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Engineering biology and society: reflections on synthetic biology 
 

Jane Calvert 

 

Published as: Calvert, J (2013) ‘Engineering biology and society: reflections on 

synthetic biology’ Science, Technology & Society 18 (3): 405-420 

 

Abstract 
Synthetic biology, according to some definitions, is the attempt to make biology into 

an engineering discipline. I ask what is meant by this objective, which seems to have 

excited and energised many people and encouraged them to start working in the field. 

I show how synthetic biologists make a point of distinguishing their work from 

previous genetic ‘engineering’, which is described as bespoke and artisan. I examine 

synthetic biologists’ accounts of the differences between biology and engineering, 

which often oppose comprehension to construction. I argue that synthetic biology, 

like other branches of engineering, aims to meet recognised needs, and to make the 

world more manipulable and controllable. But there are tensions within the field; 

some synthetic biologists have reservations about the extent to which biology can be 

engineered, and ask whether it is necessary to develop a new type of engineering 

when working with living systems. After exploring these debates, I turn to some of 

the broader consequences of making biology easier to engineer, particularly the 

deskilling and democratisation of the technology. I end by arguing that because 

synthetic biologists are skilled at bringing together both technical and social forces, 

they are appropriately described as ‘heterogeneous engineers’. 
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Introduction 

As someone who has previously studied science and scientists, it is fascinating to 

become involved in a field where there are many engineers. Synthetic biology is 

attractive to engineers, particularly because of the explicit attempt to make biology 

into an engineering discipline that we see in the dominant approaches to the field. 

This involvement of engineers leads to lively discussions among synthetic biologists 

about the nature of engineering, and how it differs from science, and how an 

engineer’s approach to living systems might be different from a biologist’s. In this 

paper I attempt to elucidate these discussions by drawing on literature which deals 

with engineering, such as Vincenti’s (1990) classic work, and research in science and 

technology studies. I ask to what extent ideas about engineering knowledge – its 

ameliorative impulses and its drive for mastery and control – can be said to apply to 

synthetic biology. I then examine the attempts to apply engineering principles to 

synthetic biology, focusing particularly on modularity and decoupling. My discussion 

of modularity shows how contested the concept is, even in the context of conventional 

forms of engineering. It also shows how moves towards modularising or 

‘blackboxing’ biological systems have enabled new communities to become involved 

in synthetic biology. My discussion of decoupling leads me to consider the central 

role of design in engineering, and how the introduction of design inevitably opens up 

synthetic biology to political and economic considerations. I then move on to look at 

the specificities of the biological substrate, which, some maintain, demand a new type 

of engineering, one that differs qualitatively from the engineering of inanimate 



 2

substances. I ask whether in the context of biology we should replace our idea of an 

engineer with that of a ‘tinkerer’, who is arguably better adapted to deal with the 

contingencies and specificities of the natural world (Jacob 1977). Efforts are being 

made to train engineers to work with these noisy, unpredictable biological systems, 

however, and something that is particularly interesting about this training is that it 

often incorporates social and ethical concerns. I link this discussion to Law and 

Callon’s (1988) notion of ‘heterogeneous engineers’, which applies particularly well 

to synthetic biologists because of their skill in orchestrating social, political and 

technical factors. Finally I consider some of the consequences for the future of the 

application of the (rather narrow) engineering imagination to biology, and how this 

might be challenged by the entry of new global communities into field. 

 

This paper draws on several years of participant observation in the emerging field of 

synthetic biology at a range of different conferences, workshops and meetings in the 

UK, the US and Asia. Detailed records have been kept throughout of my observations, 

conversations, interactions and reflections. Synthetic biologists are only quoted here 

by name when I refer to a comment made in a public meeting; otherwise they are 

quoted by anonymised code name. I also draw on the scientific literature in synthetic 

biology. 

 

Synthetic biology 

One of the immediately striking features of synthetic biology is that there is a great 

deal of discussion about what is and what is not synthetic biology, with competing 

definitions and border disputes. A simple initial way of grasping the field is to 

distinguish between three schools of synthetic biology, which focus on biological 

entities of increasing scale (see O’Malley et al. 2008): the construction of 

standardized biological parts (normally made of DNA, and often analogised to Lego 

bricks); the synthesis of whole genomes, including Craig Venter’s recent work (see 

Gibson et al. 2010); and the creation of simple ‘proto’ cells. My main interest in this 

paper is in the parts-based or ‘BioBrick’ approach, and the definition of synthetic 

biology from this perspective is ‘the design and construction of new biological parts, 

devices, and systems and the re-design of existing, natural biological systems for 

useful purposes’.
1
 

 

One of the most important and conceptually interesting aspirations of this approach is 

to make biology into an engineering discipline. We can see this trend in the titles of 

many survey articles on the field, such as ‘Synthetic biology: new engineering rules 

for an emerging discipline’ (Adrianantanandro et al. 2006), and ‘A partnership 

between biology and engineering’ (Brent 2004). In this paper I ask: what is meant by 

this objective, which seems to have excited and energised many people and 

encouraged them to start working in the field? What assumptions underlie it? And 

what consequences does it have? 

