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Abstract
We present a fully quantum mechanical treatment of collisional correlations
beyond mean-field dynamics. Correlations are handled by an ensemble of mean-
field states emerging from a stochastic propagation scheme. This is done by first
propagating two-body correlations in time-dependent perturbation theory for a
certain time span, reducing the coherently correlated state into an incoherent sum
of two-particle-two-hole states, and then sampling this state into an ensemble of
mean-field states according to the jump probability obtained from perturbation
theory. The scheme is applied to a simple 1D test case calibrated to typical scales
of molecules and clusters. Even for the small system size and low dimension, the
scheme produces robust results. Occupation numbers and entropy show steady
relaxation towards thermal equilibrium.
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1. Introduction

We propose a stochastic, microscopic description of non-equilibrium quantum dynamics in
finite many-fermion systems accounting for collisional correlations. The theory is designed for
the regime of high excitation where coherence at the two-body level is unimportant due to the
large phase space involved. Typical such processes are induced nuclear fission and low-energy
nuclear collisions [1, 2], excitation of molecules and clusters by intense laser pulses [3], ballistic
electron transport in nano-systems [4], or thermalization in trapped Fermi gases [5]. The notion
‘collisional correlations’ is taken from Fermi liquid theory [6] where two-body correlations are
reduced incoherently to two-Fermion collisions. Non-equilibrium dynamics at the level of
Fermi liquid theory was since long successfully applied to several bulk systems. More involved
is the detailed modeling of non-equilibrium dynamics in finite Fermion systems, required, e.g.,
for irradiation of molecules and nanosystems. Fast development of lasers and imaging
techniques [3, 7] indeed promises to reveal soon time resolved details on non-equilibrium
dynamics, which is, for example, crucial for understanding, and ultimately controlling nano
systems by light.

The prototype model of non-equilibrium dynamics is the Boltzmann equation which
allows to describe and understand microscopically thermalization in classical many-body
systems in terms of two-body collisions. The Boltzmann equation has been applied with success
to a wide variety of classical systems [8]. There exist also extensions to account for dynamical
fluctuations, e.g., by a Langevin term [9, 10]. More involved is the description of many-fermion
systems. Two new features need to be taken care of, the Pauli principle which prevents
collisions into occupied states and the uncertainty principle which inhibits a local treatment of
collisions (as used in the Boltzmann equation). The resulting quantum kinetic equations become
highly involved and hardly applicable in realistic finite systems [6, 11]. Practically, the Pauli
principle can be accounted for by extending the Boltzmann equation to the Boltzmann–Ueh-
ling–Uhlenbeck (BUU) form [12]. It then provides a pertinent description of fermion systems
where quantum shell effects can be ignored. These are homogeneous fermion liquids (gases) as
electrons in solids [4] or nucleons in a neutron star [13]. Furthermore, BUU can be considered
as a semi-classical treatment, thus applicable to finite fermion systems, but only when
sufficiently large excitation energies, or temperatures respectively, allow to ignore quantum
shell effects. It has been widely used this way for describing nuclear reactions [14, 15], laser
excitation of metal clusters [3, 16, 17], or electron transport in wires [18]. Particularly in the
nuclear context there also exist some examples of extensions to include fluctuations,
augmenting BUU by a Langevin term [2, 19–21].

