test-time values Ti. 100

4.7 Evaluation of the robust and non-robust solutions for p22810 in 1n-
bit, 2n-bit, and 4n-bit configuration for different Pmax for some core
test-time values Ti reduced by 10%. 101

4.8 Evaluation of the robust and non-robust solutions for p22810 in 1n-
bit, 2n-bit, and 4n-bit configuration for different Pmax for some core
test-time values Ti reduced by 20%. 102

5.1 Proposed debug flow. 106

5.2 Overview of the proposed design-for-debug architecture. 107

5.3 Architectural view of the trigger module. 110

5.4 Setup example for a transition recognition. 112

5.5 Operations of DfD modules during signal tracing. 113

5.6 State diagram for the control block CTRL. 115

5.7 Timing diagram for control signals. 115

5.8 Compression ratio r as function of error probability p for Lt � Kt � 32,
St � 32, and different values of Mt in the case of a uniform distribution.119

5.9 Compression ratio r as function of error probability p for Lt � Kt � 32,
St � 32, and Mt � 128 in the case of error bursts of different lengths. 120

xii

5.10 Optimal trace depth Mt as a function of error probability p for the case
Lt � Kt � 32. 122

xiii

Acknowledgements

I would like to acknowledge the financial support received from the National Science

Foundation and the Semiconductor Research Corporation. I thank my PhD advisor,

Krishnendu Chakrabarty, for his mentorship. I also thank Sun Kyu Lim and Shree-

pad Panth for the 3D design benchmarks that they contributed for use in research.

I acknowledge Erik Jan Marinnisen for his collaboration. I also acknowledge the

contributions of the past and present students at Duke University, including Mukesh

Agrawal, Qing Duan, Hongxia Fang, Zipeng Li, Yan Luo, Brandon Noia, Ran Wang,

and Fangming Ye. Finally, I would like to thank the members of my committee for

for their time and effort in reading this dissertation and attending my defense.

xiv

1

Introduction

Three-dimensional IC stacking using through-silicon vias (TSVs) is a relatively new

technology that has a number of advantages over conventional stacking methodologies

[1]. TSVs are vertical copper or tungsten conducting nails passing through a thinned

die. Typical TSV dimensions are 5 µm diameter and 50 µm height. The actual

connection to the next die can be a direct copper-to-copper bond of the TSV onto

a small landing pad, but today is often implemented by means of a CuSn micro-

bump, of which typical dimensions are 25 µm diameter at 40 µm pitch [2]. As they

form direct vertical interconnects between stacked dies, TSVs allow for a much larger

number and higher density of interconnects than conventional wire-bonds. Due to

their geometry, TSVs have relatively low capacitance and inductance, and thus enable

high bandwidth and low power consumption [3].

Despite the numerous benefits offered by 3D integration, test challenges for 3D-

stacked integrated circuits (ICs) must be addressed before volume manufacturing and

defect screening can be feasible [4, 5, 6]. These challenges include the following.

� Test content

1

As any semiconductor product, a 3D IC should be tested for defects that lead

to errors in the functional operation of the IC. These defects can be divided

into two categories: (a) defects that are specific to 3D ICs, and (b) defects

that occur both in traditional (2D) ICs and 3D ICs. The category (a) includes

defects in TSVs and micro-bumps, as well as defects caused by mechanical

stress during TSV and micro-bump manufacturing. New test techniques need

to be developed to screen for these defects. The category (b) includes defects

in the internal die logic. Traditional test methods, such as scan test, have been

successfully used to test for these defects. However, test costs tend to multiply

with the increasing complexity of 2D and 3D ICs; therefore, more efficient test

solutions are required to keep test costs low.

� Test access

Test access is difficult both in pre-bond and post-bond test of 3D ICs. In

pre-bond test, probing on micro-bumps and TSVs is constrained due to their

small dimensions. Therefore, special techniques are required to test TSV-based

connections prior to die bonding. In post-bond test, only one die in a 3D

stack has external connections - other dies require test access through this die,

necessitating a 3D design-for-test (DfT) architecture that allows for test access

to all components in the stack. In addition, 3D DfT architectures must be

optimized for on-chip area requirements and test time, which both have a major

impact on test costs.

� Diagnosis and Debug

Silicon debug requires a relatively large engineering effort, accounting for a

significant portion of the total time-to-market of the silicon product and this

portion has been projected to grow [7, 8]. In order to keep pace with advances

in system-level integration, including 3D stacking, traditional methodologies for

2

bug localization need to be improved.

This introduction provides a motivation for this dissertation, which addresses the

challenges of 3D test presented above.

In Chapter 2, we address the issue of thermo-mechanical stress due to TSV fabri-

cation. TSV stress changes the timing profile of the digital logic surrounding TSVs,

which has an impact on delay-fault testing. We analyse this effect and show quan-

titatively that test quality is significantly reduced if the test patterns are generated

with TSV stress-oblivious circuit models. The detrimental impact of TSV stress on

pattern effectiveness and test quality can be overcome by using stress-aware circuit

models for test generation.

Chapter 3 presents a technique for contactless pre-bond TSV test and diagnosis

using ring oscillators and duty-cycle detectors. TSVs are used as capacitive loads

of their driving gates that are configured in a ring oscillator. By measuring the

oscillation period and the duty cycle of the signal generated by the ring oscillators,

we can detect resistive open and leakage faults. A regression model based on artificial

neural networks can predict the fault type and the fault size using the oscillation

period and the duty cycle measured at multiple voltage levels as input parameters.

The accuracy of the regression model is evaluated through simulation using realistic

models for a 45nm CMOS technology.

Chapter 4 addresses the challenge of robust optimization of 3D test-access archi-

tectures. Traditional optimization frameworks suffer from the drawback that they

ignore potential uncertainties in input parameters. In realistic scenarios, however,

the input parameter values used in the design phase may differ from the actual values

that are known only after the design phase. Examples of such parameters include

test power and configuration of the die test-access mechanism. We propose a robust-

optimization framework that takes uncertainties in input parameters into account

3

and provides robust solutions. We evaluate the proposed framework and show that

robust solutions are superior to single-point solutions in terms of average test time

when there are uncertainties in the values of input parameters.

Finally, Chapter 5 presents a method for massive signal tracing using on-chip

DRAM for in-system silicon debug. Traditional debug techniques using signal tracing

suffer from the limited capacity of on-chip trace buffers. We propose a low-cost debug

architecture for signal tracing that exploits large amounts of fast on-chip memories

available in wide-I/O 3D ICs. The key idea of the proposed architecture is to store

the trace data into functional memory, thereby significantly increasing the signal-

observation window compared to traditional methods that use dedicated trace buffers.

We evaluate the proposed method and show that the observation window can be

increased by orders of magnitude compared to prior work at comparable hardware

cost.

This introduction will continue with a general overview of 3D integration using

TSVs and prior work in 3D test.

1.1 Introduction to 3D Integration Using TSVs

3D stacking by means of through-silicon vias (TSVs) is a relatively new technology

that has a number of advantages over conventional stacking methodologies. TSVs

are usually copper or tungsten nails going through the silicon substrate, electrically

connecting the circuitry of the stacked dies [9]. Dies are bonded together by using

copper or copper-tin micro-bumps, which are part of the inter-die interconnects. TSV-

based interconnects allow a much higher density than traditional wire-bonds, which

can only be placed along the perimeter of the die. This technology has the following

benefits:

� The option of combining dies from different process technologies, i.e., optimized

4

for digital logic, analog logic, or DRAM.

� High-bandwidth, low-power, high-density inter-die connections

� Increased compound yield, as systems can be partitioned into smaller dies,

increasing the yield of individual dies.

� Smaller footprint

Figure 1.1 shows a packaged 3D stack consisting of two dies. In Die1, TSVs (in

orange) have been processed and the silicon wafer has been thinned down in order to

expose the TSVs on the back side. Die2 has been manufactured using conventional

(2D) technology without TSVs. Together with micro-bumps, TSVs form electrical

connections between the active circuitry (in black) of both dies.

Figure 1.1: Packaged 3D IC on a board.

Cross-sections of two silicon wafers containing TSVs with different aspect ratios

are depicted in Figure 1.2(a). Figure 1.2(b) shows micro-bumps of different forms

and sizes. Table 1.3 shows the TSV and micro-bump dimensions that are used in the

current technology at IMEC [10].

Figure 1.4 shows a typical TSV manufacturing flow. In the first step, holes are

etched into the silicon substrate. Then an insulator is deposited and the holes are

filled with copper. Chemical Mechanical Polishing removes the excess layer of copper.

In order to expose the TSVs on the back-side of the silicon substrate, it needs to be

thinned down, which is the next step.

5

Figure 1.2: SEM photographs of (a) TSVs and (b) micro-bumps (source IMEC).

Dimension TSV micro-bump

Diameter 5.2 µm 7.5 – 25 µm
Height 40 µm 5 – 10 µm
Minimum pitch 10 µm 40 µm

Figure 1.3: Typical TSV and micro-bump dimensions.

Wafer thinning and bonding processes are shown in Figure 1.5. The silicon sub-

strate is temporarily bonded with the front-side to a carrier wafer and the back-side

is thinned down. The exposed TSVs on the back-side are bonded to the front-side of

the bottom wafer by means of micro-bumps. Finally, the carrier wafer is removed.

TSV can be processed at different stages of the CMOS manufacturing flow. There

are three common approaches [11]:

� Via-first. In this case, TSVs are processed before the transistors (front end of

line, FOEL).

� Via-middle. In this case, TSVs are fabricated after FOEL but prior to metal

layers (back end of line, BOEL).

� Via-last. In this case, TSVs are processed after BOEL.

Typically, via-first and via-middle TSVs are smaller and denser than via-last TSVs.

A major drawback of the via-first approach is that the TSVs are exposed to high

6

Figure 1.4: TSV fabrication steps in IMEC’s process.

Figure 1.5: Wafer thinning and stacking steps in imec process.

temperatures during annealing, which is done at FOEL. Therefore, copper cannot

be used as TSV filling material in the via-first approach due to material diffusion

as well as thermo-mechanical stress, which results from different thermal expansion

coefficients of copper and the silicon substrate.

Dies can be stacked in three different ways: Wafer-to-Wafer (W2W), Die-to-Wafer

(D2W), and Die-to-Die (D2D). W2W approach has the advantage that it does not

require pick-and-place operations for single dies and hance can be done faster than

D2W and D2D. However, in the W2W approach, it is difficult to match Known Good

Die of the wafers being stacked; therefore, the compound yield of W2W scheme is

typically lower than those of D2W and D2D.

A number of 3D IC architectures have been considered for volume manufacturing.

� Interposer-based 3D ICs, called “2.5D ICs”, in which multiple active dies are

placed next to each other on top of a passive silicon interposer base and inter-

connected through it. The active dies are bonded to the interposer by means

7

of micro-bumps. An example of a 2.5D ICs is depicted in Figure 1.6(a)), in

which the interposer contains TSVs that provide connections to the external

package pins. 2.5D ICs are attractive for high-performance compute and com-

munication applications, as they offer high-bandwidth interconnect between the

various active dies and good cooling opportunities [12, 13].

� “True” 3D ICs, with multiple dies stacked in a single tower, as shown in Fig-

ure 1.6(b). This type of 3D ICs is attractive for applications, where cooling

is not an issue but the form factor needs to be optimized, for instance, for

hand-held mobile devices.

� Combination of 2.5D ICs and 3D ICs, where multiple towers of active dies are

mounted next to each other on a silicon interposer, as illustrated in Figure 1.6(c).

(a) (b) (c)
Figure 1.6: Various vertical die stack architectures: (a) 2.5D IC, (b) 3D IC, and
(c) 5.5D IC [14].

The main advantages of 3D stacking is the possibility of integration heterogeneous

dies and high-bandwidth interconnects. It is therefore no surprise that memory-on-

logic stacks are among the first 3D IC applications appearing on the market [15, 16].

Recently, JEDEC, a microelectronics industry association, has released a new stan-

dard for Wide-I/O DRAMs for stacking with TSVs (JESD-229) [17]. This standard

defines the mechanical and electrical logic-memory interface, allowing for 512-bit data

signals. The standard also specifies boundary-scan-like test structures for DRAM

8

Figure 1.7: 2D (a) and 3D (b) test flows [18].

dies, enabling interconnect test for TSV-based connections between the logic and the

memory dies [14].

1.2 3D Test Flow

Test flows for 3D ICs are distinctly different from a conventional test flow. Figure 1.7

shows a comparison between the two flows. A conventional (2D) IC is typically tested

twice: (a) after wafer fabrication (wafer-level test) and after packaging (final test).

A wafer-level test ensures that most of the defective dies are screened out before

packaging in order to save cost, and a final test ensures the outgoing product quality.

A 3D-IC test flow has several potential test insertions [18].

� Pre-bond test

All dies should be tested prior to bonding to ensure that only known good dies

(KGD) are stacked. This test targets the internal logic as well as TSVs, which

are processed before die bonding.

� Post-bond test

Partial and full stacks can be tested for defects that may have been induced

9

during the stacking process, which include defects in the TSV-based inter-die

connections, as defects in the internal die areas surrounding TSVs.

� Final test

As in traditional ICs, the entire 3D IC is thoroughly re-tested after packaging

in order to ensure the outgoing product quality.

1.3 3D DfT Architectures and Optimization

In a typical 3D stack, only one die holds all external connections and the other dies

communicate with the outside world through that die. Therefore, in order to provide

test data to all dies in the stack, a 3D DfT architecture is required that can transport

test data from external test pins through the stack to the die under test and back.

Marinissen et al. have proposed a 3D test architecture based on die-level wrappers

for logic-on-logic 3D stacks [19], which has been extended to support memory-on-logic

stacks [14]. Figure 1.8 shows a schematic view of the architecture. The die-level wrap-

pers are based on embedded-core wrappers in IEEE Std 1500 [20] and allow for mod-

ular test of die-internal structures (INTEST mode), as well as inter-die connections

(EXTEST mode). The architecture provides a serial test-access mechanism (TAM)

and a parallel TAM for each die. The serial TAM is connected to an IEEE 1149.1 in-

terface in Die 1 [21], and the parallel TAM is multiplexed onto functional I/Os in Die

1. Each die wrapper contains a wrapper instruction register (WIR) that configures

the wrapper in one of three test modes: (a) INTEST, in order to test the die logic

using internal scan chains, (b) EXTEST, in order to test the TSV-based connections

using the wrapper boundary register, and (c) BYPASS, in order to bypass the die.

Dies in a 3D stack may contain embedded cores that need to be tested as separate

entities. Typically, the width of the parallel TAM is not sufficient to provide test

access to all cores of the stack simultaneously; therefore, only certain cores can be

10

Figure 1.8: Schematic view of the logic-on-logic 3D DfT architecture [14].

tested in parallel, depending on the design of the TAMs. In order to optimize the

total test time of a 3D IC, optimization of the test architecture and test scheduling

is necessary.

Optimization of 2D system-on-chip (SoC) test architectures has been explored

well in the past [22, 23, 24, 25, 26]. A general problem of TAM optimization can be

formulated as follows. Given the total TAM width , as well as the parameters for each

core in the SoC, including scan-chain information and the test-pattern information,

determine an optimal assignment of cores to the global TAM such that the test time

is minimum.

Iyengar et al. [27] have proposed a framework for co-optimization of TAM design

and wrappers. This work assumes a test-bus model for the TAMs, where cores can

be tested independently from each other; however, cores sharing a TAM are tested

sequentially. The paper presents an efficient algorithm to construct wrappers that

11

reduce the core-testing time, as well as mathematical models for TAM optimization

that use the calculated core-testing times as input parameters. The TAM optimiza-

tion for small SoCs is solved using integer linear programming (ILP). For large SoCs,

the authors have proposed an efficient heuristic based on rectangle stacking [28]. Each

core can be represented as a rectangle, where the width is the TAM width of the core,

and the length is the test time, as shown in Figure 1.9(a). The objective is to pack

the rectangles without overlapping in a bin, the width of which equals the maximum

TAM width, such that the length of the bin, i.e., the SoC testing time, is minimized.

Once an optimal packing is obtained, it can be mapped back to the corresponding

core-TAM assignment, as shown in Figure 1.9(b).

Figure 1.9: An illustration of (a) rectangle packing and (b) the corresponding TAM
design [28].

The authors of [29] have addressed the issue of robustness of test architectures

against variations in input parameters and proposed to solve the problem of robust

optimization by using a daisy-chain architecture, matching the width of the core-

level TAM to that of the system-level TAM, and testing one core at a time. The

requirement of reconfigurable core wrappers is, however, difficult to meet in practice

because of complex scan-chain routing. In addition, some cores do not benefit from

extra TAM width, wasting the bandwidth that could be used for testing other cores

12

in parallel.

Recent publications have been focusing on optimization of test architectures for

3D ICs [30, 31, 32]. Noia et al. [32] have proposed a framework for test-architecture

optimization for 3D stacked ICs with hard, soft, and firm dies. In a hard die, the

test architecture is fixed and known in advance. Firm dies allow for serial/parallel

conversion in order to adjust the TAM width. In the case of soft dies, the test

architecture is to be designed, which offers extra degrees of freedom. In addition,

two different 3D test architectures are considered: (a) serial and (b) parallel test

architectures, as shown in Figure 1.10. In a serial architecture, all dies share TAM

wires and hence only one die can be tested at a time. In a parallel test architecture,

certain dies have a dedicated TAM and can be tested independently of other dies, for

instance, Die 1 in Figure 1.10(b). This can reduce the total test time but typically

requires a wider stack-level TAM. The authors formulate a mathematical model of

the problem, using the number of available test pins and the number of dedicated

test TSVs as constraints, and solve the problem using ILP.

Figure 1.10: An example of a 3D test architecture with (a) serial TAM and (b)
parallel test architecture [32].

13

1.4 Defects due to TSV Manufacturing

As in any microelectronics, the manufacturing process of 3D ICs is defect-prone and

hence 3D ICs need to be tested to ensure the outgoing product quality. Since this

manufacturing process includes steps that are also used for conventional (2D) chips,

the same defects may occur in both 2D and 3D products. A defect is a physical

imperfection in the processed wafer, for instance an open in interconnects, a short

between interconnects, missing transistor, incorrect doping level.

Due to TSV manufacturing and bonding steps, 3D ICs can potentially have a

number of new defect types [6]. TSV-related defects include:

� Voids in TSVs

� Pinch-off of the TSV

� Oxide defects, e.g. pinholes

� Thermo-mechanical stress induced defects

� Voids and cracks in micro-bumps

Voids in TSVs, as shown in Figure 1.11(a), can result from Cu electroplating or

insufficient wetting of the vias in the plating solution [33]. Another defect due to

plating is pinch-off of the TSV, as depicted in Figure 1.11(b). These defects can

increase the TSV resistance or even create an open circuit.

Figure 1.11: TSV plating defects: (a) voids, (b) pinch-off [33].

14

Oxide defects, such as pinholes, may occur along the TSV wall and create shorts

between the TSV and the substrate [34].

Breakdown voltage reduction of the thermal oxide is caused by strong buried oxide

(BOX) undercuts, an example of which is depicted in Figure 1.12(a) [35]. BOX

undercuts result from TSV etching, post-etch cleaning, and insulator layer deposition.

Figure 1.12(b) highlights the effect of a strong undercut: the electric field at the corner

of the silicon-on-insulator is greatly increased. This degrades the breakdown voltage,

which must be sufficiently high for high voltage applications (in the 200 V range)

[35].

Figure 1.12: (a) BOX undercut, (b) Simulated electric field [35].

TSV reliability can be degraded by stress resulting from thermal expansion mis-

match between Cu, Si, and SiO2. Resulting failures can be categorized in terms of the

stress origin: (a) Cu-area, (b) Si-area, and (c) overall area, as shown in Figure 1.13

[36].

(a) Although the strains in Cu are not high enough to cause failures in perfect TSV

structures, the combination of these strains and manufacturing imperfections in

TSVs might lead to failures, for instance interfacial delamination, micro-bump

cracks, and cracks in TSVs [36, 37, 38, 39].

(b) Local stress in Si can alter the carrier mobility of a MOS device, depending on

its location relative to the TSVs [40]. This effect causes timing variations of

15

up to �10% for individual cells in the TSV proximity, which may increase the

critical path delay. This affect the test quality for small-delay defect (SDD) test

[41], as the SDD test relies on an accurate timing model of the circuit. Recently,

a study has shown that the SDD-test quality can be significantly decreased if

stress due to TSVs is not taken into account during test generation

(c) Global stress results in die warpage which, in turn, might lead to cracks in the

micro-bumps, as shown in Figure 1.14 [36].

Figure 1.13: TSV stress types and their induced failures [36].

Figure 1.14: Crack in a micro-bump due to mechanical stress [36].

An important issue in 3D ICs is electromigration in micro-bumps, which are part of

the TSV-based interconnects. Studies of micro-bump reliability report that voids and

cracks can occur in the joints due to electromigration [42]. For example, Figure 1.15

shows such defects in a chip sample with an IMC–Sn–IMC (Intermetallic Compound)

joint structure after 0.13A current stressing [42]. The resulting voids and cracks

increased the resistance of this micro-bump by more than 20%.

16

Figure 1.15: Micro-bump failure after current stress test [42].

Many of the listed defects affect the reliability of 3D ICs, for instance, by creating

shorts or increasing the interconnect resistance. The phenomena causing these defects

have been studied and the underlying physics has been explained in the literature [43,

44]. The studies also propose new design and manufacturing techniques to avoid these

defects, for instance

� Layout optimization for reduced mechanical stress [45],

� Layout optimization with respect to carrier mobility variations near TSVs [40],

� Void-free filling techniques [46].

The efficiency of these techniques has been experimentally verified but volume pro-

duction data is still awaited. It is unlikely that the industry is going to reveal any

significant data about their manufacturing processes or yield, hence testing remains

relevant.

1.5 Pre-Bond TSV Test

Pre-bond TSV testing remains one of the major challenges in a 3D test flow due to the

limited access to TSVs [47]. In the following paragraphs, we review several methods

for pre-bond TSV test that have been proposed in the literature.

17

Noia and Chakrabarty proposed a method for TSV testing in which multiple TSVs

are mechanically contacted by the same probe needle to measure TSV capacitance

and resistance [48, 49]. This approach allows for the testing of multiple TSVs simul-

taneously at the expense of measurement resolution, significantly reducing the test

time. Simulation results have demonstrated high measurement accuracy, even in the

presence of process variations and probe contact variations. Despite its benefits, this

method has several drawbacks. First, it places extra burden on the test equipment,

such as custom and active probe cards. Second, the method requires multiple contacts

on the back side of the thinned wafer, which can be difficult in practice. Finally, me-

chanical force on TSV tips and micro-bumps can result in damage to TSVs, leading

to their degraded performance or even failure.

Chen et al. have proposed a methodology for detecting capacitive TSV faults [50].

In this method, a TSV is charged to a certain voltage level and then its charge is

shared among a number of TSVs. After charge sharing, a sense amplifier measures

the voltage of TSV, from which the TSV capacitance can be deduced. This method

also allows for the detection of leakage faults. A major drawback of this approach

is its susceptibility to process variations. In addition, this method requires analog

structures on the die that are not part of typical standard cell libraries and need to

be manually designed and optimized.

Pak et al. have developed a technique for TSV connectivity test using ring oscilla-

tors [51]. The key idea of this approach is to create on-chip oscillators from inverters

and to use TSVs as capacitive loads, which are connected through MOSFET switches

to the oscillators. The number of toggles of the oscillating signals is counted twice

in a fixed time frame: once, when the switch of the corresponding TSV under test is

“on”, and once, when the switch is “off”. If the difference in the count is zero, the

TSV is considered as disconnected from the metal layers. However, the work in [51]

18

does not show whether this approach can be used to detect weak resistive-open faults

and weak leakage faults in TSVs.

Huang et al. have developed a solution for detecting resistive open faults and

leakage faults in TSVs using ring oscillators [52]. Their method is similar to the so-

called “input sensitivity analysis”, which was originally designed for post-bond TSV

diagnosis using ring oscillators [53]. The disadvantage of the method in [52] is that

it requires modification of functional TSV I/O cells that are carefully designed for

performance and robustness.

Another method proposed by Huang et al. uses phase-locked loops (PLLs) for

TSV leakage binning [54]. The key idea of this method is to measure the discharge

time of a “floating” TSV. According to the simulation results, the method provides

a high resolution even for very weak leakage below 1 µA. However, it needs to be

shown that the method is robust against random-process variations. In addition, this

method cannot detect resistive-open faults and requires modification of the functional

I/O circuitry driving the TSV.

Hao and McCluskey proposed very-low-voltage testing to detect resistive shorts

and hot-carrier-induced degradation [55]. They have shown that the effects of these

defects are increased at voltage levels lower than VDD; this finding has been supported

by analytical models and SPICE simulations [56, 57]. This prior work motivated us to

consider using multiple voltage levels for pre-bond TSV test. Since multiple-voltage

testing neither imposes limits on the test equipment nor requires extra on-chip DfT

structures, it can be applied in practice without introducing additional hardware costs

[58, 59]. Since pre-bond TSV test does not require long test sequences (scan data),

test time does not grow significantly if multiple voltages are used.

19

1.6 Post-Silicon Debug Using Signal Tracing

Despite steady progress in pre-silicon verification methods and tools [60, 61, 62], first

silicon is rarely bug-free. Silicon debug requires a relatively large engineering effort,

accounting for a significant portion of the total time-to-market of the silicon product

and this portion has been projected to grow [7, 8]. Several design-for-debug solutions

have been proposed in the past to provide observability of a circuit’s internal signals

[63, 64, 7, 65]. Most of these methods are based either on scan dumps or signal

tracing.

A scan dump is a snapshot of the circuit’s state at a particular point of time

[66, 67, 68]. It is obtained by freezing the clocks during execution of a functional test

and scanning out the content of the scan flip-flops. Analysis of the obtained values

can help to localize errors in the design. A major difficulty of this method is the

implementation of a cycle-accurate, deterministic clock freeze in the module under

test. In addition, scan dump is destructive, which requires a reset of the circuit and

rerunning the test program in order to obtain another snapshot.

Signal tracing is a commonly-used technique for post-silicon debug. The main

idea of this method is to localize bugs in digital logic by observing internal nodes of

the circuit during test-program execution. The tapped signals can be captured either

on-chip or off-chip [64]. Figure 1.16 shows a traditional architecture for signal tracing.