 

Although I primarily focus on one approach to synthetic biology, it is important to say 

something about how the other branches fit into the engineering vision. Synthetic 

biologists working on whole genomes or protocells do not usually describe 

themselves as doing engineering, but they do share the engineer’s aspiration to reduce 

complexity in their synthetic biological constructs. Scientists working on protocells, 

for example, say that they want to understand how every bit of their artificial cell 

operates.
2
 For this reason, some protocell researchers argue that their approach is a 
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more authentic expression of engineering than the BioBricks approach, because it 

aims for absolute control. 

 

Synthetic biologists who do embrace the engineering vision make a point of 

distinguishing their work from previous so-called genetic ‘engineering’, since they 

think that ‘Genetic engineering doesn’t look or feel like any form of engineering’ 

(Endy quoted in De Vriend 2006). The distinction between synthetic biology and 

genetic engineering is put nicely by a UK synthetic biologist: ‘The engineering 

equivalent of genetic engineering is to get a bunch of concrete and steel, throw it into 

a river, and if you can walk across, call it a bridge’.
 3

 He adds that for this reason 

‘genetic engineering can be considered more of an artisan craft than an engineering 

discipline’ (Elfick 2009). The modifications common in genetic engineering are often 

described by synthetic biologists in this manner as one-off and bespoke. Smolke 

(2009) makes the same distinction in a slightly different manner by stressing the role 

of engineering principles in synthetic biology: ‘It is the focus on the development of 

new engineering principles and formalism for the substrate of biology that sets it apart 

from the more mature fields upon which it builds, such as genetic engineering’ 

(p.1073). The idea that biology is a new substrate for engineering is one that is echoed 

by other synthetic biologists. One founder of the BioBricks approach explained that 

the application of engineering to biology was inevitable, because biology was one of 

the few remaining available substrates that was yet to be engineered (Synthetic 

biologist 9).  

 

We should perhaps not be too hasty to accept the idea that synthetic biology is a new 

approach to the engineering of biology, however. The historian Luis Campos (2009) 

points out that an engineering approach to life can be found at least as far back as the 

late 19th century when some biologists started to think of themselves as engineers. He 

gives examples such as Loeb’s book The Mechanistic Conception of Life, published in 

1912, and Jacob and Monod’s work in the 1960s which talked about how genetic 

circuits could be engineered. But Campos also observes ‘a peculiar perception 

common among synthetic practitioners, and recurring over decades: that they alone 

have been the first to truly aim for – and possibly attain unto – a properly engineered 

biology’ (p.16). His argument is that we are seeing history repeating itself in the case 

of synthetic biology. 
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Engineering 

Having provided some background, I now turn to the nature of engineering 

knowledge, which is often discussed at synthetic biology meetings in terms of the 

contrast between science and engineering. At these meetings we regularly hear 

aphorisms such as ‘A scientist builds in order to learn, an engineer learns in order to 

build’ (Fred Brooks quoted in Nightingale 2004). This distinction is reminiscent of 

the famous Marxist quotation: ‘the philosophers have only interpreted the world in 

various ways. The point however is to change it’ (Marx 1992). Campos (2009) also 

connects this famous phrase with the engineering mentality by calling this desire to 

change the world a ‘Marxist-cum-engineering philosophy’ (p.14). This is not to imply 

that all engineers are Marxists (in fact Noble 1977 has argued that engineers are 

domesticated servants of capital). But even without the Marxist connotations, the 

point is that an important objective in engineering is to make the world a better place. 

And this desire is shown in the tag line: ‘making life better, one part at a time’ which 

is found at the bottom of every page of the www.syntheticbiology.org website. 

 

The aspiration to change the world for the better is widely found in the discussion of 

engineering. Vincenti (1990), in his work on the nature of engineering knowledge, 

says that ‘Engineering refers to the practice of organizing the design and construction 

of any artifice which transforms the physical world around us to meet some 

recognized need’ (p.6). In this sense, engineering is, by definition, instrumental. 