In electronic systems, recent attempts aim at treating correlations at semi classical level on
top of quantum mean field [22] in the line of Time Dependent Density Matrix approaches [23].
There also exist some investigations based on Time Dependent Current Density Functional
Theory (DFT) which allows to account for some dissipative behaviors but the approach is not
directly suited to finite systems as it fails to provide total energy conservation, at least in its
present formulations [24, 25]. Fully quantum mechanical treatments remain rare. There are, e.g.,
some studies in schematic model systems [26] and, more practically, in the time-dependent
configuration-interaction method [27]. However, these very elaborate treatments are still
restricted to very small systems and/or low excitations. In spite of its urgent need, a practical,
robust quantum dynamical theory of collisional correlations in the regime of high excitations in
nuclei, molecules and nano-particles thus does not yet exist. We propose here a formal and
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practical route to develop such a theory which will then serve as an extension of the well
established collision terms in semi-classical BUU to the quantum mechanical regime. Our
approach is generic and applicable to any finite fermion system where two-fermion collisions
play a role in the dynamical evolution. As a first test, we consider here a simple illustrative test
example in 1D. The approach proposed here relies on an early formal investigation [28]
formulated in terms of density matrices. It is reformulated here on a wave function basis and
within restricting incoherent correlations to leading order. It is then applied to an illustrative
example to demonstrate its capabilities.

2. Formal framework

2.1. Stochastic TDHF reformulated

Our formal starting point is Stochastic Time-Dependent Hartree–Fock (STDHF) [28], which
provides a description of dynamical correlations in terms of a stochastic ensemble of TDHF
(mean-field) states. Although originally formulated in nuclear dynamics, it can be used in any
system where a quantum mean field provides a sound description of ground state and low-
energy properties, such as nuclei, molecules, or clusters. In the electronic case the underlying
practical framework will be DFT [29] with local density approximation (LDA) as associated
effective mean field. Time dependent LDA (TDLDA) is meanwhile widely used for simulating
various dynamical scenarios [30, 31]. STDHF as proposed here is equally applicable to DFT
thus delivering a Stochastic TDLDA (STDLDA).

Originally, STDHF was formulated in terms of density matrices with the von Neumann
equation as formal starting point. It was also shown that STDHF can be reduced to a quantum
Boltzmann–Langevin equation, namely a kinetic equation for the one-body density matrix
containing a stochastic term beyond standard kinetic picture [28]. STDHF thus formally
contains all ingredients for describing the path to thermalization and the thermal fluctuations
around it [2, 28]. But it has never been explored in practice at full quantum level because of its
complexity. Our aim here is to reformulate the theory in simpler terms, restricting correlations
to their leading two-particle-two-hole ( ph2 ) contribution.

Means of the description is an ensemble of  Slater states Φ α =α{ }, 1 ,... . The Φα

are built from single-particle (s.p.) states φ Ω=α{ }i, 1 ...
i

, where =i N1, ... stands for the
occupied (hole) states. We also carry a sufficient amount of unoccupied (particle) states

Ω= +i N 1, ... to supply space for the stochastic jumps to come. The enlarged space now
allows to unfold the hierarchy of n-particle-n-hole (nph) excitations. The ph1 excitations need
not to be taken care of, as they are already accounted for in the mean-field ground state and
propagation. The first true excitations beyond mean field come along with ph2 states

Φ Φ= ˆ ˆ ˆ ˆα α
′ ′

†
′

†
′a a a a , (1)pp hh p p h h

which as such are, again, Slater states. The idea is then to propagate for some time a correlated
state Ψ Φ Φ= + ∑α α α α

′ ′ ′ ′ ′ ′t t c t t( ) ( ) ( ) ( )
pp hh pp hh pp hh starting from an uncorrelated situation,

=α
′ ′c t( ) 0pp hh 0 . After a certain propagation time τ this coherent state Ψ α t( ) is sampled in terms

of an ensemble of pure Slater states Φκ
α

κ
α{ }w, , where κ ∈ ′ ′pp hh{0, } and = | |κ

α α
′ ′w cpp hh

2 is the
probability with which Φκ

α appear. The weight of the original state Φα is the complement
= − ∑α α

′ ′w w1 pp hh0 (we attribute αw0 to the ‘no transition’ case).
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We evaluate α
′ ′cpp hh in first order time-dependent many-body perturbation theory,

propagated over a time span τ and delivering eventually the transition probability according
to Fermiʼs golden rule [28]. In the ph2 picture it reads in detail