Busses of internal signals from different modules feed through a multiplexer tree into

an on-chip trace buffer. The multiplexer select a module, the signals of which will be

captured into the trace buffer at-speed during a functional test. After the capturing

of data is complete, the content of the trace buffer is transferred to an external debug

equipment through a debug interface, for instance, an IEEE 1149.1 [21] interface. The

major limitations of this approach are (a) the requirement of extra chip pins, and (b)

low bandwidth of the external equipment, which limit the amount of signals that

20

Figure 1.16: Traditional signal-tracing architecture.

can be sampled at-speed. Alternatively, the traced data can be temporarily stored in

on-chip trace buffers that are read after program execution. Due to the limited size

of the trace buffers, only a few signals can be observed over a relatively short period

of time, which is typically a fraction of the total run time of a test program.

In order to overcome these limitations, a number of innovative methods have been

proposed in the past. In [69], the authors reconstruct the values of more signals than

actually traced, virtually increasing the number of signals observed. The authors of

[70] propose a method for selection of signals for tracing that are most susceptible

to possible errors. In [71], several signal-selection methods have been proposed as

well as a metric described to quantify the observability of each technique. Another

type of enhancement of signal tracing incorporates compression before the storage

of trace data into a trace buffer[72, 73]. These methods can be effectively combined

with other methods that increase the observation window.

The authors of [74] propose an iterative debug scheme. In the first iteration, time

intervals in which erroneous data is captured are identified using lossy compression. In

the following iterations, the method zooms into these intervals for a better resolution.

The disadvantage of this method is the requirement to run multiple iterative debug

sessions with intermediate post-processing steps.

In [75], the authors use a three-pass debug methodology in order to expand the

21

observation window. In the first pass, the error rate is calculated using parity bits. In

the second pass, suspect clock cycles are determined. In the third pass, the erroneous

data is captured during suspect clock cycles. The price for an expanded observation

window is extra debug passes and the need for post-processing of captured data in

between these passes.

In [76], a generic debug infrastructure is proposed to gather trace information from

different modules through a “Trace Memory Controller” and redirect it to different

targets, for instance, a dedicated debug port, SRAM, or system memory. The solution

described in [76] does not cover trace-data compression or selective trace-data storage

and leaves these implementation details up to the user.

22

2

TSV Stress-Aware ATPG

Despite the numerous benefits offered by 3D integration, test challenges for 3D ICs

must be addressed before volume manufacturing and defect screening can be feasible

[4, 5]. One of the serious problems confronting 3D integration is that of thermo-

mechanical stress due to TSV processing. The thermal expansion coefficient of copper,

a common TSV fill material, is significantly higher than that of silicon: 17� 10�6{K

versus 3�10�6{K [77]. Due to this mismatch, TSVs are likely to cause residual stress

in the silicon during fabrication and thermal cycling. One of the effects of thermal

stress is mobility variation in MOS devices in the proximity of TSVs. These variations

lead to a change in the timing profile of the circuit [40, 45], which affects delay-fault

testing.

Recent work on 3D IC testing has targeted solutions to overcome problems related

to test access in 3D ICs and TSV testing. We focus here on post-bond delay-fault

testing of internal die logic in 3D ICs, a problem that has received much less attention

in the literature. In this chapter, we study the impact of timing variations due to TSV

stress on the quality of test patterns generated to screen small-delay defects (SDDs).

In particular, we focus on the following problems: (i) How severe is the impact of

23

TSV-induced stress on the effectiveness of patterns for SDDs and test escapes? (ii) To

what extent can test escapes be reduced by including analytical TSV stress models as

a preprocessing step in the ATPG flow? (iii) What is the impact of TSV stress-aware

ATPG on pattern count and how does the process yield affect test escapes due to

TSV-induced stress?

We assume that SDD testing is done after stacking, such that the clock tree for

functional operation is available for at-speed capture cycles. We show that the use of

TSV stress-oblivious circuit models results in a significantly increased escape rate of

faulty chips. The level of this increase depends on the yield of the fabrication process;

we conclude that accurate modeling of TSV stress is more important for processes

with lower yields.

The impact of TSV stress on pattern effectiveness is quantified using the statisti-

cal delay quality level (SDQL) metric [78]. This is a key metric in our approach, since

the SDQL of a chip correlates with the expected test escape rate due to small-delay

defects. We also show that the test escape can be reduced considerably by incorpo-

rating TSV stress in cell timing libraries and using these libraries with a commercial

timing-aware ATPG tool. Therefore, any detrimental impact of TSV stress on pattern

effectiveness and test quality can be overcome by using stress-aware models for test

generation. We also show that TSV stress-aware testing leads to negligible increase,

if any, in pattern count.

The remainder of this chapter is organized as follows. In Section 2.1, we give

an overview of small-delay testing, and mobility variations due to TSV stress. Sec-

tion 2.2 describes our methodology to create TSV stress-aware test patterns using

conventional ATPG tools. In Section 2.3, we present simulation results obtained with

3D logic-on-logic benchmarks. Finally, Section 2.4 concludes this chapter.

24

Figure 2.1: Delay distribution FDptsq.

2.1 Related Prior Work

2.1.1 SDD Testing and SDQL

Due to continuous miniaturization, integrated circuits have become more susceptible

to process variations and resistive defects. As a result, SDDs have become more

prevalent [41]. Despite the fact that their size might be small compared to the clock

period, SDDs can cause errors if the length of a path affected by them exceeds the

clock period. Therefore, effective and low-cost screening for SDDs is important to

ensure product quality. Several methods have been proposed in the literature to test

for SDDs [79, 41, 80].

To quantify the effect of TSV stress on the quality of a delay-fault test, we use

the statistical delay quality level (SDQL) proposed in [78]. With this metric, we can

quantitatively estimate the test escape rate due to delay defects and evaluate the

increase in test quality if TSV stress-aware circuit models are used for ATPG.

SDQL computation is based on the assumption that delay defects follow a prob-

ability distribution FDptsq, where ts is the size of the defect, and that the defects are

equally distributed over all sites. This distribution is dependent on the manufacturing

process and can be obtained by analyzing manufacturing data [81].

Figure 2.1 shows an example of a delay-defect distribution function. For each

25

delay fault, this function is divided intro three regions by Tmgn and Tdet, which are

defined as follows. The time margin Tmgn for a fault is the slack on the longest of the

paths that can propagate this fault:

Tmgn � Tck,f �max
i
pTiq, (2.1)

where Tck,f is the functional clock period and Ti are lengths of the sensitizable paths.

A fault can only be detected if its size Tdet exceeds the slack of the path sensitized by

a particular test:

Tdet � Tck,t � Tsens, (2.2)

where Tck,t is the test clock period and Tsens is the length of the sensitized path. As

Figure 2.1 shows, delay faults can be put into three categories dependent on their size

ts: (1) timing-redundant, (2) undetected, and (3) detected. The area below the curve

in the undetected region represents the probability of the fault being undetected and

escaping the test. The summation of these probabilities for all faults is called SDQL

[78]:

SDQL �
2Ņ

k

» Tdet
Tmgn

FDptsq dts, (2.3)

We use the SDQL metric to show that the use of TSV stress-oblivious circuit models

may lead to a significantly increased escape rate for 3D ICs.

2.1.2 Mobility Variation due to TSV Stress

Due to a mismatch in thermal expansion coefficients of copper and silicon, TSVs cause

thermo-mechanical stress in the surrounding silicon. This stress affects not only the

mechanical device reliability but also material properties such as carrier mobility [38],

which results in timing variations of the devices. Recent studies have reported up to

�10% variations for individual cells [40].

26

Since a correct timing model of the circuit is crucial for delay testing, we need an

efficient methodology to take TSV stress into consideration in the ATPG flow.

In the literature, we can find a simple closed form formula for the thermo-mechanical

stress caused by a TSV, known as the Lamé stress solution [40]. However, this model

is 2D in its nature, capturing only the information in the x and y directions on the

wafer surface, and it fails to capture the true 3D nature of the TSV stress field near

the wafer surface. Since there is no simple formula for the 3D stress field available in

the literature, we can apply the methodology outlined in [45] for full chip analysis.

The main idea of this methodology is to perform a finite-element analysis (FEA)

for a single TSV and use linear superposition to estimate the total stress σrr due to

multiple TSVs.

The resulting σrr serves as an input to compute the carrier mobility variation,

which can be expressed as a function of σrr and the device channel orientation θ with

respect to the TSV [40]:

∆µ

µ
pθq � �Π� σrr � αpθq, (2.4)

where αpθq is the orientation factor as a function of the angle θ between the channel

orientation and the center of the TSV, and Π is the piezo-resistive coefficient at θ � 0.

Π can be extracted using the methodology described in [82].

The estimated carrier mobility change can be used to update the timing informa-

tion of the devices around TSVs for a more accurate circuit model.

2.2 Methodology

Our approach consists of two major parts:

1. Generation of a TSV stress-aware circuit model;

2. Test pattern generation and simulation.

27

Figure 2.2: The TSV structure and three different KOZ sizes used in our studies.

The rest of this section describes the two steps in detail.

2.2.1 TSV Stress-Aware Model Generation

The TSV structure considered in our simulations is shown in Figure 2.2. The TSV

diameter, height, landing pad size, and liner thickness are assumed to be 5 µm, 30

µm, 7 µm, and 125 nm, respectively. The TSV is assumed to be made of copper, and

the liner of SiO2. The material properties used in our simulations are: CTE (ppm/K)

for Cu = 17, Si = 2.3, SiO2 = 0.5; Youngs modulus (GPa) for Cu = 110, Si = 130,

SiO2 = 71. We also consider three different keep-out-zone (KOZ) sizes of 1.7 µm, 2.4

µm and 3.1 µm as shown. This corresponds to 6, 7 and 8 standard cell rows in the

Nangate 45 nm technology library. A larger KOZ will mean less impact of TSV stress

on the gates. However, increasing the KOZ will affect other design metrics such as

area and wirelength.

28

Figure 2.3: The design flow used to obtain TSV-stress-aware timing

The overall design flow used to obtain stress aware timing is shown in Figure

2.3. We first start with creating a timing library with different mobility values. We

start with the nominal PMOS and NMOS mobility, and characterize all the cells

in increments of 4%. The next step is stress calculation, and this is performed as

outlined in [45]. We first perform FEA simulation of the stress generated by a single

TSV using the FEA software ABAQUS [83]. At any given point in the chip, the stress

can be represented by its nine-component stress-tensor as follows:

σ � σij �

�
� σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

�
�

The first index i indicates that the stress acts on a plane normal to the i axis, and

the second index j denotes the direction in which the stress acts. In cylindrical

coordinates, the three indices 1, 2, and 3 represent r, θ, and z respectively. Since the

stress of a single TSV is radially symmetric, we only need to store the stress tensors

29

along one arbitrary radial line. The steps outlined so far only need to be performed

once and the results can be used for any design.

For any given design, we need to perform full-chip stress analysis. For computation

of stress due to multiple TSVs, we use linear superposition. The stress at each point

in the chip is simply the vector sum of the stress caused by all TSVs at that point.

A vector sum of the stress components is performed by transforming the cylindrical

stress tensor into its Cartesian form, adding the components individually along the

x, y and z axis, and then transforming it back to cylindrical coordinates.

With the stress tensor at each point in the design, the corresponding change in

mobility of electrons (NMOS) and holes (PMOS) can be computed using the measured

piezoresistive coefficients given in [82], assuming (100) silicon. With this approach,

we obtain the change in mobility due to TSV stress for each cell in the design.

The appropriate timing library can then be picked from the pre-characterized set

of timing libraries. All the libraries, netlists, and parasitics are fed into Synopsys

Primetime to get TSV-stress-aware timing results.

2.2.2 TSV-Stress-Aware ATPG

Delay-fault ATPG relies on correct circuit timing information, which is used to gen-

erate the path profile in order to target the longest sensitizable paths for each fault.

In 3D ICs, timing variations in devices due to TSV stress might occur, resulting in

a change of the timing profile of the circuit. The slacks for paths that include the

the affected devices can increase or decrease dependent on the device type (PMOS or

NMOS) and on the location relative to the TSVs, changing the longest sensitizable

path for certain delay faults. If these changes are not taken into account, the ATPG

tool might propagate faults through paths that are shorter than the actual longest

path. This will invariably result in a lower test quality, since delays of a particular

size will not be detected.

30

To evaluate the impact of the TSV-induced stress on the test quality, we have

developed a tool flow using conventional timing analysis and ATPG tools: Synopsys

PrimeTime and TetraMax, respectively. Figure 2.4 gives an overview of the flow. As

input, we use the original (non-stress-aware, NSA) models and the modified (stress-

aware, SA) models. First, we perform timing analysis with PrimeTime to extract the

slack data. Next, we generate two delay test pattern sets with TetraMax: one using

the NSA and the other using SA models. Finally, we perform fault simulation and

compute SDQL with TetraMax using the following combinations.

1. The NSA pattern set on the NSA model. The results of this simulation show

the test quality that is expected if TSV stress is not present.

2. The NSA pattern set on the SA model. The simulated SDQL numbers indicate

the actual test quality of the NSA pattern set.

3. The SA pattern set on the SA model. The simulated SDQL numbers indicate

the actual test quality of the SA pattern set, i.e., under realistic conditions of

TSV stress.

2.3 Case Study

2.3.1 Test Vehicles

We use three benchmarks taken from the open cores benchmark suite [84]. They are

synthesized and scan-inserted using the Nangate open cell library, at the 45 nm node.

Table 2.1 gives an overview of the design data, including gate, scan flip-flop and TSV

count. We partition the netlist and create three different stacks for each core: two-

die, three-die, and four-die stacks. For each die, we use a 3D force-directed placer to

place the gates [85]. This placer places TSVs in a regular fashion, and assigns nets

to TSVs using a 3D Minimum Spanning Tree approach.

31

Figure 2.4: ATPG tool flow.

Table 2.1: Design statistics for the benchmarks.

Benchmark # Gates # Scan FFs 3D Impl. # TSVs

des perf 26,251 1,984
2-die 419
3-die 884
4-die 1322

cf rca 16 156,624 20,480
2-die 589
3-die 676
4-die 953

cf fft 256 8 299,273 75,723
2-die 2193
3-die 4717
4-die 5843

Once we have the placement result, we route each die separately in Cadence

Encounter. Assuming the TSV resistance and capacitance to be 50 fF and 50 mΩ,

respectively [86, 87], we carry out timing analysis in Synopsys Primetime. We treat

dies as modules, and TSVs as top level interconnections. Primetime is also used to

get die-level timing constraints, and these are used to perform timing optimization

in Cadence Encounter. We also obtain stress aware timing from the methodology

outlined in Section 2.2.1. Some sample layouts of des perf are shown in Figure 2.5,

along with the obtained PMOS mobility maps.

32

FEA simulation and library characterization took a relatively long time: eight

hours and 180 hours, respectively. However, these steps need to be done just once per

technology and the results can be re-used for all designs mapped to this technology.

The actual mobility computation only took several minutes per layout.

Figure 2.5: (a,b) Layout screenshots for KOZ1 and KOZ3 of benchmark des perf.
White rectangles indicate TSVs, and blue indicates standard cells. (c,d) The corre-
sponding PMOS mobility maps. Black indicates TSVs. Green, red and blue represent
nominal, positive, and negative mobility change respectively.

2.3.2 ATPG Results

We applied the flow depicted in Figure 2.4 to different benchmarks. In this simulation,

we used the distribution function that the authors of [78] obtained by analysing

experimental data presented in [81]. We assume that delay defects greater than 10

ns are screened out by stuck-at tests, therefore the probability of delay defects with

33

s ¡ 10 ns is zero. The function was normalized such that the area under the curve is

unity: » 8

0

FDptsq dts � 1

The resulting probability distribution function is:

Fdptsq �

"
1.97e�2.1ts � 0.005 if 0 ¤ ts ¤ 10
0 else

Table 2.2 shows the test escape rate of the chips expressed in defective parts per

million (DPPM). The DPPM is calculated as SDQL normalized by the number of

delay-faults Nf :

DPPM �
1

Nf

SDQL

The results indicate that the actual escape rate of the NSA patterns (Row 2) is

significantly higher than the estimated one (Row 1). This implies that neglecting

TSV-stress in the ATPG flow by using a NSA model leads to decreased test quality.

The results presented in Table 2.2 also show that the test escape rate of the opti-

mized patterns (Row 3) almost equals the one initially targeted (Row 1). Therefore,

if TSV stress is taken into account during ATPG, it has no significant impact on the

test quality. This is also true for small keep-out zones: regardless of the KOZ size,

the test quality can reach the level of a circuit without the timing variation effects

caused by TSV stress.

Table 2.3 shows the number of test patterns generated for different combinations.

We observe that there is no significant variation in pattern count between the NSA

and SA patterns for the same implementation. This implies that a stress-aware ATPG

flow has negligible impact on pattern count compared to a conventional ATPG flow.

In addition, we observe that the size of the KOZ has no impact on pattern count. In

addition to the simulation described above, we applied the flow to the benchmarks

34

Table 2.2: Defective parts per million for various designs.

Design Patterns - Model KOZ1 KOZ2 KOZ3

d
es

p
er

f

2-
d

ie NSA patterns - NSA model 24.8 25.0 27.2
NSA patterns - SA model 177.1 180.0 190.7
SA patterns - SA model 23.9 23.7 28.1

3-
d

ie NSA patterns - NSA model 35.8 38.1 43.9
NSA patterns - SA model 101.1 110.3 120.7
SA patterns - SA model 34.1 38.7 42.8

4-
d

ie NSA patterns - NSA model 41.5 46.1 47.7
NSA patterns - SA model 183.1 203.1 219.3
SA patterns - SA model 40.8 44.6 47.7

cf
rc

a
16

2-
d

ie NSA patterns - NSA model 4.05 4.26 4.38
NSA patterns - SA model 5.70 6.00 6.16
SA patterns - SA model 4.17 4.41 4.52

3-
d

ie NSA patterns - NSA model 5.00 5.19 5.20
NSA patterns - SA model 7.81 8.00 8.01
SA patterns - SA model 4.83 4.90 4.81

4-
d

ie NSA patterns - NSA model 4.70 5.20 4.27
NSA patterns - SA model 7.55 8.22 6.87
SA patterns - SA model 4.63 5.31 3.95

cf
ff

t
25

6
8

2-
d

ie NSA patterns - NSA model 608.82 578.80 590.85
NSA patterns - SA model 935.97 921.75 934.07
SA patterns - SA model 617.55 578.41 591.05

3-
d

ie NSA patterns - NSA model 597.53 591.61 608.31
NSA patterns - SA model 907.90 901.32 941.54
SA patterns - SA model 604.73 592.37 609.87

4-
d

ie NSA patterns - NSA model 741.06 761.206 733.96
NSA patterns - SA model 1072.54 1126.64 1099.41
SA patterns - SA model 761.27 775.97 739.12

using the simplified distribution function Fdptsq � λe�λts with different values of

λ. Small values of λ correspond to a flatter function F psq, which implies that larger

delays are more likely to occur. Therefore, smaller λ should lead to higher test-quality

degradation of non-optimal (non-stress-aware) patterns, which can be expressed as

the DPPM ratio rD between the DPPM values of the NSA and SA test patterns:

rD �
PescapepNSAq

PescapepSAq
�
SDQLpNSAq

SDQLpSAq
(2.5)

This conclusion is consistent with the simulated values of the DPPM ratio rD depicted

35

Table 2.3: Pattern count for various designs.

Design Patterns KOZ1 KOZ2 KOZ3

d
es

p
er

f 2-
d

ie NSA patterns 5761 5672 5722
SA patterns 5632 5666 5789

3-
d

ie NSA patterns 4382 4400 4468
SA patterns 4373 4356 4417

4-
d

ie NSA patterns 3114 3166 3199
SA patterns 3057 3080 3191

cf
rc

a
16

2-
d

ie NSA patterns 9884 9697 9631
SA patterns 10070 10007 9955

3-
d

ie NSA patterns 7770 7873 7818
SA patterns 7865 7840 7912

4-
d

ie NSA patterns 5857 5935 6014
SA patterns 6034 5927 6007

cf
ff

t
25

6
8 2-
d

ie NSA patterns 21405 23270 23456
SA patterns 21354 23326 23533

3-
d

ie NSA patterns 18495 17697 19927
SA patterns 17993 17706 20174

4-
d

ie NSA patterns 20935 21031 21151
SA patterns 21074 21223 21211

in Figure 2.6: rD is decreases with λ. This implies that less mature the fabrication

process (i.e., lower the yield), the more improvement in test quality that can be

achieved using. Larger values of rD indicate that higher test escapes (relative to what

we get with TSV stress-aware patterns) will result if TSV stress is not considered for

test generation. However, rD also depends on the design. The TSV density in des perf

is relatively high compared to that in cf rca 16, therefore the relative number of the

devices affected by TSV stress is higher in des perf. This results in a higher sensitivity

of DPPM to accurate timing modeling.

The CPU time for the ATPG flow strongly depends on the design size. For a layout

of des perf, cf rca 16, and cf fft 256 8, the CPU time was one minute, 30 minutes,

and four hours, respectively.

36

Figure 2.6: DPPM ratio as function of λ.

2.4 Conclusion

We evaluated the impact of TSV stress on the quality of SDD testing. We used an

ATPG flow based on conventional ATPG tools to compare the test escape rate for

the following cases: (1) anticipated test escape rate for TSV-stress unaware tests, (2)

the actual test escape rate for TSV-stress unaware tests, and (3) the test escape rate

for TSV-stress aware tests. Based on our results, we make the following conclusions.

37

� Neglecting TSV stress results in a significantly higher test escape rate compared

to that obtained using a TSV-stress unaware ATPG flow.

� Using a TSV-stress aware ATPG flow will improves test quality and bring the

escape rate back to the levels achieved using ATPG on circuits that are not

affected by TSV stress. This is true for all KOZ sizes.

� Smaller KOZs are not an issue: even though the circuitry is stronger affected by

TSV stress when using small KOZs, the ATPG flow with stress-aware models

will still create high-quality tests. There is no noticeable impact on the pattern

count.

� The degradation of the test quality if TSV stress is neglected is sensitive to the

fabrication process quality. Therefore, the poorer the yield of the process, the

more important is an accurate modeling of TSV stress in order to optimize the

test quality.

38

3

Contactless Pre-Bond TSV Test and Diagnosis
Using Ring Oscillators and Multiple Voltage Levels

One of the challenges associated with 3D test is new defects due to the TSV manufac-

turing process; such defects include voids and pinholes. Voids, as shown in Figure 3.1

are formed due to insufficient filling [46]. A pinhole is an oxide defect that creates

a short between the TSV and the substrate [34]. Many of these defects arise prior

to the bonding process. Therefore, they can be targeted during pre-bond testing,

increasing the probability of getting a known good die (KGD) prior to bonding and

therefore increasing the product yield. It has been widely acknowledged that the lack

of KGD can be a serious yield limiter for 3D stacking [4, 50, 88].

However, pre-bond testing of TSVs is difficult because of test access limitations.

Prior to wafer thinning, TSVs are buried in the silicon substrate and are only indi-

rectly accessible through the circuitry connected to the TSVs. Even when the back

side of the TSVs is exposed after wafer thinning, probing on those is challenging be-

cause of strict requirements on the probing equipment. Recent studies report success

in mechanical probing at array pitches of 40 µm [2]; however, such probing solutions

39

Figure 3.1: Voids in 10 µm
x 60 µm TSVs [46].

Figure 3.2: TSV models: (a) fault-free, (b) micro-
void, (c) pinhole.

are still being researched and it remains to be seen how easily they can be used

in practice. Therefore, probe-less solutions for pre-bond TSV test should also be

investigated as an alternative to solutions that rely on probing.

In this dissertation, we propose a method for contactless pre-bond TSV test using

ring oscillators and duty-cycle detectors. We can diagnose resistive-open and leakage

faults by measuring the oscillation period and the duty cycle of signals generated

by ring oscillators connected to TSVs. The proposed method offers the following

benefits.

� We provide a solution to detect resistive-open and leakage faults in TSVs early

during manufacturing testing, therefore improving the product yield, reducing

long-life failures, and decreasing the need for field testing.

� We propose a regression model based on artificial neural networks (ANNs) to

infer the fault size by measuring the oscillation period and the duty cycle of the

signals generated by on-chip oscillators at different voltage levels.

� The regression model is able to diagnose weak leakage and weak resistive-open

faults that can get aggravated over time, shortening the lifetime of the 3D IC.

40

� The proposed TSV test method is contactless, i.e., no TSV probing with exter-

nal equipment is necessary.

� The test cost of the proposed method is low since we do not require TSV probing

and both the DfT area overhead and the test time are negligible.

The remainder of this chapter is organized as follows. In Section 3.3, we describe

our TSV fault models and the proposed circuitry for pre-bond TSV test using ring

oscillators and duty-cycle detectors. Section 3.2 describes the regression model used

for fault classification and fault size analysis. Section 3.3 presents simulation results.

Finally, Section 3.4 concludes this chapter.

3.1 Pre-Bond TSV Test Method

This section describes (a) the electrical model of a fault-free and faulty TSV, (b) ring

oscillators, (c) the duty-cycle detector, and (d) the overall DfT architecture required

to implement the proposed test method.

3.1.1 TSV Fault Model

Many TSV defects, such as micro-voids or shorts to substrate, manifest themselves

as changes in electrical parameters of the TSVs. In order to detect these defects, we

create electrical fault models for them and create electrical tests that can measure

variations in the models, i.e., the fault size. The fault size can be used as a metric

for the effect of a fault on the performance of a TSV.

We target two types of TSV faults: resistive opens and leakage faults. Several

TSV defects can be modeled by these faults. For instance, micro-voids increase the

TSV resistance at the defect location and thus can be modeled as a resistive-open

fault. Pinholes create a conduction path from a TSV to the substrate, resulting in a

leakage fault.

41

Since a TSV is a passive structure resembling a wire, it can be modeled using a

combination of lumped R, C, and L elements. The inductance of a TSV is relatively

small and has no significant effect below a few GHz signal frequency [89]; therefore we

limit our TSV models to RC circuits. In the following, we describe simple electrical

TSV models for the three cases: fault-free, resistive-open fault, and leakage.

In the fault-free case, we model a TSV as an RC segment, where R � RTSV is the

TSV resistance and C � CTSV is the capacitance between the TSV and the substrate.