Knowledge is a means to a certain end, not an end in itself for engineers. Vincenti 

even says that ‘Engineering can, in fact, be defined in terms of these ends’ (p.6). This 

mentality produces a focus on problem-solving, which Downey (2009) argues is 

pervasive among engineers more generally. He notes that ‘Many times I have watched 

engineers, including myself…endeavor to transform situations of work and life into 

definable problems to solve’ (p.59). What is particularly interesting from an STS 

perspective, is that because of the needs-driven, problem-oriented emphasis of 

engineering, it becomes a social activity which ‘is intimately bound up with 

economic, military, social, personal, and environmental needs’ (Vincenti 1990: 11).   

 

When considering the differences between science and engineering, it is tempting to 

set up a dichotomy, with science on one side, driven by discovery, understanding and 

the desire for comprehension, and engineering on the other, motivated by the aim to 

create, construct and design. Here it is the intentions that are different between 

science and engineering. And it is the case that some synthetic biologists do talk about 

how they simply want to make things; how they want to use biology to construct and 

to build (Synthetic biologist 9; Synthetic biologist 14). Some commentators set up the 

science/engineering distinction in this manner as understanding/making (or we could 

perhaps say head/hand) and conclude that this is why the philosophy of engineering 

has received much less attention than the philosophy of science (McCarthy 2006). If 

engineering is not concerned with the acquisition of knowledge but with changing the 

world, it does not fit easily into an epistemological framing (McCarthy 2006).
4
 

But further investigation shows that this dichotomy is over-simplified. There are 

many synthetic biologists who think that the most important objective of synthetic 

biology is to increase understanding. Benner and Sismour (2005) say, for example, 

that one of the measures of success of synthetic biology will be how well the creation 

of artificial systems ‘drives new discoveries and new theories’ (p.534). 
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When there is talk of understanding in synthetic biology, synthetic biologists often 

reach for the quotation from the physicist Richard Feynman ‘what I cannot create I do 

not understand’, which was found written on his blackboard when he died in 1988. 

This quotation has become the ‘motto’ of synthetic biology, because it brings together 

the two aspirations of biology (understanding) and engineering (creation).
5
 In this 

sense synthetic biology is not just about creating new things, because creating new 

things also helps us understand existing ones better.  

 

Despite these concessions to the importance of understanding in synthetic biology, 

however, there is a strong rhetoric among synthetic biologists that biology on its own 

is unsatisfactory, and needs to be transformed into an engineering discipline. 

Arguments are made that the successes of engineering are obvious, and demonstrated 

by artefacts such as planes, bridges, computer processors etc., which, it is claimed, are 

‘made possible by sophisticated engineering programs that model characterized parts 

that are designed and manufactured to work together predictably’ (Arkin 2008). This 

leads synthetic biologists to the conclusion that ‘it is economically and socially 

important that we improve the efficiency, reliability and predictability of our 

biological designs’ (Arkin 2008: 774). As this quotation makes explicit, again we see 

the appeal to social need. 

 

But is there something else beyond (apparent) social need behind these aspirations? 

We may also be seeing here is a desire to make the world more instrumentalizable, 

manipulable and controllable. This, again, is central to engineering in other fields, as 

previous studies have shown. For example, Florman (1976) says ‘every engineer has 

experienced the comfort that comes with total absorption in a mechanical 

environment. The world becomes reduced and manageable, controlled and unchaotic’ 

(p. 137).
6
 Kleif and Faulkner (2003) in their work on robot builders and software 

engineers also maintain that one of the most important things about engineering is that 

it becomes possible to overcome uncertainty and ambiguity: ‘Although uncertainty is 

immanent in engineering, there is also a strong faith in the possibility of overcoming 

it. And this is a big part of the pleasure in technology’ (p.311).  

 

This kind of talk is widely found in synthetic biology. For example, it is common to 

hear statements such as: ‘Fatty acid regulation is known and can be overcome’ 

(Synthetic biologist 11). Here the idea is that knowing something enables one to 

control it, and to ‘overcome’ it. There is also much discussion of ‘controlling’ aspects 

of biology, such as the central dogma and gene expression (Young and Alper 2010). 

And Weiss (2009) writes about how synthetic biologists ‘strive to design and control 

complex intracellular and extracellular activities that allow us to achieve precisely 

defined engineering or scientific goals’ (p.1073). Here we clearly see the aspiration to 

make the biological world manageable and controllable. 

