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Abstract—Motivated by the looming “capacity crunch” in
fiber-optic networks, information transmission over such systems
is revisited. Among numerous distortions, inter-channel inter-
ference in multiuser wavelength-division multiplexing (WDM)
is identified as the seemingly intractable factor limiting the
achievable rate at high launch power. However, this distortion
and similar ones arising from nonlinearity are primarily due to
the use of methods suited for linear systems, namely WDM and
linear pulse-train transmission, for the nonlinear optical channel.
Exploiting the integrability of the nonlinear Schrödinger (NLS)
equation, a nonlinear frequency-division multiplexing (NFDM)
scheme is presented, which directly modulates non-interacting
signal degrees-of-freedom under NLS propagation. The main
distinction between this and previous methods is that NFDM
is able to cope with the nonlinearity, and thus, as the the signal
power or transmission distance is increased, the new method
does not suffer from the deterministic cross-talk between signal
components which has degraded the performance of previous
approaches. In this paper, emphasis is placed on modulation
of the discrete component of the nonlinear Fourier transform
of the signal and some simple examples of achievable spectral
efficiencies are provided.

Index Terms—Fiber-optic communications, nonlinear Fourier
transform, Darboux transform, multi-soliton transmission.

I. INTRODUCTION

THIS PAPER is a continuation of Part I [1] and Part II
[2] on data transmission using the nonlinear Fourier

transform (NFT). [Part I] describes the mathematical tools un-
derlying this approach to communications. Numerical methods
for implementing the NFT at the receiver are discussed in
[Part II]. The aims of this paper are to provide methods for
implementing the inverse NFT at the transmitter, to discuss
the influence of noise on the received spectra, and to provide
some example transmission schemes, which illustrate some of
the spectral efficiencies achievable by this method.

The proposed nonlinear frequency-division multiplexing
(NFDM) scheme can be considered as a generalization of
orthogonal frequency-division multiplexing (OFDM) to inte-
grable nonlinear dispersive communication channels [1]. The
advantages of NFDM stem from the following:

1) NFDM removes deterministic inter-channel interference
(cross-talk) between users of a network sharing the same
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fiber channel;
2) NFDM removes deterministic inter-symbol interference

(ISI) (intra-channel interactions) for each user;
3) spectral invariants as carriers of data are remark-

ably stable and noise-robust features of the nonlinear
Schrödinger (NLS) flow;

4) with NFDM, information in each channel of interest can
be conveniently read anywhere in a network indepen-
dently of the optical path length(s).

As described in [Part I], the nonlinear Fourier transform of a
signal with respect to a Lax operator consists of discrete and
continuous spectral functions, in one-to-one correspondence
with the signal. In this paper we focus mainly on discrete
spectrum modulation, which captures a large class of input
signals of interest. For this class of signals, the inverse NFT
is a map from 2N complex parameters (discrete spectral
degrees-of-freedom) to an N -soliton pulse in the time domain.
This special case corresponds to an optical communication
system employing multi-soliton transmission and detection in
the focusing regime.

A physically important integrable channel is the optical fiber
channel. Despite substantial effort, fiber-optic communications
using fundamental solitons (i.e., 1-solitons) has faced numer-
ous challenges in the past decades. This is partly because the
spectral efficiency of conventional soliton systems is typically
quite low (ρ ∼ 0.2 bits/s/Hz), but also because on-off keyed
solitons interact with each other, and in the presence of noise
the system reach is limited by the Gordon-Haus effect [3].
Although solutions have been suggested to alleviate these
limitations [3], most current research is focused on the use
of spectrally-efficient pulse shapes, such as sinc and raised-
cosine pulses, with digital backpropagation at the receiver
[4]. Although these approaches provide a substantial spectral
efficiency at low to moderate signal-to-noise ratios (SNRs),
their efficacy saturates after a finite SNR ∼ 20−30 dB where
ρ ∼ 5− 9 bits/s/Hz. This, as we shall see in Section II, is due
to the incompatibility of the wavelength-division multiplexing
(WDM) with the flow of the NLS equation, causing severe
inter-channel interference.

There is a vast body of literature on solitons in mathematics,
physics, and engineering; see, e.g., [3], [5]–[8] and references
therein. Classical, path-averaged and dispersion-managed fun-
damental 1-solitons are well-studied in fiber optics [3]. The
existence of optical N -soliton pulses in optical fibers is also
well known [3]; this previous work is mostly confined to
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the pulse-propagation properties of N -solitons, is usually
limited to small N (e.g., N = 2, 3), or focuses on specific
isolated N -solitons (e.g., pulses of the form A sech(t)). Signal
processing problems (e.g., detection and estimation) involving
soliton signals in the Toda lattice and other models have been
considered by Singer [8]. There is also a related work by
Hasegawa and Nyu, “eigenvalue communication” [9], which
is reviewed and compared with our approach in Section VI-F,
after NFDM is explained.

While a fundamental soliton can be modulated, detected and
analyzed in the time domain, N -solitons are best understood
via their spectrum in the complex plane. In this paper, these
pulses are obtained by implementing a simplified inverse NFT
at the transmitter using the Darboux transform and are demod-
ulated at the receiver by recovering their spectral content using
the forward NFT. Since the spectral parameters of a multi-
soliton naturally do not interact with one another (at least in
the absence of noise), there is potentially a great advantage in
directly modulating these non-interacting degrees-of-freedom.
Sending an N -soliton train for large N and detecting it at
the receiver—a daunting task in the time domain due to the
interaction of the individual components—can be efficiently
accomplished, with the help of the NFT, in the nonlinear
frequency domain.

The paper is organized as follows. In Section II, we re-
visit the wavelength-division multiplexing method commonly
used in in optical fiber networks and identify inter-channel
interference as the capacity bottleneck in this method. This
section provides further motivation for the NFT approach
taken here. In Section III, we study algorithms for implement-
ing the inverse nonlinear Fourier transform at the transmitter
for signals having only a discrete spectrum. Among several
methods, the Darboux transform is found to provide a suitable
approach. The first-order statistics of the (discrete) eigenvalues
and the continuous spectral amplitudes in the presence of
noise are calculated in Section IV. In Section V we calculate
some spectral efficiencies achievable using very simple NFT
examples. Finally, we provide some remarks on the use of
the NFT method in Section VI and conclude the paper in
Section VII.

II. ORIGIN OF CAPACITY LIMITS IN WDM OPTICAL
NETWORKS

Recent studies on the capacity of WDM optical fiber net-
works suggest that the information rates of such networks is
ultimately limited by the impacts of the nonlinearity, namely
inter-channel and intra-channel nonlinear interactions [4], [10].
The distortions arising from these interactions have determin-
istic and (signal-dependent) stochastic components that grow
with the input signal power, diminishing the achievable rate1 at
high powers. In these studies, for a class of ring constellations,
the achievable rates of the WDM method increases with aver-
age input power power, P , reaching a peak at a certain critical

1In this paper, the term “achievable rate” refers to a lower bound to
the capacity. It is obtained by optimizing mutual information under some
assumptions, e.g., considering a sub-optimal transmitter and receiver or a
method of communication, a subset of all possible input distributions, etc.

input power, and then asymptotically vanishes as P → ∞ (see
e.g., [4] and references therein).

In this section we briefly review WDM, the method com-
monly used to multiplex many channels in practical optical
fiber systems. We identify the origin of capacity limitations
in this model and explain that this method and similar ones,
which are borrowed from linear systems theory, are poorly
suited for efficient communication over nonlinear optical fiber
networks. In particular, certain factors limiting the achievable
rates in the prior work are an artifact of these methods (notably
WDM) and may not be fundamental. In subsequent sections,
we continue the development of the NFDM approach that is
able to overcome some of these limitations, in a manner that is
fundamentally compatible with the structure of the nonlinear
fiber-optic channel.

A. System Model

For convenience, we reproduce the system model given
in [Part I]. We consider a standard single-mode fiber with
dispersion coefficient β2, nonlinearity parameter γ and length
L. After appropriate normalization (see, e.g., [Part I, Section I,
particularly Eq. (3)]), the evolution of the slowly-varying part
q(t, z) of a narrowband signal as a function of retarded time
t and distance z is well modeled by the stochastic nonlinear
Schrödinger equation

jqz(t, z) = qtt + 2|q(t, z)|2q(t, z) + n(t, z), (1)

where subscripts denote differentiation and n(t, z) is a ban-
dlimited white Gaussian noise process, i.e., with

E {n(t, z)n∗(t′, z′)} = σ2δB(t− t′)δ(z − z′),
where δB(x) = 2Bsinc(2Bx), where B is the normalized
noise bandwidth and where E denotes the expected value. It
is assumed that the transmitter is bandlimited to B and power
limited to P , i.e.,

E
1

T

∫ T
0

|q(t, 0)|2dt = P,

where T → ∞ is the communication time. Note that the power
constraint in this paper is an equality constraint.

In fiber-optic communication systems, noise can be in-
troduced in a lumped or distributed fashion. The former
case arises in systems using erbium-doped fiber amplifiers
(EDFAs) located at the end of each fiber span [3]. We refer
to this type of noise as lumped noise. If noise is injected
continuously throughout the fiber as a result of distributed
Raman amplification (DRA), as in (1), one has distributed
noise [4]. Here the fiber loss is assumed to be perfectly
compensated by the amplifier. In this paper, we consider

TABLE I
FIBER PARAMETERS

nsp 1.1 excess spontaneous emission factor
h 6.626× 10−34J · s Planck’s constant
ν 193.55 THz center frequency
α 0.046 km−1 fiber loss (0.2 dB/km)
γ 1.27 W−1km−1 nonlinearity parameter
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the DRA model, hence (1) explicitly contains no loss term
— see also Remark 5. In this model, the noise spectral
density is given by σ2 = σ2

0L/(PnTn), where σ2
0 = nspαhν,

with parameters given in Table I, and where Pn = 2/(γL)
and Tn =

√
|β2|L/2 are normalization scale factors. The

unnormalized signal and noise bandwidth can be obtained by
dividing the corresponding normalized bandwidth by Tn. A
derivation of (1) and a discussion about sources of noise in
fiber-optic channels can be found in [3], [11].

Mathematically, stochastic partial differential equations
(PDEs) such as (1) are usually interpreted via their equiv-
alent integral representations. Integrating a stochastic pro-
cess with unbounded variation, such as white noise, can
be problematic. Consider, for instance, the Riemann integral∫ z+dz

z
g(z)dB(z) ≈ g(l)(B(z + dz)−B(z)), where B(z) is

the Wiener process and l ∈ [z, z + dz]. Since the integrand
is not approximately constant in [z, z + dz], the value of the
integral depends on l. The choice of l leads to various inter-
pretations for a stochastic PDE, notably Itō and Stratonovich
representations, in which, respectively, l = z and l = z+dz/2.
Fortunately, since in our application noise is bandlimited in
its temporal component, the stochastic PDE (1) is essentially
a finite-dimensional system and there is no difficulty in the
rigorous interpretation of (1).

B. Achievable Rates of WDM Optical Fiber Networks

Fiber-optic communication systems often use wavelength-
division multiplexing to transmit information. Similar to
frequency-division multiplexing, information is multiplexed in
distinct wavelengths. This helps to separate the signals of
different users in a network, where they have to share the
same links between different nodes.

Fig. 1 shows the system model of a link in an optical
fiber network between a source and a destination. There are
N fiber spans between multiple users at the transmitter (TX)
and multiple users at the receiver (RX). The signal of some
of these users is destined to a receiver other than the RX
shown in Fig.1. As a result, at the end of each span there is
a reconfigurable optical add-drop multiplexer (ROADM) that
may drop the signal of some of the users or, if there are unused
frequency bands, add the signal of potential external users. We
are interested in evaluating the per degree-of-freedom capacity
(bits/s/Hz) of the optical fiber link from the transmitter to the
receiver.

In WDM, the following (baseband) signal is transmitted
over the channel

q(t, 0) =

N−1∑
k=0

(
M∑
`=1

s`kφ`(t)

)
ej2πkWt, (2)

where k and l are user and time indices, {s`k}Ml=1 are symbols
transmitted by user k, W = B/N is the per-user bandwidth,
{φ`(t)}∞l=1 is an orthonormal basis for the space of finite
energy signals with Fourier spectrum in [−W/2,W/2], N
is the number of WDM users and M is number of symbols
per user. To illustrate the essential aspects, we temporarily
simplify (2) by assuming that M = 1 and φ1(t) = 1, ∀t, i.e.,
each user sends a pure sinusoid, so as to work with Fourier

series instead of Fourier integrals. Thus each user operates at
a single frequency centered in a band of width W and

q(t, 0) =

N−1∑
k=0

qk(0)ej2πkWt, (3)

where {qk(0)} are the Fourier series coefficients at z = 0.
As the periodic signal (3) evolves in the nonlinear optical

fiber, new frequency components are created and the signal
may not remain periodic as in (3). However, assuming a small
W , there are a large number of frequencies (users) at z = 0
and we can assume a Fourier series with variable coefficients
for q(t, z) at z > 0

q(t, z) =

N−1∑
k=0

qk(z)ej2πkWt. (4)

Substituting (4) into (1), we get the NLS equation in the
discrete frequency domain

j
∂qk(z)

∂z
= −4π2W 2k2qk(z)︸ ︷︷ ︸

dispersion

+ 2|qk(z)|2qk(z)︸ ︷︷ ︸
SPM

+ 4qk(z)
∑
` 6=k
|q`(z)|2︸ ︷︷ ︸

XPM

+ 2
∑
` 6=m
` 6=k

q`(z)q
∗
m(z)qk+m−`(z)

︸ ︷︷ ︸
FWM

+nk(z), (5)

in which nk are the noise coordinates in frequency and
where we have identified the dispersion, self-phase modulation
(SPM), cross-phase modulation (XPM) and four-wave mixing
(FWM) terms in the frequency domain2.

It is important to note that the optical WDM channel is a
nonlinear multiuser interference channel with memory [12].
The inter-channel interference terms are the XPM and FWM.
There is no ISI in the assumed isolated pulse transmission
model (5) with one degree-of-freedom per user. However in
a pulse-train transmission model where M > 1, replacing
{qk} by {sk} via the inverse transform shows that the other
two effects, the dispersion and SPM, cause inter-symbol in-
terference (intra-channel interaction). Performance of a WDM
transmission system depends on how interference and ISI are
treated, and in particular the availability of the user signals at
the receiver. Several cases can be considered.