The values of the parameters RTSV and CTSV depend on the TSV technology; recent

studies report the following values [89]: RTSV � 0.1 Ω, CTSV � 59 fF. Since RTSV

is significantly smaller than the output resistance of a typical driving gate, it can be

neglected. The resulting model is a capacitor between the TSV and substrate, as

shown in Figure 3.2(a). We verified this simplification by using HSPICE to simulate

and compare charge curves of (1) multiple RC segments with combined resistance

CTSV � 0.1 Ω and combined capacitance CTSV � 59 fF, and (2) a single capacitor

CTSV � 59 fF, where both loads are driven by a 4X buffer. The resulting curves

show no measurable difference, which justifies the treatment of a fault-free TSV as a

lumped capacitor.

Figure 3.2(b) shows a micro-void in the TSV at an arbitrarily chosen location

xT and the corresponding electrical model. This defect divides the TSV into two

segments. The “top” segment (r0, xTs) is the part of the TSV until the location of

the defect and can be approximated as a capacitor with the scaled-down capacitance

xTCTSV. The “bottom” segment (rxT, 1s) includes the rest of the TSV capacitance

p1� xTqCTSV and the increased resistance of the open RO that depends on the size

of the void. The parameter RO can vary from a few Ω in case of a micro-void to

infinity in the case of a full open in the TSV.

Figure 3.2(c) shows a leakage fault, e.g., due to a pinhole defect, which creates

42

Figure 3.3: Ring oscillator with N TSVs.

a conduction path from the TSV to the substrate. The leakage is modeled by the

resistor RL, which is in parallel to the TSV capacitance. We use the conductance of

this resistor GL � 1{RL, as the fault-free case can be simply expressed as GL � 0

and RO � 0. The value of GL might increase over time, since leakage faults tend to

deteriorate. Such faults are a serious concern for lifetime chip reliability.

3.1.2 Ring Oscillators with TSVs

In order to detect variations of RO and GL, we perform a parametric test using ROs.

Deviations in these parameters due to faults lead to variations in the propagation

delay of the net connected to the TSV. These variations can be measured by ring

oscillators (ROs). An RO is a feedback loop containing an even number of inverters.

Due to inversion of the signal in the loop, it keeps oscillating with a frequency that

depends on the delay of the elements in the loop.

Figure 3.3 shows the configuration of an RO with TSVs as loads. The RO is

comprised of multiple non-inverting I/O cells and an inverter. The oscillation period

and the duty cycle of the generated signal are captured by on-chip DfT hardware

based on binary counters and time-to-digital converters.

Each I/O segment includes a TSV and a bidirectional I/O cell connected to the

43

front side of the TSV. We assume that the I/O cells are part of the functional circuitry,

which is common in industrial designs. This aspect of our design contrasts with [52],

where custom I/O cells are required even though these I/O cells are likely to be chosen

based on functional requirements. TSVs can also be enhanced with tri-state drivers

so that they can be driven appropriately.

The number of TSVs in a group (NTSV) can be selected based on the desired

oscillation frequency. In the extreme case, if NTSV � 1, the RO contains only a couple

of gates, which results in a relatively short oscillation delay (or high frequency). Such

an oscillation frequency might be too high to drive the on-chip measurement logic.

By appending extra segments, we increase the delay and thus reduce the oscillation

frequency, relaxing the speed requirement on the measurement circuitry. In addition,

all TSVs in the same group can share the same counter without extra decode logic,

since all of them are in the oscillator loop. This reduces wiring and the amount of

DfT logic.

The signal TE (test enable) controls the multiplexers selecting between the func-

tional outputs coming from the internal logic and the oscillator loop. If TE � 0, the

multiplexers 1 select the functional outputs coming from the internal logic, enabling

a functional mode. If TE � 1, the circuit is configured in an oscillator loop and

the functional driver output enable signal OE is overridden, activating a TSV test

mode. The signals BY[1]. . . BY[NTSV] (Bypass) control the multiplexers that include

or exclude a TSV from the oscillator loop. OE (output enable) controls the tri-state

drivers of the I/O cells. In functional mode, this signal is set by the internal logic. In

test mode, OE is set to 1 to enable the drivers.

The oscillation period and the duty cycle of the generated signal are sensitive to

resistive-open and leakage faults in different ways. First, we show by simulation how

these faults affect the rise and fall times of an I/O cell with a TSV. We applied a

44

rising and a falling voltage Vin to the input of an I/O cell and measured the output

voltage (“to core”) for (a) the fault-free case, (b) resistive-open fault at xT � 0.5,

and (c) leakage fault. Figure 3.4 shows the simulated waveforms of a rising edge of

Vin. We can observe that the rise time decreases in the presence of a resistive-open

defect and increases in the presence of a leakage fault. Figure 3.5 shows the simulated

waveforms of a falling edge of Vin. We can observe that the fall time decreases in both

cases.

The oscillation period is the sum of the rise times and the fall times of all gates

comprising the ring oscillator. In the case of a leakage fault, the rise time of the

TSV driver increases by ∆tr, as part of the current supplied by the TSV driver is

leaking to the substrate instead of charging the TSV capacitance. However, the fall

time of the TSV driver decreases by ∆tf, as the leakage contributes to discharging the

TSV capacitance faster. For strong leakage faults, ∆tr " ∆tf; therefore, the overall

oscillation period increases significantly and its deviation from a reference value can be

measured. However, for weak leakage faults, ∆tr � ∆tf, hence the oscillation period

does not deviate much from a reference value, making weak leakage faults difficult to

detect by just measuring the oscillation period. This motivates us to measure the duty

cycle of the oscillating signal and use these measurements as additional information

in order to improve fault diagnosis.

Propagation delays in digital gates are affected by random-process variations [90].

Since the oscillation period is a function of gate propagation delays, it is sensitive

to these variations. This has a negative impact on fault-diagnosis accuracy and can

lead to aliasing. In order to reduce the noise effect introduced by random-process

variations, we measure the oscillation period twice. Tosc is measured with the TSV

under test included in the oscillation loop (BYris � 0), and Tosc,b is measured with

the TSV under test bypassed (BYris � 1). By subtracting Tosc,b from Tosc, we can

45

 0

 0.4

 0.8

 1.2

 1.6

 450 500 550 600 650 700 750 800

V
ou

t (
V

)

t (ps)

Vin

fault-free
3 kΩ resistive open

300 µS leakage fault

Figure 3.4: I/O-cell rise time for the fault-free case and 3 kΩ resistive-open and
300 µS leakage faults.

 0

 0.4

 0.8

 1.2

 1.6

 450 500 550 600 650 700 750

V
ou

t (
V

)

t (ps)

Vin

fault-free
3 kΩ resistive open

300 µS leakage fault

Figure 3.5: I/O-cell fall time for the fault-free case and 3 kΩ resistive-open and 300
µS leakage faults.

eliminate the common part, i.e., the propagation delay of the common circuitry part

of both configurations.

3.1.3 Duty-Cycle Detectors

Our previously proposed method for pre-bond TSV test in [91] uses only one feature

for fault detection and diagnosis—the oscillation period of the signal generated by on-

chip ring oscillators. As shown above, this may not be sufficient to accurately diagnose

weak leakage faults. In order to improve the diagnosis resolution, we propose to use

duty-cycle detectors.

Even though the effects of weak leakage on rise and fall times of the TSV driver

46

virtually cancel each other for the oscillation period, they strongly affect the duty

cycle of the oscillating signal. In the following, we define the duty cycle D of an

oscillating signal as the ratio of the on-time Ton of one cycle to the oscillation period

Tosc:

D �
Ton

Tosc

�
Ton

Ton � Toff

, (3.1)

where Tosc is the oscillation period, Ton is the on-time,defined as the time, for which

the oscillating signal is above Vdd{2 during one cycle, and Toff is the off-time, defined

as the time, for which the oscillating signal is below Vdd{2 during one cycle. The

opposite effects of weak leakage faults on rise and fall times of the TSV driver create

a difference between Ton and Toff, which can be effectively detected by measuring the

duty cycle. This is the main motivation to use duty-cycle detectors in addition to

frequency detectors, in order to be able to detect weak leakage faults more accurately.

Figure 3.6 shows an example of an on-chip duty-cycle detector that can be used for

pre-bond TSV test. This is a time-to-digital converter based on the circuit proposed

in [92]. The key idea of this detector is to integrate a constant current during (a) Ton

and (b) Toff until a certain threshold voltage is reached and compare the integration

times of (a) and (b). The following text describes the functionality of the duty-cycle

detector in detail.

The oscillating signal CLK OSC propagates through the XOR-gate, which inverts

the signal if MODE � 1. The n-MOSFET Q1 opens during the on-time of CLK OSC

if MODE � 0, or during the off-time of CLK OSC if MODE � 1. The gates of

n-MOSFETs Q2 and Q3 are biased to Vdd{2, hence they are always “on”. When Q1

is closed, all of the current of Q3 is drawn from Q2. If Q1 is open, part of the current

of Q3 is supplied by Q1. In reset mode (RST n � 0), the current of Q1 is supplied

by the p-MOSFET Q4. As Q4 is on, the input of the buffer is pulled to Vdd, and the

capacitor C1 is discharged. When the circuit comes out of reset (RST n � 1), Q1

47

starts drawing current through C1, but only when its gate voltage is high. C1 slowly

charges and the voltage of the buffer’s input starts decreasing. At some point, this

voltage drops below a threshold, such that the output of the buffer drops from high to

low. The flip-flop latches the value of the buffer at positive edges of a high-frequency

reference clock CLK REF n. The output signal CNT EN is therefore asserted after

the circuit comes out of the reset and de-asserted when C1 has been charged enough

to a threshold value to flip the output of the buffer to low.

Let us denote the time window during which CNT EN is asserted as Ten. If C1

charges to the threshold value relatively slowly, i.e., it takes much longer than the

clock period of the reference clock, Ten is proportional to the on-time of Q1, and hence

proportional to Ton when MODE � 0, and proportional to Toff when MODE � 1.

The time Ten is measured by using CNT EN as the enable signal for a binary counter

driven by the reference clock CLK REF n � ~CLK REF. The count of this binary

counter is read out twice. The first value, non is the count after a measurement with

MODE � 0. The second value, noff is the count after a measurement with MODE � 1.

The duty cycle D of the input clock CLK OSC can be simply calculated as

D �
non

non � noff

. (3.2)

Note that the measured D is independent of circuit parameters, hence careful

calibration of the circuit is not required. We verified this property of the design

through comprehensive HSPICE simulations.

A major difference of this duty-cycle detection method from that proposed in [92]

is that we use the same circuitry for sequential measurement of non and noff by in-

verting the input signal with an XOR gate. Therefore, the effect of random-process

variations is virtually cancelled out. The method proposed in [92] uses two copies of

the detector, one of which has an inverter in front of Q1 to invert the signal. This

allows for measurement of non and noff in parallel; however, local mismatches between

48

Figure 3.6: Schematic of the duty-cycle detector.

the two circuits decrease the accuracy of the detector. We verified through Monte-

Carlo HSPICE simulations that the measurement error can exceed 15% in the case

of two independent circuits due to random-process variations, which is unacceptable

for the TSV diagnosis method we propose. Therefore, we use the same circuit to

measure both non and noff in a sequential manner, but with a much higher accuracy.

3.1.4 DfT Infrastructure for On-Chip Measurement

Next, we describe the DfT structures that are used to perform on-chip measurement

of the RO oscillation period. Figure 3.7 presents an overview of the design. It

consists of a control-logic block (TEST CTRL) that is connected to the IEEE 1149.1

(JTAG) TAP controller [21]. We assume that a TAP controller is already in place

for other test and debug purposes, hence we can reuse it to control the TSV-test DfT

circuitry from the test equipment. The only requirement on the TAP controller is

two extra instructions to control the TSV test procedure, which is explained below.

TEST CTRL is a logic block that is shared between multiple groups of ROs and that

generates signals to control the ROs, the counters, the clocks, and the data flow.

49

Figure 3.7: Pre-bond TSV test DfT infrastructure.

Each RO group contains MRO ROs, a binary counter, an RO-select register (SEL), a

register X to select the mode of the duty-cycle detector, and multiplexers to forward

the clock signals to the counter. A global bypass-select register (BY) holds the values

that are used to select what TSVs are included in the ring oscillator.

Table 3.1 shows the truth table that specifies the logic of TEST CTRL and de-

fines the following modes of operation. In functional mode, TE � 0, which selects

functional I/Os and disables the ROs. For enabling TSV test mode, two JTAG user

instructions are added to the instruction set: INSTR1 and INSTR2. Once INSTR1

is loaded, i.e., the corresponding decode signal is asserted, TEST CTRL configures

the binary counters into regular shift registers (M T � 0) and concatenates BY, Xs,

SELs, D-reg, and T-reg to a single scan chain from TDI to TDO. In this mode, we go

to the ShiftDR state of the TAM FSM, which enables the shift clock (CLK � TCK)

in order to shift in new bypass register values and initialize the counters D-reg and

T-reg, as well as shift out the content of the counters from a previous measurement.

The second instruction, INSTR2, signals TEST CTRL to reconfigure the counters

(M T � 1). When we enter ShiftDR, the clock signals from the oscillators are fed to

the counters. The objective of this mode is to count the pulses from the ROs over a

defined time frame t, such that we can calculate the oscillation period as t{c, where

50

Table 3.1: Truth table for TEST CTRL output specification.

OP Mode
Input Signals Output Signals

INSTR1 INSTR2 ShiftDR TE CLK CLKSEL M T RST D

Functional 0 0 0 0 0 1 0 1

Shift conf. 1 0 0 1 0 1 0 1

Shifting 1 0 1 1 TCK 1 0 1

Setup 0 1 0 1 0 1 1 1

Measure 0 1 1 1 0 0 1 0

c is the pulse count. We control t by the number of cycles the TAM FSM stays in

ShiftDR, i.e., the ShiftDR decode signal is asserted. Even though we have limited

granularity to define the measurement time frame due to the slow test clock TCK, it

is sufficient to know only the length of the time frame in order to achieve an accurate

measurement of the RO frequency. The state of the counters is shifted out after the

measurement by loading I1 again. In each iteration, we can select one RO in each

group and one or multiple TSVs in this RO by loading BY and SEL registers.

Instruction INSTR2 is also used to measure the duty cycle. Once INSTR2 is

loaded and the TAP FSM is in ShiftDR, the duty-cycle detector (“d-c det”) will

come out of reset (RST D � 0) and perform the measurement. The register X drives

the MODE signal of the detector and hence switches between measuring non and noff.

The measured count, non if X � 0, or noff if X � 1, is stored into the register D-reg,

from where it can be shifted out through TDO.

3.2 Regression Model Based on Artificial Neural Networks

In our previous approach presented in [91], we used a regression model for determining

the likelihood f of the fault size R based on the measured ∆T , where ∆T is defined

as the difference in the oscillation period when a TSV is bypassed.

51

This likelihood fpR|∆T q is calculating by applying the Bayes’ Theorem for con-

tinuous variables :

fpR|∆T q �
fp∆T |RqfpRq³

fp∆T |R1qfpR1q dR1
, (3.3)

where fp∆T |Rq is the probability of measuring a certain ∆T given a fixed R, and

fpRq is the defect distribution, which depends on the manufacturing process and

which can be obtained by analyzing manufacturing data. Note that R represents the

fault size of both resistive-open faults RO and leakage faults RL.

The model based on Equation (3.3) has several disadvantages. First, it only uses

∆T as input variable. As described in Section III.C, ∆T is insensitive to very weak

leakage faults. In addition to the oscillation period, we can use the duty cycle D as

a second input variable, in order to increase the diagnosis resolution for the case of

weak leakage faults. However, it is difficult to create an analytical model that uses

both input types.

Second, the regression model based on Equation (3.3) uses the parameter ∆T

measured at a fixed voltage level, and it is difficult to create a single model that that

uses a set of inputs ∆T measured at different voltage levels.

Third, the model in [91] cannot effectively determine whether a fault is a leakage

fault, resistive-open fault, or a combination of both.

In this section, we describe how to create a regression model for detecting faults in

a TSV and inferring the fault size. The regression model is based on artificial neural

networks (ANNs) [93]. ANNs are machine-learning algorithms inspired by biological

neural networks. ANNs consist of layers of neurons and interconnections between

these layers. Figure 3.8 shows an example of a three-layer ANN. Each neuron i in

the input layer corresponds to an input variable αi and forwards its value to the next

layer. Neurons in other layers receive a weighted sum ξ �
°
iwiαi of the neuron values

from the previous layer, where wi is the weight of input αi. The sum is evaluated

52

Input layer

Hidden layer

Output layer

Figure 3.8: Example of a generic three-layer ANN.

using a given transfer function Ft, and the function value Ftpξq is provided to the next

layer as input. Examples of transfer functions include pure linear function Ftpξq � ξ

and sigmoid function Ftpξq �
1

1�expp�ξq
. The values of the neurons in the output layer

serve as outputs of the ANN. Between the mandatory input and output layers, there

can be one or more hidden layers, which extend the ability of ANN to solve non-

linear classification and fitting problems. The network can be trained using a sample

set with known input and output value pairs. There exist a number of learning

algorithms for training ANNs, for instance, the feedforward error-backpropagation

learning algorithm. The key idea of this algorithm is to initialize the weight w of

each neuron and iteratively adjust the weights to minimize an error function, which

quantifies the deviation of the predicted output values to the actual (“target”) output

values. Once an ANN is trained, it can predict output values to previously unseen

input combinations.

The motivation for using ANNs for fault diagnosis is the following. The previously

proposed regression model in [91] is based on only one input variable, ∆T , which is

measured at a fixed voltage. It is simple to find a one-dimensional function that

fits the measured data points with little error. However, in order to increase the

accuracy of fault diagnosis, we significantly increase the number of input variables,

which makes it infeasible to manually find an empirical regression model. ANNs

are considered universal tools to efficiently model such complex systems with a large

53

number of input variables [93]. Therefore, we use ANNs to build a regression model

that can accurately diagnose a TSV based on measured data.

Figure 3.9 shows the architecture of the regression model. Let KV be the number

of different voltage levels, at which the oscillation period and the duty cycle are

measured. As inputs for the regression model, we provide KV sets of four variables:

� Tosc is the oscillation period when the TSV under test is included in RO (BY �

0)

� Tosc,b is the oscillation period when the TSV under test is bypassed (BY � 1)

� D is the duty cycle when the TSV under test is included in RO (BY � 0)

� Db is the duty cycle when the TSV under test is bypassed (BY � 1)

Note that we explicitly provide Tosc and Tosc,b as inputs to the regression model, as

only providing their difference may result in loss of information that is important for

determining the fault size.

All 4KV inputs feed into three ANNs. The first network, Class-net, is a classifica-

tion network with three binary outputs that determine whether the TSV under test

has a leakage fault (class leak), resistive-open fault (class open), or both (class dual).

This network is trained on a large set of simulation data that covers a range of single

faults, as well as pairs of faults.

The other two networks, GL-net and RO-net, are fitting networks that output the

value of the conductance of a leakage fault and the value of the resistive-open fault,

respectively. GL-net is trained on a training set obtained by simulations, in which

RO is set to zero and only GL takes a range of inputs. This ensures that GL-net is

“specialized” for the case of a leakage fault. Similarly, RO-net is trained on a data

set with a fixed GL � 0 and variable RO, in order to specialize this network for the

case of resistive-open faults.

54

When Class-net outputs class leak � 1, we use the output value of GL-net as a

prediction of the leakage-fault size and ignore the value output by RO-net. When

Class-net outputs class open � 1, we use the output value of RO-net as a prediction

of the resistive-open fault size and ignore the value output by GL-net.

In the case of class dual � 1, we can determine that the TSV under test has both

leakage and resistive-open faults. However, due to masking effects, it is difficult to

predict the size of the faults, therefore, we ignore the values GL and RO. Even though

the model will not provide a reliable analysis of the fault size in this case, it will still

classify the TSV as being faulty.

We next present a hypothetical example for a TSV with a short to substrate that is

equivalent to 100 µS leakage conductance. Suppose the ANNs are created for KV � 3,

i.e., the ANNs take three sets of {Tosc, Tosc,b, D, Db} as input variables, for instance,

at Vdd � 0.85 V, Vdd � 1.0 V, and Vdd � 1.25 V. The ANNs have been already trained

using existing sample data obtained through simulation or actual manufacturing data.

Suppose we obtain the following measurement data for a particular TSV under test:

� {3.46 ns, 2.76 ns, 0.49, 0.46} at Vdd � 0.85 V

� {1.75 ns, 1.41 ns, 0.48, 0.47} at Vdd � 1.0 V

� {1.32 ns, 1.06 ns, 0.48, 0.47} at Vdd � 1.25 V

First, we input this data into Class-net and it outputs {1, 0, 0}, which indicates that

the fault type of the TSV is leakage. Then, we input the measurement data into

G-net and obtain 105. Therefore, we predict that the TSV has a leakage fault of size

GL � 105 µS, which is close to the actual value of the leakage conductance.

Note that we do not explicitly define a class for a fault-free TSV. In practice, every

TSV has a small leakage to ground and a small resistance of the filling material, i.e.,

both GL and RO are non-zero even for TSVs that are considered fault-free. Therefore,

55

Figure 3.9: Regression model based on ANNs.

the class of fault-free TSVs is a special case of class leak or class open, in which GL

and RO are below certain thresholds, which the user defines to distinguish fault-free

TSVs from the faulty ones.

3.3 Simulation Results

We verified our approach through HSPICE simulations, for which we used the TSV

models described in Chapter and the 45 nm Predictive Technology Model (PTM)

low-power CMOS models [94]. As TSV drivers, we use BUF X4 buffers from the

Nangate 45nm Open Cell Library [95]. For other gates, X1 versions are used. These

gate strengths are representative, as reported in recent literature [89].

In the following, we demonstrate the effect of resistive-open and leakage faults

on the oscillation period using simulation. We show that resistive-open faults lead

to a decreased oscillation period. Leakage faults, in contrast, result in an increased

oscillation period. This is the reason for using the oscillation period as a distinguishing

feature for fault diagnosis.

3.3.1 Resistive-Open Faults

First, we simulate a resistive-open fault in one of the TSVs at the location x � 0.5 as

depicted in Figure 3.2(b). We create an HSPICE circuit model of the ring oscillator

56

shown in Figure 3.3 with NTSV � 5 TSVs and sweep RO from 0(no fault) to 3 kΩ

(strong resistive open) at the nominal voltage VDD � 1.1 V. With this model, we

perform transient analysis and record the oscillation period of the ring oscillator Tosc.

In the first run, TSV1 is enabled (BY[1] � 0) and all other TSVs are bypassed

(BYr2 . . . NTSVs � 1). In the second run, we disable all TSVs. Subsequently, we

subtract the oscillation period of the second run T2 from that of the first run T1 for

each value of RO:

∆T � T1 � T2

During actual test, the values T1 and T2 will be measured by the on-chip DfT and

the results sent to the test equipment and post-processed there.

The above subtraction step removes the propagation delay of the path through

I/O cells 2. . .NTSV and the inverter. The remainder is virtually the propagation delay

due to the I/O cell and TSV1, which is under test. This approach greatly reduces the

effect of delay variations in gates and interconnects due to random process variations.

The results of this simulation are shown in Figure 3.10. As expected, an increase

in the resistance RO leads to a reduction of the oscillation period. This indicates that

we can detect resistive opens of a sufficient size by measuring the oscillation period.

For instance, ∆T of a resistive defect of size 1 kΩ at xT � 0.5 is reduced by 10%

compared to the fault-free case that can be identified.

The location x of the defect plays a critical role for fault detection. The more the

fault is moved to the top of the TSV, where it is connected to the driver, the more

easily we can detect it. A void at the bottom of the TSV is not detectable. However,

this is problem for all pre-bond TSV test methods mentioned in Section 1.5.

In a realistic (3D) IC, propagation delays of gates vary significantly because of

random process variations. This can potentially have a detrimental effect on the

resolution of our test method, since we rely on relatively constant delays in our DfT

57

 0.27

 0.28

 0.29

 0.3

 0.31

 0.32

 0.33

 0 500 1000 1500 2000 2500 3000

∆T
 (

ns
)

RO (Ω)

Figure 3.10: ∆T as a function of RO at location xT � 0.5 and at 1.1 V supply
voltage.

circuitry to be able to detect variations of the delay on the net connected to the

TSV. Therefore, we need to verify whether our method is robust to random process

variations, which leads us to the next set of simulations using HSPICE.

To see the effect of process variations and the effect of applying different supply

voltages, we run a number of Monte Carlo (MC) simulations using the model described

above extended by the following process-variation model: 3σVth � 50 mV, 3σLeff
�

10%, where σVth is the variation in threshold voltage and σLeff
is the variation in

gate length. These data are consistent with the those reported by industry for recent

technology nodes [90].

Figure 3.11 shows the results of MC simulation for a fault-free TSV and a TSV

with a resistive open defect of size 1 kΩ. We varied the supply voltage and analyzed

the spread in the fault-free and faulty cases. We observe that at lower supply voltage

levels, a part of data points from both fault-free and faulty cases overlap and thus

become indistinguishable. If we increase the supply voltage, this overlap reduces to

a minimum until we see no aliasing. From this, we conclude the following.

� Even in presence of process variations, our TSV test method allows for detection

of resistive-open defects that have a sufficiently large size and are located in the

upper part of the TSV. The test resolution depends on the process variation:

58

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 1.05 1.1 1.15 1.2 1.25 1.3

∆
T

 (
ns

)

VDD (V)

1 kΩ resistive open
fault-free

Figure 3.11: ∆T as a function of supply voltage in (a) fault-free case and (b) in
case of 1 kΩ resistive open at xT � 0.5.

the more variation, the harder it becomes to distinguish small resistive opens

from the fault-free case.

� Higher supply voltage results in a better resolution: aliasing is reduced, allowing

for detection of smaller resistive-open faults.

3.3.2 Leakage Faults

Leakage faults exhibit a different behavior than resistive open faults. To show this, we

used the same simulation approach as described above (NTSV � 5). Figure 3.12 shows

the dependence of ∆T on the leakage RL for different voltage levels. First, we observe

that leakage faults increase the oscillation period, which makes them distinguishable

from the fault-free case as well as resistive open faults. This is also consistent with

our expectation. Second, strong leakage faults below a certain threshold, RL � 1

kΩ, prevent the circuit from oscillating. In other words, the TSV exhibits stuck-at-0

behavior. This threshold depends on the supply voltage: it drops as we increase the

voltage. The third observation is that in the regions slightly above each threshold, ∆T

59

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000

∆T
 (

ns
)

RL (Ω)

1.1V
0.95V
0.8V

0.75V

Figure 3.12: ∆T as a function of RL at different voltage levels.

is extremely sensitive to small variation in leakage. This indicates that we can easily

detect leakage of a wide range if we test at different voltage levels. Strong leakage

(RL low) will show up at higher VDD. Weak leakage will become detectable at lower

VDD. This observation is consistent with the results of prior work on very-low-voltage

tests for bridging faults [56, 57].