 

Another key feature of the engineering approach to synthetic biology is the attempt to 

reduce biological complexity. For example, Tom Knight summarises the engineer’s 

attitude to complexity: ‘a biologist is delighted with complexity. The engineer’s 

response is: ‘How can I get rid of this?’’. Another synthetic biologist George Church 

similarly explains that ‘You focus on parts of the science that you do understand and 

clean out the parts that you don’t understand’ (Breithaupt 2006: 22-3). In a broader 

sense, we could interpret these aspirations to reduce complexity as ‘relentlessly 

pursuing the program of making every element of the world programmable or 
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susceptible to engineering’ (Pottage 2007: 340). But the point I want to make here is 

that it is not a criticism of engineering to say that it is instrumental, and that it aspires 

to prediction, control and the reduction of complexity, because the whole point of 

engineering is to put scientific knowledge to practical uses. By making biology into 

engineering, the instrumentalism becomes an unquestionable part of the field; it is 

part of the definition of engineering. 

 

Adopting an engineering perspective on living things is, however, an immediately 

provocative stance, if one thinks that that engineering biology is qualitatively different 

from engineering other materials (Preston 2008). A related point is that throughout 

history, scientists who have taken an engineering approach to life (like Leduc and 

Loeb) have been accused of not doing real biology (Campos 2009). Lazebnik (2002) 

thinks this can be explained by the view held by some that ‘engineering approaches 

are not applicable to cells because these little wonders are fundamentally different 

from objects studied by engineers’ he goes on to say that ‘What is so special about 

cells is not usually specified, but it is implied that real biologists feel the difference’ 

(p.181, emphasis added). The issue of whether synthetic biologists are ‘real 

biologists’ and whether synthetic biology is itself ‘real biology’ is a fascinating one, 

which is likely to resurface often as the field develops. Keller (2009) argues that 

synthetic biology should not be called ‘biology’, because the guiding aim of synthetic 

biology is not to find out about the natural world. But from an engineering perspective 

it may not be a criticism of synthetic biology to say that it is not real biology. 

Engineers want to make biology do things for them (and for us), and this instrumental 

perspective defines their approach. 

 

Engineering analogies and engineering principles 

In order to align itself with engineering, synthetic biology makes heavy but rather 

indiscriminate use of engineering analogies. For example, the word ‘chassis’ is 

borrowed from mechanical engineering to describe the cellular context into which 

biological parts can be put. There is talk of ‘refactoring’ bacteriophage – a term 

borrowed from software engineering (Chan et al. 2005). There is also much 

discussion of how DNA, RNA and proteins behave like transistors, resistors and 

capacitors in electrical circuits (Andrianantoandro et al. 2006). The recurrence of 

analogies from electronic engineering explains the search for oscillators in biology, a 

search which resulted in the landmark ‘represillator’ paper (Elowitz and Leibler 

2000). A represillator is a rather unstable biological oscillator, and could be described 

as a true example of hybridicity between biology and engineering. In short, we see a 

broad mixture of engineering analogies being drawn on in synthetic biology from 

mechanical, electrical and software engineering. 

 

Engineering principles are also often applied to synthetic biology, and this is perhaps 

one of the clearest ways in which synthetic biology is becoming described in terms of 

engineering. For example, there are many attempts in synthetic biology to develop 

components which are modular and can be combined in a ‘plug and play’ manner 

(Isaacs and Collins 2005). This requires that biological parts are standardized, so that 

new parts do not have to be created in a bespoke manner each time they are required 

(Arkin 2008). Other engineering principles that are said to be key to synthetic biology 

are abstraction and decoupling (Endy 2005). I focus on two engineering principles 

here: modularity and decoupling. 
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Modularity in synthetic biology 

One of the most important of the engineering principles is modularity. Agapakis and 

Silver (2009) explain that ‘A system can be described as modular if its components 

can be functionally separated and recombined’ (p.704), i.e. if the constituent elements 

retain their properties irrespective of their context, like Lego bricks. They say that it is 

possible to observe modularity in biology at the level of nucleic acids, proteins and 

pathways. 