The received signal q(t,L) associated with (2) can be
projected into the space spanned by φl(t) exp(j2πkWt),
l = 1, 2, . . . ,M ′, k = 0, 1, . . . , N ′ − 1, for some N ′ and
M ′, similar to (2). In this manner, the channel is discretized
as a map from a finite number of degrees-of-freedom s =
{s`k}N−1,M

k,l=0,1 at the channel input, to their corresponding values
ŝ = {ŝ`k}N

′−1,M ′

k,l=0,1 at the channel output. In general N ′ 6= N
and M ′ 6= M , since signal bandwidth and duration at the
transmitter and receiver might be different.

If one has a finite number of degrees-of-freedom s and ŝ,
has access to all of them and joint transmission and detection

2Some authors define XPM differently.
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Fig. 1. Fiber-optic communication system (after [4]).

of s and ŝ is practical, the channel is essentially a single-user
vector channel s 7→ ŝ, whose capacity is non-decreasing with
average input power [13]

P =
1

NM

N−1∑
k=0

M∑
l=1

E|s`k|2.

If joint transmission and detection is not possible, e.g., in
frequency k or in time `, then one can either treat interference
as noise (as currently assumed in WDM networks), or examine
various strategies to manage interference. By analogy with the
linear N -user interference channel [14], [15], these strategies
include signal-space orthogonalization (e.g., as achieved by
NFDM in the deterministic model) and, if enough information
about the channel is known, interference cancellation (particu-
larly in the strong regime) and interference alignment. If one of
these interference management strategies can be successfully
applied, then, again, the capacity of each user can be non-
decreasing with average input power. If none of these strategies
is applicable so that interference is treated as noise, or if
additional constraints are present, the achievable rate of the
channel of interest in WDM can saturate or decrease with
average input power. Below, we clarify these cases in more
detail.

It is obvious that capacity is a non-decreasing function of
cost under an inequality constraint. Below, we assume an
average cost defined by an equality constraint. This may not
be a suitable definition from a practical point of view, but it
is certainly of theoretical interest and it is also the convention
in optical fiber communication.

1) Single-user Memoryless Channels: The capacity-cost
function of a single-user vector discrete-time memoryless
channel with input alphabet having a symbol with unbounded
cost is a non-decreasing function of an equality-constrained
average cost [13]. The argument of [13] goes as follows. If
a rate R is achievable at cost P by some input distribution
p(x), then, for a small positive ε, a rate of at least (1− ε)R is
achievable at cost P ′ > P using the distribution (1−ε)p(x)+
εδ(x − x1) where x1 is a symbol of large cost. Intuitively,
sending a symbol x1 of large cost with small probability
allows average cost to grow with negligible impact on the
achieved rate. Since the channel is memoryless, transmission
of x1 does not affect the other symbols transmitted. Essentially
the transmitter remains in a low-power state most of the time,
which effectively turns the equality constraint to an inequality
constraint. See [13] for details, as well as for a discussion
about more general scenarios.

The monotonicity of C(P), of course, holds true for any
set of transition probabilities in a discrete-time memoryless
channel, including those obtained from nonlinear channels.
Consider, for instance, a nonlinear memoryless channel, e.g.,
the continuous-time zero-dispersion optical fiber channel in the
presence of a filter at the receiver. When a signal propagates
in this channel, its spectrum can spread continuously. The
amount of spectral broadening depends on the pulse shape
and, in particular, on the signal intensity. Thus a signal with
large cost may also require a large transmission bandwidth and
may be filtered out by the receiver filter. However, a large-cost
dummy signal does not need to be decoded. Thus, as for any
discrete-time memoryless channel, the capacity (bits/symbol)
is non-decreasing with the average input power P .

Although C(P) is monotonic, it may saturate, i.e., ap-
proach a finite constant for large values of P . In the zero-
dispersion optical fiber example, nonlinearity will cause a
signal-dependent spectral broadening, and large-energy signals
may broaden beyond the bandwidth of the receiver filter. Thus
the nonlinearity could potentially cause the capacity C(P) to
saturate; a precise analysis would depend on the definitions of
bandwidth and time duration.

Of course a saturating C(P) is a serious limitation to
data communications. Firstly, from a practical standpoint, a
capacity that saturates is equivalent to one that that peaks.
Secondly, in many channels one may not be able to increase
the average cost in the particular manner described above. For
instance, it is not possible to send a symbol with arbitrarily
large cost in a channel in which each symbol has a finite cost
or in the presence of a peak-power constraint. Thirdly, in some
cases increasing the average cost will limit the admissible input
distributions and decrease the capacity3.

2) Single-user Channels with Memory: The argument of
[13] can be repeated for channels with finite memory, i.e.,
when the influence of a large-cost symbol vanishes in a
finite time interval. Whenever such a large-cost symbol is
transmitted, the receiver can simply wait for the channel to
settle before resuming normal operation. As before, in the
limit of small ε, the loss in data rate is negligible. Of course,
as before, saturation can occur; for example, [16] gives an
example of a channel with memory where C(P) can saturate

3As a simple example, a binary-input channel with input costs c0 < c1 can
achieve a capacity C(ca) with average cost ca in the range c0 ≤ ca ≤ c1.
However, since C(c0) = C(c1) = 0, C(ca) is non-monotonic. This situation
can be observed in computer simulations at average powers close to the peak
power.
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even if optimal detection is performed.
In fiber-optic channels, the SPM term of each user is

available at the receiver for that user. Its deterministic part,
if needed, can be removed, e.g., by backpropagation and its
(signal-dependent) stochastic part can be handled by cod-
ing and optimal detection over a long block of data (e.g.,
maximum likelihood sequence detection). Deterministic or
stochastic nonlinear intra-channel effects do not cause the
capacity to vanish if the channel has finite memory (as in
the previous paragraph) and such joint detection is performed.

Note that using a sub-optimal receiver in the fiber-optic
channel may cause the achievable rate to saturate with input
power. Consider, by way of analogy, a usual linear channel
ym = T (sm)+nm, where sm, ym, nm ∈ Cm are, respectively,
the input, output and noise blocks and T : Cm 7→ Cm is an
invertible linear transformation. If T is not a multiplication
(diagonal) operator, the channel is subject to ISI. Inverting
the channel at the receiver completely removes this ISI:
ŝi = si + n̂i, where ŝ = T−1y and n̂ = T−1n, giving an
additive noise channel with colored, but signal-independent
noise.4 A (suboptimal) receiver which ignores noise correla-
tion and performs isolated symbol detection achieves a rate
(lower bound to the capacity) going to infinity with average
input power. In contrast, now consider a nonlinear channel
ym = F (sm, nm), where F : Cm ×Cm 7→ Cm is a nonlinear
transformation, i.e., each output component yi is a nonlinear
function of signal sm ∈ Cm and noise nm ∈ Cm. If F (sm, 0)
is invertible, channel inversion at the receiver, in general, gives
ŝi = si+hi(s

m, nm), for some function hi. As a result, in non-
linear systems, channel inversion (e.g., by backpropagation)
leaves a residual “stochastic ISI” hi(sm, nm) for each symbol.
This form of ISI is absent when the noise is zero. In this
case, a receiver based on backpropagation and isolated symbol
detection gives rise to an ISI-limited communication system
with suboptimal performance. This occurs when assuming
a memoryless model for the fiber-optic channel. Treating
stochastic ISI as noise can lead to a bounded achievable rate.
This is one reason that I(P) has a peak in some of the prior
work.

The case of channels with infinite memory can be more
involved. Here sending a symbol with large cost may render
the rest of transmission useless. Thus care must be taken in
nonlinear channels in which the memory grows with signal.

3) Multiuser Channels with Interference: Inter-channel in-
terference in the frequency domain is mathematically the dual
of intra-channel ISI in the time domain. The difference is that
1) cooperation and joint detection is generally not possible
among users, and 2) while the bandwidth is usually limited,
transmission time can be practically unlimited. In an optical
fiber network, many users have to share the same optical fiber
link. Some user signals join and leave the optical link at
intermediate points along the fiber, leaving behind a residual
nonlinear impact. Thus we should assume that each user has
access only to the signal in its own frequency band, and the
signal of users k′ 6= k is unknown to the user k.

4Of course, naive channel inversion may result in noise enhancement, which
we ignore for the purposes of this discussion.

In optical fiber networks, not much information is known
about interference signals. The location, or the number, of
ROADMs, and how many signals and with what properties
have joined or left the link may be unknown. These signals
may not co-originate, so cooperation and precoding among
users may not be possible. In the absence of such information,
it is difficult to perform techniques such as interference can-
cellation or alignment. In this paper, we refer to such system
assumptions as the network scenario. The WDM simulations
in the literature, and our analysis in this section, assumes
a network scenario, in which the nonlinear interference is
unavoidably treated as noise.

In a nonlinear channel where, by definition, additivity is
not preserved under the action of the channel, multiplexing
user signals in a linear fashion, e.g., by adding them in
time (time-division multiplexing), in frequency (WDM or
traditional OFDM) or in space (multi-mode communications)
leads to inter-channel interference. In the case of WDM where
the available bandwidth is very limited, the interference is
significant and, if treated as noise in a network scenario,
ultimately limits the achievable rates of such optical fiber sys-
tems. In Section VI-G a brief discussion of other transmission
techniques is given.

Among the two interference terms FWM and XPM, FWM
is cubic in signal amplitude and has a larger variance. It is
obvious that this interference grows rapidly when increasing
the common average power P (or the number of users N ),
ultimately overwhelming the signal and limiting the achiev-
able rate. The per-degree-of-freedom achievable rates of the
channel of interest in WDM method versus average power in
a network scenario, I(P), is noise-limited in the low SNR
regime, following log(1 + SNR), and interference-limited in
the high SNR regime, decreasing to zero [4], [10], [17], [18];
see also Fig. 3 and Remark 2.

To summarize the preceding discussion, the transmission
rates achievable over the nonlinear Schrödinger channel de-
pend on the method of transmission and detection, as well as
the assumptions on the model. One can assume a single-user
or a multiuser channel, with or without memory, and with or
without optical filtering. It is thus important, when comparing
different results, to clarify which modeling assumptions have
been made.

C. Inter-channel Interference as the Capacity Bottleneck in
WDM Optical Fiber Networks

In the previous section we argued that, while intra-channel
interference can be handled by signal processing and coding,
inter-channel interference ultimately limits the achievable rate
of optical fiber networks. The current practice in fiber-optic
communication is to send a linear sum of signals in time (e.g.,
a pulse train) and in frequency (e.g., WDM) in the form of (2),
the linear orthogonality of which is corrupted by the nonlinear
fiber channel. This corresponds to modulating linear-algebraic
modes in the nonlinear channel (e.g., sending sinc functions).
Thus we identify conventional linear multiplexing as a major
culprit limiting the achievable rate of current approaches in
optical fiber networks. A modification of add-drop multiplex-
ers is needed so that the incoming signals are multiplexed in
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Fig. 2. (a) 5 WDM channels, with the channel of interest at the center. The dotted and solid graphs represent, respectively, the input and (noisy) output
after backpropagation. Neighbor channels are dropped and added at the end of the each span in the link, creating a residual interference for the channel of
interest. (b) Channel of interest at the input (dotted rectangle) and at the output after backpropagation (solid curve). The mismatch is due to the fact that the
backpropagation is performed only on the channel of interest and the interference signals cannot be backpropagated. (c) Inter-channel interference is increased
with signal intensity.

a nonlinear fashion, exciting non-interacting signal degrees-
of-freedom under the NLS propagation. This corresponds to
modulating appropriate nonlinear modes supported by the
channel (e.g., in the case of focusing regime, sending N -
soliton functions).

To illustrate the effect of the inter-channel interference in the
application of the WDM method to the nonlinear fiber channel,
we have simulated the transmission of 5 WDM channels over
2000 km of standard single-mode fiber with parameters from
Table I. At the end of each span, a ROADM filters the central
channel of interest (COI) at 40 GHz bandwidth, and adds
four independent signals in neighboring bands, with symbols
chosen uniformly from a common constellation. At the channel
output, the COI is filtered and backpropagated according to
the inverse NLS equation. Fig. 2 compares the input and
output frequency-domain waveforms, after backpropagation
of the COI. Fig. 2(a) shows five random instances of the
multiplexed signals; note that, because out-of-band signals are
filtered and replaced at various points along the fiber, the out-
of-band signals at the receiver are not related to the transmitted
ones. Only the COI is backpropagated. Comparing Fig. 2(c)
with Fig. 2(b), it can be seen that the nonlinear inter-channel
interference is stronger at higher powers.

The simulated achievable rates of WDM are shown in
Fig. 3. Here the distribution of the user of interest is optimized
and interference signals correspond to independent symbols
chosen uniformly from a common multi-ring constellation.
The two cases of large and small inter-channel interference
shown in the figure correspond to large and small user peak
powers, by scaling user constellations. It is clear from both
Fig. 2 and Fig. 3 that, as the average transmitted power is
increased, the signal-to-noise ratio in the COI, and as a result
the information rate, vanishes to zero. Note that this effect can
also be predicted by a simple SNR analysis at the receiver;
see also [19].

Using the mathematical and numerical tools described in
Parts I and II, this paper aims to show that it is possible to
exploit the integrability of the nonlinear Schrödinger equa-
tion and induce a k-user interference channel on the NLS
equation so that both the deterministic inter-channel and inter-
symbol interferences are simultaneously zero for all users of
a multiuser network. Here by “deterministic interference” we

mean interference terms that are present even in the absence
of noise. This lack of interference is a consequence of the
integrability of the cubic nonlinear Schrödinger equation in
1 + 1 dimensions, and is generally not feasible for other
types of nonlinearity (even if the nonlinearity is weaker than
cubic!). This results in a deterministic “orthogonalization” for
the nonlinear optical fiber channel for any value of dispersion,
nonlinearity, signal power or transmission distance.

Remark 1. Note that, as a consequence of the data-processing
inequality, for an information-theoretic study it is not nec-
essary to perform deterministic signal processing such as
backpropagation. One is only concerned with transition prob-
abilities, which include effects such as rotations or other
deterministic transformations. Backpropagation just aids the
system engineer to simplify the task of the signal recovery
— being an invertible operation, it does not change the
information content of the received signal.