Next, we perform MC simulations to demonstrate the effect of random-process

variations on the oscillation period in the presence of a leakage fault. Figure 3.13

shows the results of MC simulations for a 3 kΩ leakage fault (equivalent to GL � 333.3

µS) and the fault-free case at different voltage levels. We see that in the sensitive

region right above the threshold (� 0.75 V), the data points for the two cases do not

overlap. As we increase VDD, the gap between them becomes smaller such that we

cannot distinguish between the faulty and fault-free cases.

The simulation results confirm that resistive-open and leakage faults significantly

change the oscillation period Tosc. Since resistive-open faults reduce Tosc and leakage

faults increase Tosc, we can use Tosc as a distinguishing feature for fault diagnosis.

The results also show that TSVs should be tested at multiple voltage levels in order

60

 0

 1

 2

 3

 4

 5

 6

 7

 0.8 0.85 0.9 0.95 1 1.05 1.1

∆T
 (

ns
)

VDD (V)

3 kΩ leakage
fault-free

Figure 3.13: ∆T as a function of supply voltage in (a) fault-free case, and (b) in
case of 3 kΩ (333.3 µS) leakage fault.

to increase fault detectability.

In the following, we present simulation results demonstrating the accuracy of the

duty-cycle detector, as well as results evaluating the regression model.

3.3.3 Duty-Cycle Detector

We have verified the functionality and the accuracy of the proposed duty-cycle detec-

tor in the presence of random-process variations by HSPICE simulations. First, we

created an HSPICE model of the detector using ditital gates from the the Nangate

45nm Open Cell Library [95] and MOSFETs with the following parameters.

� LQ1 � LQ2 � LQ3 � LQ4 � 50 nm, where LQx is the gate length of the MOSFET

Qx

� WQ1 � 0.5 µm, WQ1 � 2 µm, and WQ3 � WQ4 � 0.2 µm, where WQx is the

gate width of the MOSFET Qx

� C1 � 2 pF

� fCLK REF � 1 GHz

61

The clock input of the duty-cycle detector was driven by a ring oscillator with a

fault-inserted TSV. The fault size covered the range GL � 0 . . . 450 µS in order to

produce a clock signal with duty cycle D � 0.25 . . . 0.5. The actual duty cycle of the

oscillating signal was determined through probing the signal and measuring Ton and

Toff, whereas the measured duty cycle was determined by reading the binary counter

values. We ran a number of Monte-Carlo simulations and calculated the maximum

absolute error between the measured and the actual duty cycle. This error was 0.7%

at Vdd � 1.1 V, and 2.0% at Vdd � 0.85 V, which shows high robustness of the detector

against random-process variations.

3.3.4 Regression Model for Inferring Fault Size

In order to verify the proposed regression model based on ANNs, we have gener-

ated two independent large sets of training and test data with the sample size over

10, 000. Each Monte-Carlo instance was simulated at KT � 8 different voltage levels

(0.85 . . . 1.2 V with 50 mV steps) in bypass and non-bypass mode, and the correspond-

ing measurements Tosc, Tosc,b, D, and Db were recorded. The leakage fault size was

varied from GL � 0 (fault-free) to 450 µS (very strong leakage). The resistive-open

fault size was varied from RO � 0 (fault-free) to 5000 Ω (very strong resistive open).

First, we created Class-net in MATLAB and trained it using the training-data

set. As the performance evaluation metric, we used the mean squared error (MSE),

which is defined as follows:

MSE �
1

Nsam

Nsam̧

i�1

pyp,i � yt,iq
2, (3.4)

where Nsam is the number of samples, yp,i and yt,i are the predicted and the target

values of sample i, respectively. The training function for the network was selected

following the guidelines in [96].

62

G L R O dual

9524 58 0 Correct prediction

33.3% 0.2% 0.0% Misprediction

37 9818 135

0.1% 34.4% 0.5%

0 124 8865

0.0% 0.4% 31.0%

O
u

tp
u

t
C

la
ss

G L

R O

dual

Target Class

Figure 3.14: Confusion matrix for class net.

We considered different settings for the ANN architecture and achieved the best

performance with the following settings:

� One output layer with three neurons (equals the number of output signals);

� One hidden layer with ten neurons;

� Scaled Conjugate Gradient (trainscg) as training method.

Then, Class-net was evaluated using the test-data set. Figure 3.14 shows the confusion

matrix from that evaluation. The entry (i,j) shows the number of samples of type

j classified as i by the network, and their percentage. For instance, the entry (2,1)

shows 37 (or 0.1%), which means that 0.1% of all test points were classified as RO,

although the actual fault is GL. According to this matrix, the majority of the samples

were classified correctly (green cells), and only a small percentage of the samples were

mispredicted (red cells), which shows the high accuracy of the classification network.

The network GL-net was trained using a subset of the generated samples with

RO � 0 (leakage faults only). We used the following settings:

� One output layer with one neurons (equals the number of output signals);

� One hidden layer with 10-20 neurons (depending on the seed);

� Levenberg-Marquardt (trainlm) as training method.

63

−60 −40 −20 0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

Error of G
L
 (µS)

N
o.

 o
f i

ns
ta

nc
es

Model using T

osc
 and D

Model using T
osc

 only

Figure 3.15: Error histograms of GL-net and GL-net r at GL � 100 µS.

In order to show the improvement in accuracy that we achieve by adding the

duty cycle to the regression model as extra information, we performed the following

simulation. We created a “reduced” regression model GL-net r with the same settings

as GL-net, with the only difference that it uses Tosc and Tosc,b pairs as input data,

with 2KT � 16 inputs in total. Figure 3.15 shows the error histograms of GL-net

and GL-net r evaluated on 1000 samples with GL � 100 µS and RO � 0. It can

be observed that GL-net r makes significantly better predictions, as the amount of

samples predicted with an error of less than 20 µS is much larger than that predicted

by the reduced model.

Figure 3.16 shows a comparison between GL-net and GL-net r in terms of MSE for

a range of leakage faults. As expected, the model using duty cycle as input variable

provides significantly better predictions for weak leakage faults with GL ¤ 150 µS,

which will help to reduce test escapes as well as over-testing.

64

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

G
L
 (µS)

M
S

E
 (

µS
2)

Model using T

osc
 and D

Model using T
osc

 only

Figure 3.16: MSE of GL-net and GL-net r for different values of GL.

The network RO-net was generated using a similar network architecture as GL-net.

It was trained using a subset of the generated samples with GL � 0 (resistive-open

faults only). Since resistive-open faults affect the rise and fall times of the TSV drivers

in the same way, the duty cycle is unsensitive to this type of faults. We demonstrate it

by performing a similar simulation as described above, in which a “reduced” network

RO-net r is generated using only Tosc and Tosc,b pairs as input data. As a result of the

comparison, we observe that the performance of both networks is approximately the

same. This indicates that the duty cycle is redundant information for determining

RL. Nevertheless, the duty cycle is essential for classification of faults and detecting

weak leakage faults.

We also perform a simulation to show the impact on the diagnosis accuracy if Tosc

and D are only measured at one voltage level. We created regression models that only

use {Tosc, Tosc,b, D, Db} at a specific voltage level instead of multiple levels and trained

65

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
5

R
O

 (Ω)

M
S

E
 (

Ω
2)

Model using T

osc
 and D

Model using T
osc

 only

Figure 3.17: MSE of RO-net and RO-net r for different values of RO.

it using similar settings as for the full models GL-net and RO-net. Figure 3.18 shows

a comparison of GL-net to the model that uses the four input variables measured at

Vdd � 0.85V, as leakage faults are better detectable at voltage levels below nominal

Vdd. As we can observe, a reduction of the test to one voltage level would result in a

significant loss of diagnosis accuracy.

Similarly, we created a reduced version of RO-net that only takes the four input

variables {Tosc, Tosc,b, D, Db} at Vdd � 1.25V, since resistive-open faults are bet-

ter detectable at higher voltage levels. Figure 3.19 shows a comparison between the

reduced model and RO-net. We can observe that the diagnosis accuracy drops signif-

icantly, especially for weak resistive-open faults RO ¤ 2500 Ω. These results support

our premise that a regression model using multiple voltage levels is more effective

than that using a single voltage level.

66

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

G
L
 (µS)

M
S

E
 (

µS
2)

Model using multiple V

dd

Model using single V
dd

Figure 3.18: MSE of GL-net using multiple vs. single Vdd.

3.3.5 DfT Area Cost and Test Time Estimations

We created Verilog RTL models of the DfT circuitry for TSV test shown in Figure 3.7,

synthesized it and mapped it to the Nangate 45nm Open Cell Library [95] using

Cadence RTL Compiler. In this example, we used four RO groups containing four

TSVs each, which required two-bit wide SEL registers and a four-bit wide BY register.

Since the duty-cycle detector is an analog circuitry with digital inputs and outputs,

it was modeled as a black box for the purpose of digital simulation. To allow for

precise measurement of the RO frequency and duty cycle, we used a twelve-bit binary

counter and a ten-bit binary counter, respectively. The combined standard-cell area of

TEST CTRL and BY is 35 µm2; the standard-cell area of each RO group is 208 µm2,

excluding duty-cycle detectors and functional I/O drivers and receivers. The area of

each duty-cycle detector is dominated by the integrating capacitance C1, which is

implemented as PMOS capacitance with an approximate area of 60 µm2. Therefore,

67

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

1

2

3

4

5

6
x 10

5

R
O

 (Ω)

M
S

E
 (

Ω
2)

Model using multiple V

dd

Model using single V
dd

Figure 3.19: MSE of RO-net using multiple vs. single Vdd.

if the functional design incorporates 1000 TSVs (64 TSV groups of 4x4 TSVs), to

total DfT area for TSV test sums to 0.02 mm2, which is negligible.

We estimated the time needed to test a die with 1000 TSVs that are placed in

groups of 16 TSVs as described in the example above:

� Less than 15 TCK cycles to load a JTAG instruction (dependent on the length

of the IR)

� Less than 1670 TCK cycles to load/unload the counters, BY, X, and SEL

� 7 TCK cycles to transition to/from ShiftDR for the measurement plus the actual

measurement time 1...5 µs for RO frequency and 1 µs for duty cycle

Each TSV needs to be tested twice to measure Tosc and Tosc,b. In order to measure

D and Db, each TSV needs to be tested four times (twice with X � 0 and twice

68

with X � 1). Two of the measurements of D and Db can be overlapped with the

measurements Tosc and Tosc,b. However, the remaining two measurements of D and

Db need to be performed separately. Assuming a TCK with the frequency ftck, the

time of one test cycle including testing all 16 TSVs in each group at eight different

voltage levels, can be estimated as

8� 2� p
1

ftck

� p15� 1670� 7q � 1 . . . 5 µsq �

8� 2� p
1

ftck

� p15� 1670� 7q � 1 µsq.

Testing this die for resistive-open and leakage defects in TSVs would require ap-

proximately 1.5 ms test time at 20 MHz TCK or 0.65 ms at 50 MHz TCK, which is

a relatively low test-time overhead.

3.4 Conclusions

We have introduced a method for pre-bond TSV test using ring oscillators and duty-

cycle detectors. We have shown that we can detect leakage and resistive-open faults

early during manufacturing testing, thereby increasing the product yield. We have

provided a regression model using artificial neural networks for diagnosis of the defect

based on the obtained measurement data. The new regression model significantly

improves the accuracy of the fault diagnosis for weak leakage faults that are important

to detect, as they might become critical during “aging” of the product. In addition,

the proposed regression model can effectively classify the type of TSV fault, even if

both leakage and resistive-open faults are present.

The proposed DfT structures have a minimal area overhead and use an existing

1149.1 test interface, hence extra test pins are not required. The total TSV test time

for an example design with 1000 TSVs is in the range of 1 ms, which is negligible.

The proposed pre-bond TSV method does not require TSV probing which is as-

69

sociated with increased cost for the probe equipment and possible damage to the

TSV. Most of the DfT circuitry uses standard digital cells, and only the design of the

duty-cycle detector requires custom layout. However, this circuitry is relatively small

and it does not require careful calibration, as the detector is insensitive to variations

of design parameters, including random-process variations.

We exploit different levels of supply voltage to increase the diagnosis resolution.

The results show that the test for resistive open defects is more robust at higher

voltage levels. Leakage faults, in contrast, are better detected lower voltages. There-

fore, we use measurements taken at different voltage levels as input variables for the

regression model in order to increase the diagnosis resolution for different fault types

and different fault sizes in the presence of random process variations.

70

4

Uncertainty-Aware Robust Optimization of
Test-Access Architectures

An undesirable outcome of the potential of 3D stacks to integrate a number of large

SoCs is that the complexity and cost of test are increased. Therefore, 3D test requires

careful attention in order to optimize test cost. Recent work on 3D test strategies have

addressed this issue and presented several methods for test architecture optimization

and test scheduling. These methods are based on exact optimization techniques

such as integer linear programming (ILP) and heuristics such as rectangle packing

[30, 31, 32].

A drawback of the above methods is that they consider known (constant) values

for input parameters, which may differ from the actual values. This can lead to non-

optimal decisions made at the design stage, increasing the test time. Variations in

input parameters can be attributed to several reasons.

� At the design stage, some input parameters such as power consumption and test

pattern count, are not known exactly and hence we need to rely on estimates,

which can be inaccurate.

71

� In a 3D scenario, a die can be used as “off-the-shelf” component in various

3D stack designs with different constraints on power consumption and available

bandwidth for test data. A die that is optimized for a particular 3D stack can

result in non-optimal test times in other stacks.

In Section 4.1, we list examples of uncertainties in input parameters for 3D test

architecture optimization and test scheduling. Neglecting these uncertainties and

assuming a single point in the input-parameter space results in solutions that are

not optimized for scenarios when input parameters change, leading to increased cost.

Therefore, despite the large body of work on SOC test scheduling [22, 97, 23], the

test scheduling and test-architecture problems in realistic scenarios for core-based 3D

ICs need more scrutiny.

To deal with the issue of uncertainties in input parameters in optimization, a

method called “robust optimization” has been proposed in the past [98]. This ap-

proach takes variations in input parameters into account and This approach takes

variations in input parameters into account and attempts to find a solution with min-

imum deviation from the optimum in case the parameters change. In [98], robust

optimization is used for linear programming (LP); however, the same approach can

also be applied to problems modeled by integer linear programming (ILP). Not sur-

prisingly, we found that the complexity of robust ILP models for test-architecture

design grows extremely fast with the number of cores and the number of parameter

variations, such that solving these problems exactly becomes intractable. Therefore,

we apply an efficient heuristic method based on simulated annealing.

The main contributions of this chapter are as follows.

� We formulate the problem of robust Test Access Mechanism (TAM) optimiza-

tion and test scheduling for 3D ICs in the presence of variations in input pa-

rameters. A robust solution may be inferior to a solution optimized for certain

72

values of the input parameters in case their estimates were accurate; however,

a robust solution performs better than non-robust solutions by staying closer

to the optimum in the presence of variations.

� We develop a mathematical model for robust optimization in the presence of

variations in input parameters, such as power, core test time, and available

bitwidth, for the test architecture

� For dies in a 3D stack that have a large number of embedded cores, we propose

an efficient heuristic for robust optimization. The heuristic makes use of the

simulated annealing algorithm [99] to quickly explore the search space and find

reasonably good solutions.

� We show that, under the likely scenario of uncertainties in parameter values,

robust solutions are closer to the optimal single-point solutions compared to

non-robust solutions. This “closeness” is defined for each scenario as the rela-

tive time increase with respect to the optimal single-point solution. A formal

definition is presented in Section 4.3.A. Robust solutions also result in lower ex-

pectation of test time. This is an important metric, as scenarios may occur with

different probabilities, and the optimization algorithm should attach a higher

weight to scenarios that are more likely to occur.

The remainder of this chapter is organized as follows. Section 4.1 gives examples

of uncertain parameters in optimization of 3D test architecture and test scheduling.

Section 4.2 presents an overview of related prior work on robust optimization and

simulated annealing. In Section 4.3, we formulate an ILP model for robust optimiza-

tion of 3D test architecture and present our heuristic method for robust optimization

for systems containing a large number of cores. In Section 4.4, we provide simulation

results for various designs using ITC’02 test benchmarks [100]. Finally, Section 4.5

73

concludes the chapter.

4.1 Uncertain Parameters in Optimization of 3D Test Architecture
and Test Scheduling

This section presents examples of uncertainty in parameters, including the test archi-

tecture, test power, test time, and compatibility of tests.

A possible scenario in a 3D setting is the reuse of a die as a hard-IP component in

stacks with different test architectures. In that case, the test-test access mechanism

of a die should be reconfigurable in order to match the test interfaces between all dies

in a stack. An additional benefit of reconfigurable TAMs is to make maximum use of

the channels provided by the test equipment. In both cases, the width of the TAM

becomes an uncertain parameter at the design stage, since it is not known a priori in

which configuration the die will be tested. Figure 4.1 highlights an example of such

a reconfigurable architecture with a variable number of test inputs. The figure shows

the partitioning of cores at die level into four groups and the routing within groups

as well as between groups. In this example, there are three possible configurations

with different TAM bandwidths.

� An n-bit interface. In this case, only TI1 and TO1 are used as test inputs and

test outputs, respectively, such that all groups are concatenated. Two cores can

only be tested in parallel if they are assigned to different TAM wires, irrespective

of their group assignment. For example, c1 and c12 cannot be tested in parallel

in this configuration because they share wire 3.

� A 2n-bit interface. TI1-TI2 and TO1-TO2 are used as test inputs and test

outputs, respectively. Now, Group 1 and Group 2 are on separate test I/Os

than Group 3 and Group 4. Therefore, any core of Group 1 or Group 2 can

be tested in parallel with all cores of Group 3 and Group 4 irrespective of the

74

Figure 4.1: Die-level architecture with reconfigurable multiple-width TAM.

TAM assignment within the group, for instance c1 and c12.

� A 4n-bit interface. In this configuration, all test inputs and test outputs are

used, such that all groups can be tested independently from each other. How-

ever, the TAM-assignment within each group still limits the concurrent test of

cores in the same group.

With this flexible 3D test architecture, the die can be integrated in different stacks

that use n, 2n, or 4n test inputs. Hence the die-level TAM width in test-architecture

optimization for the stack becomes a distributed input parameter at the design stage.

This multiple-width die-level architecture is compatible with the proposed IEEE

P1838 standard-under-development [101]. Even though the proposed standard was

originally conceived to be used for a fixed-width parallel TAM, we can introduce

additional parallel modes that use a subset of the available test data signals. In the

example shown in Figure 4.1, we can match the full 4n-bit wide test-data interface to

the wrapper-level WPI. The instruction set of the wrapper instruction register (WIR)

75

can be extended by two extra instructions to enable 2n-bit and 1n-bit configurations.

With this extension, the die can be integrated in stacks with different stack-level WPI

width, which is determined by the amount of package-level pins available for testing

or by the number of available channels of the test equipment. In case only a subset

of the test I/Os is used, the unused inputs will be tied to ground and the unused

outputs will be floating.

Another example of uncertainty in input parameters is power consumption during

test. As 3D stacking offers integration of multiple dies in a single package, the problem

of high power consumption (and resulting heat dissipation) becomes even more critical

than in 2D SoCs. Recent papers have identified this problem and several methods

for enhanced cooling in 3D ICs have been proposed [102, 103, 104]. Nevertheless,

power consumption during 3D-IC test must be limited to prevent over-heating and

over-testing. This limit may not be known before the 3D-IC has been manufactured;

in that case, we must rely on estimates of core power consumption obtained through

simulations. These estimates can be inaccurate, e.g., due to process variations, and

the actual power limit can be different from the value assumed at the design stage.

In this case, tests may need to be rescheduled to satisfy the power constraint and

optimize the test time. As the test architecture cannot be changed anymore, the new

schedule may result in high test times. Moreover, the same die may be integrated in

different stacks, each with a different package with its unique thermal properties and

hence different power limits.

Variations in test time can result due to adaptive testing [105], which can be done

in several ways.

� Additional types of tests might be added and because of limited test time bud-

get, some scan tests that were considered in test architecture might have to be

dropped. If some types of tests are dropped, additional scan patterns can be

76

included due to the available test time budget.

� Sometimes test patterns might have to be dropped due to the need for trunca-

tion, which is typically motivated by limited test vector storage depth on the

tester or test time limitations. This scenario can arise if tests are developed in

a distributed manner and they are combined later for manufacturing test.

As the test content is dynamically adjusted during test application, the test time will

change and hence should be considered as an uncertain parameter at the design stage

[105]. A test architecture designed assuming nominal values for input parameters

may not benefit from the updated test times, potentially limiting the advantages of

adaptive testing.

4.2 Related Prior Work

Reconfigurable core wrapper approaches have been presented in [106, 107]. The pro-

posed core wrappers allow for an adjustable core-level TAM. The scan-chains are

partitioned into groups and interconnected such that the total test time is optimal

for every configuration. We extend this idea to 3D wrappers and propose a recon-

figurable TAM at die-level, as shown in Figure 4.1. The remainder of this section

presents prior work on robust optimization for LP problems and simulated annealing.

4.2.1 Overview of Robust Optimization

The main idea of the robust-optimization method proposed in [98] is to consider a

number of scenarios in each of which variable input parameters take certain values and

to find a solution that stays near optimum in all scenarios. The robust optimization

explicitly takes into account input-parameter variations, as a range for each input

parameter is specified. The robust solution might not be the absolute optimum for a

given point, but is optimized to not be too far off from that optimum as long as the

77

input parameters are in the anticipated, pre-specified variation range. Even though a

robust solution sacrifices optimality in some scenarios, it performs better on average

than a single-point solution.

The following summarizes the method presented in [98]. It distinguishes between

design and control variables:

� x P Rn1 , which denotes the vector of size n1 containing the design variables.

Their optimal values do not depend on the uncertain parameters and they

cannot be adjusted once the values of the uncertain parameters are known. In

our work, design parameters describe the test architecture, which is fixed at the

design stage.

� y P Rn2 , which denotes the vector of size n2 containing the control variables.

These parameters can be adjusted once the values of the uncertain parameters

are known. In our work, control parameters represent the test schedule as it

can be changed even after the design has been fixed.

With design and control variables, the LP model is formulated as:

Objective:

Minimize cTx� dTy

Subject to:

Ax � b,

Bx� Cy � e,

x, y ¥ 0,

where A and b are constant parameters and d, B, C, and e can be uncertain. In

presence of parameter variations, a set of scenarios Ω � t1, 2, 3, . . . , Su is introduced.

Each scenario s P Ω occurs with the probability ps (
°
sPΩ ps � 1), where the uncertain

78

parameters take the values {ds, Bs, Cs, es}. A robust solution of this LP is defined

as a solution that does not move much from the optimum if a scenario s P Ω occurs,

i.e. the deviation of the cost function is minimized for the range of scenarios.

Using the set of control variables for each scenario {y1, y2, . . . , ys} and the set of

error vectors {z1, z2, . . . , zs} that measure the allowed infeasibility, the mathematical

model for robust optimization is formulated as follows:

Objective:

Minimize σpx, y1, . . . , ysq � ωρpz1, . . . , zsq

Subject to:

Ax � b,

Bsx� Csys � zs � es, @ s P Ω, (4.1)

x, ys ¥ 0, @ s P Ω,

where the function to minimize σp�q can be either the expectation of the cost function

σp�q �
°
sPΩ pspc

Tx� dTs ysq or the maximum value of the cost function for worst-case

analysis σp�q � maxsPΩpc
Tx � dTs ysq. The function ρpz1, . . . , zsq represents a penalty

function to limit violations of the control constraints by assigning a weight ω. In this

work, we set this function to zero.

As an example of robust optimization, let us consider a simple minimization prob-

lem F � mintcTx | Ax ¥ b, x ¥ 0u, where cT � r1 1s, bT � r1 1s, and A can take the

values As1 �

�
0.7 0.5
�1.2 1.3

�
in Scenario s1 or As2 �

�
0.65 0.7
�1 1

�
in Scenario s2 with

equal probabilities. Suppose that x1 is a design variable, i.e. it is the same for both

s1 and s2, and x2 is a control variable that can be adjusted in each scenario. Table 4.1

shows the solutions of the LP problem (a) for s1, (b) for s2, and (c) taking both s1

and s2 into account. The conventional (non-robust) solutions are optimal for the cor-

responding scenarios; however, they show relatively large increase of the cost F if the

79

Table 4.1: Solutions of the LP problem for (a) s1, (b) s2, and (c) taking both s1 and
s2 into account.

x1 x2ps1q x2ps2q F ps1q F ps2q Fexp

a) s1-optimized 0.53 1.26 1.53 1.79 2.06 1.92
b) s2-optimized 0 2 1.43 2 1.43 1.74
c) robust 0.22 1.69 1.22 1.91 1.44 1.67

scenario and hence the input parameters change. In contrast, in case of the robust so-

lution, we sacrifice optimality for both scenarios, but win in terms of the expectation

of the cost, if s1 and s2 occur with equal probabilities. We have proposed a method

for robust optimization of test architecture and test scheduling in 2D SoCs [108]. We

formulated an ILP model for the robust optimization problem, which is suitable for

small SoCs and a small number of scenarios. For larger SoCs, a simple randomized

divide & conquer heuristic was proposed. However, this approach does not consider a

reconfigurable TAM, which is a likely scenario in 3D ICs. Therefore, while [108] is an

important first step towards robust optimization for SoCs, it is not adequate for the

additional uncertainty in 3D designs of reconfigurable die-level TAMs that interface

to other dies.

4.2.2 Simulated Annealing

Due to the high complexity of the test scheduling problem for SoCs and 3D ICs with

a large number of cores, efficient heuristics are required in order to find an accept-

able solution within a reasonable time. We propose a heuristic using the simulating

annealing algorithm [99]. In the past, a number of simulated annealing-based tech-

niques for test scheduling as well as for 3D test architecture optimization has been

introduced [109, 110, 111]. We exploit the concept of simulated annealing in order to

develop a heuristic for the robust optimization problem. The main idea of simulated

annealing is to iteratively explore the search space by perturbing the solution at each

80

step and accepting an inferior solution with the probability

Pr � exp

�
�∆Cost

Temp

,

where ∆Cost is the difference in the cost function and Temp is a parameter decreasing

at each iteration step. The parameter Temp is analogous to the current temperature

in a real annealing process. At each iteration step, the solution is perturbed and

Temp decreased. In the beginning, when the Temp is high, a new inferior solution

is likely to be accepted in order to prevent falling into a local optimum before a

number of areas in the solution space have been explored. With decreasing Temp,

this probability decays and eventually, we stay in one area and find a local optimum

before the Temp reaches a specified threshold.