 

There is much discussion over what constitutes a module in a biological context, 

however. The Mitchell (2005) asks the key question: ‘Is nature modular, or do we 

impose modularity on it in order to understand it?’ (p.101). She adds the warning that 

‘Since our accounts of nature always carry along a conceptual framework, it is 

impossible to give a definitive proof that what we describe (modularity) is really in 

the world’ (p.101). The pervasiveness of the conceptual framework that we carry 

along with us can be found in some scientific papers that describe perceived 

modularity in biology. For example, some find it ‘wondrous that the solutions found 

by evolution have much in common with good engineering’ (Alon cited in Lynch 

2007: 803). But others maintain that ‘it remains unclear whether modules really exist 

or whether they are simply a construction used to disentangle complex biological 

networks’ (Morange 2009: S50-S51). This issue is the subject of much discussion in 

the scientific literature. Some think that it is clear that evolution has selected for 

modularity because it enables different parts of the system to evolve independently 

(Sauro 2008), while others disagree (Lynch, 2007). Morange (2010) interestingly 

suggests that one of the things that synthetic biology can do in respect to modularity is 

to ‘explode a poorly defined category’ (p.375), by seeing if synthetic modular entities 

can be made to function in a range of different biological circumstances.  

 

Further analysis shows that modularity is not a straightforward concept even in more 

conventional forms of engineering. In electronics, for example, something that is 

downstream to an apparently modular entity, such as a capacitor, can interfere with 

this entity in a phenomenon called retroactivity (Del Vecchio et al. 2008). 

Furthermore, electronic components are not identical to one another, and in some 

circumstances they can betray their idiosyncrasies (Thompson 1997). To add an extra 

twist, artificial evolution and genetic algorithms can be used to help design more 

efficient electronic circuits (Thompson 1997). It could perhaps be argued that we see 

an idealisation of electrical engineering in synthetic biology, and that when we look 

closer, we see that electronic circuits do not behave in a completely predictable and 

modular manner like Lego bricks. 

 

And even the analogy with Lego bricks can be challenged. Their power as an analogy 

is based on the idea that they fit together in a predictable manner irrespective of 

context. However, more advanced Lego toys do not use standardized, interchangeable 

parts, but are made up of specialised pieces designed for particular creations, such as 

Hogwarts Castle in the Harry Potter collection.
7
 Similar types of bespoke, specially 

engineered parts are used in other industries, such as in the construction of spacecraft 

(Richards 2008). 

 

Although we can challenge the analogies to modularity in engineering, this does not 

stem the enthusiasm among synthetic biologists to try to create modularity in 

biological systems. One of the attractions of modularity is that it enables expertise and 
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labour to be distributed, as can be seen in the case of the personal computer, where 

video cards, for example, can be designed completely separately from motherboards 

(Langlois 2010). Such division of labour enables mass-production. Modular systems 

are also particularly well suited to open source ownership regimes (see Calvert 2008). 

Importantly, modularity enables some biological features to be ‘black boxed’. In other 

words, if biological parts behave in a predictable manner whatever their context, then 

they do not have to be fully understood by the researcher who is working on them. If 

biology can be successfully black-boxed, not everyone working on synthetic biology 

needs to have skills in molecular biology. This enables synthetic biology to become 

more easily accessible. 

 

One of the consequences of this deskilling has been the rise of ‘Do It Yourself’ 

biology, sometimes called ‘citizen science’ or ‘amateur science’. This is a loose 

global collective which is made up of a mixture of people most of whom are 

‘biocurious’ amateurs (approximately 95%), with the remainder being artists, 

‘moonlighting’ working scientists, and bioentrepreneurs (Cowell 2010). DIYbio is a 

worldwide phenomenon, with groups in the Bangalore, Indonesia and Singapore as 

well as in the US and Europe.
8
 It can be seen as one example of a broader trend 

towards greater participation in science and technology, alongside patient advocacy 

groups, direct-to-consumer genetic testing, and open source programming (see Kelty 

2010). DIYbio, being non-institutional science, is not part of synthetic biology strictly 

speaking, but it is inspired the aim to modularize and standardize biological entities 

and techniques that we find in synthetic biology. 

 

Decoupling and design 

Aside from modularity, the second engineering principle that is of particular relevance 

here is decoupling. In engineering, decoupling is the idea that there is a separation 

between the processes of design and fabrication (Endy 2005). We see this in the 

construction industry where a building is designed by an architect and built by a 

structural engineer. Decoupling in synthetic biology is enabled by gene synthesis 

technologies, which allow DNA sequences to be designed according to the 

requirements of synthetic biologists. We see this freedom to design in the names of 

the software used in synthetic biology, such as ‘Gene Designer 2.0’ (Mackenzie 

2010). 