τ Φ Φ δ ε ε ε ε= ˆ + − − +α α α
Γ

α α α α
′ ′ ′ ′ ′ ′ ′ ′( )w W E (2)pp hh pp hh p p h h pp hh,

2
(rearr)

δ ϵ ϑ ϵ Γ ϑ Γ ϵ= − −Γ ( ) ( 2) ( 2 ), (3)

where Ŵ is the residual interaction complementing the mean-field Hamiltonian ĥ. The
rearrangement energy ′ ′Epp hh

(rearr) corrects for the change in the mean field due to the actual ph2
transition (the actual transition preserving the total energy by construction [28]). It is negligible
in large systems because 2 changing states out of hundredth of particles will not matter much.
However, it cannot be ignored in small systems we want to address. The ϑ in equation (2) is the
Heaviside function. The finite width is realistic as it can be related to a finite sampling time and,
even for long sampling times, to the fluctuations of the s.p. energies in a mean-field (TDHF/
TDLDA) evolution. The Heaviside function is used because it is technically the simplest finite-
width function. Moreover, we are not trying to adjust the width to propagation time τ. In this
first (proof of principle) paper, we simply employ the width Γ as a numerical parameter to deal
with collisions in a discrete spectrum. Of course, the width spoils to some extent energy
conservation. One has thus to find a good compromise for Γ . It has to be larger than the average
distance of excitation levels to provide an appropriate coverage of reaction rates. On the other
hand, a small Γ is preferable for minimal violation of energy conservation.

Note that the scheme is based on time-dependent perturbation theory. It thus stays in the
weak coupling limit typical of standard kinetic theory. This implies restrictions on the strength
of the residual interaction Ŵ and on the choice of the sampling interval τ [28, 32]. The
restriction on the amplitude of Ŵ is governed by the nature of the considered system. As long as
mean field provides a good starting point, Ŵ is expected to be small enough. The restriction on
τ is more of practical nature. Indeed τ has to be long enough to randomize the quantum phase
oscillations in the ph2 correlations, thus justifying stochastic reductions and loss of coherence,
but short enough to maintain ∑ ≪α

′ ′w 1pp hh . This means that in practice it has to be checked that
it fulfills the above conditions. Once fixed it then allows to preserve perturbation theory on short
time (of order τ) while allowing the progressive building up of (possibly large) perturbations
(well beyond the pertubative regime) on long times ( τ≫ ).

2.2. Stochastic ensemble description of the dynamics

The stepping scheme thus proceeds as follows. An initial state Φ0 is defined and each member
of the ensemble is initially set to Φ Φ=α (0) 0 . Each Φα t( ) is then propagated individually.
First, we propagate from 0 to τ by TDHF/TDLDA. At time τ one scans all ph2 states about
Φ τα ( ) and evaluates the jump probabilities κ

αw according to equation (3). One state Φκ
α out of

the possible κ is then chosen randomly according to its weight κ
αw . Subsequently, we propagate

Φκ
α by TDHF/TDLDA from τ to τ2 and perform another stochastic sampling at τ2 and so on.

The above procedure is restarted from initial time for each member of the ensemble separately
delivering eventually the ensemble Φ α =α{ }t( ) , 1 ,... :
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The s.p. energies entering crucially the δΓ function in equation (3) require a word of
caution. A Slater state Φα is invariant under an arbitrary unitary transformation amongst the
occupied s.p. states φ =α i N, 1 ...

i
. Thus the definition of s.p. energies is ambiguous. But the δ

function in equation (3) is, in fact, an approximation. The full expression involves an operator δ
function of the mean-field Liouvillean [28]. The replacement by s.p. energies is justified only if
the uncertainties on the s.p. energies are small. To minimize these uncertainties, we diagonalize
the actual mean-field Hamiltonian amongst the set of occupied states and also amongst the
unoccupied states (as we have the freedom to do so) and use the emerging s.p. states and
eigenvalues in equation (3). This renders the choice of s.p. energies unique and achieves the
best possible approximation to the mean-field Liouvillean.