4.3 Robust Optimization of 3D Test Architecture

The method proposed in [98] targets robust optimization problems that can be mod-

eled as LP and hence solved in polynomial time. However, many practical optimiza-

tion problems are NP-hard and cannot be solved in polynomial time using LP [112].

Examples of such problems include test-architecture optimization and test scheduling.

In recent work [113], we have formulated a mathematical model for robust opti-

mization of 3D test architecture and test scheduling, and proposed a heuristic based

on simulated annealing in order to solve the robust optimization problem for realistic

3D ICs. However, a limitation of this approach is that it is focused on minimizing

the expectation of total test time, such that a robust solution performs best only on

average, and there are no guarantees of the quality of the solutions. A disadvantage

of [113] is that it disregards the fact that the robust solution may be “far” away

from a point-optimal solution in some scenarios. For instance, the algorithm in [113]

could generate a solution that is close to the point-optimal solutions for most cases

81

apart from a few specific scenarios, such that the expectation of test time is relatively

low. However, in the case when one of these specific scenarios occurs, the resulting

test time would be significantly longer than that of a point-optimal solution. We

consider a solution with a higher expectation of test time but low deviations from

point-optimal solutions to be more practical, as this solution will not result in overly

long test times.

Moreover, the framework in [113] uses an ILP-based heuristic that requires long

CPU times to find reasonably good robust solutions for large SoCs with tens or

hundreds of cores. This approach does not scale since the run time for an SOC with

22 cores is as high as 75 hours. Therefore, a more efficient heuristic is required to

handle such SoCs.

In this work, we extend the previously proposed mathematical model for the

robust optimization problem with the objective to keep the robust solution “close” to

point-optimal solutions in every scenario. We demonstrate our framework using three

uncertain parameters: (a) core-test power, (b) TAM configuration, and (c) core-test

times. The set of uncertain parameters can be extended depending on the application.

For instance, such an additional parameter could be the compatibility of two tests. If

two cores access a shared resource during test other than the TAM wires, additional

constraints need to be added; the sharing of test resources might be difficult to predict,

hence it can be viewed as an additional source of uncertainty. As obtaining an exact

solution for this robust-optimization problem for 3D-test architectures is intractable

even for small dies, we propose an efficient heuristic based on simulated annealing.

This heuristic solves the problem iteratively by finding TAM architecture candidates

and evaluating them for each scenario using a scheduling algorithm.

In addition, we add core-test times as additional uncertain variables. This im-

proves the quality of the robust solutions in case of significant deviations in core-test

82

times, as an architecture optimized just for one set of test times may be far away

from the optimal solution for another set. Adding new uncertain variables leads to

an increased number of scenarios, and hence an increased complexity of the problem.

However, the runtime of the proposed heuristic scales linearly with the number of

scenarios, and the increase in CPU time required to solve the robust optimization

problem is acceptable. Note that we are comparing one-time only compute times

with test times that are recurring for every IC tested. Therefore, the larger the vol-

ume of the ICs tested, the smaller will be the relative Non-Recurring Engineering

cost of compute time per IC. The new heuristic approach is also scalable for large de-

signs, providing solutions for designs with 22 cores within 15 minutes, and the quality

of the solutions thus obtained is comparable with that obtained using the previous

ILP-based heuristic method. The proposed heuristic is described in detail in Section

4.3.B.

4.3.1 Mathematical Model for Robust Co-Optimization of Test Architecture and Test
Scheduling

Traditional optimization methods neglect potential variations of input parameters and

assume constant values instead. However, in practice, some of the input parameters

may change. For instance, test power limits may vary for pre-bond, post-bond, and

final test after packaging. In addition, a die can be manufactured to be stacked

in different 3D ICs that have different requirements on power consumption. The

originally obtained test schedule may not be optimal for all cases or it can even violate

power constraints. However, the design variables related to the test architecture

cannot be adjusted a posteriori for optimal scheduling. Therefore, for each scenario,

the test architecture becomes a constraint for test scheduling.

Another uncertain parameter that we take into account is the width of the die-

level TAM. As highlighted in Section 4.1, we can introduce a reconfigurable parallel

83

TAM in order to enable extra bandwidth for test data in case the stack-level test

architecture allows it. To model that, we introduce a vector of integer variables

gi that holds the group number for each Core i and an integer variable Cs that

encodes the configuration of the TAM in a particular scenario. In our examples,

we limit the number of groups to four, hence gi P t1, 2, 3, 4u and the number of

configurations to three, hence Cs P t1, 2, 3u. Since gi defines the partitioning of the

cores and therefore the die-level test architecture, this is a design variable. In contrast,

the value of Cs depends on the scenario, i.e., on the stack in which the die will be

integrated. Therefore, Cs is a control variable and can be adjusted after the die has

been manufactured.

Let us consider a single die that is going to be stacked in a 3D IC with a daisy-chain

stack-level test architecture, i.e., the stack is tested die-by-die in a modular fashion

such that each die gets the full test bandwidth when it is tested. Let us denote the

width of the group-level test access mechanism (TAM) n, such that the total die-level

TAM width is n, 2n, or 4n dependent on the selected configuration cs as shown in

Fig. 4.1. The die under test has Nc cores that need to be tested. Each core i has

the TAM width Wi, test time Ti, and peak power during test Pi. Cores that share a

die-level TAM bit cannot be tested in parallel. In addition, the total power during

test must not exceed Pmax at any time in order to prevent voltage droop and high

heat dissipation, resulting in potential yield loss, over-testing, or even permanent

damage of the 3D IC. Power limit is the only constraint we use here as example;

however, we can easily extend our framework with extra constraints, such as shared

test resources that make test of certain groups of cores incompatible [114]. Based on

the above constraints, we need to perform three assignments. First, as all cores are

initially unassigned to groups, we need to assign each core to a group. Second, as the

TAM width of each core is typically smaller than the group-level TAM, therefore we

84

Objective:

Minimize F � Texpp1�Gεmaxq (4.2)

Subject to:

ti,s � Ti,s ¤ ttot,s @i, s (4.3)

Texp �
¸

s

ttot,sps (4.4)

ttot,s � p1� εsqTopt,s @s (4.5)

εmax ¥ εs @s (4.6)

wi � pWi � 1q ¤ n @i (4.7)

qi,j ðñ pwi ¥ wj �Wj OR wj ¥ wi �Wiq @i, j (4.8)

qi,i � 1 @i (4.9)

parti,s � gi mod 2pCs�1q @s (4.10)

vi,j,s ðñ parti,s � partj,s @i, j, s (4.11)

ri,j,s ðñ tj,s ¤ ti,s tj,s � Tj @i, j, s (4.12)

ri,j,s ¤ qi,j � vi,j,s @i, j, s (4.13)

Ņ

j�1

Pjri,j,s ¤ Pmax,s @i, s (4.14)

Figure 4.2: Mathematical programming model for non-robust test architecture op-
timization.

need to find an assignment of core’s TAMs to specific wires of the group-level TAM.

These two assignments define the architecture. Third, once the architecture is fixed,

we schedule the tests such that the test time in each scenario remains “close” to the

point-optimal solution.

Figure 4.2 shows our mathematical programming model for robust co-optimization

of test architecture and test scheduling. In the following, we describe the details of

the model.

We consider a number of scenarios, where each scenario s represents a combination

uncertain parameters, i,e., a point in the input parameter space. In this work, we

consider three uncertain parameters:

� Maximum-allowed test power Pmax,s

85

� Core test time Ti,s

� TAM configuration Cs

The variable Cs encodes the TAM configuration such that Cs � 1, Cs � 2, and Cs � 3

correspond to 4n-bit, 2n-bit, and 1n-bit configuration, respectively.

Let the array of integer variables ti,s denote the start times of core tests i for a

scenario s. The test of core i will therefore finish at ti,s � Ti,s. The total test time

in a particular scenario is the maximum of all finish times ttot,s � maxitti,s � Ti,su.

Line (4.3) represents this information.

The expectation of total test time Texp is calculated based on the total test time

for each scenario and the probability with which this scenario occurs, as shown in

Line (4.4). For each scenario, we calculate the relative distance εs,c from a given point-

optimal solution as εs � pttot,s � Topt,sq{Topt,s, which is formulated as a constraint in

Line (4.5). The objective of the programming model is to co-optimize Texp and εmax.

We use the cost function F � Texpp1 � Gwεmaxq as shown in Line (4.2), where Gw

is a weight that shifts the focus between minimizing Texp and minimizing εmax. For

instance, if Gw � 0, εmax is ignored, whereas with larger values of Gw, solutions with

low εmax are preferred over solutions with low Texp.

Next, the integer variables wi, 1 ¤ i ¤ N indicate the lowest group TAM wire to

which core i is connected. The last bit of the core TAM is hence connected to TAM

wire wi � pWi � 1q. Line (4.7) adds the constraint the limit on maximum available

TAM width.

In order to restrict parallel testing of two cores that “overlap” in die-level TAM,

we introduce a matrix of binary variables q, such that

qi,j �

"
1 if Core i and Core j do not share a TAM wire
0 else

(4.15)

The variables qi,j and wi are therefore constrained as shown in Line (4.8) and Line (4.9).

86

The operator “ ðñ ” means “implication”, i.e., the variable is 1 if and only if the

condition is met. In addition, each Core i belongs to a group gi. Depending on the

TAM configuration, groups are divided into partitions, such that each partition con-

nects to an independent die-level TAM bus. For 1n-bit configuration, all groups are

concatenated and hence all cores belong to one partition. For 2n-bit configuration,

there are two independent partitions. For a 4n-bit configuration, each group belongs

to an separate partition and hence connects to an independent die-level TAM. This

is represented in Line (4.10). We introduce a new matrix of binary variable v, such

that

vi,j,s �

$&
%

1 if Core i and Core j do not share
the same partition in configuration c

0 else

The variables vi,j,s are constrained as shown in Line (4.11).

The start times ti,s are constrained through (a) the TAM assignment, (b) grouping

and (c) maximum-allowed test power. The constraints due to TAM assignment and

grouping are modeled as follows. We introduce a matrix of binary variables r, such

that ri,j,s is 1 if the test of Core i starts while test of Core j is in progress in a scenario

ts, cu. This is modeled in Line (4.12). In case that ti,s � tj,s � Tj, then r � 0, which

implies that the test of Core i starts right after the test of Core j and therefore the

tests do not overlap. Tests of Core i and Core j can only overlap if the cores do not

share the same group TAM wire (qi,j � 1) or belong to a different partition (vi,j,s � 1).

This constraint is represented in Line (4.13).

The power constraint is modeled as follows. For each core, we check at the starting

time of each core whether the total power of the cores being tested at this time exceeds

Pmax,s. This constraint is captured in Line (4.14).

In total, we have the following design variables that cannot be adjusted after die

manufacturing: w, q, and g. These variables are independent of the current scenario.

87

Other variables, i.e., t, ttot, part, v, and r, are control variables and can be adjusted

to optimize ε dependent on the current scenario.

Solving this problem provides an optimal core TAM assignment (wi), grouping

(gi) and a set of optimal test schedules (ti,s) for each scenario s.

The constraints (4.8), (4.10), and (4.11) are non-linear but can be linearized using

standard linearization techniques in order to convert the model to ILP. To linearize

Constraint (4.8), we first convert it to

qi,j ðñ ki,j OR mi,j, (4.16)

where ki,j and mi,j are auxiliary binary variables that imply wi ¥ wj � Wj and

wj ¤ wi�Wi, respectively. These implications are of the form “zbin ðñ xint ¥ yint”,

where zbin is binary, and xint and yint are integers. This type of a non-linear constraint

can be linearized using the following technique:

xint ¥ yint � Up1� zbinq (4.17)

xint ¤ yint � 1� Uzbin, (4.18)

where U is a sufficiently large constant number.

Expression (4.16) is then linearized using ai,j and bi,j as

qi,j ¥ ki,j (4.19)

qi,j ¥ mi,j (4.20)

qi,j ¤ ki,j �mi,j. (4.21)

Constraint 4.10 is linearized by introducing auxiliary integer variables di,s and

adding the following constraints:

gi � di,s2
Cs�1 � parti,s (4.22)

parti,s ¤ 2Cs�1 � 1. (4.23)

Constraint (4.11) can be expressed as

vi,j,s ðñ parti,s ¥ partj,s � 1 OR parti,s � 1 ¤ partj,s, (4.24)

88

which is easily linearized using the same technique as for Constraint (4.8).

The optimal point-optimal solutions are obtained using the model described above.

For each scenario, we set s and c to the corresponding values, and set Topt,s to a

constant “dummy value”, e.g., Topt,s � 1. Since only one scenario is active, the solver

will effectively optimize the total test time for this scenario ttot,s. The obtained values

are used as Topt,s during the robust optimization over all scenarios.

In our simulations, a commercial ILP solver was not able to provide an optimal

solution even for a 7-core die within 24 hours. Therefore, we focused in this work on

developing an efficient heuristic to handle dies with more than 20 cores.

4.3.2 Heuristic Method for Robust Optimization Based on Simulated Annealing

Due to the high complexity of the robust optimization problem for dies with even a

small number of cores, we need alternative methods to handle realistic designs. In

this work, we propose a heuristic method based on simulated annealing (SA).

Figure 4.3 provides on overview of our SA algorithm. The following text describes

the main idea of the algorithm. Later, we will focus on the detailed description of

the important blocks. In the beginning, we set the initial temperature, and find an

initial grouping of cores and a TAM assignment of each core to the bus of n wires.

Next, we randomly perturb the TAM assignment by rearranging some of the cores.

The new test architecture is evaluated by finding an near-optimal test schedule for

each scenario s, and the cost function F based on ε and Texp over all scenarios is kept

track of as Fnew. If the cost of the new solution is not higher than that of the current

solution, the new test architecture is accepted. Otherwise, it is accepted with the

probability

Pr � exp

�
Fcur � Fnew

Temp

. (4.25)

If the temperature is above a specified threshold Tempmin, the temperature is de-

89

Figure 4.3: SA-based Robust Optimization Flow.

creased by a specified factor and the algorithm goes back to the perturbation phase.

This time, the grouping of the cores is slightly perturbed and the new test architec-

ture is evaluated again. Perturbation of TAM and the grouping alternate between

each iteration. Once the temperature has fallen under Tempmin, the algorithm stops

and the best solution so far is provided as the result. In the following, we describe

each step in detail.

The die-level TAM assignment is defined by the vector w � rw1, w2, . . . , wNcs, as

described in the mathematical model in Figure 4.2. The number of all feasible varia-

tions of w can be extremely large and hence completely random TAM perturbations

would require an impractically large number of iterations. In our algorithm, we try

to improve our solution by using the following properties of w.

First, there is a number of TAM assignments that correspond to the same overlap

matrix q, which is defined in Equation (4.15). Since only q directly limits which cores

90

can be tested in parallel (Equation (4.13)), all these TAM assignments will result in

the same optimal schedule and hence the same minimum test time. Therefore, it is

sufficient to perturb the matrix q and to find which one gives the best schedule. The

actual solution is then any TAM assignment that maps to this q.

Second, assume a TAM assignment in which Core i and Core j overlap in TAM and

therefore cannot be tested in parallel (qi,j � qj,i � 0). Let us change qi,j � qj,i to 1,

which means Core i and Core j are moved away from each other such that they do not

overlap in TAM anymore. All test schedules that were feasible for the previous TAM

assignment will remain feasible. Potentially, we can improve the test time by testing

Core i and Core j in parallel. Therefore, it is enough to consider the new matrix as a

candidate and discard the old (inferior) matrix. We exploit this property to find an

initial TAM candidate and to perturb it. First, we start with an identity matrix (all

cores share TAM wires). This is the most inferior solution as it only allows for serial

testing. However, it is guaranteed that this TAM assignment is feasible because we

require that Wi ¤ n for all i. Next, we try to improve the candidate by setting some

randomly chosen entries to 1. By doing this, we force certain cores to be assigned to

distinct TAM wires and therefore increase the minimum required group-level TAM

width for the new q. Once this width exceeds the given maximum TAM width n,

q becomes infeasible, hence we need to undo the change and try to change another

entries of q to 1. After we have tried setting all entries to 1, we stop and receive a

TAM candidate that is evaluated in the next step.

The checking of q is done by mapping it to the maximum-weight clique problem

and solving it using an existing algorithm [115]. The mapping is done as follows.

Each Core i is represented by a vertex vi with the weight Wi. An edge between two

vertices vi and vj exists if qi,j � 1. The objective of the algorithm is to find a clique (a

set of vertices in which there is an edge between every pair of two vertices) with the

91

maximum total weight. In our original problem this clique is a set of cores that can be

tested simultaneously and “span” the maximum width. If the weight of the maximum-

weight clique exceeds n, the given TAM assignment is infeasible, as it requires more

TAM wires than available. If the maximum weight does not exceed n, q is feasible and

we can find a corresponding TAM assignment. The maximum-weight clique problem

is NP-hard; however, we can solve it within microseconds for dies with Nc 100.

We use this number, as SoCs currently available on the market integrate less than

100 IP blocks [116]. The time required to solve the maximum-weight clique problem

is many orders of magnitude shorter than the CPU time required for evaluation of

a candidate over the entire range of scenarios, hence the CPU time for generating

a TAM candidate is negligible, even though we call the check function OpN2
c q times

during each perturbation.

Perturbation of a given q is done as follows. We “reset” a number of elements

back to 0 and try to randomly fill the matrix with 1 until no zero-element can be set

to 1. If the number of elements that is reset is large enough, we will receive a different

TAM candidate with high probability. In our implementation, we randomly choose

a row and a column and reset their elements. However, our framework can be easily

adjusted to perform a different type of perturbation.

The grouping of cores is stored in the vector g � rg1, g2, . . . , gNcs. The initial

grouping is assigned randomly. In order to perturb g, we perform either of the

following operations with equal probability: (a) we swap two randomly chosen cores

from different groups, (b) we move a randomly chosen core to a different group.

During SA iterations, we keep track of the best solution in terms of the expectation

of the test time. Once the temperature falls below a threshold, the best combination

of a TAM assignment and grouping is provided as a result.

In the evaluation phase, we calculate the expectation of the total test time and

92

maximum epsilon for the given TAM assignment and grouping. Since all design vari-

ables are fixed, the solutions (schedules) for each scenario s are not “coupled” between

each other. This allows us to partition the evaluation problem in S sub-problems,

where each sub-problem is a non-robust scheduling problem with the corresponding

maximum-allowed test power Pmax, test core times Ti, the given TAM assignment q,

and grouping g. In the previously proposed framework in [113], we used an ILP-based

heuristic to solve this scheduling problem. However, the ILP-based approach is inef-

ficient for large SoCs as it requires 75 hours to solve the robust optimization problem

for a 22-core SoC from our benchmark set. We propose a new heuristic based on

simulated annealing for evaluation of TAM architectures. As simulations show, the

new algorithm finds reasonably good solutions orders of magnitude faster compared

to the previous ILP-based algorithm.

The right-hand side of Figure 4.3 shows a flow diagram of the new evaluation

algorithm. The key idea of this algorithm is to start with an initial schedule and then

iteratively perturb the order of tests at every iteration. A schedule is constructed

using the following greedy approach. We go through the list of all cores one by one in

a particular order and assign the start of each core test to the earliest time possible,

without violating the given constraints. These constraints include Pmax, q, and g.

For example, consider a list of four cores {C3, C2, C4, C1}. The algorithm assigns

the start time of the first core in the list, C3, to t � 0. This is always a feasible

step as no other test has been scheduled yet. Next, the algorithm assigns C2 to

t � 0 and checks for feasibility. If no constraint is violated, the algorithm proceeds to

the next core. Otherwise, C2 is rescheduled to the next potential start point, which

coincides with the finish time of C3. This procedure repeats until all four tests are

scheduled. This algorithm loops through all Nc cores in the list and the last core is

tried to be assigned Nc times in the worst case. Therefore, the algorithm has the

93

run-time complexity OpN2
c q and requires low CPU time even for large SoCs. As the

order of cores defines the constructed schedule, we can explore the solution space by

perturbing this order. In our approach, we start with an initial (random) core-test

order and move a randomly selected core to another position in the list.

At each iteration, a new schedule with the total test time Tnew less or equal the

total test time Tcur of a current schedule is always accepted; otherwise, it is accepted

with the probability

Pr � exp

�
Tcur � Tnew

Temps

, (4.26)

where Temps is a variable (“temperature”) that is decreased every iteration. The

algorithm terminates after Temps reaches a given threshold, and the best solution is

kept.

4.4 Simulation Results

We present simulation results to evaluate the proposed heuristic method for robust

optimization. The framework is implemented in C++.

First, we demonstrate the effect of robust optimization using a simple example.

Next, we show simulation results obtained with publicly available benchmarks.

Consider a die containing 5 cores with equal TAM widths Wi � 2 and the test

times {6,5,4,2,6} in some arbitrarily chosen units. The die-level TAM can be reconfig-

ured in 4-bit (n) and 8-bit (n) modes. Due to the power constraints, only three cores

can be tested at a time. Figure 4.4 and Figure 4.5 show two test architectures (core

TAM assignment and core partitioning) with the corresponding optimal schedules for

both configurations, resulting in test times of {12,11} and {14,9}, respectively. If the

die will be used in both configurations with equal probabilities, the expectation of

the test time is 11.5, regardless of the architecture. However, if one scenario is more

likely than the other, one architecture will perform better on average than the other.

94

Figure 4.4: Test Architecture 1: (a) TAM assignment and partitioning, (b) schedule
for 4-bit configuration, (c) schedule for 8-bit configuration.

For instance, a non-robust algorithm optimizing just for a 4-bit configuration would

chose Test Architecture 1 (total test time 12 vs. 14). However, in the case of an 8-bit

configuration, this solution would be further away from an optimal solution than Test

Architecture 2. If that case is more likely, Test Architecture 2 would be preferred by

a robust-optimization algorithm, as it considers the probability with which different

scenarios are likely to occur.

Since there are no publicly available 3D-IC benchmarks, we applied our methods

to SoCs from the ITC’02 SoC Test Benchmark set [100] and two industrial SoCs that

we use as dies in a 3D stack in our simulations. Table 4.2 summarizes the relevant

design data of the benchmarks, h953, d695, p93791, p22810, including the core TAM

width W , the core test time T in units of 1000 clock cycles, and the percentage of the

scan flip-flop count in relation to the total scan flip-flop count. Cores without scan

chains were excluded from the set; therefore, the dies have 7, 8, 12, and 22 cores to

95

Figure 4.5: Test Architecture 2: (a) TAM assignment and partitioning, (b) schedule
for 4-bit configuration, (c) schedule for 8-bit configuration.

be connected to the system TAM, respectively. In addition, we used the combination

of the SoCs h953 and d695 as the fifth die. In order to test the performance of the

framework, we created an SOC with 100 cores, comprising 16 large identical cores with

32-bit TAM and relatively high test power and long test time, 32 medium identical

cores with 16-bit TAM and medium test power and test time, and 52 small cores

with randomly chosen parameters. We approximated the test time of each core by

multiplying the length the longest scan chain with the test pattern count.

We assume that the peak power during test depends linearly on the amount of logic

that is switching, which is proportional to the amount of scan flip-flops. Therefore,

we set the constraint on power during test by limiting the fraction of active scan

flip-flops. For instance, if we set Pmax � 0.5 for h953 then Core 1 cannot be tested in

parallel with Core 7 because the power would exceed the limit and the schedule would

become infeasible. For SOC-A and SOC-B, Pi were estimated using simulations. Due

96

Table 4.2: Design parameters of some of the benchmark SoCs used in simulations.

h953 d695 p93791 p22810

core W T % FF W T % FF W T % FF W T % FF

1 4 118 24.2 16 94 10.0 46 113 26.5 10 1021 5
2 2 3 14.0 4 56 3.3 44 75 8.3 29 432 9
3 2 1 1.4 32 50 22.5 46 68 7.6 24 214 9
4 4 1 1.8 4 44 2.8 46 62 3.4 4 38 1
5 4 13 10.4 32 35 25.5 46 42 10.6 8 83 2
6 4 33 15.8 16 31 8.3 46 42 10.6 11 76 3
7 8 57 32.4 1 24 0.5 46 40 8.5 4 1 1
8 32 6 27.0 46 36 4.7 3 79 1
9 35 32 7.3 6 30 1
10 43 32 7.1 1 9 1
11 44 21 4.8 4 22 1
12 11 15 0.6 5 438 1
13 3 25 1
14 4 95 1
15 10 848 4
16 3 45 1
17 7 46 4
18 5 27 1
19 18 389 9
20 31 724 46
21 1 1 1
22 5 26 1

to inaccuracies of these simulations, these data will be subject to variations that can

be handled through robust optimization. In addition, Pmax may vary significantly in

case a die is integrated in different 3D stacks with different thermal properties. In

practice, each of these parameters can vary independently from each other, which

increases the complexity of the robust optimization problem. In our simulations, we

consider Pmax, Ti, and conf as uncertain parameters. Without loss of generality, we

assume three discrete points for Pmax, such that the nominal value occurs with the

probability of 0.6 and the other two points Pmax � ∆P with the probability of 0.2

each. Furthermore, we assume three different sets of Ti: (1) a set with nominal Ti,

(2) a set, in which some of the core test times are reduced by 10%, and (3) a set, in

which some of the core test times are reduced by 20%. Each set can occur with equal

97

probability. The third input parameter that is subject to variations in our framework

is the configuration of the TAM. We limit the possible configurations to n-bit, 2n-bit,

and 4n-bit configurations, as shown in Figure 4.1, and assign equal probabilities to

them. As all three input parameters can take three different values independently

from each other, the total number of scenarios we consider is S � 33 � 27. In

contrast to the exact ILP model, the complexity of our heuristic algorithm grows

only linearly with the number of scenarios, as we solve the scheduling problem for

each scenario independently. Therefore, we can easily extend our framework to handle

more uncertain parameters while maintaining reasonable CPU-runtimes.

We limited the number of SA iterations to 250 in order to experiment with the

setting and collect the results in a reasonable time. In addition, we ran every simula-

tion ten times in parallel and picked the best result. In a real application, the number

of SA iterations can be increased in order to improve the quality of the solution. The

CPU time in our simulations varied from a few seconds for small benchmarks to a

few hours for the 100-core benchmark. This is several orders of magnitude faster

compared to the ILP-based heuristic used in [113], but the results are comparable in

quality to the computationally expensive method from [113].