 

The ability to design, enabled by decoupling, is perhaps an inevitable consequence of 

synthetic biology becoming an engineering discipline, because there are close links 

between engineering and design. Antonsson (1987) argues that ‘It is design, or the 

synthesis of useful devices, which distinguishes engineering from science. In fact 

design is the very essence of engineering’ (p.1 emphasis in original). And Turnbull 

(2007) agrees that ‘While engineers engage in a wide range of activities it is design 

that lies at the core of the discipline’ (p.2). Simon’s (1969) definition of design as ‘the 

transformation of existing conditions into preferred ones’ (p.55), shows that design is 

continuous with the ameliorative impulse that drives engineering. 

 

In the context of synthetic biology, the hope is that decoupling will free living 

systems from the constraints of evolution, making nature something that can be 

designed. Some synthetic biologists argue that nature’s canvas is limited by the 

contingencies and path dependencies of evolution, and with our technical powers and 

imagination we can enlarge that canvas (Bedau and Parke 2009). As Fritz et al. (2010) 
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put it: ‘the drive to look beyond what does exist to what can exist is ushering in an era 

of biology by design’ (p.1). The aspiration is that biology will become a product of 

design choices, rather than evolutionary pressures (Allenby 2007). These design 

choices can include industrial and political imperatives, such as security issues, and 

even aesthetics. What decoupling does in this way is enable social concerns to be 

designed into synthetic biological products (Mackenzie 2010). Importantly, the 

inescapably ‘value-laden character of design’ (Johnson and Wetmore 2007: 570), 

means that when something is designed this necessarily opens up a whole host of 

further questions such as: is it designed well or not? For what purpose is it designed? 

And who is it designed for? (Latour 2008). By making biology into something that 

can be designed, synthetic biology opens biology up to broader discussion. 

 

A new kind of engineering? 

I have explored the engineering principles that are applied to synthetic biology, 

focusing particularly on modularity and decoupling. But it should be acknowledged 

that some scientists working in synthetic biology think that it is inappropriate to apply 

engineering analogies and principles to biological systems. For example, de Lorenzo 

and Danchin (2008) think that there is an ‘overly simplistic projection of electronic 

engineering concepts into supposedly biological counterparts’ (p.824). Some maintain 

that the emergent properties that define living things militate against their successful 

modularisation (see Calvert 2008). Others argue that the whole engineering project 

might fail, because of the unpredictable, complex, noisy and context-dependent nature 

of biological systems (Kwok 2010). 

 

Even amongst those who are keen to promote the engineering agenda, there is an 

increasing recognition that engineering in biology may look rather different from 

engineering in other areas. Some have suggested that perhaps we will have to think 

about changing our understanding of engineering when we apply it to biology. This 

point is made by Weiss (2009): 

 

‘we must also be cognizant of the interesting and challenging features of 

the biological substrate that make it different from all other existing 

engineering disciplines (e.g., self-replication, self-repair, mutation and 

evolution, high degree of noise, incomplete information and the 

importance of cellular context)’ (p.1073). 

 

In recent years there has been much discussion among synthetic biologists of the 

‘interesting and challenging features of the biological substrate’, particularly 

complexity, noise and evolution (Purnick and Weiss 2009). And there is increasing 

recognition that although human-made engineered systems work by using insulation 

and isolation of parts, this may not be what we find in nature, because of the ‘radical 

interconnectedness of cellular context’ (Andrianantandro et al. 2006: 13). The 

conclusion that is usually drawn from these observations is not that synthetic 

biologists should give up on their attempts to engineer biology, but that they should 

use these particular features of biology to develop new ways of doing engineering 

(see Fritz et al. 2010). 

 

As synthetic biologists often point out, there are many ways in which biological 

systems are superior to engineered systems. For example, biological systems are 

extremely robust (Kitano 2007), they exhibit exquisite sensitivity and specificity 
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(demonstrated by the sensitivity of the olfactory system), and they can use sunlight as 

an energy source (Smolke and Silver 2011). They are also good at CO2 capture and 

can synthesize complex molecules using multi-step enzymatic processes (Elfick 

2011). Furthermore, evolution and reproduction are powerful techniques that many 

synthetic biologists would like to harness to their own ends (Synthetic biologist 9). 

 

Engineer or tinkerer? 

If synthetic biologists do develop a new type of engineering in this manner, to what 

extent will we legitimately be able to call this activity engineering? How far can the 

idea of engineering be stretched? It is interesting to look at arguments made by 

François Jacob in the 1970s in this light. Jacob (1977) criticises the idea that evolution 

can be thought of as an engineer. He says that we should think of living things instead 

as the product of ‘a tinkerer who uses everything at his disposal to produce some kind 

of workable object’ (p.1163). Jacob develops this idea of tinkering by drawing 

inspiration from Levi Strauss’ (1966) discussion of ‘bricolage’. O’Malley (2010) 

similarly describes the rather haphazard character of much synthetic biology by using 

the notion of ‘kludging’, and a term with related resonance which is widely used in 

the synthetic biology community is that of ‘hacking’.
9
 These may all be more 

appropriate ways of understanding synthetic biology than of thinking of it as some 

form of rational engineering. 