Remark 2. An appropriate information-theoretic framework
for WDM is to describe the achievable rate region of the N -
user nonlinear interference channel with memory by a joint
rate (R1, . . . , Rn). This is, however, difficult to achieve. If one
isolates a single channel, the corresponding rate, Ri , would
depend on the distribution of the signals of the other users (and
not just their average powers). In WDM, users can operate at
low powers most of the time, as prescribed in Section II-B (a),
and each get a rate potentially saturating with power (even
by regarding interference as noise). However, in a network
scenario, interfering users may transmit data according to
any distribution — including, in the extreme case, sending a
symbol with power P all the time. The rates shown in Fig. 3,
vanishing at high powers, are obtained when interfering users
send data based on uniform distributions, while the distribution
of the user of interest is optimized. The average power for each
user was increased in the manner explained in the description
of the simulation, and not as in [13] (prescribed in Section II-B
(a)). As noted earlier, this need not to be elaborated since the
vanishing and saturating scenarios are essentially equivalent.
Some of the non-monotonic achievable rate graphs in the
literature, similar to Fig. 3, given appropriate assumptions, can
be interpreted as rates saturating with power at the location of
the peak, by staying in a low power regime most of the time,
if needed.
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Fig. 3. Achievable rates of the WDM method in a network scenario.

III. THE DISCRETE SPECTRAL FUNCTION

A. Background
Here we briefly recall the definition of the discrete spectral

function in the context of the nonlinear Schrödinger equation.
We first consider the deterministic version of (1), where the
noise is zero. Later, we will treat noise as a perturbation of
the noise-free equation.

The nonlinear Fourier transform of a signal in (1) arises via
the spectral analysis of the operator

L = j

(
∂
∂t −q(t)

−q∗(t) − ∂
∂t

)
= j (DΣ3 +Q) , (6)

where D = ∂
∂t ,

Q =

(
0 −q
−q∗ 0

)
and Σ3 =

(
1 0
0 −1

)
.

Let v(t, λ) be an eigenvector of L with eigenvalue λ. Follow-
ing [Part I, Section IV], the discrete spectral function of the
signal propagating according to (1) is obtained by solving the
the Zakharov-Shabat eigenproblem Lv = λv, or equivalently

vt =

(
−jλ q(t)
−q∗(t) jλ

)
v, v(t→ −∞, λ)→

(
1
0

)
e−jλt, (7)

where the initial condition was chosen based on the assump-
tion that the signal q(t) vanishes as |t| → ∞. The system of
ordinary differential equations (7) is solved from t = −∞
to t = +∞ to obtain v(+∞, λ). The nonlinear Fourier
coefficients a(λ) and b(λ) are then defined as

a(λ) = lim
t→∞

v1(t, λ)ejλt,

b(λ) = lim
t→∞

v2(t, λ)e−jλt.

Finally, the discrete spectral function is defined on the upper
half complex plane C+ = {λ : =(λ) > 0}:

q̃(λj) =
b(λj)

aλ(λj)
, j = 1, . . . , N,

where subscript λ denotes differentiation and λj are the
isolated zeros of a(λ) in C+, i.e., solutions of a(λj) = 0.
The continuous spectral function is defined on the real axis
λ ∈ R as q̂(λ) = b(λ)/a(λ).

B. Modulating the Discrete Spectrum

Let the nonlinear Fourier transform of the signal q(t) be
represented by q(t)←→ (q̂ (λ), q̃(λj)). When the continuous
spectrum q̂(λ) is set to zero, the nonlinear Fourier transform
consists only of discrete spectral functions q̃(λj), i.e., N com-
plex numbers λ1, . . . , λN in C+ together with the correspond-
ing N complex spectral amplitudes q̃(λ1), . . . , q̃(λN ). In this
case, the inverse nonlinear Fourier transform can be worked
out in closed-form, giving rise to N -soliton pulses [20]. The
simplified expressions, however, quickly get complicated when
N > 2, and tend to be limited to low-order solitons.

One can, however, create and modulate these multi-solitons
numerically. In this section we study various schemes for the
implementation of the inverse NFT at the transmitter when
q̂ = 0.

1) Discrete Spectrum Modulation by Solving the Riemann-
Hilbert System: The inverse nonlinear Fourier transform can
be obtained by solving a Riemann-Hilbert system of integro-
algebraic equations or, alternatively, by solving the Gelfand-
Levitan-Marchenko integral equations — see e.g., [Part I,
Section VII. A-B, particularly Eqs. (30a)–(30d)]. Great sim-
plifications occur when q̂(λ) is zero. For instance, in this case
the integral terms in the Riemann-Hilbert system vanish and
the integro-algebraic system of equations is reduced to an
algebraic linear system, whose solutions are N -soliton signals.

Let V (t, λj) and Ṽ (t, λ∗j ) denote the scaled eigenvectors
associated with λj and λ∗j defined by their boundary conditions
at +∞ (they are denoted by V 1 and Ṽ 1 in [Part I]). Setting
the continuous spectral function q̂(λ) to zero in the Riemann-
Hilbert system of [Part I, Eqs. (30a)–(30d)], we obtain an
algebraic system of equations

Ṽ (t, λ∗m) =

(
1
0

)
+

N∑
i=1

q̃(λi)e
2jλitV (t, λi)

λ∗m − λi
,

V (t, λm) =

(
0
1

)
−

N∑
i=1

q̃∗(λi)e−2jλ∗i tṼ (t, λ∗i )
λm − λ∗i

. (8)

Let K be an N ×N matrix with entries

[K]ij =
q̃ie

2jλit

λ∗j − λi
, 1 ≤ i, j ≤ N.

Let eN×1 be the all one column vector, ei = 1, i = 1, · · · , N ,
and define variables

U2×N =
(
V (t, λ1) V (t, λ2) · · · V (t, λN )

)
,

Ũ2×N =
(
Ṽ (t, λ∗1) Ṽ (t, λ∗2) · · · Ṽ (t, λ∗N )

)
,

(J1)2×N =

(
eT

0

)
, (J2)2×N =

(
0
eT

)
,

J2×N = J2 − J1K
∗ =

(
−eTK∗
eT

)
,

J̃2×N = J1 + J2K =

(
eT

eTK

)
,

FN×1 =
(
q̃1e

2jλ1t q̃2e
2jλ2t · · · q̃Ne

2jλN t
)T
.
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Using these variables, the algebraic equations (8) are simpli-
fied to

Ũ = J1 + UK, U = J2 − ŨK∗.
Note that K∗ is the complex conjugate of K (not the conjugate
transpose). The solution of the above system is

U = (J2 − J1K
∗) (IN +KK∗)−1

= J (IN +KK∗)−1
,

Ũ = (J1 + J2K) (IN +KK∗)−1
= J̃ (IN +KK∗)−1

.

From [Part I, Section. VII. B, Eq. 32], the N -soliton formula
is given by

q(t) = −2jeT (IN +K∗K)
−1
F ∗. (9)

The right hand side is a complex scalar and has to be evaluated
for every t to determine the value of q(t) everywhere.
Example 1. It is useful to see that the (scaled) eigen-
vector for a single-soliton with spectrum q̃(α+jω

2 , z) =

q̃0e
2αωze−j(α

2−ω2)z is

v(t, λ; z) =
1

2
sech[ω(t− t0)]

(
e−jΦ

eω(t−t0)

)
,

where Φ = αt+ (α2−ω2)z−∠q̃0− π
2 and t0 = 1

ω log
∣∣∣ q̃0ω ∣∣∣−

2αz. The celebrated equation for the single-soliton obtained
from (9) is

q(t) = −jωe−jαte−jφ0 sech (ω(t− t0)) . (10)

From the phase-symmetry of the NLS equation, the factor −j
in (10) can be dropped. The real and imaginary part of the
eigenvalue are the frequency and amplitude of the soliton. Note
that the discrete spectral amplitude q̃(λ) is responsible for the
phase and time-center of the soliton.

Unfortunately the Riemann-Hilbert system is found to be
occasionally ill-conditioned for large N . The N th row of the
K matrix is proportional to exp(2jλN t). Thus this row gets
a large scale factor as =(λ) is increased (t < 0) which then
makes IN +K∗K ill-conditioned at large negative times. As
a result, the Riemann-Hilbert system, at least in the current
form, is not the best method for numerical generation of N -
solitons.

2) Discrete Spectrum Modulation via the Hirota Bilin-
earization Scheme: It is also possible to generate multi-
solitons without solving a Riemann-Hilbert system or directly
using the NFT. A method which is particularly analytically
insightful is the Hirota direct method [20]. It prescribes, in
some sense, a nonlinear superposition for integrable equations.

The Hirota method for an integrable equation works by
introducing a transformation of the dependent variable q
to convert the original nonlinear equation to one or more
homogeneous bilinear PDEs. For integrable equations, the
nonlinearity usually is canceled or separated out. The resulting
bilinear equations have solutions that can be expressed as sums
of exponentials. Computationally, bilinear equations are solved
perturbatively by expanding the unknowns in terms of the
powers of a small parameter ε. For integrable equations, this
series truncates, rendering approximate solutions of various
orders to be indeed exact. The bilinear transformation has been

found for many integrable equations [20], taking on similar
forms that usually involve the derivatives of the logarithm of
the transformed variable.

Let us substitute q(t, z) = G(t, z)/F (t, z), where, without
loss of generality, we may assume that F (t, z) is real-valued.
To keep track of the effect of nonlinearity, let us restore the
nonlinearity parameter γ in the NLS equation. Plugging q =
G/F into the NLS equation

jqz = qtt + 2γ|q|2q,
we get

j (GzF − FGz) = FGtt − 2FtGt −GFtt
+ 2

F 2
t + γ|G|2

F
G

= FGtt − 2FtGt +GFtt

+ 2
F 2
t + γ|G|2 − FFtt

F
G, (11)

where we have added and subtracted 2GFtt. Equation (11) is
trilinear in F and G. It can be made bilinear by setting

j(GzF −GFz) = FGtt − 2FtGt +GFtt, (12a)
F 2
t + γ|G|2 − FFtt = 0. (12b)

This is a special solution for (11) which, as we shall see, cor-
responds to N -soliton solutions. It is very convenient (though
not necessary) to organize (12a)–(12b) using the Hirota D
operator

Dn
t (a(t), b(t)) =

(
∂

∂t
− ∂

∂t′

)n
a(t)b(t′)|t′=t ,

resulting in

(jDz +D2
t )FG = 0, (13a)
D2
tFF = 2γ|G|2. (13b)

Note that the D-operator acts on a pair of functions to
produce another function. Note further that (13a) does not
depend on the nonlinearity parameter γ. That is to say, the
nonlinearity has been separated from equation (13a). For
some other integrable equations (e.g., the Korteweg-de Vries
equation) for which one gets only one bilinear PDE, the
nonlinearity parameter is in fact canceled completely.

Bilinear Hirota equations (13a)–(13b) have solutions in the
form of a sum of exponentials. As shown in Appendix A, F
and G are obtained as [20], [21]:

F (t, z) =
∑

b={0,1}2N
δ1(b) exp

(
bTX + bTRb

)
,

G(t, z) =
∑

b={0,1}2N
δ2(b) exp

(
bTX + bTRb

)
,

where b = [bi]
2N
i=1 is a binary column vector, bi = {0, 1},

X = [Xi]
2N
i=1, Xi = ζit − kiz + φi, ζi+N = ζ∗i , ki+N = k∗i ,

φi+N = φ∗i , Xi+N = X∗i , ki = jζ2
i is the dispersion relation,

R2N×2N is the Riemann matrix,

Rij =


0, i ≥ j,
2 log (ζi − ζj)− log γ, (N + 1

2 − i)(N + 1
2 − j) > 0,

−2 log (ζi + ζj) + log γ, i ≤ N and j ≥ N + 1,



YOUSEFI AND KSCHISCHANG 9

bk to ωk
mapper

G
interaction

terms

F
interaction

terms

{b1}

{b2}

...

{bN}

e−(ω1+jα1)t

e−(ω2+jα2)t

...

e−(ωN+jαN )t

...

...

÷
q = G/F

Fig. 4. Hirota modulator for creating N -solitons.

and

δ1(b) =

1,
N∑
i=1

bi =
2N∑

i=N+1

bi,

0, otherwise,

δ2(b) =

1,
N∑
i=1

bi = 1 +
2N∑

i=N+1

bi,

0, otherwise.

Matrix R is upper triangular (with zeros on diagonal) and such
that when it is partitioned into four N ×N blocks, the 11, 12
and 22 blocks capture, respectively, the interaction between Xi

and Xj , Xi and X∗j , and X∗i and X∗j variables. The entries in
the 11, 12 and 22 blocks are, respectively, given by 2 log(ζi−
ζj)−log γ, −2 log(ζi+ζ

∗
N−j)+log γ and 2 log(ζ∗N−i−ζ∗N−j)−

log γ. Eigenvalues λi are related to ζi via ζi = −2jλi, whereas
the Hirota spectral amplitudes φi are generally different from
those of other methods.

Functions F and G are in the form of the sum of all possible
exponentials such that in F the number of non-conjugate and
conjugate variables Xi and X∗j is the same while in G the
former is one more than the latter. For each exponential term,
terms Rij corresponding to the interaction between all possible
pairs Xi and Xj , i 6= j, in the exponent are added; see Table II.

Note that functions F and G both contribute to the
signal amplitude, whereas F , being real-valued, does
not contribute to the signal phase. Using the identity
∂tt logF =

(
FttF − F 2

t

)
/F 2, (13b) is reduced to |q(t, z)|2 =

γ−1∂tt logF . Therefore it is also possible to derive the ampli-
tude of q solely in terms of a function of F . This is because
F and G are not independent.

Two important observations follow from the Hirota method.
Firstly, multi-soliton solutions of the NLS equation in the F
and G domain (q = G/F ) are the summation of exponentially
decaying/growing functions e±ωtejαt−kz , each located at a
frequency α. That is to say, while plane waves ejαt−kz are

the natural Fourier basis functions that solve linear PDEs, for
integrable systems, exponentially decaying/growing functions
are suitable. The addition of the decaying/growing factor
e±ωt is the point at which the nonlinear Fourier transform
diverges from the linear Fourier transform [21]. Secondly,
for each individual soliton term, the Hirota method adds
two-way interaction terms, three-way interaction terms, etc.,
until all the interactions are accounted for. In this way, the
interference between individual components is removed, as
shown schematically in Fig. 4. Table II shows these interaction
terms for N = 1, 2, 3.

While the Hirota method reveals important facts about
signal degrees-of-freedom in the NLS equation, it may not
be the best method to compute multi-solitons numerically.
There are

(
2N
N

)
∼ 22N and

(
2N
N+1

)
∼ 22N terms in F and

G respectively, and unless one truncates the interaction terms
at some step, the complexity quickly grows, making it hard to
compute N -solitons for N > 10.