In order to demonstrate the advantage of robust solutions, we performed the

following simulation. For each SoC, we obtained an optimal solution assuming a

single point in the input parameter space (the nominal value of Pmax and Ti, and the

1n configuration). For the robust solutions, we considered 27 scenarios for variable

Pmax, Ti, and conf. The non-robust solutions were evaluated for the same scenarios

as the robust solutions in order to compare their performance in the presence of

uncertainties in the input parameters. Table 4.3 shows the input parameters Wm,n

(TAM width for the case of 1n-bit configuration), Pm,n (nominal value of Pmax), and

a comparison of non-robust and robust solutions in terms of Texp and εmax. Note that

98

Table 4.3: Input parameters and resulting test times for the SoC benchmarks.

Benchmark Wm,n Pm,n
Texp εmax

non-rob rob impr non-rob rob ∆

h953 10 60
d695 32 50 132 114 13.64% 0.40 0.00 40%
p93791 100 45 165 150 9.09% 0.51 0.09 42%
d695 h953 32 60 172 141 18.02% 0.54 0.10 44%
p22810 50 60 1453 1323 8.95% 0.56 0.12 44%
100-core 64 50 753 699 7.17% 0.22 0.06 16%

the difference in εmax for the 100-core benchmark is only 16%. Due to the combination

of the input parameters for this benchmark, the non-robust algorithm was able to find

a non-robust solution that was close to the optimum (εmax � 0.22), hence the robust

algorithm had little room to improve the solution.

As the results indicate, test architectures that were optimized using the proposed

robust optimization method lead to significantly lower εmax, i.e., the robust solutions

stay “closer” to point-optimal solutions compared to non-robust solutions. In addi-

tion, we observe a measurable improvement of the expectation of test time for most

SoCs.

Figures 4.6–4.8 show a detailed evaluation of non-robust and robust solutions for

all 27 scenarios. We observed that both robust and non-robust solutions deviate

from point-optimal solutions in several scenarios. However, for some scenarios, the

test time of the non-robust solution is significantly higher than that of the robust

solution, for instance, in the case of 2n-bit TAM configuration and Pmax � 120%.

This is less prominent in the case of 1n-bit and 4n-bit TAM configurations. The

reason for that is the following. The non-robust algorithm targets a 1n-bit TAM

scenario, hence the solutions perform well for that case. For 4n-bit TAM scenarios,

the test schedule is less constrained due to a larger TAM (i.e., extra options to schedule

cores from different groups in parallel, which may not be possible in other cases), and

the optimization algorithm is therefore more likely to “pack” the schedule tightly

99

Figure 4.6: Evaluation of the robust and non-robust solutions for p22810 in 1n-bit,
2n-bit, and 4n-bit configuration for different Pmax for nominal core test-time values
Ti.

up to the maximum-allowed power limit. Therefore, non-robust solutions tend to be

closer to the optimum in 4n-bit TAM scenarios.

For 1n-bit scenarios in Figure 4.8, the optimal, non-robust, and robust solutions

seem to be similar. This is an example of the case when different types of solutions

are pareto-optimal, which can occur depending on input parameters.

We observed a similar behavior for other benchmarks, and we conclude that non-

robust solutions can lead to prohibitively high test times.

4.5 Conclusion

We have presented a method for robust optimization of 3D test architecture and

test scheduling in the presence of input parameter variations. We have formulated

a mathematical model for the robust optimization problem using ILP. As the ILP

model does not scale well with the problem size, we propose a heuristic based on

the widely used simulated-annealing technique that optimizes the TAM assignment

100

Figure 4.7: Evaluation of the robust and non-robust solutions for p22810 in 1n-bit,
2n-bit, and 4n-bit configuration for different Pmax for some core test-time values Ti
reduced by 10%.

of the cores by perturbation and evaluation of the solution for the given scenarios

of uncertain parameter values. Results show that neglecting variations in input pa-

rameters will result in inefficient single-point solutions with increased test time. The

proposed method scales well with the complexity of the die and with the number of

scenarios. The designed framework can easily be extended with additional constraints

and uncertain parameters.

101

Figure 4.8: Evaluation of the robust and non-robust solutions for p22810 in 1n-bit,
2n-bit, and 4n-bit configuration for different Pmax for some core test-time values Ti
reduced by 20%.

102

5

Massive Signal Tracing Using On-Chip DRAM for
Silicon Debug

A commonly used post-silicon verification method is based on real-time signal obser-

vation using on-chip trace buffers [7]. However, a major problem in traditional signal

tracing is the limited storage available for the trace data; hence, only a small num-

ber of internal nodes can be observed over a short period of time. Several methods

have been proposed in the past to increase the observation window by incorporating

on-chip compression and selective capture of debug data [75, 74]. Even though these

methods increase the observation windows to thousands of clock cycles, this is still a

small fraction of the duration of functional tests that runs over multiple seconds, i.e.,

billions of clock cycles [117]. As the signals can only be traced over a limited time

frame, many debug sessions are typically required to localize the error in the design,

resulting in labor-intensive debug sessions.

One of the limiters in trace-buffer-based debug is the relatively small size of the

trace buffers, which is necessitated by the need to reduce area overhead. In order to

overcome this limitation, we can use functional on-chip memories for debug purposes.

103

Such memories are expected to be available in future semiconductor products. For

instance, 3D-stacked integrated circuits (ICs) have the potential to integrate DRAM

dies with high bandwidth. Emerging standards for fast DRAMs, such as JEDEC

Wide I/O 2 [118] and Hybrid Memory Cube (HMC) [119, 120], are aimed at 3D-IC

architectures and promise memory bandwidth of 51.2 GB/s and 320 GB/s, respec-

tively [121].

We propose a post-silicon debug framework for 3D ICs with on-chip DRAM. The

main contributions of this chapter are the following:

� We propose a new design-for-debug (DfD) architecture that exploits fast DRAM

as trace-data storage, which allows for massive signal tracing and the extension

of the observation window by orders of magnitude compared to previously pro-

posed methods, while requiring negligible silicon area overhead.

� The proposed method does not require multiple iterations or extra hardware

to process the captured data in between debug sessions. The debug data is

captured at-speed during the entire execution of a test program. The only

overhead is the transfer time of the expected signatures to the DRAM and

the transfer time of the stored debug data from the DRAM back to the debug

equipment.

� The proposed technique can handle partially non-deterministic tests by captur-

ing deterministic and hence predictable segments of the test using transition-

matching circuitry.

� The proposed method can be applied both in-field during platform debug and

system operation, and on automatic test equipment (ATE) during functional

test execution. The captured data of the failing units can also be stored for

offline analysis.

104

The remainder of this chapter is organized as follows. Section 5.1 describes our de-

bug methodology using on-chip DRAM. In Section 5.2, we present simulation results.

Finally, Section 5.3 concludes this chapter.

5.1 Proposed Debug Framework

Despite the improvements described in Section 1.6, debug using trace buffers still

remains a time-consuming procedure. We propose a new debug solution for ICs with

on-chip DRAM that overcomes the limitation arising from the small size of trace

buffers. The main idea of our method is to transfer the captured data from small

trace buffers into a much larger on-chip DRAM, thereby extending the observation

window by orders of magnitude compared to traditional methods. We use multiple-

input signature registers (MISRs) to generate independent signatures for each time

interval in order to identify failing intervals and store them. Hence, we can skip error-

free intervals and increase the observation window for the same amount of available

memory. In addition, a trigger module can be implemented in order to “snoop” on

the observed bus and issue a trigger when a specified transaction occurs on the bus.

This trigger will initiate the tracing procedure, skipping irrelevant and potentially

non-deterministic parts of the test. In this section, we first provide a brief overview

of the proposed debug flow and the debug architecture and finally, discuss details of

the implementation.

Fig. 5.1 shows an overview of the proposed debug flow. In Step 1, prior to the

actual debug session, “golden” signatures are generated by simulation of the test pro-

gram using a behavioral model of the circuit. Alternatively, the signatures can be

calculated using emulations on a FPGA prototyping board. This approach is espe-

cially useful for large SoCs, simulations of which may be impractical. As multiple

sets of internal signals can be tapped for tracing, a separate set of golden signatures

is needed for each signal set. However, all signature sets can be generated in one sim-

105

Figure 5.1: Proposed debug flow.

Table 5.1
Symbol Meaning

Lt Number of observed signals
Mt Buffer depth and interval length in cycles
Kt MISR length
Nt Length of the observation window in cycles
St Timestamp length

Wmem Memory-interface width

ulation run. Steps 2-4 are applied on the debug equipment. In Step 2, a set of golden

signatures for the selected internal bus to trace are uploaded to the circuit under

test (CUT), for instance, through an IEEE 1149.1 (JTAG) interface [21] or through

shared I/O chip pins. In Step 3, the test program is executed, the selected signals

are traced, and the trace data is stored into the DRAM. In Step 4, the stored data is

downloaded to the external equipment and stored for analysis. Next, another debug

session can be executed with a different setup, for instance, (a) with different trace

signals, (b) different test program, or (c) different temperature and voltage settings.

Finally, in Step 5, the obtained trace data is analyzed, which can be performed offline

on a work station, freeing the test equipment for another experiments.

Fig. 5.2 provides an overview of the proposed architecture, including the data flow

between modules. In this work, we use the notation as shown in Table 5.1, which is

similar to that used in [74] for ease of comparison.

106

Figure 5.2: Overview of the proposed design-for-debug architecture.

We capture Lt signals at the functional clock frequency and shift in the sampled

values into an Lt�Mt trace buffer, where Lt is the width and Mt is the depth of the

buffer. This buffer serves as a temporary storage of trace data captured in one time

interval of the length Mt. At the same time, we feed the observed signals through

an Lt-to-Kt compactor into an Lt-bit multiple-input signature register (MISR) to

identify failing intervals and skip the storage of error-free intervals. The compactor is

optional and its purpose is to match the input width of the MISR to the width of the

observed bus; it can be implemented as an XOR tree. The MISR calculates a Kt-bit

long signature for each interval of Mt cycles that is used to identify failing intervals

by comparing it with expected signatures that are stored in DRAM. Once a signature

miscompare is detected, the captured data from the current interval is uploaded to

the shadow buffer, from where it is shifted into the DRAM, together with the number

of the current interval as time stamp. The trigger module is optional and it can be

used to start capturing trace signals upon given transactions occurring on the bus.

This module constantly tries to match the observed signals with a pre-loaded pattern

and when a match occurs, a trigger signal is asserted, which triggers the starting

107

point of signature generation. The control logic starts and ends the debug session

and provides control signals to other DfD blocks and DRAM.

The following subsections discuss the MISR, the buffers, the trigger module, the

control block, as well as the interface with DRAM in detail.

5.1.1 Multiple-Input Signature Register (MISR)

MISR-based lossy compression has been used in [74] to identify failing intervals, as

well as in [75] to identify failing clock cycles. However, our approach differs from prior

work in that we store previously calculated signatures in the DRAM and compare

them with the actual signatures at run-time. This has the following advantages: (a)

we do not require external hardware for signature comparison and identification of

failing intervals; (b) we only require one debug iteration for a set of Lt selected signals,

whereas previously proposed methods require multiple iterations and intermediate

processing steps. Therefore, our method is more efficient and it can be applied during

functional test on ATE to observe a set of any Lt internal signals while introducing

little overhead due to data upload and download. The data acquired in this manner

can be processed offline for the identification of systemic defects.

In order to ensure continuous generation of signatures at-speed, we employ two

alternating MISRs. While one MISR is generating a signature for the current interval,

the other MISR is on halt, holding the signature from the previous interval. This

signature is compared with the expected signature, followed by a reset of the halted

MISR prior to the start of the next interval, where the MISRs change their roles.

The expected MISR signatures are pre-calculated by simulating the behavioral

model of the circuit. This calculation requires that the observed nodes always produce

the same trace data. This is the case if the internal memory elements of the circuit

are initialized and deterministic input data is applied. However, some designs do

not provision for the initialization of all memory elements, hence, the observed trace

108

data may exhibit some level of non-determinism. To cope with that, we propose two

solutions. In the first solution, we identify intervals containing non-deterministic data

(“unknown” or “X”) using simulation and choose a random expected signature (e.g,

all “0s”) for these intervals. During debug, it is likely that the actual signature for

these intervals will be different from the randomly chosen ones and the trace data will

be stored. The probability of aliasing is in the order of 1{2Kt , where Kt is the length

of the MISR. This probability is negligibly low for sufficiently large values of Kt, for

instance, Kt � 32. The captured intervals of trace data containing non-deterministic

bits can be used for statistical analysis or they can be ignored. An alternative solution

is to provide a masking bit for each interval to the control circuitry in order to skip

unimportant intervals. This approach introduces some extra hardware overhead but

reduces the amount of data to store. Both techniques can also be combined in case a

few intervals containing non-deterministic bits need to be observed and the rest is of

no importance.

5.1.2 Trigger Module

The objective of the trigger module is to keep the tracing process on hold until the

observed bus reaches a certain state. This approach has several benefits. First, in a

functional test of a complex system, it may take a large and non-deterministic number

of clock cycles until the module under test reaches a deterministic state. Without

this technique, the debug equipment needs to set the starting point for tracing, which

is difficult in practice because of non-determinism.

Another benefit is that the trigger module can filter out specific events during the

debug session and record erroneous behaviour during those events, while ignoring the

rest of the session. For instance, a common scenario in debug is to observe a data

bus and verify that all data packages transferred through the bus match the expected

values. Using the proposed trigger mechanism, the debug module can filter out these

109

Figure 5.3: Architectural view of the trigger module.

data packages, e.g., by snooping on the data-valid signal, generate signatures of these

data, and match them with the golden signatures. Since the test defines the content of

the data packages and this information is easily available from a high-level description

of the test, no computationally expensive, clock-accurate simulations are required to

generate MISR signatures for a given test.

Figure 5.3 shows an architectural view of the trigger module. In order to snoop

on the traced signals, the trigger module reads a subset of the trace buffer. This

subset is a signal array of size Jt � Ht, where Jt is the number of the observed

signals that should be used for triggering (Jt Lt), and Ht is the maximum length

of the matching pattern in cycles (Ht Mt). This signal array effectively holds the

“history” of the bus of the last Ht cycles. In a simple implementation, when only rise

or fall conditions of a single signal are used for triggering, these parameters can be

set to Jt � 1 and Ht � 2, which will hold the state of two consecutive cycles. If this

array matches “10”, it indicates that a rising edge occurred in the last clock cycle.

A pattern “01” corresponds to a falling edge. In a more complex implementation, Jt

can be larger than 1 in order to match a combination of several signals, as well as Ht

can be larger than 2 for matching transitions that span over multiple clock cycles.

110

The Jt�Ht signal array is compared to a given pattern, which is held in a register

of the same size. For the case if certain bits of the observed signals need to be masked

when generating the trigger signal, another register is used that holds the mask. A

bit holding 1 in this mask indicates that the corresponding bit in the observed signal

array is matched with the pattern; otherwise, the corresponding bit in the signal array

is ignored, i.e., it will match any value of the corresponding bit in the pattern. Both

the observed signal array and the pattern are passed through bitwise AND gates,

such that don’t-care bits are set to 0, while care bits are preserved. The outputs of

the AND gates are compared using a comparator. If all care bits of the observed

signal array and the pattern match, the trigger signal is asserted and sent to CTRL,

indicated that a transition of interest occurred and that the DfD circuitry should

start the actual tracing process.

Figure 5.4 shows a configuration example for matching transitions occurring on a

4-bit bus. In this example, the trigger needs to be asserted after a transition 10 Ñ 01

occurs on the first two bits of the bus (bus[1:0]), followed by a transition 00 Ñ 11 on

the last two bits of the bus (bus[3:2]). These transitions are shown in Figure 5.4 as

the content of the 4�3 trace buffer segment, where “x” represents a don’t-care value.

In order to match this event, the pattern register is loaded with the corresponding

values, where don’t care bits are filled with random values, for instance, 0s. The mask

is loaded such that all care-bit locations are loaded with 1s, and the rest is filled with

0s.

Both the pattern and the mask registers are loaded with pre-defined values by

CTRL, which gets these data from DRAM, in a similar fashion as golden MISR

signatures are downloaded from DRAM for comparison. Both registers are loaded at

the time when the test starts. In a more complex implementation, the registers can be

dynamically updated during a debug session in order to match different transitions.

111

Figure 5.4: Setup example for a transition recognition.

5.1.3 Trace Buffer and Shadow Buffer

The goal of the proposed architecture is to identify intervals containing erroneous

trace data and store them in DRAM. As the DRAM may operate at a different

(lower) frequency compared to the data-sampling frequency, we use an Lt�Mt trace

buffer to temporarily store the trace data.

The sampled trace data is shifted into the trace buffer. Every Mt cycles, before a

new interval begins, the content of the trace buffer is copied into the shadow buffer,

which has the same capacity as the trace buffer. The purpose of the shadow buffer

is to hold an interval of trace data Ii until it is transferred to the DRAM, while the

next interval Ii�1 is sampled into the trace buffer, such that no trace data is lost.

In addition, the shadow buffer serves as an adapter to the memory interface, which

can operate at a frequency different from the sampling frequency and have a data

bit-width Wmem different from Lt. In Fig. 5.2, we assume that Wmem is a multiple of

Lt, i.e., Wmem � ktLt such that we can partition the shadow register into kt segments

that simultaneously shift their content into the DRAM. For instance, if the write data

channel is 128 bits wide and the number of observed signals is 32, the shadow register

is split into four segments, each of which feeds into the 128-bit-wide data channel.

This allows for sampling frequencies much higher than the memory bus operating

frequency (up to 4x).

112

Figure 5.5: Operations of DfD modules during signal tracing.

5.1.4 Control Logic

The control logic block (CTRL) provides control signals to the other DfD blocks and

schedules their operations as shown in Fig. 5.5. The observation window is divided

into intervals of size Mt each. For each interval Ii, the active MISR calculates a

corresponding signature Si. Every Mt cycles, CTRL sends a signal to the trace buffer

to upload Ii into the shadow register (SR). Before the capturing of Ii is complete, the

expected signature Ei is loaded from the DRAM into an extra register in CTRL. At

the time when the capturing of Ii is complete, i.e., at cycle nsMt, ns � 1, 2, ..., the

MISRs switch roles, and the generated signature is compared with a golden signature.

After that, the inactive MISR is reset, while the other MISR is generating a signature

for the next interval.

If a miscompare of signatures occurs, CTRL first writes the current time stamp

Ti into DRAM for interval identification. The word Ti is simply the value of an

interval counter that is incremented every M cycles. Next, CTRL initiates shifting of

the erroneous interval from SR into the DRAM. This operation must be completed

before the next DRAM reading operation, i.e., loading the expected signature. This

ensures that DRAM write and read operations do not overlap. CTRL also generates

the address signals for the DRAM in order to (a) access the expected signatures for

each interval, and (b) store failed intervals. This is implemented as two counters that

113

are multiplexed into the address lines of the DRAM. These counters are initialized

depending on where the memory block containing the expected signatures and the

block containing trace data should be placed in the memory space.

In order to schedule the operations as described above, CTRL employs a finite-

state machine (FSM) that generates control signals for other blocks in the DfD mod-

ule. Fig. 5.6 shows the state diagram of this FSM. After deasserting the reset signal

rst, the FSM moves into State “read signature” in order to fetch the expected sig-

nature for the next interval. If a trigger module is employed, the FSM remains in

State “reset” until both the signal rst is deasserted and the trigger is issued. In this

case, the DfD module will start capturing data only after a desired transition was

observed. In addition, the shadow register is updated and signatures are compared

in this state. In case of a miscompare, the FMS moves to “write time” and then to

“write dada” in order to store the time stamp and the trace data, respectively. After

that, the FSM waits in State “idle” until a new interval starts, which is determined

by a cycle counter cycle cnt. This procedure repeats until the interval counter has

reached a specified value or until rst is asserted. At the end of the debug session,

the counter pointing to the current address of the trace data in DRAM can be read

by the external equipment in order to know what part of DRAM contains the trace

data, which also implies the number of failed intervals.

Fig. 5.7 shows an example of a timing diagram for control signals generated by

CTRL for another DfD blocks. Trace data is sampled by the MISRs and the trace

buffer on positive edges of clk. MISR sel alternates every interval and selects between

the MISRs, such that MISR1 is active during even intervals, and MISR2 is active

during odd intervals. MISR1 rst and MISR2 rst reset the corresponding MISRs at

the end of their inactive interval. After the last value of an interval is sampled,

SR update is asserted on the negative edge of clk in order to update the content

114

write
time

write
data

read
sign.

reset idle

rst<=0

rst=1

miscomp<=0

miscomp<=1
cycle_cnt<=0

done

int_count<=max_int

Figure 5.6: State diagram for the control block CTRL.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

clk

data

MISR1_rst

MISR2_rst

0

MISR_sel

SR_update

sign_read
sign_comp

time_write
data_write

Interval I0 Interval I1

1

Figure 5.7: Timing diagram for control signals.

of the shadow register from the trace buffer. At the beginning of each interval,

sign read is asserted for reading the expected signature for the current interval from

the DRAM. The signal sign comp initiates the comparison of the generated signature

with the expected one; therefore it is asserted. If a signature miscompare is detected,

time write and data write are asserted after each other to initiate the writing in the

DRAM of the timestamp and the content of the shadow register, respectively.

5.1.5 Interface with DRAM: Challenges, Limitations, and Solutions

Challenges associated with the proposed method are related to the requirement to

communicate with DRAM during functional test. First, the test program may also

be using DRAM, limiting the storage available for trace data. In this case, we assume

that the DRAM can be partitioned such that one partition is dedicated for trace-data

115

storage. Second, enough bandwidth must be available to shift the trace data in the

DRAM at-speed. This is a reasonable assumption for functional tests that resemble

real applications, as they are meant to be run in parallel with other applications, hence

not consuming all available memory resources. Third, DRAM access operations from

the DfD module need to be scheduled such that they do not interfere with the test

program. Therefore, the interface with the DRAM requires special attention.

The data flow to and from the DRAM is typically managed by a memory con-

troller. A realistic assumption is that processor cores and other embedded cores that

are on the same die, have shared access to the memory controller through a memory

bus. An example of such bus is AMBA AXI that has a wide range of applications

[122]. In this scenario, we can treat the DfD module as a core and connect it to the

bus in order to get access to the DRAM. The CTRL block needs to be enhanced with

an interface to the bus, and this interface clearly depends on the bus architecture. The

available bandwidth through this interface will be a limiting factor for the number

of observed signals. However, emerging standards for wide-I/O DRAM promise high

bandwidths, even a fraction of which is sufficient for the proposed method. For in-

stance, 10% of the JEDEC Wide I/O 2 maximum bandwidth (51.2 GB/s) is sufficient

to trace 32 signals at 1 GHz frequency (4 GB/s).

The proposed approach can be implemented using the infrastructure described

in [76]. Note that [76] describes only a generic debug architecture and it does not

consider selective storing of trace data using MISR signatures.

Another challenge related to the interface with the DRAM is potentially long

memory-access latencies, especially if multiple modules connected to the bus request

memory access at the same time. For instance, if the read-access latency exceeds

one interval (Mt clock cycles), the expected signature will not be available for the

comparison. Write-access latency is less critical, as memory controllers typically

116

employ buffers for data to be written in the DRAM. However, certain test programs

may cause high data-traffic peaks, in which case the DfD module will not be able

to store a faulty interval within Mt cycles. To address the latency problem, we

can select a sufficiently large Mt based on the memory-interface specification. As

reported in [123], the average access latency of 3D-stacked DRAM using TSVs is

25 ns. Including the overhead due to the data bus and the memory controller, the

latencies for loading expected signatures and storing trace data is considerably lower

than 64 clock cycles at 1 GHz frequency; therefore we select the minimum depth

of the trace buffer Mt,min � 64 in this work. However, Mt,min needs to be adjusted

depending on the specification of the memory controller and the memory workload

of the test program. Test programs causing excessive memory access operations may

increase the maximum memory latency for the DfD module; therefore Mt will need

to be increased accordingly.

5.1.6 Analysis of Compression Effectiveness

By storing only erroneous intervals, we effectively achieve compression of trace data.

We can estimate the compression ratio based on the frequency of errors in the stream

of trace data, using the total amount of observed trace data as a baseline. The data

that we store includes the actual trace data, the expected signatures, and the time

stamps.

First, recall that we denote the length of the observation window as Nt (in clock

cycles). The total amount of bits observed is therefore LtNt, which we use as a

baseline. The total number of intervals can be expressed as Nt{Mt. Each interval

signature contains Kt bits, hence the amount of bits required to store all signatures

is NtKt

Mt
. Under the commonly made assumption that errors in the data stream are

independent and erroneous words on the observed bus occur with the probability p,

we can calculate the probability that an interval of length Mt bits contains at least

117

one erroneous word as

P � 1� p1� pqMt .

We define a random variable Xe as the number of erroneous intervals in the observed

data stream. The expectation of Xe can be expressed as

ErXes � P
Nt

Mt

,

which we use to calculate the expected number of bits to be stored as

ErXespSt � LtMtq �
PNt

Mt

pSt � LtMtq,

where St is the size of the time stamp that is added to each interval for identification.

Now we can calculate the compression ratio using the total number of bits in the

stream as a baseline:

r �
number of bits in stream

stored data
�

LtNt

PNt

Mt
pSt � LtMtq �

KtNt

Mt

(5.1)

�
LtMt

p1� p1� pqMtqpSt � LtMtq �Kt

(5.2)

Fig. 5.8 shows the compression ratio r as function of error probability p for the

case Lt � Kt � 32, St � 32, and different values of Mt. For practical reasons, all

implementation-related input parameters are powers of two. For low error probabili-

ties, only a few intervals are erroneous and need to be stored, hence the stored data

is dominated by the expected signatures, allowing for high compression. In the case

of a high error probability, nearly all intervals are erroneous and need to be stored,

in addition to the expected signatures, hence no compression is achieved. This obser-

vation is consistent with Fig. 5.8, as Mt � 128 provides the highest compression for

small values of p, and Mt � 1024 provides the highest compression for large values of

p.

118

10
−7

10
−6

10
−5

10
−4

0

100

200

300

400

500

600

700

800

900

1000

Error probability p

C
om

pr
es

si
on

 r
at

io
 r

M=128
M=256
M=512
M=1024

Figure 5.8: Compression ratio r as function of error probability p for Lt � Kt � 32,
St � 32, and different values of Mt in the case of a uniform distribution.