Once the ensemble Φ α =α{ }, 1 ,..., constructed, we can compute any observable by
standard statistical averages. One-body observables, in particular, are deduced from the
(correlated) one-body density operator built from the total ensemble as




∑∑ ∑ρ φ φ φ φˆ = ≡
α

α α

ν

Ω

ν ν
= = =

n
1

. (4)
i

N

i i i
1 1 1

(nat) (nat)

The second representation therein employs the natural s.p. orbitals φ| 〉ν
(nat) . These are the orbitals

which diagonalize ρ̂. The eigenvalues are the (fractional) occupation numbers νn of the natural
orbitals and provide a natural tool for analyzing thermal effects. A useful quantity deduced from
that is the distribution of occupation number εn ( ) built from identifying ε =ν νn n( ) (see
figures 1 and 2 below). We also use the νn to evaluate the one-body entropy

Figure 1. Distribution of occupation numbers εn ( ) sampled with propagating an
ensemble with 100 events after ph1 excitation with energy * =E 2.3 Ry. Shown are
snapshots for a few selected times as indicated. The black, fine dashed line shows the
ground state occupation numbers as a guideline.
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⎡⎣ ⎤⎦∑= − + − −
ν

ν ν ν ν( ) ( )S k n n n nlog 1 log 1 (5)B

which characterizes the approach to thermal equilibrium (kB is Boltzmann constant).
A word is in order about the level of analysis. Equation (5) defines what is called the one-

body entropy, which is the standard entropy associated to a (one-body) mean field description.
In a pure TDHF time evolution the occupation numbers νn remain strictly 0 or 1, as fixed at
initial time, and the entropy strictly 0. Coherent correlations (on top of a mean field description)
would lead to some fractional νn , even in the ground state. They would produce pattern which
would stay far away from a thermal Fermi distribution and possibly pollute thermal
observables. This problem is nevertheless negligible in the present case as we consider high
excitations where thermal effects dominate anyway. Thus we think that the definition of entropy
and temperature at one-body level suffices for the present purposes and clearly shows how the
present theory allows to accommodate the building up of thermal effects, especially as
compared to a pure mean field approach.

3. A molecular example

3.1. Outline of the model

For a first exploration and proof of principle, we consider a simple 1D model mimicking a
moleculer case with the mean field Hamiltonian (in x representation,  = 1)

Δ λˆ = − + + ϱ
α α( )h

m
V x x

2
( ) ( ) (6)ext

2

where φϱ = ∑ | |α αx x( ) ( )N

i1
2 is the local one-body density. For the external potential V x( )ext we

use a Woods-Saxon profile = + −( )( )V x V x x a( ) / 1 exp ( )/ext 0 0 with = −V 50 Ry, =x 150 a0,
a = 2 a0, complemented by a confining harmonic oscillator ω ϑ| | − − | | − −( ) ( )x x a x x am

2
2

0

2

0

with ω = 4 Ry, acting outside the potential well (| | > +x x a0 ) and ensuring soft reflecting
boundary conditions. This allows to focus the analysis on thermalization by avoiding

Figure 2. Distribution of occupation numbers εn ( ) sampled with propagating
ensembles with 100 events at final time for ph1 (green) and nph (red) excitation
energies *E . The black, fine dashed line shows the ground state occupation numbers.
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competition with ionization. For the self-consistent term we use λ = 2 Rya0
2. This model

resembles a typical situation in molecules or clusters, where the ionic background provides a
spatially fixed external potential. With the chosen parameters we obtain a sufficiently dense
spectrum of s.p. energies in spite of the 1D restriction, while producing typical molecular/
cluster values of energies and time scales. As residual interaction we choose a simple zero-range
force δ′ = − ′W x x W x x( , ) ( )0 with =W 30 Ry, which leads to realistic relaxation times for the
entropy (see below). This choice differs from the mean-field (TDLDA) residual interaction
according to the mean field used (which should be δ δρˆα αh / ). A separate modeling of the residual
interaction is legitimate, even necessary, to calibrate the collision rates properly in realistic
cases. This is common practice in BUU and it is justified by the observation that the collision
term should employ the screened interaction and the mean-field part the interaction before
screening [33–35].