3) Recursive Discrete Spectrum Modulation Using Darboux
Transformation: Multi-soliton solutions of the NLS equation
can be constructed recursively using the Darboux transforma-
tion. The Darboux transformation, originally introduced in the
context of the Sturm-Liouville differential equations and later
used in nonlinear integrable systems, provides the possibility
to construct a solution of an integrable equation from another
solution [22]. For instance, one can start from the trivial
solution q = 0 of the NLS equation, and recursively obtain all
higher-order N -soliton solutions. This approach is particularly
well suited for numerical implementation.

Let x(t, λ; q) denote a solution of the system

xt = P (ζ, q)x,

xz = M(ζ, q)x, (14)

for the signal q and complex number ζ = λ (not necessarily an
eigenvalue of q), where the P and M are 2×2 matrix operators
defined in [Part I]. It is clear that x̃ = [x∗2,−x∗1]T satisfies
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TABLE II
THE STRUCTURE OF THE INTERACTION TERMS IN F AND G1 .

F

N = 1 1 + eX1+X∗1+R13

2 1 + eX1+X∗1+R13 + eX2+X∗2+R24 + eX1+X∗2+R14 + eX2+X∗1+R23 + eX1+X2+X∗1+X∗2+R12+R13+R14+R23+R24+R34

3 1 + eX1+X∗1 + eX2+X∗2 + eX3+X∗3 +
(
eX1+X∗2 + eX2+X∗1 + eX1+X∗3 + eX3+X∗1 + eX2+X∗3 + eX3+X∗2

)
+(

eX1+X2+X∗1+X∗2 + eX1+X2+X∗1+X∗3 + eX1+X2+X∗2+X∗3 + eX1+X3+X∗1+X∗2 + eX1+X3+X∗1+X∗3 + eX1+X3+X∗2+X∗3

+eX2+X3+X∗1+X∗3 + eX2+X3+X∗1+X∗2 + eX2+X3+X∗2+X∗3
)
+ eX1+X2+X3+X∗1+X∗2+X∗3

G

N = 1 eX1

2 eX1 + eX2 + eX1+X2+X∗1+R12+R13+R23 + eX1+X2+X∗2+R12+R14+R24

3 eX1 + eX2 + eX3 +
(
eX1+X2+X∗1 + eX1+X2+X∗2 + eX1+X2+X∗3 + eX1+X3+X∗1 + eX1+X3+X∗2 + eX1+X3+X∗3

eX2+X3+X∗1 + eX2+X3+X∗2 + eX2+X3+X∗3
)
+
(
eX1+X2+X3+X∗1+X∗2 + eX1+X2+X3+X∗1+X∗3 + eX1+X2+X3+X∗2+X∗3

)
1 For N = 3, terms Rij in the exponent are not shown, due to space limitation.

(14) for ζ → ζ∗, and furthermore, by cross-elimination, q is
a solution of the integrable equation underlying (14).

The Darboux theorem is stated as follows.

Theorem 1 (Darboux transformation). Let φ(t, λ; q) be a
known solution of (14), and set Σ = SΓS−1, where S =
[φ(t, λ; q), φ̃(t, λ; q)] and Γ = diag(λ, λ∗). If v(t, µ; q) satis-
fies (14), then u(t, µ; q̃) obtained from the Darboux transform

u(t, µ; q̃) = (µI − Σ) v(t, µ; q), (15)

satisfies (14) as well, for

q̃ = q + 2j(λ∗ − λ)
φ1φ

∗
2

|φ1|2 + |φ2|2
. (16)

Furthermore, both q and q̃ satisfy the integrable equation
underlying the system (14).

Proof: See Appendix B.
Theorem 1 immediately provides the following observa-

tions.
1) From φ(t, λ; q) and v(t, µ; q), we can obtain u(t, µ; q̃)

according to (15). If µ is an eigenvalue of q, then µ is
an eigenvalue of q̃ as well. Furthermore, since u(t, µ =
λ; q̃) 6= 0, λ is also an eigenvalue of q̃. It follows that the
eigenvalues of q̃ are the eigenvalues of q together with
λ.

2) q̃ is a new solution of the equation underlying (14),
obtained from q according to (16), and u(t, µ; q̃) is one
of its eigenvectors.

These observations suggest a two-step iterative algorithm
to generate N -solitons, as illustrated in the Figs. 5–6. De-
note a k-soliton pulse with eigenvalues λ1, λ2, . . . , λk by
q(t;λ1, λ2, . . . , λk) := q(k). The update equations for the
recursive Darboux method are given in Table III. Note that
v(t, λj ; q

(k+1)) can also be obtained directly by solving
the Zakharov-Shabat system (7) for q(k+1). It is however
more efficient to update the required eigenvector according
to Table III. The algorithm is initialized from the trivial

solution q(0) = 0. The initial eigenvectors in Fig. 6 are
chosen to be the (non-canonical) eigenvectors v(t, λj ; 0) =
[Aje

−jλjt, Bjejλjt]T . The coefficients Aj and Bj control the
spectral amplitudes and the shape of the pulses. For a single-
soliton, Aj = exp(j∠q̃) and Bj = |q̃|.
Remark 3. In this paper we mostly use Darboux method
for numerical generation of N -solitons and discrete spectrum
simulations. Hirota method, on the other hand, is preferred
for the analytical examination of N -soliton and insight into
the NFT. The Riemann-Hilbert approach is more general and
captures the continuous spectrum too (though it is sometimes
ill-behaved).

C. Evolution of the Discrete Spectrum

Recall that the imaginary and real parts of the eigenvalues
correspond, respectively, to soliton amplitude (energy) and
frequency. If the discrete spectrum of the signal lies completely
on the imaginary axis, the N -soliton does not travel while
propagating (with respect to a traveling observer). The indi-
vidual components of an N -soliton pulse with frequencies λi
off the jω axis travel in retarded time with speeds proportional
to <λi (frequency).

The manner of N -soliton propagation thus depends on the
choice of the eigenvalues. An N -soliton signal is essentially
composed of N single-solitons coupled together, similar to a
molecule which groups a number of atoms. If the eigenvalues
have non-zero distinct real parts, various components travel at
different speeds and eventually, when z → ∞, the N -soliton
decomposes into N separate solitons

q(t, z)→
N∑
i=1

ωie
−jαit+j(α2

i−ω2
i )z+jφi sech(ωi(t− 2αiz − ti)),

where λi = (αi + jωi)/2 are eigenvalues and ti is the
time center. This breakdown of a signal to its individual
components, while best observed in the case of multi-solitons,
is simply a result of group velocity dispersion and exists for
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Fig. 5. Updates in the Darboux transformation: (a) signal update; (b) eigenvector update.

q(t) = 0 S q(t;λ1) S q(t;λ1, λ2) S · · · S q(t;λ1, . . . , λN−1) S

v(t, λ1; 0) E v(t, λ2; q(t;λ1)) E v(t, λ3; q(t;λ1, λ2)) E · · · E v(t, λN ; q(t;λ1, . . . , λN−1))

v(t, λ2; 0) E v(t, λ3; q(t;λ1)) E v(t, λ4; q(t;λ1, λ2)) E · · ·

v(t, λ3; 0) E v(t, λ4; q(t;λ1)) E v(t, λ5; q(t;λ1, λ2)) E · · ·

... E ... E ... E

v(t, λN−2; 0) E v(t, λN−1; q(t;λ1)) E v(t, λN ; q(t;λ1, λ2))

v(t, λN−1; 0) E v(t, λN ; q(t;λ1))

v(t, λN ; 0)

q(t;λ1, . . . , λN )

Fig. 6. Darboux iterations for the construction of an N -soliton.

all pulses similarly (including sinc functions). The extent of
breakdown and shift depends on a variety of factors, such
as the length of the fiber, number of mass points, fiber
dispersion and dispersion-management schemes. The effects
of pulse broadening must be carefully considered, especially
if dispersion is not managed.

D. Demodulating the Discrete Spectrum

To demodulate a multi-soliton pulse, the eigenproblem (7)
needs to be solved. There is limited work in the mathematical
literature concerning the numerical solution of the Zakharov-
Shabat spectral problem (7). In [Part II], we have studied
methods by which the nonlinear Fourier transform of a signal
may be computed numerically. In particular, in this paper we
use the layer-peeling and Ablowitz-Ladik methods described
in [Part II] to estimate the discrete spectrum. The reader is
referred to [Part II] for details.

IV. STATISTICS OF THE SPECTRAL DATA

In this section we generalize the deterministic model con-
sidered so far to include the effects of amplified spontaneous
emission (ASE) noise during signal propagation. We present
a method to approximate the statistics of the spectral data at
the receiver.

Remark 4. In Section II-B we identified inter-channel inter-
ference in multiuser WDM networks as the intractable factor
limiting the achievable rates of the current methods at high
launch powers. In comparison, noise is a weaker form of
distortion, and hence we do not intend to provide here a
comprehensive analysis.

The addition of noise disturbs the vanishing or periodic
boundary conditions usually assumed in the development of
the nonlinear Fourier transform. One may therefore question

whether the NFT is in fact well defined in this case. Fortu-
nately, since the ASE noise power in optical fibers is quite
small compared to the signal power for SNR� 0 dB used in
long-haul fiber-optic communications, one can treat noise as
a small perturbation and still safely use the NFT.

Calculation of the exact statistics of the spectral data at the
receiver can be quite cumbersome. This is essentially because
the NLS equation with additive noise, unlike the noise-free
equation, has little or no structure, giving rise to complicated
variational representations for the noise statistics. Even if exact
expressions could be obtained, it is unlikely that they would
be suitably tractable for data communications studies. One
can, however, approximate these statistics using a perturbation
theory, or simulate them on a computer. In this paper we follow
a perturbation theory approach.

Remark 5. Note that in this paper, we have not included the
effects of fiber loss in our model. This assumption is justified
in systems using distributed ideal Raman amplification, which
compensates loss but adds an equal amount of noise. Therefore
loss is essentially traded with noise, which is treated in this
section.

If noise is added in a lumped fashion, we have the deter-
ministic NLS equation with random initial data at the input
of each fiber span. In this case, the NFT can be used without
approximation.

If noise is injected continuously throughout the fiber as a
result of DRA, we have the stochastic NLS equation (1) that
includes an additive space-time noise term. This equation is
generally not integrable5. However, we can discretize the fiber
into a large number of small fiber segments and add lumped
noise at the end of each segment. Each such injection of noise
acts as a random perturbation of the initial data at the input

5In a special case, the NLS equation with a certain real-valued multiplicative
potential can still be integrable [23, Appendix D].
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TABLE III
UPDATE EQUATIONS FOR THE RECURSIVE DARBOUX METHOD

Eigenvector update:

v1(t, λj ; q
(k+1)) =

1∥∥v(t, λk+1; q(k))
∥∥2
{{

(λj − λk+1)
∣∣v1(t, λk+1; q

(k))
∣∣2 + (λj − λ∗k+1)

∣∣v2(t, λk+1; q
(k))

∣∣2 }v1(t, λj ; q(k))
+(λ∗k+1 − λk+1)v1(t, λk+1; q

(k))v∗2(t, λk+1; q
(k))v2(t, λj ; q

(k))

}
,

v2(t, λj ; q
(k+1)) =

1∥∥v(t, λk+1; q(k))
∥∥2
{{

(λj − λ∗k+1)
∣∣v1(t, λk+1; q

(k))
∣∣2 + (λj − λk+1)

∣∣v2(t, λk+1; q
(k))

∣∣2 }v2(t, λj ; q(k))
+(λ∗k+1 − λk+1)v

∗
1(t, λk+1; q

(k))v2(t, λk+1; q
(k))v1(t, λj ; q

(k))

}
,

for k = 0, . . . , N − 2 and j = k + 2, . . . , N .
Signal update:

q(k+1) = q(k) + 2j(λ∗k+1 − λk+1)
v1(t, λk+1; q

(k))v∗2(t, λk+1; q
(k))∥∥v(t, λk+1; q(k))

∥∥2 .

of the next segment. The DRA can thus be approximately
treated similar to the lumped noise case. In this case, NFT is
used under such approximation.

In this section, we study the effect of the lumped and
distributed noise perturbations on the NFDM channel model.
We assume that the noise vanishes, or is negligible, as |t| → ∞
and has a finite energy such that the signal remains absolutely
integrable almost surely (NFT assumptions).

A. Perturbation of Eigenvalues

1) Lumped Noise: The NFT arises in the spectral analysis
of the L operator (6). We can easily analyze the perturbations
of the eigenvalues of the L operator to the first order in the
noise level ε.

Let us denote the nonlinear Fourier transform of q(t) in
the absence of noise by (q̂(λ), q̃(λj)). As the signal q(t) at
the input of each small segment is perturbed to q(t) + εn(t)
for some small parameter ε and (normalized) noise process
n(t), the (discrete) eigenvalues and spectral amplitudes deviate
slightly from their nominal values. Separating the signal and
noise terms, the perturbed v and λ satisfy

(L+ εR)v = λv, R =

(
0 n
−n∗ 0

)
, (17)

where R is the matrix containing the noise. The study of
the nonlinear Fourier transform in the presence of (small)
input noise is thus a perturbation theory of the non-self-adjoint
operator L+ εR.

Perturbation theory of Hermitian operators is well-studied
(e.g., in quantum mechanics). The Zakharov-Shabat operator
in (17) is however non-self-adjoint. Unfortunately most useful
properties of self-adjoint operators (in particular, the existence
of a complete orthonormal basis from eigenvectors) do not
carry over to non-self-adjoint operators. For either type of
operator, deterministic perturbation analysis already exists
in the literature [24]–[27]. These results, however, are non-
stochastic and the distribution of the scattering data is still
lacking. A very interesting work is [28] in which authors
calculate the distribution of the spectral data for the special

case in which the channel is noise-free and the input is a
white Gaussian stochastic process. There is also much work
pertaining to the statistics of the parameters of a single-soliton;
see e.g., [29] and references therein.

For the non-self adjoint operators L, the orthogonality that
we require is between the space of left and right eigenvectors
of L associated with distinct eigenvalues; that is to say,
between eigenvectors of L associated with λ and eigenvectors
of the adjoint operator L∗ associated with µ 6= λ∗. Let us equip
the space of eigenvectors with the usual L2 inner product

〈u, v〉 =

∞∫
−∞

(u1v
∗
1 + u2v

∗
2) dt.