Similarly, we can obtain the compression ratio for the model using burst errors

of a fixed size B. We assume that the depth of the trace buffers is larger than B,

hence an error burst either occurs within one interval of size Mt or overlaps two

intervals. In worst case, each burst overlaps two intervals and any two neighboring

burst are sufficiently far apart such that no two bursts occur within the same interval.

Therefore, the maximum number of erroneous intervals is twice the number of bursts,

the expectation of which is rpNt{Bs. As we store the trace data for each interval

including the time stamp of size St, the amount of data that needs to be downloaded

from DRAM is 2rpNt{Bs � pLtMt � Sq. In addition, expected MISR signatures of

total size KN{M need to be uploaded prior to the debug session. Therefore, the

119

10
−6

10
−5

10
−4

10
−3

10
−2

0

20

40

60

80

100

120

140

Error probability p

C
om

pr
es

si
on

 r
at

io
 r

uniform
B=32
B=128
B=256

Figure 5.9: Compression ratio r as function of error probability p for Lt � Kt � 32,
St � 32, and Mt � 128 in the case of error bursts of different lengths.

resulting worst-case compression ratio can be calculated as

r �
number of bits in stream

stored data
(5.3)

�
LtNt

2

R
pNt

B

V
pLtMt � Stq �

KtNt

Mt

(5.4)

Fig. 5.9 shows the compression ratio in the case of error bursts, where “uniform”

corresponds to uniformly distributed errors. As erroneous words are clustered in this

case, we can achieve high compression even for relatively large values of p.

Given a given p, large buffers are more likely to capture at least one erroneous bit

and hence more trace data need to be stored compared to smaller buffers. However,

small buffers result in more intervals and hence more expected signatures that need

to be uploaded to DRAM. Therefore, we can optimize the depth of the trace buffers

120

Mt for better compression depending on the assumed error probability p.

For sufficiently low error probabilities, i.e., p ! 1, p1 � pqMt � p1 � pMtq, hence

we can simplify Equation (5.2) to

r �
Mt

pMtpSt � LtMtq �Kt

.

By setting the derivative Br{BMt to zero, we can find that Mt �
b

Kt

pLt
provides

maximum compression for the case when other parameters are given. However, Mt

needs to satisfy the following constraints for practical reasons:

� Mt should be a power of two in order to simplify the implementation.

� Mt should have an upper limit due to silicon-area overhead. A reasonable

number for this limit in case of Lt � 32 is Mt,max � 512, such that the combined

memory size of the trace buffer and shadow register is 4 KB, which is used as

the maximum buffer size in [75].

� Mt should have a lower limit; otherwise the interval length will be shorter than

the memory latency and the DfD module will not be able to fetch expected

responses and store trace data on time. As explained above, we use Mt,min � 64

in this work. However, this number needs to be adjusted depending on the

specification of the memory controller and the memory workload of the test

program.

Due to these constraints, optimal values of Mt can be represented as a descend-

ing staircase function of p as shown in Fig. 5.10, where Mt,u is the unconstrained

diagram for optimal Mt. The jump points that can be calculated by equating

rpMtq � rp2Mtq. Solving this equation for p provides the jump points p � Kt

2LtM2
t

where Mt � t64, 128, 256u. The observation that optimal values of Mt are decreasing

121

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
−4

64

128

256

512

Error probability p

O
pt

im
al

 M
t

M

t,u

M
t

Figure 5.10: Optimal trace depth Mt as a function of error probability p for the
case Lt � Kt � 32.

with the increasing values of p, is consistent with Fig. 5.8. Using this diagram, we can

select the depth of the trace buffers in order to maximize data compression, reducing

the memory requirements and the communication time with the ATE.

5.2 Simulation Results

5.2.1 DfD Implementation and Simulation

We created a Verilog RTL model of the proposed architecture shown in Fig. 5.2 and

synthesized it using a 45 nm CMOS library [95]. For the case Lt � Kt � 32, St � 32,

Jt � 8, Ht � 4, and Mt � 128, the synthesized circuit contained 8357 sequential

and 8783 combinational gates. The standard-cell area of the design was 0.062 mm2,

which is negligible for realistic chips. For instance, on a 25 mm2 die, the DfD circuitry

would only occupy 0.25% of the die area.

122

In the first simulation, we verified the functionality of the design through simula-

tion by using randomly generated data as an input stream. First, we calculated the

expected signatures by applying the input stream to the MISR and recorded its value

every Mt cycles. In the second run, we simulated the full circuitry, where the DRAM

was modeled as a Verilog module and initialized with the pre-calculated signatures.

As expected, all intervals passed the comparison and no trace data was stored into

the DRAM. In the third run, we injected errors by altering some of the bits in the

input stream. As expected, the circuitry was able to identify erroneous intervals and

store them into the DRAM.

Next, we experimented with a Verilog model of a JPEG encoder [84]. We in-

stantiated an instance of the encoder and an instance of the DfD module with the

parameters Lt � Kt � 32, St � 32, and Mt � 64, and connected the decoder to

an internal data bus in the encoder. First, we simulated the encoding of a picture

in JPEG format (11,432 clock cycles) using the fault-free model, and recorded 177

golden MISR signatures, starting from clock cycle 125 in order to avoid uninitialized

states of the bus. Then, we injected bugs in the RTL code of a FIFO unit within the

encoder module and re-ran the simulation with the enabled DfD module. Depending

on the location of the bug, we could observe a different behavior of the circuit. In

some cases, a bug caused errors in all 177 intervals, resulting in storage of the all

traced data. In practice, however, this kind of bugs is relatively simple to localize,

as the errors already start to occur within the first few hundred clock cycles. In

other cases, a bug manifested itself after 5,127 error-free clock cycles, i.e., after 78

error-free intervals, corrupting all following intervals. As expected, error-free intervals

were excluded from storage in the DRAM. Therefore, only 56% of the intervals had

to be stored for analysis. This type of a bug is difficult to localize using conventional

tracing methods, as many iterations are required to identify the time window when

123

errors start to occur. The proposed method allows for rapid error localization using

only one iteration.

Finally, we simulated a Verilog model of a hyper-pipelined microprocessor Open-

RISC 1200 HP [84]. As in the previous simulation, an instance of the DfD module

with the parameters Lt � Kt � 32, St � 32, and Mt � 64 was connected to an

address bus within the CPU. We executed a random instruction sequence over 20,000

clock cycles and recorded 313 golden signatures. Next, we injected bugs in the control

flow of the program-counter generation unit. Similar to the previous simulation, some

bugs corrupted all intervals. However, a certain bug resulted in only six erroneous

intervals that were scattered over the entire observation window of 313 intervals.

Therefore, only 2% of the intervals had to be stored in the DRAM for analysis. An-

other bug in the datapath of the ALU caused several short error bursts, resulting

in only four erroneous intervals (1.3%) that occurred at the end of the observation

window. In practice, this kind of bug requires an extensive effort for localization, as

the observed data is erroneous for only a few clock cycles during the entire observa-

tion window. Using the proposed method, we can efficiently identify and store the

erroneous intervals in only one iteration.

5.2.2 Comparison with Method Proposed in [75]

We next compared our framework with the method based on selective capture pro-

posed in [75]. The first four columns of Table 5.2 repeat the data published in [75]:

the design used, the trace buffer size, the error probability, and the length of the

expanded observation window. We use these data to (a) compare the debug-session

time, and (b) estimate the required DRAM capacity in order to achieve the same

observation window using our framework.

First, we detail the calculation of the estimated debug-session time. This time

is the sum of the on-chip sampling time and the communication time, where the

124

Table 5.2: Comparison of debug-session time with prior work [75].
Method in [75] Proposed method

Buffer
Size

(Bytes)

Error
Prob1

p�100%

Window
size

(cycles)

Debug
time α=2

(1 K
cycles)

Debug
time α=10

(1 K
cycles)

Debug
time

Uniform,
α=2
(1 K

cycles)

Debug
time

Uniform,
α=10

(1 K
cycles)

Debug
time

Burst,
α=2
(1 K

cycles)

Debug
time

Burst,
α=10

(1 K
cycles)

DRAM
required

(KB)

ARM

512 0.016 19456 91.1 222.2 51.8 181.2 47.2 158.3 2.0

512 0.051 12032 68.9 199.9 49.2 198.0 32.4 113.8 2.3

512 0.097 8576 58.5 189.6 50.8 219.7 25.5 93.1 2.6

512 0.513 3072 42.0 173.1 62.7 301.0 14.5 60.0 3.6

512 1.387 1792 38.1 169.2 73.5 360.2 20.2 94.0 4.4

4096 0.016 132096 658.4 1707.0 351.7 1230.0 280.8 875.8 13.4

4096 0.051 61440 446.5 1495.0 251.4 1011.2 139.5 451.8 11.6

4096 0.097 39936 382.0 1430.5 236.5 1023.0 104.8 364.4 12.0

4096 0.513 17408 314.4 1362.9 355.0 1705.5 84.7 354.0 20.6

4096 1.387 10240 292.9 1341.4 419.8 2058.2 95.4 435.8 25.0

NoC

512 0.037 4864.0 47.4 178.4 17.1 66.1 18.0 70.8 0.7

512 0.072 3392 42.9 174.0 16.8 70.4 15.1 62.0 0.8

1024 0.037 9088 92.8 354.9 32.0 123.6 26.5 96.1 1.4

1024 0.072 7552 88.2 350.3 37.4 156.7 23.4 86.9 1.8

2048 0.037 16384 180.2 704.5 57.7 222.8 41.1 139.9 2.5

2048 0.072 13568 171.8 696.1 67.2 281.6 35.5 123.0 3.3

4096 0.037 34816 366.6 1415.2 122.5 473.4 78.0 250.5 5.4

4096 0.072 24064 334.3 1382.9 119.1 499.4 64.8 227.6 5.8
1Referred to as “error rate” in [75]

computation time between iterations is neglected [74]. The method in [75] requires

three iterations, hence the on-chip sampling time can be estimated as 3 � N{fCUD,

where N is the length of the expanded window in cycles and fCUD is the operating

frequency of the circuit under test (sampling frequency). After the first iteration,

parity data needs to be downloaded from the trace buffer to the external equipment.

After the second iteration, generated signatures need to be downloaded and the tag

data uploaded into the trace buffer. Finally, the actual trace data is downloaded. In

total, the trace buffer needs to be accessed four times; therefore, the communication

time can be estimated as 4�T �α{fCUD, where T is the size of the trace buffer and α

is the ratio of fCUD to the frequency of the external equipment, which is usually slower

than fCUD. The total debug time expressed in functional clock cycles is therefore

3Nt � 4αT.

We calculated this time for the method proposed in [75] for two values of α, 2 and

125

10, as shown in Table 5.2.

For comparison, we show in Table 5.2 the estimated debug time using the method

proposed in this work for the same input parameters. We consider two cases: uniform

error distribution and burst errors, which is used in [74]. Our method requires only

one iteration, hence the sampling time is Nt{fCUD. The communication time in

case of a uniform defect distribution can be estimated using the compression ratio r

calculated in Equation (5.2) as NtLt{r � α{fCUD, where NtLt is the uncompressed

observed data in bits. Therefore, the total debug time expressed in functional clock

cycles is

Ntp1� αLt{rq.

The depth of the trace buffers in our framework was set to Mt � 64, which was

optimal for most given error probabilities. Note that we only use the trace buffer as a

temporary storage before transferring the data to the DRAM, hence the trace buffers

can be small even for large observation windows. For burst errors, we estimated the

communication time as follows. As described in Section 5.1.6, the amount of data

that needs to be downloaded from DRAM is 2rpNt{Bs � pLtMt � Stq, where B is

the burst length. In addition, expected MISR signatures of total size KtNt{Mt need

to be uploaded prior to the debug session. The resulting debug time expressed in

functional clock cycles totals

Nt � α

�
2

R
pNt

B

V
pLtMt � Stq �

KtNt

Mt

.

We calculated these values using Mt � Bt � 64 for α � 2 and α � 10, as shown in

Table 5.2. In addition, we estimated the amount of DRAM that must be available in

order to achieve the same length of the observation as in prior work [75], shown in

the last column of Table 5.2.

The results presented in Table 5.2 show that the debug time of our method is

126

shorter than that of method in [75] for low error probabilities in case of uniform

distribution. In case of burst errors, the debug time of the proposed method is even

shorter since erroneous data words are condensed, resulting in less erroneous intervals

that need to be stored. In order to achieve the same observation windows as in prior

work, the proposed method requires only a few KB of available DRAM. In realistic

circuits, such as in IC with eDRAM or 3D-ICs with wide-I/O DRAM, the amount

of available on-chip-like memory will be larger by several orders of magnitude, hence

we can extend the observation window by the same factor, resulting in much more

efficient debug sessions.

In addition, we can compare the proposed method with the framework in [75]

in terms of robustness. Both methods require deterministic execution of the test

program in order to calculate “golden” signatures. However, even if the trace data

observed in a fault-free circuit is deterministic, the values observed in a faulty circuit

can be non-deterministic. For instance, an electrical bug can cause metastability

issues on timing-critical paths, such that the affected flip-flops capture erroneous

values only with a probability less than one. In cases of such electrical bugs, the tag

data generated during one iteration in method proposed in [75] may not correspond

to the actual erroneous cycles in the next iteration. Hence the data obtained by using

this method may not represent the “full picture”. In our framework, it is guaranteed

that all erroneous cycles are captured unless an aliasing occurs, which is unlikely for

sufficiently large K. Even if erroneous cycles are different for each test-program run,

we can obtain a “full picture” containing all erroneous data for each run independently

of previous runs.

5.2.3 Comparison with Method Proposed in [74]

In [74], the authors calculate the ratio of the debug time Tprop compared to the

debug time using sequential debug sessions Tseq. In Table 5.3, we compare the results

127

Table 5.3: Comparison of debug-session time with prior work [74].

Error
Prob1

p �
100%

Tseq{Tprop for different burst length X
DRAM
(MB)B � 64 B � 128 B � 256 B � 512

[74] Prop. [74] Prop. [74] Prop. [74] Prop.

0.78 13.2 191.2 21.9 229.9 32.8 255.8 48.9 271.0 2.0

1.55 7.2 143.6 12.1 191.7 18.6 230.2 26.4 255.8 3.0

2.3 5.0 114.9 8.4 164.2 13.2 209.0 18.4 242.1 4.0

3.08 4.0 96.0 6.6 144.0 10.3 191.9 14.6 230.2 5.0

3.83 3.3 82.6 5.4 128.4 8.4 177.6 12.0 219.8 6.0

4.58 2.8 72.5 4.6 115.8 7.2 165.1 10.3 210.0 7.0
1Referred to as “error rate” in [74]

obtaining using the proposed method with those presented in [74]. We calculate

Tseq{Tprop for the proposed method as follows:

Tseq
Tprop

�
p1�Nt{Mtq �Nt{2� αNtLt

Nt � α

�
2

R
pNt

B

V
pLtMt � Stq �

KtNt

Mt

The results show that the debug time using the framework proposed in this work is

5–20 times faster compared to that in [74] by using less than 7 MB of DRAM. Note

that this memory is part of functional DRAM, hence it does not introduce any extra

overhead on the chip.

5.3 Conclusion

We propose a framework for massive signal tracing in ICs that integrate fast DRAM,

such as 2D-ICs with embedded DRAM or 3D-stacked ICs with wide-I/O DRAM dies.

By using a relatively large on-chip DRAM for trace-data storage, we can increase the

observation window by orders of magnitude compared to traditional methods that

use trace buffers. Erroneous intervals are selectively captured into the DRAM by

generating MISR signatures of the trace data and comparing them with the expected

signatures that are pre-calculated offline and uploaded to the DRAM before a debug

session. In addition, a triggering mechanism is employed to start capturing trace data

128

only after a defined transition occurs on the observed signal bus. This technique can

eliminate issues related to non-determinism in tests in realistic systems by focusing on

deterministic and hence predictable segments of a test. As a side effect, this technique

can also simplify the generation of golden signatures. The proposed method allows for

capturing erroneous intervals in one iteration without intermediate processing steps.

This allows for signal tracing on ATE during execution of functional tests in volume

manufacturing, providing extra information for diagnosis of systemic defects. The

area overhead of the proposed design-for-debug circuitry is comparable with that of

the existing methods and is negligible for realistic designs.

129

6

Conclusions

This dissertation has covered several research topics related to testing, design-for-

test, and debug for 3D-stacked ICs. These topics include test-content generation,

test access, and diagnosis and debug.

Chapter 2 presented a solution for TSV-stress aware test-pattern generation. Con-

ventional circuit models used for ATPG disregard the effects of TSV-induced stress

on the timing profile of the circuit, which is a crucial information for generating tests

targeting small-delay defects. Using TSV-stress oblivious circuit models for these

tests results in degraded test quality. We verified this by evaluating conventional,

non-stress aware test patters on stress-aware circuit models. The results show that

neglecting TSV stress leads to a higher test escape rate compared to that obtained

using TSV-stress aware models. Employing the proposed TSV-stress aware flow re-

duces the test escape rate to the expected levels, without a noticeable impact on the

test-pattern count.

Chapter 3 proposed a method for pre-bond TSV test. Detecting defects in TSVs

at the pre-bond stage is challenging due to their limited. The proposed solution

employs ring oscillators and duty-cycle detectors to target these defects, which can

130

be modeled as resistive-open faults and leakage faults. The TSVs under test are used

as capacitive loads of the ring oscillators. Defects in TSVs lead to variations of TSV

capacitance and resistance and therefore affect the oscillation period and the duty

cycle of the produced oscillating signal. By measuring the oscillation period and the

duty cycle, the proposed on-chip design-for-test circuitry is able to detect these faults.

The measured values serve as inputs to a regression model created based on artificial

neural networks. This model distinguishes between resistive-open and leakage faults

and estimates their size. In order to increase diagnosis accuracy, the oscillation period

and the duty cycle are measured at multiple voltage levels. Simulation results showed

that this method is able to accurately diagnose TSV faults even in the presence of

process variations.

Chapter 4 presented a framework for robust optimization of test-access architec-

tures for 3D ICs. In contrast to traditional, non-robust optimization methods, the

proposed approach takes uncertainties in input parameter values into account. Exam-

ples of such parameters include maximum allowed test power and the bit-width of the

die test-access mechanism. Robust solutions are optimized for a range of uncertain in-

put parameter values. Simulation results showed that non-robust solutions may be far

away from point-optimal solutions when the input parameter values change, whereas

robust solutions remain close to point-optimal solutions for a variety of scenarios.

In Chapter 5, we proposed a method for on-chip signal tracing for 3D-ICs that

integrate large amounts of DRAM. The proposed debug architecture detects erroneous

behavior of the observed signals using pre-calculated signatures and stores the signal

values into functional DRAM, from which it can be transferred to external debug

equipment. Compared to traditional signal tracing methods that use dedicated on-

chip trace buffers, the proposed method allows for debug sessions that are orders of

magnitude longer, significantly simplifying the debug effort.

131

6.1 Future Research Directions

3D IC testing offers several opportunities for research in order to improve current

solutions and bring 3D IC closer to volume manufacturing. One such topic is TSV test.

This dissertation mainly focused on pre-bond TSV test. However, testing TSV-based

connections after bonding is required to ensure that no new defects were introduced

during the bonding process, for instance, misaligned micro-bumps. Further research

can be conducted to extend the proposed solution for pre-bond TSV test and create

a unified solution for both pre-bond and post-bond TSV test.

The realm of robust optimization of test-access architectures for 3D ICs can be

further explored in future research. This dissertation provided an initial framework

for robust optimization, which targeted test-time optimization at die level, i.e., under

the assumption that each die in the stack is tested in isolation from the other dies.

This framework can be extended to cover possible scenarios, in which modules from

different dies in the stack are tested in parallel. Another improvement of the proposed

method could be considering the temperature constraints during test. The power

dissipated during test may lead to overheating problems. The framework proposed

in this dissertation used a limit on maximum test power to prevent issues related

to both voltage droop and overheating. However, this model can be improved to

account for dynamic behavior of heat dissipation in a 3D stack, which depends on

many factors, including the property of the packaging, physical location of modules

under test within the stack, and the duration of the test. A possible direction for

future research is to incorporate such models in the proposed framework.

132

Bibliography

[1] P. Garrou, C. Bower, and P. Ramm, Eds., Handbook of 3D Integration – Tech-
nology and Applications of 3D Integrated Circuits. Weinheim, Germany: Wiley-
VCH, Aug. 2008.

[2] E. J. Marinissen, B. De Wachter, K. Smith, J. Kiesewetter, M. Taouil, and
S. Hamdioui, “Direct Probing on Large-Array Fine-Pitch Micro-Bumps of a
Wide-I/O Logic-Memory Interface,” in Proceedings IEEE International Test
Conference (ITC), Oct. 2014, pp. 1–10.

[3] G. V. der Plas et al., “Design Issues and Considerations for Low-Cost 3-D
TSV IC Technology,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp.
293–307, January 2011.

[4] H.-H. S. Lee and K. Chakrabarty, “Test Challenges for 3D Integrated Circuits,”
IEEE Design & Test of Computers, vol. 26, no. 5, pp. 26–35, 2009.

[5] E. J. Marinissen and Y. Zorian, “Testing 3D Chips Containing Through-Silicon
Vias,” in Proceedings IEEE International Test Conference (ITC), Nov. 2009,
pp. 1–11.

[6] K. Chakrabarty, S. Deutsch, H. Thapliyal, and F. Ye, “TSV Defects and TSV-
induced Circuit Failures: The Third dimension in Test and Design-for-Test,”
in Reliability Physics Symposium (IRPS), 2012 IEEE International, 2012, pp.
5F–1.

[7] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller, “A Reconfigurable Design-for-Debug Infrastructure for SoCs,” in Pro-
ceedings ACM/IEEE Design Automation Conference (DAC), 2006, pp. 7–12.

[8] S. Mitra, S. A. Seshia, and N. Nicolici, “Post-Silicon Validation Opportunities,
Challenges and Recent Advances,” in Proceedings ACM/IEEE Design Automa-
tion Conference (DAC), 2010, pp. 12–17.

133

[9] W. R. Davis et al., “Demystifying 3D ICs: the Pros and Cons of Going Vertical,”
IEEE Design & Test of Computers, vol. 22, no. 6, pp. 498–510, 2005.

[10] A. Mercha et al., “Impact of thinning and through silicon via proximity on
high-k/metal gate first CMOS performance,” in VLSI Technology (VLSIT),
2010 Symposium on, 2010, pp. 109–110.

[11] J. Van Olmen et al., “3D Stacked IC Demonstration Using a Through Silicon
Via First Approach,” in Electron Devices Meeting, 2008. IEDM 2008. IEEE
International, 2008, pp. 1–4.

[12] H. Jones, Technical Viability of Stacked Silicon Intercon-
nect Technology. Xilinx, Oct. 2010, white Paper, see
http://www.xilinx.com/publications/technology/stacked-silicon-interconnect-
technology-ibs-research.pdf.

[13] K. Saban, Xilinx Stacked Silicon Interconnect Technol-
ogy Delivers Breakthrough FPGA Capacity, Bandwidth, and
Power Efficiency. Xilinx, Oct. 2010, white Paper, see
http://www.xilinx.com/support/documentation/white papers/wp380
Stacked Silicon Interconnect Technology.pdf.

[14] S. Deutsch et al., “DfT architecture and ATPG for Interconnect tests of JEDEC
Wide-I/O memory-on-logic die stacks,” in Proceedings IEEE International Test
Conference (ITC), 2012, pp. 1–10.

[15] R. Goering, “Three Die Stack – A Big Step “Up” for 3D-
ICs with TSVs,” in Cadence Community Blogs, Dec. 2011, (See
http://www.cadence.com/Community/blogs/ii/archive/2011/12/13/ three-
die-stack-a-big-step-up-for-3d-ics-with-tsvs.aspx).

[16] “ST-Ericsson and CEA-Leti’s WIOMING Prototype Shows How
To Combine Wide IO Memory and Logic SoC for Future 3D
Multi-Processor Architectures,” Yole Développement 3D Pack-
aging Newsletter, no. 22, pp. 16–18, Feb. 2012, http://www.i-
micronews.com/upload%5Cnewsletter%5C3DPackaging Feb2012 iMN.pdf.

[17] J. S. S. T. Association, Wide IO DRAM. JEDEC, Dec. 2011.

[18] E. J. Marinissen and Y. Zorian, “Testing 3D Chips Containing Through-Silicon
Vias,” in Proceedings IEEE International Test Conference (ITC), Nov. 2009,
paper ET1.1.

134

[19] E. Marinissen, C. Chi, J. Verbree, and M. Konijnenburg, “3D DfT Architec-
ture for Pre-bond and Post-bond Testing,” in Proceedings IEEE International
Conference on 3D System Integration (3DIC), 2010, pp. 1–8.

[20] I. C. Society, IEEE Std 1500TM-2005, IEEE Standard Testability Method for
Embedded Core-based Integrated Circuits. New York, NY, USA: IEEE, Aug.
2005.

[21] “IEEE Standard Test Access Port and Boundary Scan Architecture,” IEEE Std
1149.1-2001, 2001.

[22] E. Marinissen, S. Goel, and M. Lousberg, “Wrapper Design for Embedded Core
Test,” in Proceedings IEEE International Test Conference (ITC), 2000, pp. 911–
920.

[23] V. Iyengar, K. Chakrabarty, and E. Marinissen, “Test Wrapper and Test Access
Mechanism Co-optimization for System-on-Chip,” in Proceedings IEEE Inter-
national Test Conference (ITC), 2001, pp. 1023–1032.

[24] S. K. Goel and E. J. Marinissen, “SOC Test Architecture Design for Efficient
Utilization of Test Bandwidth,” ACM Transactions on Design Automation of
Electronic Systems, vol. 8, no. 4, pp. 399–429, Oct. 2003.

[25] E. Larsson, K. Arvidsson, H. Fujiwara, and Z. Peng, “Efficient Test Solutions for
Core-Based Designs,” IEEE Transactions on Computer-Aided Design, vol. 23,
no. 5, pp. 758–775, 2004.

[26] G. Giles, J. Wang, A. Sehgal, K. Balakrishnan, and J. Wingfield, “Test Access
Mechanism for Multiple Identical Cores,” in Proceedings IEEE International
Test Conference (ITC), 2009, pp. 1–10.

[27] V. Iyengar, K. Chakrabarty, and E. J. Marinissen, “Test Wrapper and Test
Access Mechanism Co-optimization for System-on-Chip,” Journal of Electronic
Testing, vol. 18, no. 2, pp. 213–230, 2002.

[28] ——, “On Using Rectangle Packing for SOC Wrapper/TAM Co-optimization,”
in Proceedings IEEE VLSI Test Symposium (VTS), 2002, pp. 253–258.