 

The DIYbio movement explicitly embraces the playful, tinkering nature of their 

activities, and are happy referring to themselves as ‘hackers’ (Guthrie 2009). They use 

a definition of tinkering from the San Francisco Exploratorium – a definition which 

resonates with Jacob’s – to describe their activities:  

 

‘It's about figuring out how things work and reworking them. 

Contraptions, machines, wildly mismatched objects working in harmony – 

this is the stuff of tinkering. Tinkering is, at its most basic, a process that 

marries play and inquiry’.
10

 

 

A focus on tinkering highlights the playful and experimental character of synthetic 

biology, and this could be interpreted as somewhat diluting the aspirations for mastery 

and control that we find in engineering (Helsten and Nerlich 2011). But tinkering 

becomes problematic in a context where industrialisation, up-scaling and mass 

production are the goals, as they are in synthetic biology and in engineering more 

generally.  

 

There may be more continuities between tinkering and engineering than are first 

apparent, however. Kleif and Faulker (2003) point out that engineers have an 

exhilaration about what technologies can do, and that fun is an important element of 

pleasure in engineering. And Morange argues that engineers are actually often 

opportunistic and are likely to use whatever is easily available, meaning that ‘The 

sharp and illuminating distinction between engineers and tinkerers holds only as far as 

one has an ideal view of the behavior of engineers’ (p.371). This view is also found in 

a recent editorial by four leading synthetic biologists, who argue that ‘rather than 

separating science from engineering…the new questions posed by the early ‘tinkerers’ 

have created and amplified opportunities at the intersections of chemistry, physics, 

biology and engineering’ (Collins et al. 2010: 1). If we give up on an idealised 

understanding of rational engineering we can perhaps get a better grip of 
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interdisciplinary activities that go on under the heading of synthetic biology, where 

we regularly see crossovers and ‘mash-ups’ between people coming from different 

science and engineering traditions, who often retrain and reinterpret their work, as 

well as their professional identities. 

 

We should also be wary of treating engineering itself as homogenous, because there 

are many different types of engineer. Synthetic biology attracts engineers trained in 

chemical engineering, control engineering, electrical engineering and mechanical 

engineering, to name a but few. These subfields have different approaches and 

assumptions. Control engineers, for example, may be much more familiar with 

dealing with robustness and systems theory than mechanical or computational 

engineers (Stelling et al. 2004). We will perhaps see a new type of engineer/biologist 

emerging who will be particularly well-suited to working with the contingencies and 

unpredictabilities of the biological substrate.
11

 

 

Heterogeneous engineers 

There will have to be mechanisms to support this new type of engineer/biologist, and 

the proponents of the BioBricks approach realise that it is necessary to train a new 

cadre of engineers who will specialise in synthetic biology. One of the mechanisms of 

doing this has been to set up an undergraduate competition called the International 

Genetically Engineered Machines competition (iGEM). This annual event started at 

MIT in 2003, and it has grown exponentially since, with the 2012 competition hosting 

191 teams from all over the world, including 55 teams from Asia.
12

  

 

iGEM has similarities with ‘Do It Yourself’ biology, in fact, Endy (2010) has dubbed 

iGEM ‘Do It Together’ biology. As with the DIYbio phenomenon, the iGEM 

competition broadens synthetic biology to a wider range of participants than would 

normally participate in a cutting-edge scientific field, to include teams of 

undergraduates and in some cases even high school students. Another similarity to 

DIYbio is that in iGEM there is the idea that applying engineering to biology is fun 

and ‘cool’ (Goodman 2008). 

 

A feature of iGEM that is particularly interesting from a social scientific perspective 

is that there is an aim to build a community that not only possesses certain technical 

skills and approaches, but that shares certain values about safety, security and open 

access to the technology. The students are rewarded for integrating these aspects into 

their scientific projects, so they are being encouraged to think about the social and the 

technical dimensions of their work simultaneously. 