It can be verified that the operator Σ3L is self-adjoint, i.e.,
〈u,Σ3Lv〉 = 〈Σ3Lu, v〉, where Σ3 = diag(1,−1) is the Pauli
matrix.

We use a small noise approximation, expanding unknown
variables in noise level ε as

v(t) = v(0)(t) + εv(1)(t) + ε2v(2)(t) + · · · , (18a)
λ = λ(0) + ελ(1) + ε2λ(2) + · · · . (18b)

We assume these variables are analytic functions of ε so that
the above series are convergent. Plugging (18a)–(18b) into (17)
and equating like powers of ε, we obtain

Lv(0) = λ(0)v(0), (19)
(L− λ(0))v(1) = −(R− λ(1))v(0),

(L− λ(0))v(2) = −(R− λ(1))v(1) + λ(2)v(0),

and so on. The first term implies that v(0) and λ(0) are
eigenvalue and eigenvector of the (nominal) operator L. To
eliminate v1 from the second equation, we take the inner
product on both sides of (19) with some vector u; the left
hand side of the resulting expression is

〈u, (L− λ(0))v(1)〉 = 〈(L− λ(0))∗u, v(1)〉
= 〈(L∗ − λ(0)∗)u, v(1)〉. (20)

To have the right-hand side of (20) vanish, we can choose u to
be an eigenvector of the adjoint operator L∗ associated with an
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eigenvalue µ = λ(0)∗, i.e., (L∗ − λ(0)∗)u = 0. Since L∗(q) =
L(−q), if Lv = λ(0)v, it can be verified that L∗u = λ(0)u for
u = [v1,−v2] = Σ3v. Setting u = u(0) = Σ3v

(0)(t, λ∗),

λ(1) =
〈u(0), Rv(0)〉
〈u(0), v(0)〉 .

Using similar calculations we obtain λ(2)

λ(2) =
〈u(0), Rv(1)〉
〈u(0), v(0)〉 − λ

(1) 〈u(0), v(1)〉
〈u(0), v(0)〉 ,

and so on.
To summarize, the fluctuations of the nth eigenvalue λn with

nominal eigenvector vn is given by

λ̂n = λn + ε
〈un, Rvn〉
〈un, vn〉

+O(ε2), n = 1, 2, . . . , N, (21)

where un = Σ3vn and ‘∧’ denotes the eigenvalue after noise
addition. It follows that the perturbation of the eigenvalues
is distributed, to the first order, according to a zero-mean
complex Gaussian distribution.

Continuing this approach to find higher-order fluctuations
of eigenvectors, v(k), k ≥ 1, is not straightforward because
the underlying operator is not self-adjoint.

2) Distributed Noise: Consider now the perturbed NLS
equation

jqz = qtt + 2|q|2q + εn(t, z), (22)

where ε is a small parameter (noise power) and the normalized
noise term n(t, z) represents the combined effects of the signal
loss and the distributed noise.

Let us represent (22) with the same L and M of the noise-
free equation and now let λ vary with z. The equality of mixed
derivatives vtz = vzt gives(

−jλz qz + jqtt + 2j|q|2q
−q∗z + jq∗tt + 2j|q|2q∗ jλz

)
v = 0.

This, upon re-arranging and using (22), simplifies to

λzv = εR̄v, R̄ = −R.
Note that, as before, we do not have v(t, z) a priori because,

according to (6), it depends on the noisy signal q(t, z) and
λ(z), both of which are unknown. However, if the noise level
ε is small, we can expand v(t, z) and λ in powers of ε as in
(18a) and (18b) to obtain (λ(0))z = 0 and R̄v(0) = (λ(1))zv

(0)

(i.e., (λ(1))z appears as a time-independent eigenvalue of
R̄(t)). Taking the inner-product with u(0) = Σ3v

(0)(t, λ∗) on
both sides of R̄v(0) = (λ(1))zv

(0), we obtain the first-order
variation of eigenvalues

(λ1)z =
〈u(0), R̄v(0)〉
〈u(0), v(0)〉 . (23)

It follows from (23) that the distribution of the deviation
of the eigenvalues is approximately a zero-mean conditionally
Gaussian random variable. The variance of this random vari-
able is signal-dependent, and although eigenvectors of an N -
soliton can be represented as a series from Darboux transform,
it is best calculated numerically if N ≥ 2.

Example 2. Consider the single-soliton of Example 1. It can
be verified that 〈Σ3v(t, λ∗), v(t, λ)〉 = −ω2 (1 + ω2

|q̃|2 ) = − 1
ω ,

where we assumed |q̃| = ω so that the soliton is centered at
t0 = 0. Furthermore,

〈Σ3v(t, λ∗), R̄v(t, λ)〉
= −

∫
(v1(t, λ∗)v∗2(t, λ)n∗ + v2(t, λ∗)v∗1(t, λ)n) dt

= −
∫

1

4
sech2(ωt) (v2(t, λ∗)− v∗2(t, λ))<n̄dt

−j
∫

1

4
sech2(ωt)(v2(t, λ∗) + v∗2(t, λ))=n̄dt

=
1

2

∫
sech(ωt) tanh(ωt)<n̄dt− j

2

∫
sech(ωt)=n̄dt,

where n̄ = n exp(jΦ) has the same statistics as n. It follows
that

αz = −
∫

sech(τ) tanh(τ)z1(τ, z)dτ , (24a)

ωz =

∫
sech(τ)z2(τ, z)dτ, (24b)

where z1 = <z, z2 = =z and z(t, z) = n̄(t/ω, z), i.e., z1 and
z2 are independent Gaussian processes each with total power
ωWzσ2

0 . The Gordon-Haus effect can be observed from the
αz equation. Note that in fiber optics noise is added to the
signal, i.e., n in this subsection should be replaced with jn.

Remark 6. Note that the higher-order terms λ(i) in expansion
(21) are signal-dependent (even though they are normalized by
〈un, vn〉). For instance, Example 2, and as well as Fig. 8 (b),
show that noise variance grows with signal. In this case higher-
order terms need to be included as well for precision. The
perturbation approach given in this section takes into account
only the first term in the expansion, and as a result mostly
describes the bulk of the distribution in the small noise limit.
Note, however, that the first term is also signal-dependent.
Thus the effect of the noise growth with signal is accounted
for in the above analysis.

B. Perturbation of Spectral Amplitudes

Using a similar perturbation approach, we can study the
influence of noise on spectral amplitudes as well.

As reported in [Part II], in the Riemann-Hilbert approach
the discrete spectral amplitudes are chaotic even when noise
is zero. We thus here consider first-order fluctuation of con-
tinuous spectral amplitudes, under the lumped noise model.

Continuous spectral amplitudes are obtained by solving the
following Riccati equation [Part I]

dy(t, λ)

dt
= − (q̄(t, λ) + εn(t)) y2(t, λ)− (q̄∗(t, λ) + εn∗(t)) ,

(25)

where y(−∞, λ) = 0 and

q̄(t, λ) = q(t) exp(2jλt), q̂(λ) = lim
t→∞

y(t, λ).

One can write a Fokker-Planck equation for the probability
distribution of y(t, λ) in (25) [30], [31]. If the signal q(t) is
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known, e.g., q(t) = 0, the resulting equation can be solved. In
general, however, we can expand

y(t, λ) = y0(t, λ) + εy1(t, λ) + ε2y2(t, λ) + · · · ,
q̂(λ) = q̂0(λ) + εq̂1(λ) + ε2q̂(λ) + · · · ,

and equate like powers of ε. We obtain that q̂0(λ) (and its
corresponding y0(t, λ)) is the spectral amplitude when noise
is zero (assuming q̄(t, λ) ≈ q̄(t, λ0)). Define

G(t, λ) = 2

t∫
−∞

q̄(τ, λ)y0(τ, λ)dτ,

and n̂(t, λ) = −
(
n(t)y2

0(t, λ) + n∗(t)
)
. Then

q̂1(λ) = e−G(∞,λ)

∫ ∞
−∞

n̂(τ, λ)eG(τ,λ)dτ.

This is a conditionally Gaussian random variable (for each λ)
with variance

E |q̂1(λ)|2 = σ2
0e
−2<G(∞,λ)

∫ ∞
−∞

(
|y0(τ, λ)|4 + 1

)
e2<G(τ,λ)dτ,

where we assumed that noise is delta-correlated. If for some
signals, E|q̂1(λ)|2 is unbounded, the above perturbation ex-
pansion fails and a slow-scale variable T = εt needs to be
introduced.

In summary, in this section we showed that a simple first-
order perturbation analysis, though inaccurate, gives insights
into the nature of the statistics in the nonlinear spectral
domain. In the next section, we discuss the impact of the noise
on the achievable spectral efficiencies.

V. SOME ACHIEVABLE SPECTRAL EFFICIENCIES USING
THE NFT

We now turn to a numerical study of data modulation
in the nonlinear Fourier domain, providing some simulation
results and examples of achievable spectral efficiencies. First,
in Sections V-A to V-C, we set the continuous spectrum to
zero and modulate the discrete spectrum. This special case
corresponds to an N -soliton data transmission system. Then, in
Section V-D, we set the discrete spectrum to zero and modulate
the continuous spectrum.

For the discrete spectrum modulation, we begin with a
classical on-off keying soliton transmission (N = 1), in
which, in any symbol period Ts, either zero or a fundamental
soliton is sent. We then increase N and the spectral efficiency
by considering an (N ≥ 2)-soliton system, occupying the
same time interval as the on-off keyed soliton system, and
maintaining the same bandwidth requirements. The location
of the eigenvalues and the values of the discrete spectral
amplitudes can be jointly modulated for this purpose. We shall
see that the effective useful region in the upper half-plane
to exploit the potential of discrete eigenvalue modulation is
limited by a variety of factors.

Modulating the nonlinear spectrum generates pulses with
variable width, power, and bandwidth. We take the aver-
age time, average power, and the maximum bandwidth to
properly convert bits/symbol to bits/s/Hz. As a first step to

improve upon the on-off keying solitons, first we continuously
modulate one eigenvalue in a given region (i.e., a classical
soliton but with varying amplitude, width and phase). We next
consider multi-soliton systems with a number of constellations
on eigenvalues and discrete spectral amplitudes.

Throughout this section, we consider a 2000 km single-
mode single-channel optical link in which fiber loss is per-
fectly compensated in a distributed manner using Raman
amplification. Fiber parameters are given in Table I. Dispersion
compensation is not applied, as it is an advantage of the NFT
approach that no optical dispersion management or nonlinear-
ity compensation is required. We let pulses interact naturally,
as atoms in a molecule, and perform signal processing at
the receiver on these groups. The method however works
for dispersion managed fibers as well, and in general with
operations that do not change integrability.

A. Spectral Efficiency of 1-Soliton Systems

Traditional soliton transmission systems typically do not
have high spectral efficiencies. This is because the amplitude
and the width of a single-soliton are inversely related, and
hence they require a lot of time or bandwidth per degree-
of-freedom provided. Errors in a soliton transmission system
occur either because of the Gordon-Haus timing jitter effect
(which is the primary source of the errors, if not managed) [3]
or amplitude (energy) fluctuations. It follows from Galilean
invariance [5] that the Gordon-Haus effect exists for all kinds
of pulses to the same extent and is not specific to solitons. This
classical effect can be reduced with the help of suitably de-
signed filters. We do not treat Gordon-Haus jitter analytically;
however, system simulations naturally include this effect.

Let us first consider a classical soliton system with only one
eigenvalue λ = (α + jω)/2. The joint density fA,Ω(α, ω) at
any fixed distance z can be obtained from (24b)–(24a) (or by
extracting the dynamics of α and ω from the stochastic NLS
equation, resulting in a pair of coupled stochastic ordinary
differential equations).

Note that a soliton of the deterministic NLS equation
launched into a system described by the stochastic NLS equa-
tion would, of course, have a growing continuous spectrum
too. In addition, there would be a small chance of creating
additional solitons out of noise at some distance, or the
soliton spectrum might collapse into the real axis in the
λ plane. All these effects are negligible if noise is small
enough, 2Wzσ2 � E(0), and the propagation distance is
not exceedingly long. Thus, at a length scale determined by
2Wzσ2 � E(0), we can still think of the noisy signal as a
soliton with re-modulated parameters.

Multiplying the stochastic NLS equation (22) by q∗, sub-
tracting from its conjugate, integrating over time, and using
integration by parts in the dispersion term, we get

∂E

∂z
= 2=

∞∫
−∞

q(τ, z)Z(τ, z)dτ,

where E(z) =
∫
|q(τ, z)|2dτ is the energy, and Z = −εn∗ is a

noise process similar to εn. Replacing q(t, z)→ q(t, 0) in the
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Fig. 7. (a) Capacity (bits/symbol) and, (b) spectral efficiency (bits/s/Hz), of soliton systems using direct detection, sampling at t = 0, and the NFT.

small noise limit, we obtain that energy fluctuation is a signal-
dependent conditionally Gaussian random variable E(z) ≈
NR
(
E(0), σ2E(0)

)
(σ2 = 2Wzσ2

0/P ). Ignoring the energy
of the continuous spectrum in the small noise limit σ2 � 1,
we have E ≈ 2ω and therefore

ω(z) = ω(0) + σ

√
ω(0)

2
ñ, ω(0)� σ2, (26)

where ñ ∼ NR(0, 1). The conditional probability density
function (PDF) is

fΩ|Ω0
(ω|ω0) =

1√
πσ2ω0

e
− (ω−ω0)2

σ2ω0 , ω0 = ω(0), (27)

and the PDF of r =
√
ω given r0 =

√
ω0, ω, ω0 ≥ 0, is

approximately a Rician distribution

fR|R0
(r|r0) =

1√
πσ2

e−
(r−r0)2

σ2

≈ 2r

σ2
e−

r2+r20
σ2 I0(

2rr0

σ2
), r, r0 � σ,

which is signal-independent in the high SNR regime.
In [31] we have shown that a half-Gaussian density

fΩ0
(ω0) =

2√
2πP

e−
ω2
0

2P , ω0 ≥ 0,

gives the asymptotic capacity for (27)

C ∼ 1

2
log(SNR),

where SNR = P
σ2 .