The test case has nine physical particles with the same spin. Our working space thus has 9
hole (occupied) levels and an arbitrary number of particle (unoccupied) levels. In practice we
used 8 particle states. No significant differences were observed when using 16 or 24 particle
states. The distance between s.p. level energies typically varies between 10−4 and 2.5 × 10−3 Ry
in the range of excitation energies we have explored. In order to fix the optimal width Γ of δΓ
we have studied its impact on observables of interest, such as the entropy (equation (5)) as well
as the a priori highly Γ-sensitive number of collisions and find that they are rather stable up to
Γ = 0.1 Ry turning to moderate growth above that value. The actual choice of Γ is thus not so
critical. All values up to Γ = 0.1 Ry are acceptable. Very small values of Γ require larger
samples. Thus we choose Γ = 0.1 Ry as the compromise for our present studies.

The period associated to the dominant optical transition lies in the fs range (1.15 fs). The
time for propagating two-body correlations in perturbation theory is then chosen as τ = 1 fs,
following [28]. We found identical results for τ = 0.5 and τ = 1.5 fs. We follow the dynamics
on rather long times, typically 100 fs, which is long enough for thermal relaxation studies and
much shorter than Poincaré recurrence time [36]. We propagate ensembles with 100 members.

There are several ways to excite the system. We use here an instantaneous initial random
(multi)ph excitation. Looking at s.p. energies as a function of time one observes many level
crossings between occupied and unoccupied levels. This gives rise to a sufficient number of ph2
energies matchings according to equation (2) and sufficiently large total probabilities (up some
10ʼs of %), to allow enough transitions into new configurations, while remaining in the weak
coupling regime.

The STDHF dynamics is then generated for each member of the ensemble. The energy
stays constant during TDHF/TDLDA evolution, but may change a bit in stochastic jumps due to
the finite width of the δΓ functions in equation (2). The ensemble thus develops a small energy
uncertainty and a negligible trend to growing energy. The energy spread in the ensemble only
grows within 100 fs to about 0.05 % ( *E = 1.9 Ry) to about 0.3% ( *E = 3.1 Ry) of the total
energy. A small center-of-mass fluctuation correspondingly appears with an amplitude of order
0.05 to 0.1 a0 around average value 0 which is in the average perfectly preserved (no drift).

3.2. Time evolution of occupation numbers

The relevant one-body observables are extracted from the ensemble averaged one-body density
matrix ρ̂, see equation (4). Figure 1 shows the distribution of occupation numbers εn ( ) at a few
selected times for the case of an initial ph1 excitation delivering =*E 2.3 Ry. The s.p. energies
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ε φ φ= 〈 | ˆ| 〉ν ν νh(nat) (nat) are evaluated as the energy expectation values of the natural orbitals
(equation (4)) from the (ensemble) Hamiltonian ˆ = ∑ ˆ

α

α
h h / ( ˆα

h is the mean field associated to
state Φα , (equation (6)). The first snapshot at time 5 fs carries still much of the initial ph1
pattern. The subsequent snapshots show nicely the steady evolution towards a thermal
equilibrium distribution. The finite sampling adds, of course, some fluctuations around the
leading monotonic trend. The final snapshot looks already very smooth and resembles the
typical Fermi distribution of a thermalized state. We can associate a temperature T to this state
by fitting a thermal Fermi distribution to this final εn ( ) profile. This yields here ∼T 0.48 Ry.
The corresponding Fermi function is also indicated on the plot for completeness. Note the
gradual convergence of the actual distribution towards the profile, in particular on long times.