 

What we see exhibited particularly well in the iGEM competition is a demonstration 

of synthetic biologists not just behaving as engineers, but behaving as heterogeneous 

engineers. This is a concept first used by Law (1987) to draw attention to the fact that 

engineers must incorporate social, political, economic and human factors into their 

technical work (Hamlin 1992). The concept was developed on the basis of the 

observation that engineers do not simply produce technological devices, but that 

‘Airplanes, electric power plants, the Internet, refrigerators, and playpens are 

complexes of artifacts together with social arrangements, social practices, social 

relationships, meanings, and institutions’ (Johnson and Wetmore 2007: 575).  
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As well as mobilizing social, political and institutional components, heterogeneous 

engineers also contribute to the building of society (Johnson and Wetmore 2007). 

Winner (1986) has famously shown how machines and other artifacts ‘can embody 

specific forms of power and authority’ (p.19), and can in this manner engineer 

relationships among people. In this sense ‘The things we call ‘technologies’ are ways 

of building order in our world’ (p.28). So we not only see synthetic biologists 

redesigning nature to fit the engineering ideal, but also redesigning society. For this 

reason, Law and Callon (1988) argue that engineers are ‘engineer-sociologists’ 

(p.284); ‘social activists who design societies or social institutions to fit those 

machines’ (p.284). This bringing together of technical and political forces is 

particularly apparent in synthetic biology. And the widespread integration of ‘ethical, 

legal and social issues’ (or ‘Human Practices’) into synthetic biology is a 

demonstration that social scientists are one of the components being mobilised by 

these heterogeneous engineers (Calvert and Martin 2009). 

 

Conclusions 

As the discussion of the nature of engineering knowledge showed above, the 

engineering impulse is ameliorative; the objective is to improve the world. However, 

the understanding of what constitutes a ‘better’ world is confined by the instrumental 

engineering imagination, where the aim is to make the world more manipulable and 

controllable, where every situation is interpreted as a problem to solve, and where 

ends are more important than means. As Law and Mol (2002) make clear, this 

perspective ‘misses those places that don’t fit so well with the control impulse’ 

(p.137). In nanotechnology we see the ‘engineer’s perspective on human minds and 

bodies as more or less well-designed technical products’ (Nordmann 2007: 42), and 

we should not be surprised if this is how engineers interpret the biological world. If 

engineers are the dominant voice in the synthetic biology of the future then we may 

expect to see the growth of a certain type of synthetic biology aligned with the 

engineering agenda. 

 

What I have argued here, however, is that there is another side to the engineering 

agenda. Both engineering and design are activities that incorporate broader social 

goals and values. And heterogeneous engineers incorporate non-technical components 

into their thinking and practices. By making biology into an engineering discipline, 

synthetic biologists are simultaneously broadening the range of voices that can enter 

into the discussion of their field. The boundaries surrounding biotechnology are 

becoming more permeable, and this is opening up synthetic biology to a diverse range 

of global groups. Since ‘making life better’ means different things to different people, 

the involvement of such new communities in synthetic biology could help expand and 

challenge dominant ways of imagining how we should make use of our increased 

powers to manipulate the biological world. 
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1
 www.syntheticbiology.org 

2
 Based on four interviews with protocell synthetic biologists. 

3
 This is a paraphrase of a joke from the comedian Simon Munnery. 

4
 Philosophers of science also often assume that the science/engineering distinction is the same as the 

science/technology distinction. But Davis (1996) argues that ‘engineering equals technology’ is a 

mistake (p.98), because the history of engineering is not the same as the history of technology. 

Although the output of engineering may be technologies, engineering itself is an approach and a 

profession. 
5
 An incorrect version of this quotation (‘what I cannot build, I cannot understand’) was coded into the 

bacteria Mycoplasma mycoides JCVI-syn1.0 (Gibson 2010) – another demonstration of its centrality in 

the field of synthetic biology. 
6
 Quoted in Kleif and Faulkner (2003: 307). 

7
 There are also examples of synthetic biologists moving away from Lego analogies. Endy has recently 

stated that ‘We now need to move beyond Lego metaphors and genetic toys to professional 

technologies’ (quoted in Sanders 2010). 
8
 See diybio.org/ and http://diybiosingapore.wordpress.com/ 

9
 Synthetic biology company Ginkgo Bioworks’ phone number is +1877 HACK DNA. 

10
 http://tinkering.exploratorium.edu/ 

11
 Different substrates, aside from biology, also lead to differences within engineering. As Arkin (2008) 

says in respect to standardization: ‘Some engineering fields have more formal and less mutable 

standards than others owing to the nature of their substrate and the uncertainties that plague their 

manufacture and deployment’ (p.744). 
12

 See http://ung.igem.org/Team_List?year=2012 
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