Translating capacity in bits/symbol to spectral efficiency in
bits/s/Hz depends on the receiver architecture. Assuming that
the receiver is able to decode pulses with variable widths, the
spectral efficiency ρ(P) is obtained by

ρ(P) = max
f(ω0)
ω0∈S

1

BW(S)ET (ω0)
I(ω0;ω), (28)

EP (ω0) ≤ P,

where T (ω0) and P (ω0) are the width and the power of a
single-soliton with amplitude ω0 and BW(S) = max

ω0∈S
BW(ω0)

is the maximum passband bandwidth that the signal set

requires for transmission. For a one soliton signal, we have
approximately

T (ω0) =
7

ω0
, P (ω0) =

ω2
0

6.2
, BW(ω0) = 0.95ω0, (29)

where the width T (ω0) includes a guard time—four times
the full width at half maximum power (FWHM)—so as to
minimize the intra-channel interactions.

Using (29), the maximum spectral efficiency of a baseline
on-off keying system is obtained to be about ρ ≈ 0.15
bits/s/Hz at the average power P0 = 0.16 mW. Note that
the per unit cost capacity problem (28) is non-convex and
hence finding the global optimum may prove to be challenging.
Here we simply optimize mutual information and scale it
by BW(S) × ET (ω0) evaluated at the mutual-information-
maximizing input distribution.

Fig. 7 shows the achievable rate and the spectral efficiency
of a 1-soliton system with amplitude modulation using various
detection methods. Note that since we do not solve the opti-
mization problem (28), the spectral efficiencies shown in the
Fig. 7(b) are only lower bounds on the actual achievable val-
ues. Figs. 8(a)–(b) show the constellation at the transmitter and
the “noise balls” (of radius equal to one standard deviation of
the distance to the transmitted point) accumulated over 30,000
simulation trials at the receiver. The actual number of signal
levels is 64 in the simulations. Calculation of the approximate
rate is performed using the Arimoto-Blahut algorithm and is
confirmed by numerical interior point optimization.

Note that, as is clear from Figs. 7(a)–(b), sampling signals
at t = 0 is clearly a bad idea; it is shown here just to see the
effects of the timing jitter on 1−soliton systems.

B. Spectral Efficiency of 2-Soliton Systems

To illustrate how the NFT method works, we start off with
two simple examples. These two examples are intended to
explain the details of transmission and detection using the
NFT, but they have not been optimized for performance.
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Fig. 8. (a) Eigenvalue constellation at the transmitter. (b) Noise balls at the
receiver in the NFT approach. The signal-dependency of the noise balls can be
analytically seen e.g., through (26). The radius of each circle is the standard
deviation of the received eigenvalue.

1) Modulating Eigenvalues: Consider the following signal
set with 4 elements:

S1 : 0,

S2 : q̃(0.5j) = 1,

S3 : q̃(0.25j) = 0.5,

S4 : q̃(0.25j, 0.5j) = (1, 1). (30)

Table IV shows the energy, duration, power and the bandwidth
of these signals.

We compare this with a standard on-off keying (OOK)
soliton transmission system, consisting of S1 and S2. From the
signal parameters given in Table IV, it follows that the OOK
system provides about ρ0 = 0.33 bits/s/Hz spectral efficiency
at P0 = 0.1876 mW and R0 = 7.42 Gbits/s data rate. Note
that the noise level is so small compared to the imaginary
part of the eigenvalues that this scheme essentially achieves a
transmission rate of 2 bits/symbol.

The full constellation defined in (30) has average power
P = 0.46P0 and average time duration T = 1.65T1, where
P0 and T1 are the power and the time duration of the
fundamental soliton. The new signal set therefore provides
a spectral efficiency of about ρ = log 4/(1.65T1W0) =
1.2121 × ρ0 bits/s/Hz and operates at R = 1.2121 × R0

for about the same average power (P = 0.1748 mW). Note
that without S4 the average power would be higher and in
addition the improvement in the spectral efficiency would
be slightly smaller compared to the on-off keying system.
Signal S4 is the new signal (a 2-soliton) that goes beyond
conventional pulse shapes. Such signals do not cost much in
terms of time×maximum bandwidth product, while they add

TABLE IV
PARAMETERS OF THE SIGNAL SET IN (30)1 .

signal energy duration FWHM 99% duration power bandwidth
S1 0 T0 T1 0 W0

S2 E0 T0 T1 P0 W0

S3 0.5 E0 2T0 2T1 0.25P0 0.5W0

S4 1.5 E0 4.25T0 2.58T1 0.58P0 0.5W0

1 Here E0 = 2, T0 = 1.763 at FWHM power, T1 = 5.2637 (99%
energy), P0 = 0.38 and W0 = 0.5714. The normalization factors
in the NLS equation are Tn = 25.246 ps and Pn = 0.5 mW at
dispersion 0.5 ps/(nm− km) and γ = 1.27 W−1km−1.

additional elements to the signal set. These additional signals
can generally be best decoded with the help of the nonlinear
Fourier transform.

In this example, the receiver needs to estimate the pulse-
duration. This can be done in many ways, e.g., using the
NFT computations already performed: zeros of the signal in
time can be detected when [v2

1e
jλt, v2

2e
−jλt] reaches a constant

value in steady state. This can be checked at times t = T1,
t = 2T1 and t = 2.58T1. If one of the signals is zero at the end
of another signal, one can monitor the energy of the continuous
spectrum to make sure that it is small. If the symbol duration
is fixed to be the maximum 2.58T1, the addition of S3 and
S4 increases both time interval and cardinality of signal set
such that the spectral efficiency and data rate remain constant
(log(6)/2.58), while operating at 77% of the on-off keying
signal power.

Since solitons with purely imaginary eigenvalues do not
suffer from major temporal or spectral broadening, spectral
efficiencies at the fiber output are essentially the same as those
at the input to the fiber.

2) Modulating Eigenvalues and Spectral Amplitudes: We
can improve upon the previous example by modulating the
spectral amplitudes as well. Consider the following signal set

S1 : 0,

S2 − S5 : q̃(0.5j) = q̃1,

S6 − S9 : q̃(0.25j) = q̃2,

S10 − S16 : q̃(0.25j, 0.5j) = (q̃3, q̃4).

We make a 3-ary constellation on q̃i ∈ {0.5, 1, 1.5}. This
creates a signal set with 16 elements. Here pulses are extended
to 3T1 time duration. The resulting constellation has average
power P = 1.06P0 and average time duration T = 2.236T1,
where P0 and T1 are the power and the symbol-duration of the
benchmark on-off keying system. Therefore the new signal set
provides about ρ = log 16/(2.236T1W0) = 1.79×ρ0 bits/s/Hz
and operates at R = 1.79 × R0 for about the same average
power. If we fix symbol durations to be the maximum 3T1,
then the improvement is ρ = 2.2ρ0 = 0.73 bits/s/Hz, at 80%
of the average power.

Again, since the real part of the eigenvalues is not modu-
lated, signals do not suffer from major temporal or spectral
broadening.

Remark 7. Note that modulating the eigenvalues includes only
the amplitude information (similarly to M -ary frequency-shift-
keying). To excite the other half of the degrees-of-freedom
representing the phase, discrete spectral amplitudes should
also be considered. While |q̃(λj)| may be noisy, the phase
∠q̃(λj) or a function of {q̃(λj)}j=Nj=1 can be investigated for
this purpose.

C. Spectral Efficiency of N -Soliton Systems, N ≥ 3

To achieve greater spectral efficiencies, a dense constellation
in the upper half complex plane needs to be considered. A
spectral constellation with n possible eigenvalues in C+ (from
which k eigenvalues are chosen, 0 ≤ k ≤ n) and m possible
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Fig. 9. Achievable rates in (a) a single-channel, and (b) a WDM optical fiber system using the nonlinear Fourier transform and backpropagation. The SNR
is calculated at the system bandwidth and can be adjusted to represent the optical signal-to-noise ratio. Note that since we have used raised-cosine functions
with 50% excess bandwidth, ρ = 2

3
C.

values for spectral amplitudes provides up to

log

(
n∑
k=0

(
n

k

)
mk

)
= n log (m+ 1) ,

bits per symbol (fewer if a subset is chosen). One can continue
the approach presented in the previous examples by increasing
n and m. The receiver architecture presented in [Part I] is fairly
simple and is able to decode NFT signals rather efficiently.

Some choices of spectral parameters may translate to pulses
having a large peak to average power ratio, large (99%)
bandwidth, or large (99%) time duration at z = 0 or during
their propagation. The signal set should thus be expurgated to
avoid such undesirable signals. We have not yet found rules
for modulating the spectrum so that such undesirable signals
are not generated. For the small examples given here, we can
check pulse properties directly; however, appropriate design
criteria for the spectral data (particularly the discrete spectral
amplitudes) should be developed.

In this simulation, we assume a constellation with 30 points
uniformly chosen in the interval 0 ≤ λ ≤ 2 on the imaginary
axis and create all N -solitons, 1 ≤ N ≤ 6. We then
prune signals with undesirable bandwidth or duration from
this large signal set. The remaining multi-solitons are used as
carriers of data in the fiber system described at the beginning
of Section V. Here a spectral efficiency of 1.5 bits/s/Hz is
achieved. For this calculation, we take the maximum pulse
width (containing 99% of the signal energy) and the maximum
bandwidth of the signal set. By increasing n and m, pulse
widths get large and the shift of the signal energy from the
symbol period, due to the Gordon-Haus effect, becomes less
significant. Gordon-Haus effect for solitons is as important as
it is for sinc function transmission and backpropagation.

We would note that the spectral efficiency reported here
was achieved using only a rather simplistic design approach.
We believe that a more sophisticated search over the design
space, in particular exploiting the possibility of more cleverly
modulating spectral amplitudes and phase and choosing eigen-

values in a region not limited to the jω axis, is likely to yield
significantly higher spectral efficiencies.

The recent work of [32] also describes optical transmission
schemes based on N -soliton transmission and the inverse
scattering transform, with reports on some achievable spectral
efficiencies.

D. Spectral Efficiencies Achievable by Modulating the Con-
tinuous Spectrum

In addition to the discrete spectrum, the continuous spec-
trum can, in some cases, also be modulated.

Here we consider the modulation of classical raised-cosine
pulses, with 50% excess bandwidth. The continuous spectrum
of an isolated raised-cosine pulse is purely continuous at
low amplitudes, resembling its ordinary Fourier transform.
We modulated the amplitude of an isolated raised-cosine
pulse, propagated the pulse over an optical fiber channel, and
estimated the continuous spectrum of the received signal. The
received spectrum was then compared with the spectrum of
all possible transmitted waveforms at the transmitter using the
log-Euclidean distance

d(q̂2(λ), q̂1(λ)) =
1

π

∞∫
−∞

log
(

1 + |q̂2(λ)− q̂1(λ)|2
)

dλ.

Fig. 9(a) shows the estimated achievable rates in a typical
single-channel fiber-optic system, comparing detection after
filtering, backpropagation, and matched-filtering, with detec-
tion using the nonlinear Fourier transform. A multi-ring phase-
shift keying modulation was used, with rings at 16 distinct
amplitude values and 32 different phase values per ring. The
complex plane was quantized into the Voronoi regions corre-
sponding to the ring constellation, to discretize the channel in-
put. Capacity was computed via the Arimoto-Blahut algorithm.
The NFT is calculated at either 64 or 1024 uniformly spaced
discrete points on the real axis over a range containing most
of the pulse energy. The 1024-point NFT is compared with a
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1024-point fast Fourier transform (FFT) implementation of the
split-step Fourier method in the backpropagation scheme. The
simulation is performed for a standard single-mode fiber with
dispersion parameter D = 17 ps/(nm− km). As can be seen,
the NFT and backpropagation methods achieve approximately
the same rates. The slight improvement in the NFT method
can be attributed to the stability of the continuous spectral data
compared to the traditional time data (amplitude and phase at
the output of a matched filter).

This simulation was repeated for 5 WDM channels with
the system architecture of Fig. 1. Here, low-pass filters and
ROADMs are placed at the end of each fiber segment. The
spectral efficiency in this case is obviously lower due to
the inter-channel interference. Here too, NFT and FFT-based
backpropagation produce approximately the same results.

From Fig. 9 it follows that at low SNRs NFT and backprop-
agation achieve about the same rates. As the SNR is increased,
the spectral efficiency of backpropagation degrades due to
ISI (under the commonly-assumed isolated symbol detection,
in which the memory is not accounted for) or inter-channel
interference (in a network scenario). However, the spectral
efficiency of the NFT scheme may be higher due to its inherent
immunity to cross-talk, provided that users are multiplexed
appropriately in the nonlinear frequency domain in a multiuser
setup; see Section VI-E.

We have not yet simulated the spectral efficiency at SNRs
beyond those shown in Figs. 9 (a)–(b) due to high numerical
complexity. Up to the SNRs 25 − 30 dB shown in Figs.
9 (a)–(b) signals only have a continuous spectrum. This
made simulations doable. Beyond these SNRs, discrete mass
points start to appear. This is in fact the SNR level where
the nonlinearity starts to become significant (because, in the
focusing regime, the discrete spectrum is the component of
the NFT which is primarily responsible for the nonlinearity).

In the N -soliton transmission simulations of the previous
subsections, we began with a desired spectral constellation
at the transmitter. As a result, the initial conditions needed
in the Newton algorithm at the receiver were known and the
detection was computationally feasible. The difficulty there,
however, was that the properties of the resulting signals in the
time-domain (bandwidth and time duration) were not properly
understood. In contrast, in this subsection we started with a
signal set in the time domain i.e., raised-cosine signals. When
a signal is scaled according to a time-domain constellation,
discrete mass points appear at unknown places in the complex
plane. The difficulty here is that the properties of the resulting
signals in the spectral domain are not properly understood. As
a result, it is difficult to search for these discrete mass points
without a priori information on their locations. The potential
advantage of NFDM thus remains to be illustrated.

VI. DISCUSSION

In this section, we make a few remarks about the NFT
method, clarify some of its properties and potential practical
issues, and suggest some possible directions for future inves-
tigation.

user 0 user 1user −1· · · · · ·

<(λ) (frequency)

=(λ) (amplitude)

Fig. 10. Partitioning C+ for multiuser communication using the NFT.

A. Multiuser Communications Using the NFT

A potential gain is achievable in fiber-optic systems by
employing methods, such as NFDM, which are less prone to
inter-channel interference.