3.3. Asymptotic behavior: entropy and temperature

Figure 2 shows the final distributions of occupation numbers for various excitation energies *E .
Increasingly longer tails develop with increasing *E . All profiles resemble thermal equilibrium
distributions, particularly for higher energies. Fits to Fermi distributions deliver the following
temperatures: = ∼*( )T E 1.3 Ry 0.34Ry, ∼T (1.9 Ry) 0.46Ry, ∼T (3.1 Ry) 0.56Ry,

∼T (3.5 Ry) 0.66Ry and ∼T (4.3 Ry) 0.78Ry.
As we are dealing with reflecting boundary conditions the initial excitation energy can be

fully converted into thermal energy. It thus makes sense to use it in a purely thermal picture.
Figure 3 shows the temperatures deduced from fits of the εn ( ) to Fermi factors and the final
values of the entropies S as a function of the excitation energy. The Fermi gas model provides

Figure 3. Final entropy (upper) and temperature (lower) as function of excitation
energy. The green lines indicate the trends from a semi-classical Fermi gas estimate.
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an analytical estimate for both quantities [37] in the low temperature limit in terms of the level
density parameter a:

= =*E aT S aT, 2 . (7)2

We have evaluated a for the present model by a direct fit of final S versus initial *E (lower panel
of figure 3). The corresponding estimates of temperatures are also shown in figure 3 (upper
panel). The results agree perfectly for the entropy S. There is some acceptable deviation for the
temperature. Mind that the temperature was determined from fit of a Fermi distribution to the
occupations εn ( ). The fluctuations in εn ( ) due to the finite sampling cause some uncertainties
which somewhat degrade the computation of the temperature. The entropy is probably more
robust in that respect because it is obtained by summing up over occupation numbers.

3.4. Time evolution of entropy and relaxation times

Finally, we extract thermalization time scales from the one-body entropy S, see equation (5).
Figure 4 shows the time evolution of entropy for various *E . We see the typical pattern of a
thermal relaxation process with an early rapid growth turning later to steadily slower increase.
Except for the lowest excitation energy probably suffering from too large fluctuations or too
low statistics the pattern resemble an exponential relaxation towards the maximum entropy for a
given *E . We have fitted exponential relaxation profiles τ= −( )( )S S t1 exp /0 rel to the S(t)ʼs.
This delivers relaxation times τrel decreasing with increasing *E , from ∼22 fs at =*E 1.5Ry
down to ∼5 fs at =*E 3.5Ry, representing realistic values for such a system [38].

4. Conclusions and perspectives

We have presented a stochastic approach to include collisional correlations in finite fermion
systems. Two-fermion correlations around mean-field trajectories are propagated in first order
perturbation theory for a certain time interval. The resulting correlated state is then
stochastically reduced to an ensemble of Slater states. One-body observables are computed
from the ensemble averaged one-body density matrix. As a proof of principle, we have

Figure 4. Time evolution of the s.p. entropy (5) for ensembles of 100 events for ph1
(green) and nph (red) excitation energies *E .
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investigated relaxation processes in a 1D model deducing signatures of thermal equilibration
from occupation numbers of s.p. states and associated one-body entropy. We observe clear
thermal relaxation processes whose dependence on excitation energy follows nicely the
estimates given by a Fermi gas model.

The present results are very promising and call for more investigations and developments.
The obvious next step is to gather more experience on the theory from the simple,
computationally forgiving 1D model. A typical observable to consider and analyze could be in
particular the two-body density matrix as constructed from the ensemble. Extensions to realistic
full 3D models are conceivable and will be attacked. These systems have a larger level density
and will deliver better statistical averaging properties, but require a much more demanding
computational effort. The still too large fluctuations in the regime of low excitation energies
require a reformulation of the model in terms of mixed mean-field states. Work along that line is
in progress.
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