[29] T. Waayers, R. Morren, and R. Grandi, “Definition of a Robust Modular SOC
Test Architecture; Resurrection of the Single TAM Daisy-Chain,” in Proceedings
IEEE International Test Conference (ITC), 2005, pp. 10–pp.

135

[30] L. Jiang et al., “Layout-Driven Test-Architecture Design and Optimization for
3D SoCs under Pre-Bond Test-Pin-Count Constraint,” in ICCAD, Nov. 2009,
pp. 191–196.

[31] B. Noia et al., “Test-Architecture Optimization for TSV-Based 3D Stacked
ICs,” in Proceedings IEEE European Test Symposium (ETS), 2010, pp. 24–29.

[32] ——, “Test-Architecture Optimization and Test Scheduling for TSV-Based 3-D
Stacked ICs,” IEEE Transactions on Computer-Aided Design, vol. 30, no. 11,
pp. 1705 –1718, Nov. 2011.

[33] D. Malta et al., “Integrated Process for Defect-Dree Dopper Plating and
Chemical-Mechanical Polishing of Through-Silicon Vias for 3D Interconnects,”
in Electronic Components and Technology Conference (ECTC), Jun. 2010, pp.
1769–1775.

[34] M. Tsai et al., “Through Silicon Via (TSV) Defect/Pinhole Self Test Circuit
for 3D-IC,” in Proceedings IEEE International Conference on 3D System Inte-
gration (3DIC), Sep. 2009, pp. 1–8.

[35] C. Laviron et al., “Via First Approach Optimisation for Through Silicon Via
Applications,” in Electronic Components and Technology Conference (ECTC),
May 2009, pp. 14–19.

[36] G. Lee et al., “Mechanical characterization of residual stress around tsv through
instrumented indentation algorithm,” in Proceedings IEEE International Con-
ference on 3D System Integration (3DIC), 2012.

[37] C. Selvanayagam, J. Lau, X. Zhang, S. Seah, K. Vaidyanathan, and T. Chai,
“Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through
Silicon Via) and Their Flip-Chip Microbumps,” Advanced Packaging, IEEE
Transactions on, vol. 32, no. 4, pp. 720–728, Nov. 2009.

[38] K. H. Lu et al., “Thermomechanical Reliability of Through-Silicon Vias in 3D
Interconnects,” in Proceedings IEEE International Reliability Physics Sympo-
sium (IRPS), Apr. 2011, pp. 3D.1.1–3D.1.7.

[39] S.-K. Ryu et al., “Impact of Near-Surface Thermal Stresses on Interfacial Re-
liability of Through-Silicon Vias for 3-D Interconnects,” Device and Materials
Reliability, IEEE Transactions on, vol. 11, no. 1, pp. 35–43, Mar. 2011.

[40] J.-S. Yang et al., “TSV Stress Aware Timing Analysis with Applications to
3D-IC Layout Optimization,” in Proceedings ACM/IEEE Design Automation
Conference (DAC), Jun. 2010, pp. 803–806.

136

[41] N. Ahmed, M. Tehranipoor, and V. Jayaram, “Timing-Based Delay Test for
Screening Small Delay Defects,” in Proceedings ACM/IEEE Design Automation
Conference (DAC), 2006, pp. 320–325.

[42] Y.-M. Lin et al., “Electromigration in Ni/Sn Intermetallic Micro Bump Joint for
3D IC Chip Stacking,” in Electronic Components and Technology Conference
(ECTC), Jun. 2011, pp. 351–357.

[43] N. Ranganathan, K. Prasad, N. Balasubramanian, and K. Pey, “A Study of
Thermo-Mechanical Stress and Its Impact on Through-Silicon Vias,” Journal
of Micromechanics and Microengineering, vol. 18, no. 7, 2008.

[44] K. H. Lu, X. Zhang, S.-K. Ryu, J. Im, R. Huang, and P. S. Ho, “Thermo-
Mechanical Reliability of 3-D ICs Containing Through Silicon Vias,” in Elec-
tronic Components and Technology Conference (ECTC), 2009, pp. 630–634.

[45] M. Jung et al., “TSV Stress-Aware Full-Chip Mechanical Reliability Analysis
and Optimization for 3D IC,” in Proceedings ACM/IEEE Design Automation
Conference (DAC), Jun. 2011, pp. 188–193.

[46] D. Rohde et al., “Filling TSV of Different Dimension Using Galvanic Copper
Deposition,” in IMPACT, Oct. 2011, pp. 355–358.

[47] S. Deutsch and K. Chakrabarty, “Non-Invasive Pre-bond TSV Test Using Ring
Oscillators and Multiple Voltage Levels,” in Proceedings Design, Automation,
and Test in Europe (DATE) Conference, 2013, pp. 1065–1070.

[48] B. Noia and K. Chakrabarty, “Pre-bond probing of TSVs in 3D stacked ICs,”
in Proceedings IEEE International Test Conference (ITC), Sep. 2011.

[49] ——, “Identification of Defective TSVs in Pre-Bond Testing of 3D ICs,” in
Proceedings IEEE Asian Test Symposium (ATS), Nov. 2011, pp. 187–194.

[50] P.-Y. Chen, C.-W. Wu, and D.-M. Kwai, “On-Chip Testing of Blind and Open-
Sleeve TSVs for 3D IC before Bonding,” in Proceedings IEEE VLSI Test Sym-
posium (VTS), Apr. 2010, pp. 263–268.

[51] J. S. Pak et al., “Optimized Inverter Design of Ring Oscillator Based Wafer-
Level TSV Connectivity Test (RO-TSV-CT),” in Proceedings IEEE Electrical
Design of Advanced Packaging and Systems Symposium (EDAPS), 2012, pp.
239–242.

137

[52] L.-R. Huang et al., “Oscillation-Based Pre-Bond TSV Test,” IEEE Transactions
on Computer-Aided Design, vol. 32, no. 9, pp. 1440–1444, Sep. 2013.

[53] J.-W. You et al., “Performance Characterization of TSV in 3D IC via Sensitivity
Analysis,” in Proceedings IEEE Asian Test Symposium (ATS), Dec. 2010, pp.
389–394.

[54] S.-Y. Huang and L. Huang, “PLL-Assisted Timing Circuit for Accurate TSV
Leakage Binning,” IEEE Design & Test of Computers, vol. 31, no. 4, pp. 36–42,
2014.

[55] H. Hao and E. McCluskey, “Very-Low-Voltage Testing for Weak CMOS Logic
ICs,” in Proceedings IEEE International Test Conference (ITC), Oct. 1993, pp.
275–284.

[56] Y. Liao and D. Walker, “Fault Coverage Analysis for Physically-based CMOS
Bridging Faults at Different Power Supply Voltages,” in Proceedings IEEE In-
ternational Test Conference (ITC), Oct. 1996, pp. 767–775.

[57] M. Renovell, P. Huc, and Y. Bertrand, “Bridging Fault Coverage Improvement
by Power Supply Control,” in Proceedings IEEE VLSI Test Symposium (VTS),
Apr. 1996, pp. 338–343.

[58] P. Engelke et al., “The Pros and Cons of Very-Low-Voltage Testing: an Analysis
Based on Resistive Bridging Faults,” in Proceedings IEEE VLSI Test Sympo-
sium (VTS), Apr. 2004, pp. 171–178.

[59] D. Arumi et al., “Diagnosis of Bridging Defects Based on Current Signatures
at Low Power Supply Voltages,” in Proceedings IEEE VLSI Test Symposium
(VTS), May 2007, pp. 145–150.

[60] B. Wile, J. C. Goss, and W. Roesner, Comprehensive Functional Verification:
The Complete Industry Cycle. Morgan Kaufmann, 2005.

[61] P. G. Maropoulos and D. Ceglarek, “Design Verification and Validation in Prod-
uct Lifecycle,” CIRP Annals-Manufacturing Technology, vol. 59, no. 2, pp. 740–
759, 2010.

[62] G. Martin, B. Bailey, and A. Piziali, ESL Design and Verification: a Prescrip-
tion for Electronic System Level Methodology. Morgan Kaufmann, 2010.

138

[63] M. E. Levitt, S. Nori, S. Narayanan, G. Grewal, L. Youngs, A. Jones, G. Billus,
and S. Paramanandam, “Testability, Debuggability, and Manufacturability Fea-
tures of the UltraSPARC-I Microprocessor,” in Proceedings IEEE International
Test Conference (ITC), 1995, pp. 157–166.

[64] B. Vermeulen and S. K. Goel, “Design for Debug: Catching Design Errors in
Digital Chips,” IEEE Design & Test of Computers, vol. 19, no. 3, pp. 37–45,
2002.

[65] Q. Xu and X. Liu, “On Signal Tracing in Post-Silicon Validation,” in Proceedings
of the 2010 Asia and South Pacific Design Automation Conference, 2010, pp.
262–267.

[66] J. Katz, “A Case-Study in the Use of Scan in MicroSPARC Testing and Debug,”
in Proceedings IEEE International Test Conference (ITC), 1994, pp. 456–460.

[67] S. K. Goel and B. Vermeulen, “Hierarchical Data Invalidation Analysis for
Scan-Based Debug on Multiple-Clock System Chips,” in Proceedings IEEE In-
ternational Test Conference (ITC), 2002, pp. 1103–1110.

[68] P. Dahlgren, P. Dickinson, and I. Parulkar, “Latch Divergency in Microprocessor
Failure Analysis,” in Proceedings IEEE International Test Conference (ITC),
vol. 3, 2003, pp. 755–763.

[69] Y.-C. Hsu, F. Tsai, W. Jong, and Y.-T. Chang, “Visibility Enhancement for Sili-
con Debug,” in Proceedings ACM/IEEE Design Automation Conference (DAC),
2006, pp. 13–18.

[70] J.-S. Yang and N. A. Touba, “Efficient Trace Signal Selection for Silicon De-
bug by Error Transmission Analysis,” IEEE Transactions on Computer-Aided
Design, vol. 31, no. 3, pp. 442–446, 2012.

[71] E. Hung and S. Wilton, “Scalable Signal Selection for Post-Silicon Debug,”
IEEE Transactions on VLSI Systems, vol. 21, no. 6, pp. 1103–1115, June 2013.

[72] K. Basu and P. Mishra, “Efficient Trace Data Compression Using Dtatically
Delected Dictionary,” in Proceedings IEEE VLSI Test Symposium (VTS), 2011,
pp. 14–19.

[73] F. Yuan, X. Liu, and Q. Xu, “X-Tracer: a Reconfigurable X-Tolerant Trace
Compressor for Silicon Debug,” in Proceedings ACM/IEEE Design Automation
Conference (DAC), 2012, pp. 555–560.

139

[74] E. Anis Daoud and N. Nicolici, “On Using Lossy Compression for Repeatable
Experiments During Silicon Debug,” IEEE Transactions on Computers, vol. 60,
no. 7, pp. 937–950, 2011.

[75] J.-S. Yang and N. Touba, “Improved Trace Buffer Observation via Selective
Data Capture Using 2-D Compaction for Post-Silicon Debug,” IEEE Transac-
tions on VLSI Systems, vol. 21, no. 2, pp. 320–328, Feb. 2013.

[76] R. Mijat, “Better Trace for Better Software,” 2010, www.arm.com.

[77] T. Dao et al., “Through Silicon Via Stress Characterization,” in Proceedings
International Conference on IC Design and Technology (ICICDT), May 2009,
pp. 39–41.

[78] Y. Sato et al., “Invisible Delay Quality SDQM Model Lights Up What Could
Not Be Seen,” in Proceedings IEEE International Test Conference (ITC), Nov.
2005.

[79] X. Lin et al., “Timing-Aware ATPG for High Quality At-speed Testing of Small
Delay Defects,” in Proceedings IEEE Asian Test Symposium (ATS), Nov. 2006,
pp. 139–146.

[80] M. Yilmaz, K. Chakrabarty, and M. Tehranipoor, “Test-Pattern Selection for
Screening Small-Delay Defects in Very-Deep Submicrometer Integrated Cir-
cuits,” IEEE Transactions on Computer-Aided Design, vol. 29, no. 5, pp. 760–
773, May 2010.

[81] S. Mitra et al., “Delay Defect Screening Using Process Monitor Structures,” in
Proceedings IEEE VLSI Test Symposium (VTS), Apr. 2004, pp. 43–48.

[82] R. C. Jaeger et al., “CMOS Stress Sensors on (100) Silicon,” Journal of Com-
puter and System Sciences, pp. 85–95, Jan. 2000.

[83] Http://www.simulia.com.

[84] http://opencores.org.

[85] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A Study of Through-Silicon-Via
Impact on the 3D Stacked IC Layout,” in Proceedings International Conference
on Computer-Aided Design (ICCAD), Nov. 2009, pp. 674–680.

140

[86] G. Katti et al., “Electrical Modeling and Characterization of Through Sili-
con via for Three-Dimensional ICs,” IEEE Transactions on Electron Devices,
vol. 57, no. 1, pp. 256–262, Jan. 2010.

[87] P. Enquist et al., “Low Cost of Ownership Scalable Copper Direct Bond Inter-
connect 3D IC technology for Three Dimensional Integrated Circuit Applica-
tions,” in Proceedings IEEE International Conference on 3D System Integration
(3DIC), Sep. 2009, pp. 1–6.

[88] G. Maier, “IBM,” May 2012, private Correspondence.

[89] Y.-J. Lee, I. Hong, and S. K. Lim, “Slew-Aware Buffer Insertion for Through-
Silicon-Via-Based 3D ICs,” in Proceedings IEEE Custom Integrated Circuits
Conference (CICC), 2012, invited Paper.

[90] K. Bernstein, “High-performance CMOS variability in the 65-nm regime and
beyond,” IBM Journal of Research and Development, vol. 50, no. 4.5, pp. 433–
449, Jul. 2006.

[91] S. Deutsch and K. Chakrabarty, “Contactless Pre-Bond TSV Test and Diagnosis
Using Ring Oscillators and Multiple Voltage Levels,” IEEE Transactions on
Computer-Aided Design, vol. 33, no. 5, May 2014.

[92] L. Ravezzi, “Duty-Cycle Detector Based on Time-to-Digital Conversion,” Elec-
tronics Letters, 2013.

[93] I. Basheer and M. Hajmeer, “Artificial Neural Networks: Fundamentals, Com-
puting, Design, and Application,” Journal of Microbiological Methods, vol. 43,
no. 1, pp. 3–31, 2000.

[94] 45nm Predictive Technology Model, http://ptm.asu.edu/.

[95] Nangate 45nm Open Cell Library, http://www.nangate.com/openlibrary.

[96] MathWorks, http://www.mathworks.com/help/nnet/ug/choose-a-multilayer-
neural-network-training-function.html.

[97] E. Larsson and Z. Peng, “An Integrated Framework for the Design and Opti-
mization of SOC Test Solutions,” Journal of Electronic Testing: Theory and
Applications, vol. 18, no. 4, pp. 385–400, 2002.

[98] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios, “Robust Optimization of
Large-Scale Systems,” Operations Research, vol. 43, no. 2, pp. 264–281, 1995.

141

[99] P. van Laarhoven and E. Aarts, Simulated Annealing: Theory and Applications.
Springer, 1987, vol. 37.

[100] E. J. Marinissen, V. Iyengar, and K. Chakrabarty, “A Set of Benchmarks for
Modular Testing of SoCs,” in Proceedings IEEE International Test Conference
(ITC), Oct. 2002, pp. 519–528.

[101] I. D.-T. P. W. Group, http://grouper.ieee.org/groups/3Dtest/.

[102] J. Lau and T. Yue, “Thermal Management of 3D IC Integration with TSV
(Through Silicon Via),” in Electronic Components and Technology Conference
(ECTC), 2009, pp. 635–640.

[103] Y. Joshi, A. Fedorov, Y. Lee, and S. Lim, “Thermal Characterization of In-
terlayer Microfluidic Cooling of Three-Dimensional Integrated Circuits with
Nonuniform Heat Flux,” Journal of Heat Transfer, vol. 132, 2010.

[104] A. Dembla, Y. Zhang, and M. Bakir, “Fine Pitch TSV Integration in Silicon
Micropin-Fin Heat Sinks for 3D ICs,” in Proceedings IEEE International Inter-
connect Technology Conference (IITC), 2012, pp. 1–3.

[105] P. Maxwell, “Adaptive Testing: Dealing with Process Variability,” IEEE Design
& Test of Computers, vol. 28, no. 6, pp. 41–49, 2011.

[106] S. Koranne, “A Novel Reconfigurable Wrapper for Testing of Embedded Core-
Based SOCs and Its Associated Scheduling Algorithm,” Journal of Electronic
Testing, pp. 415–434, 2002.

[107] E. Larsson and Z. Peng, “A Reconfigurable Power-Conscious Core Wrapper and
Its Application to SOC Test Scheduling,” in Proceedings IEEE International
Test Conference (ITC), 2003, pp. 1135–1144.

[108] S. Deutsch and K. Chakrabarty, “Robust Optimization of Test-Architecture
Designs for Core-Based SoCs,” in Proceedings IEEE European Test Symposium
(ETS), 2013.

[109] W. Zou et al., “SOC Test Scheduling Using Simulated Annealing,” in Proceed-
ings IEEE VLSI Symposium on Circuits (VLSI), 2003, pp. 325–330.

[110] L. Jiang, L. Huang, and Q. Xu, “Test Architecture Design and Optimization
for Three-Dimensional SoCs,” in Proceedings Design, Automation, and Test in
Europe (DATE) Conference, 2009, pp. 220–225.

142

[111] C. Hsu et al., “3D IC Test Scheduling Using Simulated Annealing,” in VLSI
Design, Automation, and Test (VLSI-DAT), 2012 International Symposium on,
2012.

[112] M. Garey and D. Johnson, “Computers and Intractability: a Guide to the
Theory of NP-Completeness,” WH Freeman & Co., San Francisco, 1979.

[113] S. Deutsch, K. Chakrabarty, and E. J. Marinissen, “Uncertainty-Aware Robust
Optimization of Test-Access Architectures for 3D Stacked ICs,” in Proceedings
IEEE International Test Conference (ITC), 2013, pp. 1–10.

[114] K. Chakrabarty, “Test Scheduling for Core-Based Systems Using Mixed-Integer
Linear Programming,” IEEE Transactions on Computer-Aided Design, pp.
1163–1174, 2000.

[115] P. Österg̊ard, “A New Algorithm for the Maximum-Weight Clique Problem,”
Nordic Journal of Computing, vol. 8, no. 4, pp. 424–436, 2001.

[116] http://arstechnica.com/gadgets/2013/09/intels-atom-cpus-finally-get-serious-
with-the-new-bay-trail-architecture, Sep. 2013, (last accessed in Feb. 2015).

[117] http://electronicdesign.com/eda/finding-bug-soc-haystack, Aug. 2013, (last ac-
cessed in Mar. 2014).

[118] JEDEC, www.jedec.org.

[119] Hybrid Memory Cube Consortium, www.hybridmemorycube.org.

[120] J. Jeddeloh and B. Keeth, “Hybrid Memory Cube New DRAM Architecture
Increases Density and Performance,” in VLSI Technology (VLSIT), 2012 Sym-
posium on, 2012, pp. 87–88.

[121] Cadence Design Systems, www.cadence.com.

[122] AMBA, www.arm.com/products/system-ip/amba/index.php.

[123] T. Kgil, A. Saidi, N. Binkert, S. Reinhardt, K. Flautner, and T. Mudge, “Pi-
coServer: Using 3D Stacking Technology to Build Energy Efficient Servers,”
ACM Journal on Emerging Technologies in Computing Systems, vol. 4, no. 4,
p. 16, 2008.

143

Biography

Sergej Deutsch was born in Melnica, Russia, on the 28th of August, 1984. He re-

ceived his Diplom Degree in Electrical Engineering from the University of Technology

Braunschweig (TU-BS), Germany, in 2011, and his Ph.D. in Electrical and Computer

Engineering from Duke University in 2015.

As a TU-BS student, Sergej was a recipient of a scholarship from The German

National Academic Foundation. He received best-paper award at the IEEE Asian

Test Symposium in 2012. In September 2013, Sergej received best-in-session award

at SRC TECHCON’13.

Sergej has a number of conference and journal publications. He presented his

work at multiple conferences around the world, including the IEEE International Test

Conference, the IEEE Design, Automation & Test in Europe, the IEEE European Test

Symposium, and the IEEE Asia and South Pacific Design Automation Conference.

Sergej’s publications include:

1. E.J. Marinissen, M. Konijnenburg, S. Deutsch, V. Chickermane, B. Keller, S.

Mukherjee, and S. K. Goel, “Automated Design-for-Test for 2.5D- and 3D-SICs”,

Chip Scale Review Magazine, Oct 2011.

2. S. Deutsch, V. Chickermane, B. L. Keller, S. Mukherjee, M. H. Konijnenburg, E.

J. Marinissen, and S. K. Goel, “Automation of 3D-DfT Insertion”, in Proceedings

IEEE Asian Test Symposium (ATS), Nov 2011.

3. K. Chakrabarty, S. Deutsch, H. Thapliyal and F. Ye, “TSV Defects and TSV-

144

Induced Circuit Failures: The Third Dimension in Test and Design-for-Test”

(invited paper), in Proceedings IEEE International Reliability Physics Sympo-

sium (IRPS), Apr 2012.

4. E.J. Marinissen, S. Deutsch, B. Keller, V. Chickermane, and S. Mukherjee, N.

Sood, “Interconnect Test for Wide-I/O Memory-on-Logic Stacks”, Future Fab

Int., Jul 2012.

5. S. Deutsch, B. Keller, V. Chickermane, S. Mukherjee, N. Sood, S. K. Goel, J.

Chen, A. Mehta, F. Lee, and E. J. Marinissen, “DFT Architecture and ATPG

for Interconnect Test of JEDEC Wide-IO Memory-on-Logic Die Stacks”, in Pro-

ceedings IEEE International Test Conference (ITC), Nov 2012.

6. S. Deutsch, K. Chakrabarty, S. Panth, and S. K. Lim, “TSV Stress-Aware ATPG

for 3D Stacked ICs”, in Proceedings IEEE Asian Test Symposium (ATS), Nov

2012.

7. S. Deutsch, K. Chakrabarty, “Non-Invasive Pre-Bond TSV Test Using Ring Os-

cillators and Multiple Voltage Levels”, in Proceedings IEEE Design, Automation

& Test in Europe (DATE), Mar 2013.

8. S. Deutsch, K. Chakrabarty, “Robust Optimization of Test-Architecture Designs

for Core-Based SoCs”, in Proceedings IEEE European Test Symposium (ETS,

May 2013.

9. S. Deutsch, K. Chakrabarty, “Uncertainty-Aware Robust Optimization of Test-

Access Architectures for 3D Stacked ICs”, in Proceedings IEEE International

Test Conference (ITC), Sep 2013.

10. S. Deutsch and K. Chakrabarty, “Contactless Pre-bond TSV Test and Diagnosis

Using Ring Oscillators and Multiple Voltage Levels”, IEEE Transactions on

Computer-Aided Design, May 2014.

145

11. S. Deutsch and K. Chakrabarty, “Massive signal tracing using on-chip DRAM

for in-system silicon debug”, in Proceedings IEEE International Test Conference

(ITC), Oct 2014.

12. S. Deutsch and K. Chakrabarty, “Software-Based Test and Diagnosis of SoCs

Using Embedded and Wide-I/O DRAM”, in Proceedings IEEE Asia and South

Pacific Design Automation Conference (ASPDAC), Jan 2015.

13. S. Deutsch, K. Chakrabarty, and E.J. Marinissen, “Robust Optimization of Test-

Access Architectures under Realistic Scenarios”. accepted for publication in

IEEE Transactions on Computer-Aided Design, 2015.

146

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 Introduction to 3D Integration Using TSVs
	1.2 3D Test Flow
	1.3 3D DfT Architectures and Optimization
	1.4 Defects due to TSV Manufacturing
	1.5 Pre-Bond TSV Test
	1.6 Post-Silicon Debug Using Signal Tracing

	2 TSV Stress-Aware ATPG
	2.1 Related Prior Work
	2.1.1 SDD Testing and SDQL
	2.1.2 Mobility Variation due to TSV Stress

	2.2 Methodology
	2.2.1 TSV Stress-Aware Model Generation
	2.2.2 TSV-Stress-Aware ATPG

	2.3 Case Study
	2.3.1 Test Vehicles
	2.3.2 ATPG Results

	2.4 Conclusion

	3 Contactless Pre-Bond TSV Test and Diagnosis Using Ring Oscillators and Multiple Voltage Levels
	3.1 Pre-Bond TSV Test Method
	3.1.1 TSV Fault Model
	3.1.2 Ring Oscillators with TSVs
	3.1.3 Duty-Cycle Detectors
	3.1.4 DfT Infrastructure for On-Chip Measurement

	3.2 Regression Model Based on Artificial Neural Networks
	3.3 Simulation Results
	3.3.1 Resistive-Open Faults
	3.3.2 Leakage Faults
	3.3.3 Duty-Cycle Detector
	3.3.4 Regression Model for Inferring Fault Size
	3.3.5 DfT Area Cost and Test Time Estimations

	3.4 Conclusions

	4 Uncertainty-Aware Robust Optimization of Test-Access Architectures
	4.1 Uncertain Parameters in Optimization of 3D Test Architecture and Test Scheduling
	4.2 Related Prior Work
	4.2.1 Overview of Robust Optimization
	4.2.2 Simulated Annealing

	4.3 Robust Optimization of 3D Test Architecture
	4.3.1 Mathematical Model for Robust Co-Optimization of Test Architecture and Test Scheduling
	4.3.2 Heuristic Method for Robust Optimization Based on Simulated Annealing

	4.4 Simulation Results
	4.5 Conclusion

	5 Massive Signal Tracing Using On-Chip DRAM for Silicon Debug
	5.1 Proposed Debug Framework
	5.1.1 Multiple-Input Signature Register (MISR)
	5.1.2 Trigger Module
	5.1.3 Trace Buffer and Shadow Buffer
	5.1.4 Control Logic
	5.1.5 Interface with DRAM: Challenges, Limitations, and Solutions
	5.1.6 Analysis of Compression Effectiveness

	5.2 Simulation Results
	5.2.1 DfD Implementation and Simulation
	5.2.2 Comparison with Method Proposed in yang2013expanding
	5.2.3 Comparison with Method Proposed in anis2011using

	5.3 Conclusion

	6 Conclusions
	6.1 Future Research Directions

	Bibliography
	Biography