Recall that in NFDM the real and imaginary axes of
the complex plane correspond, approximately, to the signal
frequency and energy. To use NFDM as a multiuser com-
munication method, we can partition the complex plane into
disjoint regions, e.g., vertical bins. Each bin can be assigned
to a user and can contain one or more degrees-of-freedom. To
multiplex user signals, traditional ROADMs must be replaced
with nonlinear add-drop multiplexers (NADMs) which func-
tion according to the NFT. In principle, each NADM would
compute the spectrum of its input signals and filter the signals
to be dropped in C+. It would then places the spectrum of the
signals to be added in empty bands and produces the output
signal by taking the inverse NFT. In this way, each user is
assigned a region in the complex plane and, in the absence
of noise, does not interfere with other users; see Fig. 10 as
well as Section VI-B. In such a manner, NFDM results in an
orthogonalization for the deterministic nonlinear Schrödinger
channel.

B. Noise in the Spectral Coordinates

In a nonlinear interference channel, the interference can
have two components. The first, termed “deterministic interfer-
ence,” arises from the (deterministic) interaction of the signals
of other users with the user of interest, and in general is present
even in the absence of noise. The second, termed “stochastic
interference,” arises from the (stochastic) coupling of noise
with the signals of other users, interfering with the channel of
interest. Thus, noise can affect the channel of interest directly
(in-band noise) and indirectly (by introducing interference).
Typically deterministic interference is stronger than stochastic
interference.

The NLS equation with additive noise has no known inte-
grability structure, in the sense of possessing a set of non-
interacting degrees-of-freedom. As a result, while the NFT
method does not suffer from (strong) deterministic interfer-
ence, a (weak) stochastic interference is expected to be present.
In other words, even when users are multiplexed so that
they do not interact in the absence of noise, the addition
of noise can introduce stochastic interference. In comparison,
conventional WDM with backpropagation is subject to both
deterministic and stochastic interference.

Finally, note that an additive (in-band) white noise in the
time domain has coordinates in the spectral domain which may
not be independent. Such correlations should be accounted for
when designing signal detectors.
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C. NFDM versus OFDM

NFDM and OFDM are essentially similar in the absence of
noise. However, as noted above, in cases where the presence
of noise breaks the integrability structure, then, unlike OFDM,
the signal degrees-of-freedom are not independent in NFDM.

Note also that, while the ordinary Fourier transform of a
signal is a function of a real variable, the NFT of a signal is
generally defined on the whole complex plane, i.e., nonlinear
frequencies are complex-valued. Since complex frequencies
in the upper half complex plane are isolated points, this
component in the support of the NFT can be modulated
too. OFDM is conceptually in analogy with the continuous
spectrum modulation, where only the spectral amplitudes are
modulated. The discrete spectrum differs further from the
continuous spectrum in that it is the frequencies in C+

themselves that contribute to the signal energy, and not their
spectral amplitudes.

The analogy between NFDM and OFDM can be better
understood in fibers with negative dispersion parameter. In this
case, q∗ is replaced with −q∗ in (6) and (7) and the (noise-
free) channel is still integrable. Here, similar to OFDM, the
nonlinear frequencies are real and information is encoded only
in spectral amplitudes. This case is appealing analytically and
numerically, since the underlying L operator is Hermitian.

D. Advantages and Disadvantages of NFDM

1) Advantages: Some of the advantages of using NFDM
were outlined in Section I. In short, deterministic distortions,
i.e., distortions that arise even in a noise-free system (SPM,
XPM, FWM, ISI and interference) are zero for all users of a
multiuser network.

2) Disadvantages:
a) Aplicable only to Perfectly Integrable Models: NFDM

critically relies on the integrability of the channel. Loss,
higher-order dispersion, and other perturbations caused by
filters and communication equipment not taken into account
in this study contribute to deviations from integrability. There
are, however, several reasons to believe that the overall channel
from the transmitter to the receiver can still be close to an
integrable channel:
• Using Raman amplification, the effects of loss are minimal

(and indeed are traded with noise perturbation).
• The NFT is applicable as long as the system can support

soliton transmission. Solitons have been implemented in
practice in the presence of communication equipment
(filters, multiplexers, analog-to-digital (A/D) converters,
etc). This is an indicator that the overall channel is still
nearly integrable.

• Mathematically one has stability results for solitons [33].
A soliton passing through a filter might be slightly dis-
torted, but it re-organizes its shape so as to revert back
to its original shape (or to form a soliton with a nearby
discrete spectrum in the complex plane).

• Considering that the performance of the WDM method de-
grades asymptotically with SNR, it may be worthwhile to
identify sources of perturbations to integrability in NFDM
and minimize them. This way, rather than engineering

the channel to be linear, the near-integrable channel is
engineered to be integrable, so as to support its natural
nonlinear modes, which characteristically tend to form in
the medium.
b) High Complexity: The nonlinear Fourier coefficients

at the receiver are calculated using O(n) operations per
nonlinear frequency, where n is the number of signal samples
in time. In comparison with with the O(n log n) complexity
of the FFT, the complexity of an n-point NFT is, at present,
O(n2) (assuming a fixed number of Newton steps are needed
in the case of discrete frequencies). The complexity of the
transmitter can be even higher. As a result, the NFT is
currently computationally difficult to implement or sometimes
even to simulate. It is therefore of interest to develop faster
algorithms.

c) Hardware Limitations: Optical or electrical signal
processing of N -solitons and their required hardware (e.g.,
A/Ds) may not be as simple as those in linear systems. The
NFT decoder typically requires signal samples at increments
smaller than the Nyquist period. An interpolation step may be
needed to find all the necessary data.

E. Achievable Rates Using NFDM

As mentioned earlier, a stochastic interference can be
present in NFDM. As a result, although the achievable rate of
NFDM in a multiuser channel can be higher than that of WDM
with backpropagation (at least in the limit that noise goes to
zero), it too may ultimately peak at some finite SNR. We have
not yet simulated the capacity at high SNRs to see when this
may potentially happen. However, note that, regardless of the
method of transmission, the noisy channel will fundamentally
be subject to interference due to the lack of integrability6.

Note that the decline of the achievable rates in WDM
simulations in prior work is mostly due to the deterministic
distortions. Our capacity simulations, as well as those in
[4, Fig. 36], show that in the absence of noise the rates
of the WDM method still vanish (or saturate, depending
on assumptions on interfering users) at high powers in the
network scenario. This is not the case for multiuser NFDM
whose achievable rate is unbounded when noise is absent.
We thus expect improvements in the information rates using
NFDM, due to the immunity to the deterministic distortions.

F. Eigenvalue Communication of Hasegawa and Nyu

As noted in introduction, as well as in [Part I], the work of
Hasegawa and Nyu on “eigenvalue communication” [9] is re-
lated to the NFT-based approach taken in this paper. Hasegawa
and Nyu make the observation that the time-domain data is
distorted while the eigenvalues remain constant and can be
used for communication. The authors then considered single-
user channels, encoded information in conserved quantities,
and used the inverse scattering transform (IST) as a means to
decode these conserved quantities. The idea is illustrated for
pulses of the form A sech(t).

6Since, for instance, the NLS equation with a generic additive potential
does not have conserved quantities.
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The use of conserved quantities in a communication channel
is desirable since it facilitates deterministic signal processing
at the receiver and may simplify communication design. How-
ever, fundamentally it does not offer any capacity improvement
if one uses an equivalent set of non-conserved quantities (e.g.,
amplitude and phase). In fact, it is clear that the entire signal
itself is a conserved quantity under backpropagation and can
be perfectly recovered. Thus the approach of [9] does not
achieve anything more than what BP does. It is therefore not
necessary to aim at extracting and modulating quantities con-
served by a channel. Furthermore, the application of conserved
quantities in a multiuser setup is in and of itself not useful,
since conservation does not imply separability which underlies
the NFDM approach.

In contrast, our primary motivation for introducing NFT-
based methods stems from recent capacity studies [4] and our
observation, made in Section II, that a major reason that the
capacity rolls off in prior work, after abstracting away non-
essential aspects, is predominantly because these methods,
in essence, modulate linear-algebraic modes. When used in
a nonlinear channel, this leads to a significant inter-channel
interference and ISI. We noted that the NLS equation, however,
supports nonlinear modes which have a crucial independence
property, that can be used to build a interference-free multiuser
system. The mathematical framework necessary to reveal
signal degrees-of-freedom is the IST. As a result, in [Part I] we
began with IST, shifted the focus from the scattering theory,
considered IST as a Fourier transform, filtered its literature
accordingly and presented a signal-and-systems perspective.
This then paved the way for [Part II] and this paper whose
overall goal was to construct NFDM, which can be viewed as
a generalization of OFDM to nonlinear systems. The existence
of an OFDM-like scheme for a nonlinear system is rather
surprising. In [Part II] and this paper, we developed details
of NFDM transmitter and receiver. Note that NFDM may not
have eigenvalues as in [9]. Indeed the analogy between NFDM
and OFDM can be best understood in the defocusing regime
where, similarly to the ordinary Fourier transform, one has
a transformation q̂(λ). This signal transformation underlies
NFDM.

G. Linear Multiplexing Methods other than WDM

In this paper, we mostly focused on WDM as an example a
linear multiplexing method. There are however other methods
as well which, in essence, modulate linear-algebraic modes for
transmission and behave similarly. Time-division multiplexing
(TDM), OFDM and multi-mode communication are other
examples.

Although mathematically these methods are not exact or-
thogonalizations, within a certain range of system and user
parameters they can potentially be approximate orthogonal-
izations. For instance, at low powers where the nonlinearity is
weak, each of n WDM users achieves 1/n of the degrees-of-
freedom. Among these schemes, TDM is different in that, the
dimension in which the multiplexing occurs, i.e., time, can
be practically unlimited. TDM can be capacity-achieving if
a sufficient guard time, depending on the users’ powers and

transmission distance, is introduced between users’ signals.
However, a system designed for one transmission distance may
fail to operate at a larger distance: As the signal propagates
further in distance, at some point orthogonalization is lost.
Also, in principle, as the signal power tends to infinity, the
transmission time of the user of interest tends to infinity as well
— in effect, TDM turns the multiuser channel into a single-
user one in order to address the interaction problem associated
with the linear multiplexing. Ignoring practical issues in a
network scenario, a TDM system designed for the worst-case
system and user parameters can be nearly capacity-achieving
in that regime. In fact, this is also true for WDM: if one
has infinite bandwidth, users’ signals can be widely separated
such that in the range of system and user parameters their
interaction is negligible.

The distinguishing feature of NFDM is that, determinis-
tically, it is an exact orthogonalization for any transmission
distance, signal power, dispersion or nonlinearity parameter.
Users’ signals may overlap in time and frequency, but they
are separated in the nonlinear Fourier domain.

H. The Discrete Nonlinear Fourier Transform

To implement NFDM in practice, the discrete nonlinear
Fourier transform, in which time domain signal is discrete
and periodic, should be implemented. The development of the
discrete nonlinear Fourier transform exists in the mathemat-
ics literature [21], [34]–[36] — although it is not as fully
developed as the continuous one. There are also important
differences in the way that the spectrum is defined.

VII. CONCLUSIONS

Motivated by recent studies showing that the achievable
rates of current methods in optical fiber networks vanish
at high launch power due to the impact of nonlinearity, in
[Part I], [Part II], and this paper we have revisited information
transmission in such nonlinear systems. In these papers, we
suggested using the nonlinear Fourier transform to transmit
information over integrable communication channels such as
the optical fiber channel, which is governed by the nonlinear
Schrödinger equation. In this transmission scheme, informa-
tion is encoded in the nonlinear Fourier transform of the
signal, consisting of two components: a discrete and a con-
tinuous spectral function. With this new method, deterministic
distortions arising from the dispersion and nonlinearity, such
as inter-symbol and inter-channel interference are zero for a
single-user channel or all users of a multiuser network.

We took the first steps towards the design of a communica-
tion system implementing the nonlinear Fourier transform. We
proposed a Darboux-transform-based algorithm for modulat-
ing the discrete spectrum at the transmitter, and we provided
a first-order perturbation analysis of the influence of noise on
the received spectrum. Furthermore, we provided examples
illustrating how the NFT can be used for data transmission.
Although these small examples clearly demonstrate improve-
ments over their benchmark systems, more sophisticated large-
scale simulations are required to demonstrate the potential to
achieve high spectral efficiencies.
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Because nonlinearity is a key feature of fiber-optic net-
works, the development of nonlinearity-compatible transmis-
sion schemes, like those based on the nonlinear Fourier trans-
form, is likely to continue to be a fruitful research direction.
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APPENDIX A
SOLUTION OF HIROTA EQUATIONS

Because (13a) and (13b) are homogeneous equations in
the order of derivatives that occur in each term, exponential
functions are candidate solutions. Let us expand F and G as

F (t, z) = f0(t, z) + εf1(t, z) + ε2f2(t, z) + · · · ,
G(t, z) = g0(t, z) + εg1(t, z) + ε2g2(t, z) + · · · ,

for some small parameter ε. The bilinear terms in (13a)–(13b)
are

FG =

∞∑
n=0

εn

(
n∑
k=0

fkgn−k

)
, FF =

∞∑
n=0

εn

(
n∑
k=0

fkfn−k

)
,

|G|2 =

∞∑
n=0

εn

(
n∑
k=0

gkg
∗
n−k

)
.

Substituting these expressions into (13a)–(13b) and equating
like powers of ε gives rise to a recursive procedure to obtain
{fn+1, gn+1} from {fn, gn}. To begin finding unknowns
recursively, we can set initially f0 = 1. The zero-order term
ε0 then gives g0 = 0. Starting with {f0 = 1, g0 = 0}, the
recursive equations are:

H1.gn = −
n−1∑
k=1

H(fkgn−k),

∂ttfn = − 1
2

n−1∑
k=1

D2
t fkfn−k + γ

n−1∑
k=1

gkg
∗
n−k.

where H = jDz +D2
t . It can be seen that f2n+1 = g2n = 0.

At each iteration n one of fn or gn is non-zero, which is used
in the next iteration. For a general nonlinear system, iterations
continue indefinitely. However, for integrable equations, as
shown below for the NLS equation, this series truncates and
exact solutions of various finite order are obtained.

Before proceeding, it is useful to know properties of the
Hirota operators. Let Xi = ζit − kiz + φi, with dispersion
relation ki = jζ2

i . Then:
1) D2

t e
XieXj = D2

t e
XjeXi = (ζj − ζi)2eXi+Xj ;

2) Dze
XieXj = −Dze

XjeXi = (kj − ki)eXi+Xj ;
3) HeXieXj =

(
j(kj − ki) + (ζj − ζi)2

)
eXi+Xj ;

4) H(1.eX) = (jk + ζ2)eX , X = ζt− kz + φ;
5) H(eXieXj ) = αijH(1.eXi+Xj ), where αij =(

j(kj − ki) + (ζj − ζi)2
)
/
(
j(kj + ki) + (ζj + ζi)

2
)
;

6) H(eX
∗
i eX

∗
i +Xj ) = H(eXi+X

∗
j eXi) = 0;

7) H(1.g) = HeXieXj has a solution g = αije
Xi+Xj .

The first iteration n = 1 is{
H1.g1 = 0,

(f1)tt = 0,

which gives

g1 =

N∑
i=1

eXi , f1 = 0,

where N ∈ N is the order of the multi-soliton solution.
We first consider N = 1 and then show how an additional

mass point can be added to obtain the N = 2 solution.

A. Case N=1

We have f0 = 1, g0 = f1 = 0 and g1 = eX1 . For n = 2{
H(1.g2) = −H(f1g1) = 0,

(f2)tt = − 1
2D

2
t f1f1 + γg1g

∗
1 = γeX1+X∗1 .

At this point, since one variable X1 already exists and N = 1,
we aim at truncating the process by choosing zero solutions
and avoiding the inclusion of terms exp(Xi), i ≥ 2. We thus
consider the solution

g2 = 0, f2 = eX1+X∗1 +R13 ,

where R13 = −2 log(ζ1 + ζ∗1 ) + log γ. It can be verified that
the above solution then gives all other terms fk = gk = 0,
k ≥ 3, and the iteration truncates. The 1-soliton solution is
obtained as

q =
G

F
=

eX1

1 + eX1+X∗1 +R13

=
1

2
e−

1
2R13ej=X1 sech

(
<X1 +

1

2
R13

)
.

By setting ζ1 = −2jλ1 = ω − jα where λ1 = (α+ jω)/2 is
the eigenvalue, k1 = jζ2

1 = 2αω− j(α2−ω2), φ1 = log 2ω2

q̃ ,
we get

q = ωe−jαt+j(α
2−ω2)z−j∠q̃ sech (ω(t− 2αz − t0)) ,

where t0 = 1
ω log γ|q̃|

ω and ∠ denotes phase.

B. Case N=2

For n = 1 we get f0 = 1, g0 = f1 = 0 and g1 = eX1 +eX2 .
The next iteration n = 2 is
H(1.g2) = −Hf1g1 = 0,

(f2)tt = − 1
2D

2
t f1f1 + γg1g

∗
1

= γ
(
eX1+X∗1 + eX1+X∗2 + eX2+X∗1 + eX2+X∗2

)
.

We choose the solution g2 = 0 and

f2 = eX1+X∗1 +R13 + eX1+X∗2 +R14 + eX2+X∗1 +R23

+ eX2+X∗2 +R24 ,

where

Rij =

{
2 log(ζi − ζj)− log γ, i, j ≤ N or i, j ≥ N + 1,

−2 log(ζi + ζj) + log γ, i ≤ N and j ≥ N + 1,

and ζi+N=ζ
∗
i .
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The n = 3 iteration is{
H1.g3 = −H(f1g2 + f2g1) = −Hf2(eX1 + eX2),

∂ttf3 = 0.

The second equation gives f3 = 0. The first one, using
property 6), simplifies to

H(1.g3) = −H(eX
∗
1 +X2+R23 .eX1)−H(eX2+X∗2 +R24 .eX1)

−H(eX
∗
1 +X1+R13 .eX2)−H(eX1+X∗2 +R14 .eX2).

Using property 7), a solution is

g3 = −
(
α23,1e

X1+X∗1 +X2+R23 + α24,1e
X1+X2+X∗2 +R24

+α13,2e
X1+X∗1 +X2+R13 + α14,2e

X1+X∗2 +X2+R14

)
= −

(
α13,2e

R13 + α23,1e
R23
)
eX1+X∗1 +X2

−
(
α14,2e

R14 + α24,1e
R24
)
eX1+X2+X∗2 . (31)

Here

α(i+N)j,i =
j(ki − (k∗i + kj))) + (ζi − (ζ∗i + ζj)

2

j(ki + (k∗i + kj))) + (ζi + (ζ∗i + ζj)2

=
2ζ2
j − 2|ζi|2 − 2ζiζj + 2ζ∗i ζj

2ζ∗2i + 2|ζi|2 + 2ζiζj + 2ζ∗i ζj

=
ζj − ζi
ζi + ζ∗i

,

and similarly,

α(i+N)i,j =
j(kj − (k∗i + ki))) + (ζj − (ζ∗i + ζi))

2

j(kj + (k∗i + ki))) + (ζj + (ζ∗i + ζi))2

=
ζi − ζj
ζ∗i + ζj

.

The first coefficient a = α13,2e
R13 + α23,1e

R23 in (31) is

a =
ζ1 − ζ2
ζ∗1 + ζ2

eR13 +
ζ2 − ζ1
ζ1 + ζ∗1

eR23

=
ζ1 − ζ2
ζ∗1 + ζ2

× γ

(ζ∗1 + ζ1)2
+
ζ2 − ζ1
ζ1 + ζ∗1

× γ

(ζ2 + ζ∗1 )2

= − γ(ζ1 − ζ2)2

(ζ∗1 + ζ1)2(ζ∗1 + ζ2)2

= −eR12+R13+R23 .

In the same manner, the second coefficient b = α14,2e
R14 +

α24,1e
R24 in (31) is obtained as

b =
−γ(ζ1 − ζ2)2

(ζ1 + ζ∗2 )2(ζ2 + ζ∗2 )2
= −eR12+R14+R24 .

It follows that

g3 = eX1+X∗1 +X2+R12+R13+R23 + eX1+X2+X∗2 +R12+R14+R24 .

The n = 4 iteration is:{
H1.g4 = 0,

(f4)tt = − 1
2D

2
t (f2f2) + γ(g3g

∗
1 + g1g

∗
3).

The first equation gives g4 = 0. For the second one, using
property 1), we have
1

2
D2
t f2.f2 =

1

2
D2
t

(
eX1+X∗1 +R13 + eX1+X∗2 +R14

+ eX2+X∗1 +R23 + eX2+X∗2 +R24

)2

= (ζ∗2 − ζ∗1 )2e2X1+X∗1 +X∗2 +R13+R14

+ (ζ2 − ζ1)2eX1+2X∗1 +X2+R13+R23

+ (ζ2 + ζ∗2 − ζ1 − ζ∗1 )2eX1+X∗1 +X2+X∗2 +R13+R24

+ (ζ∗1 + ζ2 − ζ1 − ζ∗2 )2eX1+X∗1 +X2+X∗2 +R14+R23

+ (ζ2 − ζ1)2eX1+X2+2X∗2 +R14+R24

+ (ζ∗2 − ζ∗1 )2eX
∗
1 +2X2+X∗2 +R23+R24

= (ζ2 + ζ∗2 − ζ1 − ζ∗1 )2eX1+X∗1 +X2+X∗2 +R13+R24

+ (ζ∗1 + ζ2 − ζ1 − ζ∗2 )2eX1+X∗1 +X2+X∗2 +R14+R23

+ γ
{
e2X1+X∗1 +X∗2 +R13+R14+R34

+ eX1+2X∗1 +X2+R13+R23+R12

+ eX1+X2+2X∗2 +R14+R24+R12

+ eX
∗
1 +2X2+X∗2 +R23+R24+R34

}
. (32)

Also

γ(g3g
∗
1 + c.c.) = γ

[
(eR13+R23 + eR14+R24)eR12 + c.c.

]
× eX1+X∗1 +X2+X∗2

+ γ
{
eX1+2X∗1 +X2+R12+R13+R23

+ eX1+X2+2X∗2 +R12+R14+R24

+ e2X1+X∗1 +X∗2 +R∗12+R∗13+R∗23

+ eX
∗
1 +2X2+X∗2 +R∗12+R∗14+R∗24

}
. (33)

The terms inside braces in (32) and (33), involving 2X1, 2X2,
2X∗1 and 2X∗2 , cancel out using identities R∗12 = R34, R∗13 =
R13, R∗14 = R23, R∗24 = R24. The terms containing exp(X1 +
X∗1 +X2 +X∗2 ), after some algebra, simplify and we obtain

f4 = eX1+X∗1 +X2+X∗2 +R12+R13+R14+R23+R24+R34 .

One can check that fk = gk = 0, k ≥ 5. It follows that

G = eX1 + eX2 + eX1+X∗1 +X2+R12+R13+R23

+ eX1+X2+X∗2 +R12+R14+R24 ,

F = 1 + eX1+X∗1 +R13 + eX1+X∗2 +R14 + eX2+X∗1 +R23

+ eX2+X∗2 +R24

+ eX1+X∗1 +X2+X∗2 +R12+R13+R14+R23+R24+R34 .

C. General Formula

The calculations in the previous subsections illustrate how
one can add an additional term exp(XN ) to g1 and update
F and G. Using similar calculations, N -soliton solutions are
obtained inductively. Furthermore, at this point the structure
of F and G, noted earlier, becomes clear.

In the Hirota method, eigenvalues λi = (αi + jωi)/2 are
related to ζi by ζi = −2jλi = ωi − jαi. For N = 1, the
spectral amplitude is determined via φ1 = log(2ω2

1/q̃1). While
eigenvalues in the Riemann-Hilbert, Hirota and Darboux meth-
ods are the same, other spectral parameters are different.
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APPENDIX B
PROOF OF THE DARBOUX THEOREM

See [22] for the proof of a more general theorem. Here we
give a simple proof for Theorem 1.

Let φ(t, λ; q) be a known eigenvector associated with λ
and q, i.e., satisfying φt = P (λ, q)φ. Its adjoint φ̃(t, λ; q) =
[φ∗2,−φ∗1] satisfies φ̃t = P (λ∗, q)φ̃. Denote this known solu-
tion as S = [φ, φ̃], Γ = diag(λ, λ∗), and Σ = SΓS−1.

We can verify that St = JSΓ+QS, where J = diag(−j, j)
and Q = offdiag(q,−q∗). In addition we have Σt = [JΣ +
Q,Σ].

Given that φ(t, λ; q) is known, the Darboux transformation
maps {v(t, µ; q), ṽ(t, µ; q)} to {u(t, µ; q̃), ũ(t, µ; q̃)} accord-
ing to

U = V Λ− ΣV,

where V = [v, ṽ], U = [u, ũ], Λ = diag(µ, µ∗).
We have Vt = JV Λ +QV and

Ut = VtΛ− (ΣtV + ΣVt)

= (JV Λ +QV )Λ− ([JΣ +Q,Σ]V + Σ(JV Λ +QV ))

= (JV Λ +QV )Λ− ΣJV Λ− ([JΣ +Q,Σ] + ΣQ)V

= J(V Λ− ΣV )Λ + JΣV Λ− ΣJV Λ

+QV Λ− ([JΣ +Q,Σ] + ΣQ)V

= JUΛ + [J,Σ]V Λ− ([JΣ +Q,Σ] + ΣQ)V +QV Λ

= JUΛ + [J,Σ]V Λ−
(
JΣ2 +QΣ− ΣJΣ

)
V +QV Λ

= JUΛ + [J,Σ]V Λ− [J,Σ]ΣV −QΣV +QV Λ

= JUΛ + [J,Σ](V Λ− ΣV ) +Q(V Λ− ΣV )

= JUΛ + (Q+ [J,Σ])U

= JUΛ + Q̃U,

where Q̃ = Q+ [J,Σ].
It follows that u and ũ satisfy the P -equations ut =

P (µ, q̃)u and ũt = P (µ∗, q̃)ũ. In the same manner we can
show that u and ũ satisfy the M -equations uz = M(µ, q̃)u
and ũz = M(µ∗, q̃)ũ.

REFERENCES

[1] M. I. Yousefi and F. R. Kschischang, “Information transmission
using the nonlinear Fourier transform, Part I: Mathematical tools,”
Arxiv e-prints, arXiv:1202.3653, Feb. 2012. [Online]. Available:
http://arxiv.org/abs/1202.3653

[2] ——, “Information transmission using the nonlinear Fourier transform,
Part II: Numerical methods,” Arxiv e-prints, arXiv:1204.0830, Apr.
2012. [Online]. Available: http://arxiv.org/abs/1204.0830

[3] L. F. Mollenauer and J. P. Gordon, Solitons in Optical Fibers: Fun-
damentals and Applications, 1st ed. Amsterdam, The Netherlands:
Elsevier Academic Press, 2006.

[4] R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel,
“Capacity limits of optical fiber networks,” IEEE J. Lightw. Technol.,
vol. 28, no. 4, pp. 662–701, Feb. 2010.

[5] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering
Transform, ser. SIAM Stud. Appl. Numer. Math. Philadelphia, PA,
USA: SIAM, 1981, vol. 4.

[6] L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory
of Solitons. Berlin, Germany: Springer-Verlag, 2007.

[7] A. Hasegawa and Y. Kodama, Solitons in Optical Communications,
ser. Oxford Series in Optical and Imaging Sciences. Oxford, U.K.:
Clarendon Press, 1995, vol. 7.

[8] A. C. Singer, “Signal processing and communication with solitons,”
Ph.D. dissertation, Dept. Electr. Eng., Massachusetts. Inst. of Technol.,
Cambridge, MA, USA, 1996.

[9] A. Hasegawa and T. Nyu, “Eigenvalue communication,” IEEE J. Lightw.
Technol., vol. 11, no. 3, pp. 395–399, Mar. 1993.

[10] P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity
of optical fibre communications,” Lett. to Nature, vol. 411, no. 6841, pp.
1027–1030, Jun. 2001.

[11] G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. San Francisco, CA,
USA: Academic Press, 2012.

[12] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge,
U.K.: Cambridge University Press, 2011.

[13] E. Agrell, “Conditions for a monotonic channel capacity,”
ArXiv e-prints, arXiv:1209.2820v2, Feb. 2014. [Online]. Available:
http://arxiv.org/abs/1209.2820v2

[14] G. Kramer, “Review of rate regions for interference channels,” in 2006
Int. Zurich Seminar on Commun. (IZS). IEEE, Feb. 2006, pp. 162–165.

[15] V. Cadambe and S. A. Jafar, “Interference alignment and degrees of
freedom of the k-user interference channel,” IEEE Trans. Inf. Theory,
vol. 54, no. 8, pp. 3425–3441, Aug. 2008.

[16] T. Koch, A. Lapidoth, and P.-P. Sotiriadis, “Channels that heat up,” IEEE
Trans. Inf. Theory, vol. 55, no. 8, pp. 3594–3612, Aug. 2009.
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